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Abstract—Distributed estimation that recruits potentially large
groups of humans to collect data about a phenomenon of interest
has emerged as a paradigm applicable to a broad range of detec-
tion and estimation tasks. However, it also presents a number of
challenges especially with regard to user participation and data
quality, since the data resources may be strategic human agents
instead of physical sensors. We consider a static estimation problem
in which an estimator collects data from self-interested agents.
Since it incurs cost to participate, mechanisms to incentivize the
agents to collect and transmit data of desired quality are needed.
Agents are strategic in the sense that they can take measurements
with different levels of accuracy by expending different levels of
effort. They may also misreport their information in order to obtain
greater compensation, if possible. With both the measurements
from the agents and their accuracy unknown to the estimator, we
design incentive mechanisms that encourage desired behavior from
strategic agents. Specifically, we solve an optimization problem at
the estimator which minimizes the expected total compensation
to the agents while guaranteeing a specified quality of the global
estimate.

Index Terms—Mechanism design, game theory, distributed
estimation, crowdsourcing, knapsack problem.

I. INTRODUCTION

D ISTRIBUTED estimation theory to solve the problem of
fusing data from a group of sensors to estimate a parameter

or a random variable is a well-developed field. More recently,
the emerging areas of social computing and crowdsourcing have
enabled many large scale sensing and estimation tasks that
leverage many humans (or human owned and operated devices)
to collect data about phenomena of interest (see works such
as [1], [2] for an overview). An example is that of aggregating
information and opinions of a ‘crowd’ recruited using Amazon
Mechanical Turk to perform tasks that are time consuming and
difficult to scale such as image labeling. Similar applications
have been proposed or demonstrated in the fields ranging from
environmental monitoring [3], health data collection [4], traffic
monitoring [5], and so on.
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Beyond already existing challenges in traditional distributed
estimation or detection [6]–[8], new challenges arise in the
design of such a crowdsensing system since data sources may not
have any incentive to provide the data aggregator with the quality
of data that it desires [9]. This might be due to the fact that agents
may have to exert resources (e.g., time, power, or bandwidth) to
produce an accurate measurement [10]. Further, even though the
agents may have accurate data, they may still wish to corrupt
data before transmission either to gain privacy or for some
other selfish reason [11]. Early work in this field (e.g., [12]–
[14]) ignored these issues and assumed that participants were
voluntary recruits who would collect and provide high quality
(and truthful) data. More recently, it has been recognized that
without a suitable incentive, such voluntary providers of data
may not be enough to generate an estimate of desired quality.
As an illustrative example, [15] studied product reviews on
Amazon.com and concluded that users with a moderate outlook
are unlikely to report; thus, while controlled experiments on
the same items reveal normally distributed opinions, voluntarily
reported ratings often follow bi-modal, U-shaped distributions
where most of the ratings are either very good or very bad.

A review of various incentive mechanisms, including both
monetary and non-monetary incentives, is provided in [10],
[16], [17]. Specifically, reverse auctions [18]–[21] have been
proposed that design payments according to the agents’ bids
on the costs of solving the estimation problem (or the values of
their information). To this end, the cost of each agent is typically
assumed to be a constant that is unknown to the estimator.
However, in practice, agents can exert less effort to incur lower
cost and generate less accurate data, and vice versa. Accordingly,
mechanisms such as those in [22]–[24] have been proposed to
incentivize agents to exert sufficient effort by making payments
depend on the accuracy of the data provided by the agents.
In the case where the estimator cannot directly verify the data
accuracy, the peer prediction mechanism [25] has been proposed
to set up a game among the agents by designing the payment
to each agent as a function of this agent’s reported data and
the reports from the other agents. Besides effort elicitation, the
problem of truthfulness elicitation has also been studied using
peer prediction methods with different information structures
(see e.g., [26]–[28]) to incentivize the agents to report truthfully
in a game-theoretic equilibrium.

In addition to effort elicitation and truthfulness elicitation, it
is also of great interest for the estimator to consider how much
total reward is to be paid, or the trade-off between the total
payment and the estimation accuracy. A systematic theory that
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addresses the challenges of incentive mechanism design with the
objective of optimizing the overall cost function at the estimator
is not well studied. The main contribution of this paper is on
the design of cost-efficient incentive mechanisms. Specifically,
while using a payment structure similar to that of peer prediction
method to achieve effort elicitation and truthfulness elicitation,
we further solve an optimization problem of minimizing the ex-
pected total compensation to be paid to the strategic agents while
guaranteeing a specified quality of global estimate. Compared
to the existing works in the literature that also considered the
overall cost of the estimator, the agent model that we consider
has several assumptions that may be more practical:

1) Each agent can exert less effort to incur lower cost and
generate less accurate data, and vice versa.

2) The actual level of effort exerted by each agent is unknown
to the estimator.

3) The actual data obtained at each agent is unknown to the
estimator.

Since the agents can act strategically to meet their own in-
terests by not only exerting different levels of effort but also
misreporting their data, the optimization problem at the estima-
tor is thus difficult to solve.

The works that are closest to ours are [29]–[35]. [29] consid-
ered the optimization problem of minimizing the sum of estima-
tion error and expected total payment. Their proposed incentive
mechanism determines the compensation to the strategic agents
by verifying their reported data with the ground truth of the
phenomenon of interest, which was assumed to be available
to the estimator after the estimation process. Minimizing the
worst-case estimation error subject to a budget constraint was
explored in [30] with the assumption that data reported from the
agents is verifiable once revealed. In this paper, we do not require
the availability of ground truth or data verification. [31] focused
on minimizing a weighted sum of estimation error and expected
total payment with the assumption that sensors do not misreport
their data. With the same assumption, [32] extended [31] from
the scenario of one-time data acquisition to the scenario of
multi-time data acquisition, where the assignment of a future
job opportunity was used as a part of the incentive. In this paper,
we allow the agents to misreport their data to maximize their own
utility. [33] also considered the problem of balancing estimation
accuracy and expected total payment with the assumption that
the actual effort costs of the agents are drawn from a known dis-
tribution. Although this assumption can be relaxed by learning
the distribution in a sequential setting [34], their model is limited
to a binary-answer task (e.g., an image contains either a certain
object or not) and a binary effort model (e.g., either exert a fixed
level of effort at a fixed cost or no effort at no cost at all). Instead,
we focus on estimation tasks with continuous measurements and
continuous effort models. Finally, unlike [35] where the model
is limited to a specific effort cost function, we do not restrict the
format of effort cost function.

The rest of the paper is organized as follows. Section II
presents the problem statement and formulation. In Section III,
we derive the solution to the optimization problem at the esti-
mator which minimizes total compensation while guaranteeing
a certain estimation accuracy. We then present in Section IV an

optimal mechanism that achieves the desired behavior from the
strategic agents in a Bayesian Nash Equilibrium (BNE) when the
cost functions of the strategic agents satisfy a certain property.
In Section V, we provide a feasibility-guaranteed sub-optimal
mechanism when the cost functions of the strategic agents do
not satisfy that property. Results of some simulation experiments
are given in Section VI. Section VII concludes the paper.

Notation: Random variables are denoted by uppercase letters,
and their realizations are denoted by the corresponding lower-
case letters. EX [f ] denotes the expectation of function f taken
with respect to the random variable X; when X is explained
from the context, the notation is abbreviated as E[f ]. CXX =
E[(X − E[X])(X − E[X])] and CXY = E[(X − E[X])(Y −
E[Y ])]denote, respectively, the variance ofX and the covariance
between X and Y . A Gaussian distribution with mean m and
variance σ2 is denoted by N (m,σ2). A tuple of n elements is
denoted with parentheses by (e1, e2, . . . , en).

II. PROBLEM STATEMENT

Estimation Setup: Consider a scalar-valued random variable
X that is distributed according to a prior distribution X ∼
N (0, σ2

x) and takes an unknown value x in an experiment. An
estimator (also called an aggregator) seeks to estimate the value
x using measurements from N sensors (also called agents). The
i-th sensor generates a measurement Yi according to the relation

Yi = X + Vi, (1)

where Vi is the measurement noise with distribution Vi ∼
N (0, σ2

i ). We assume that the measurement noises for the N
sensors are mutually independent and further independent with
the random variable X . For notational ease, we denote by ξ the
reciprocal of the variance, i.e., ξx = σ−2

x and ξi = σ−2
i .

For each sensor i, given the measurement Yi = yi, the
minimum mean square error (MMSE) estimate x̂i and the
corresponding local mean squared error (MSE) Σi can be
computed as

x̂i = E[X] + CXYi
C−1

YiYi
(yi − E[Yi]) =

σ2
x

σ2
x + σ2

i

yi, (2)

Σi = CXX − CXYi
C−1

YiYi
CYiX =

1

σ−2
x + σ−2

i

=
1

ξx + ξi
,

(3)

where CXX = CXYi
= CYiX = σ2

x and CYiYi
= σ2

x + σ2
i . We

denote x̂i as the local estimate and Σi as the local MSE at
the i-th sensor since these quantities are obtained based on the
information at each sensor. These local estimates can be fused
to obtain the global MMSE estimate x̂g using the relation [36]

Σ−1
g x̂g =

N∑

i=1

Σ−1
i x̂i, (4)

where Σg is the global MSE corresponding to x̂g and can be
calculated as

Σ−1
g =

N∑

i=1

Σ−1
i − (N − 1)σ−2

x = ξx +
N∑

i=1

ξi. (5)
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Effort Cost: The variance σ2
i affects the quality of the mea-

surement at sensor i and is assumed to be a parameter that is
under the control of the sensor. In other words, the sensor can
put in less effort and increase the variance σ2

i while incurring a
lower effort cost, and vice versa. The effort cost may represent
usage of battery, time, or some other resource. For simplicity
and without loss of generality, we assume that ξi is the effort
level of agent i that incurs an effort cost ci(ξi). We make some
weak assumptions on the cost function that describes the effort
cost.

Assumption 1: The cost function of each sensor ci(ξi) satis-
fies the following properties:
� ci(ξi) ≥ 0, i.e., effort cost is non-negative;

�
∂ci(ξi)

∂ξi
> 0, i.e., more effort cost is incurred to obtain a

measurement with higher accuracy;
� ξi ∈ [0, ξiu] and ci(ξi) ∈ [0, ciu].
Note that when sensor i does not put in any effort, i.e., ξi = 0

and σ2
i = ∞, then the effort cost is zero, i.e., ci(0) = 0 and its

local MSE is equal to the variance of the prior distribution of X ,
i.e., Σi = σ2

x.
Common Knowledge and Private Information: The common

knowledge among the sensors is merely the statistical properties
of the various random variables, i.e., the prior distribution of X
and the mutual independence among the measurement noises
from different sensors. The local measurement, local estimate,
and local MSE at each sensor are its private information. The
format of the cost function ci(.) of each sensor i is assumed to be
known to the estimator while the actual effort ξi exerted by the
sensor is unknown to the estimator. Therefore, the actual cost of
each sensor is also unknown to the estimator.

Formulation as a Mechanism Design Problem: We are inter-
ested in a formulation in which the estimator and the sensors
are all self-interested. The estimator is interested in generating
a global estimate with a specified accuracy as measured by the
global MSE. To do so, it must incentivize sensors to generate and
transmit measurements with sufficiently low local MSE. On the
other hand, the sensors do not gain directly from the estimator
being able to generate an accurate global estimate. Since they
incur effort costs to generate measurements with low local MSE,
the estimator must compensate the sensors using a payment
mechanism of some sort of some sort. For simplicity, we assume
the payment is monetary, although money may be thought of as
a proxy of some other resource such as battery charging. The
problem we consider in this paper is to minimize the payment
from the estimator to incentivize self-interested sensors to obtain
and report measurements with sufficient accuracy that allow the
global MSE to be below a specified level.

We now formulate this interaction as a mechanism design
problem. The timeline of the interaction is as shown in Fig. 1. The
estimator asks each sensor to report its measurement and local
estimate. Note that reporting this pair is equivalent to reporting
the local estimate and the local MSE. The strategy sets and the
utility functions of each player are given as below.
� Strategy Sets: Each sensor can choose the level of effort to

exert and the values of its measurement and local estimate
to report. For each sensor i, we define its strategy as

Fig. 1. Timeline and communication topology of the incentive mechanism
design problem.

choosing each element in the following tuple

si = (ξi, x̂ri, yri),

where x̂ri is the reported local estimate and yri is the
reported measurement. Denote the set of all feasible si’s
by Si. With a slight abuse of standard notation in game
theory, when sensor i adopts strategy si, denote by s−i =
(s1, s2, . . . , si−1, si+1, . . . , sN ) the strategy profile of all
the other sensors except for sensor i. The estimator decides
how much payment each sensor i will obtain and how to
fuse the reports from the sensors. Since the sensors may
misreport their local estimates, (4) may not be the optimal
way to fuse local reported estimates from the sensors.
Thus, the strategy of the estimator includes the payment
functions that map each strategy profile of the sensors to
their payments and the fusion rule, i.e.,

se = (pi(s1, . . . , sN ), �(s1, . . . , sN )),

where pi(s1, . . . , sN ) denotes the payment made to sen-
sor i which is in general a function of the strategies
of all the sensors, and �(s1, . . . , sN ) is the fusion rule
used to obtain the global estimate. Note that the payment
pi(s1, s2, . . . , sN ) can also be expressed as pi(si, s−i).
Denote the set of all feasible strategies se’s by Se.

� Utility Functions: The expected utility of each sensor i is
given by

E[Ui] = E[pi(si, s−i)− ci(ξi)], (6)

where the expectation is taken over the uncertainties of the
random variableX , measurement noises, and the strategies
profile of all the other sensors. Thus each sensor i optimizes
over the effort level and reports to maximize its expected
utility,

max
si∈Si

E[Ui]. (7)

On the other hand, the estimator is interested in minimizing
the expected total payment while obtaining a global esti-
mate with MSE less than a certain threshold. Formally, the
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optimization problem at the estimator is given as follows

min
se∈Se

E

[
N∑

i=1

pi(si, s−i)

]

s.t. Σg ≤ Σt,

E[pi(si, s−i)− ci(ξi)] ≥ 0, ∀i,
si = arg maxE[pi(si, s−i)− ci(ξi)], ∀i, (8)

where Σt is the specified threshold on the global MSE.
The second constraint above ensures individual rationality,
which is necessary for the sensors to participate.

In the sequel, we solve problem (8). Note that problem (8)
specifies a Bayesian game among the sensors since the utility of
each sensor i depends on not only its own strategy si but also the
strategy profile of the other sensors s−i. This further depends on
the private information (such as local measurements and local
estimates) of the other sensors which is unknown to sensor i.
We will consider the solution of the optimization problem when
the behavior of the sensors is specified according to a Bayesian
Nash Equilibrium.

III. OPTIMIZATION PROBLEM AT THE ESTIMATOR

To understand why the problem (8) is difficult to solve, we
note why some intuitive incentive mechanisms may not work.
� A payment scheme pi = c for a constant c that does not

depend on the reports will lead to each sensor not making
any effort and reporting some arbitrary value to the estima-
tor. In economics, this is termed as the problem of moral
hazard.

� A payment scheme that specifiespi as a decreasing function
of Σi can be considered to incentivize the sensors to exert
effort and take accurate measurements. However, it will
lead sensors reporting very low local MSE irrespective of
the actual effort made. This is termed as the problem of
adverse selection.

In either case, note that the actual measurements yi, local
estimates x̂i and the local MSE Σi are all unknown to the
estimator, fusing reported local estimates to obtain a global
estimate that satisfies the constraint Σg ≤ Σt is also a nontrivial
problem. The overall optimization problem (8) is even more
difficult.

Our results are organized as shown in Fig. 2. Specifically, we
show that the following technical condition on the effort cost
functions plays an important role in the simplification of the
problem:

−2
∂ci(ξi)

∂ξi
− ∂2ci(ξi)

∂ξ2i
(ξx + ξi) < 0, ∀ξi and i. (9)

Remark 1: If ci(ξi) is convex over ξi, the condition (9) holds
for any ξi.

Remark 2: Condition (9) is a sufficient condition for our
proposed optimal mechanism (presented in Section IV) to be
able to induce the desired level of effort from each sensor. The
intuition is that it guarantees the concavity of the expected utility
function of each sensor over the effort, so that the desired level

Fig. 2. The procedure of designing the incentive mechanism with strategic
data sources.

of effort will also be the unique utility maximizer for each sensor
under the proposed optimal mechanism.

Depending on whether (9) is satisfied or not, we have the
following result.

Proposition 1: Consider the setup of problem (8). If condi-
tion (9) is satisfied, the estimator can specify a payment design
such that the following three conditions hold as a BNE:

1) The selected sensors exert the effort levels specified by the
estimator;

2) The selected sensors report truthfully about their measure-
ments and local estimates;

3) The expected payment to each selected sensor is the effort
cost of the sensor for the specified effort level.

Note that under these three conditions, the estimator can
choose the optimal effort levels from agents that yield minimum
payment while meeting the constraints in problem (8) with the
fusion rule as shown in (4). Specifically in rewriting problem
(8), the first condition enables the estimator to take the effort
levels of all sensors as decision variables; the second condition
yields that the global MSE Σg can be computed as shown in
(5); and the third condition is sufficient to replace the expected
payment term in the objective function with effort cost. Thus, in
this case, the optimization problem (8) reduces to

min
φ,ξ

N∑

i=1

φici(ξi)

s.t.
1

ξx +
∑N

i=1 φiξi
≤ Σt,

φi ∈ (0, 1),

ξi ∈ [0, ξiu], (10)

where ξ = (ξ1, ξ2, . . . , ξN ) and φ = (φ1, φ2, . . . , φN ). φi is an
indicator about whether or not the estimator selects agent i:
φi = 1 represents the case where the estimator selects agent
i and φi = 0 represents the case where the estimator does not
select agent i, which can be implemented by, for instance, setting
pi = 0.

In Section IV, we show that if the cost functions satisfy
constraint (9), a mechanism M1 can be designed that specifies
a payment design according to Proposition 1. Thus, problem (8)
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can be solved optimally. Otherwise if the cost functions do not
satisfy constraint (9), we solve the problem in a sub-optimal way
through the following proposition. This will be proved through
the design of a mechanism M2 presented in Section V.

Proposition 2: Consider the setup of problem (8). If the
condition (9) is not satisfied, the estimator can specify a payment
design such that the following three conditions hold as a BNE:

1) The selected sensors exert their maximum effort levels;
2) The selected sensors report truthfully about their measure-

ments and local estimates;
3) The expected payment to each selected sensor i is the effort

cost of the sensor for its maximum effort level.
Note that under these three conditions, the estimator cannot

choose the optimal effort levels from sensors as in Proposition 1.
But the estimator can still select a subset of all agents given
that the selected agents will exert their maximum efforts and
the estimator will pay the corresponding costs incurred at max-
imum effort levels. Specifically in rewriting problem (8), the
first condition states that the effort levels of the sensors cannot
be considered as decision variables and are fixed to be their
maximum levels; the second condition yields that the the global
MSE Σg can be computed as shown in (5) with ξi = ξiu for
all i; and the third condition is sufficient to replace the expected
payment term in the objective function with the maximum effort
cost. Formally, problem (8) is transformed to the following
well-defined binary knapsack problem (KP):

min
φ

N∑

i=1

φici(ξiu)

s.t.
1

ξx +
∑N

i=1 φiξiu
≤ Σt,

φi ∈ (0, 1). (11)

This problem is NP-hard but can be solved exactly in
pseudo-polynomial time through dynamic programming algo-
rithms [37].

IV. OPTIMAL MECHANISM WHEN (9) HOLDS

In this section, we address the cases where (9) holds. We first
simplify the optimization problem (10) and present two inter-
esting special cases. Then we present the optimal mechanism to
prove Proposition 1.

A. Solving Problem (10)

(10) can be rewritten as

min
φ,ξ

N∑

i=1

φici(ξi)

s.t.
N∑

i=1

φiξi ≥ Σ−1
t − ξx,

φi ∈ (0, 1),

ξi ∈ [0, ξiu]. (12)

This is a mixed-integer nonlinear programming problem and
specifically known as the general knapsack problem (GKP) with
variable coefficients [38] [39], which is difficult to solve in gen-
eral. However, since ci(0) = 0, ∀i, we can transform problem
(12) to problem (13) according to the following result.

Lemma 1: Problem (12) can be solved by constructing solu-
tion of the following optimization problem

min
ξ

N∑

i=1

ci(ξi)

s.t.
N∑

i=1

ξi ≥ Σ−1
t − ξx,

ξi ∈ [0, ξiu]. (13)

Proof: Suppose that the minimum of (12), denoted by O1,
is achieved at (ξO1, φO1) and the minimum of (13), denoted
by O2, is achieved at ξO2. We have O1 ≤ O2 because (13) is
a special case of (12) by fixing all φi = 1. On the other hand,
O1 ≥ O2, because any value achieved in (12) can be achieved
in (13) by constructing ξO2 from (ξO1, φO1) as

ξO2
i =

{
ξO1
i , for φO1

i = 1,

0, for φO1
i = 0.

(14)

Thus, O1 = O2. In general, it is easier to solve (13) first and
then construct (ξO1, φO1) from ξO2 by setting

(ξO1
i , φO1

i ) =

{
(ξO2

i , 1), for ξO2
i �= 0,

(r, 0), for ξO2
i = 0,

(15)

where r can be any number since φO1
i = 0. �

We now present two interesting special cases.
1) Special Case: Continuous Quadratic Cost Function: A

quadratic effort cost ci(ξi) = lξ2i is quite popular, e.g., in control
theory. In this case, then the optimization problem (13) becomes,

min
ξ

N∑

i=1

lξ2i

s.t.
N∑

i=1

ξi ≥ Σ−1
t − ξx,

ξi ∈ [0, ξiu], (16)

which is a standard Quadratic Programming (QP) problem.
According to Cauchy-Schwarz inequality, the optimal solution
of (16) is given by

ξ̃1 = ξ̃2 = · · · = ξ̃N =
Σ−1

t − ξx
N

, (17)

assuming for simplicity that Σ−1
t −ξx
N ≤ ξiu.

As stated in Remark 1, since the cost function is convex,
the constraint (9) holds for any possible ξi. Under our optimal
mechanism (presented in Section IV-B), there is a BNE where

all agents select the effort level as Σ−1
t −ξx
N and report truthfully

about their local estimates and their measurements. Meanwhile,
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the minimum expected total payment that can be achieved to

ensure global MSE to be no greater than Σt is
l(Σ−1

t − ξx)
2

N
.

2) Special Case: Discrete Linear Cost Function: A natural
model is that each agent can increase the accuracy of its local
estimate by taking more measurements and estimating based
upon the sample mean. For instance, if agent i takes ηi number
of measurements of the following

Yi(1) = X + Vi(1),

Yi(2) = X + Vi(2),

...

Yi(ηi) = X + Vi(ηi), (18)

where Vi(k) follows i.i.d. Gaussian distribution N (0, σ2
io). De-

note the effort cost of taking each measurement by a cost of cio.
Then the noise level, effort level and effort cost of the sample
mean Ȳi = X + V̄i averaged from taking ηi measurements are
respectively given by

σ2
i =

σ2
io

ηi
,

ξi = ηiσ
−2
io ,

ci(ξi) = ηicio = σ2
iocioξi. (19)

Therefore in this case, the effort cost function is a linear function
and the effort level depends on the number of measurements
taken. We denote the corresponding maximum number of mea-
surements by ηmi . The optimization problem (13) becomes,

min
η

N∑

i=1

ηicio

s.t.
N∑

i=1

ηiσ
−2
io ≥ Σ−1

t − ξx,

ηi ∈ (0, 1, . . ., ηmi ), (20)

which is known as the Bounded Knapsack Problem (BKP). It is
NP-hard but it can be solved exactly in pseudo-polynomial time
through dynamic programming algorithms [37] [40]. Denote by
η̃ = (η̃1, η̃2, . . ., η̃N ) the optimal solution of (20).

Under our optimal mechanism, there is a BNE where each
agent takes η̃i number of measurements and report truthfully
about the local estimate and measurement. Meanwhile, the
minimum expected total payment that can be achieved to ensure
global MSE to be no greater than Σt is

∑N
i=1 η̃icio.

B. Optimal Mechanism

Denoting the optimal solution of problem (13) by ξ̃ =
(ξ̃1, ξ̃2, . . ., ξ̃N ), we now present mechanism M1 that fulfills
Proposition 1, i.e., under MechanismM1, all the agents exerting
the desired effort levels and reporting their measurements and
local estimates truthfully is a BNE. In addition, the expected
payment to each agent i is the effort cost of the agent for the
specified effort level.

In our proposed incentive mechanism M1, agents are asked
to report two items (x̂ri, yri), where x̂ri is the reported local
estimate and yri is the reported measurement. Note that x̂ri �= x̂i

and yri �= yi in general since agents may falsify their reports to
maximize their utilities. The payment function is given by

pi(x̂ri, yrj) = γi − βi(x̂ri − yrj)
2, (21)

where yrj is the reported measurement from another agent j �= i.
As before, agents are interested in maximizing their expected
utilities, i.e.,

s∗i = arg max
si∈Si

E [Ui]

= arg max
si∈Si

E [pi(x̂ri, yrj)− ci(ξi)] . (22)

Now, we state our results about the optimal mechanism M1.
Theorem 1: Consider the problem (8) when (9) holds. Let

(21) be the payment function to each agent i with

βi =
∂ci(ξi)

∂ξi

∣∣∣∣
ξi=ξ̃i

(
ξx + ξ̃i

)2

, (23)

and

γi = βi

(
1

ξx + ξ̃i
+ ξ̃−1

j

)
+ ci(ξ̃i). (24)

The strategy profile s∗ = (s∗1, s
∗
2, . . ., s

∗
N ) with

s∗i =
(
ξi = ξ̃i, x̂ri = x̂i, yri = yi

)
(25)

is a BNE of the mechanism design problem (8). In addition,
the expected payment to each agent is the effort cost, i.e.,
E[pi] = ci(ξ̃i).

Proof: See Appendix A. �
Intuitively, the payment is designed as a function of the

difference between the reports from the agents, which motivates
each agent to estimate the information of another agent based on
its own information. The accuracy of the agent’s estimate, and
the corresponding expected payment, will depend on how much
effort is exerted when the agent obtains its own information.
Therefore, βi can be designed as in (23) so that the effort level
that the estimator wishes each agent to exert (i.e., ξ̃i) will turn
out to be exactly the optimal choice for agent i when all the
other agents exert the effort levels desired by the estimator, i.e.,
ξj = ξ̃j , ∀j �= i. Further, γi can be designed as in (24) so that the
expected payment is small but enough to cover the effort cost.

It is worth reminding that the estimation of the reports among
the agents is in a Bayesian game setting, which means the desired
strategy profile s∗ from all the agents is obtained in a BNE
sense. Further, if there exists an ‘honest’ agent who reports its
measurement and effort level truthfully, it is no longer needed
to ask the strategic agents to report their measurements. In this
case, the desired strategy profile s∗ is the unique BNE in strictly
dominant strategies in which every s∗i is the strictly dominant
strategy for agent i. We would further point out that honest agent
need not be noiseless and can even be a noisy side measurement
that the estimator has access to. The result is presented in the
following corollary.
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Corollary 1: Consider the setting of Theorem 1 with an
honest agent h who reports its measurement and effort level
truthfully, i.e., Yh = X + Vh with Vh ∼ N (0, ξ−1

h ), and yrh =
yh given the realization Yh = yh. Let the payment function to
each agent i be specified by (21), (23) and (24) after replacing
yrj and ξ̃j with yrh and ξh respectively. The strategy profile
s∗′ = (s∗′1 , s

∗′
2 , . . ., s

∗′
N ) with

s∗′i =
(
ξi = ξ̃i, x̂ri = x̂i

)
(26)

is the unique BNE in strictly dominant strategies.
Proof: The proof is similar to that of Theorem 1. The only

difference in this case is that the strategic agents now estimate
the measurement from the honest agent instead of estimating the
measurement from another strategic agent. The utility of each
strategic agent will no longer depend on other strategic agents,
thus, the strategy in the BNE is the strictly dominant strategy for
each agent and the BNE is the unique equilibrium. �

V. A SUB-OPTIMAL MECHANISM WHEN (9) DOES NOT HOLD

In this section, we provide a feasibility-guaranteed sub-
optimal mechanism M2 for the cases where the constraint (9)
can not be satisfied. M2 achieves truthful reporting and elicits
maximum effort from the selected agents with expected payment
to selected agent i being the effort cost ci(ξiu) in a BNE.

Denote the optimal solution to (11) as φ̃ = (φ̃1, φ̃2, . . ., φ̃N ).
We present the incentive mechanism M2 that only selects the
agents for which φ̃i = 1 and elicits their maximum efforts.

Theorem 2: Consider the problem (8) when (9) does not hold.
Let the payment to each agent i with φ̃i = 1 be determined by
comparing its reported local estimate with the reported measure-
ment from another agent j with φ̃j = 1, i.e.,

pi(x̂ri, yrj) =

{
γi − βi(x̂ri − yrj)

2, for φ̃i = 1

0, for φ̃i = 0
(27)

with

βi > max
ξi∈[0,ξiu]

∂ci(ξi)

∂ξi
(ξx + ξi)

2 (28)

and

γi = βi

(
1

ξx + ξiu
+ ξ−1

ju

)
+ ci(ξiu). (29)

The strategy profile s∗ = (s∗1, s
∗
2, . . ., s

∗
N ) with

s∗i =

{
(ξi = ξiu, x̂ri = x̂i, yri = yi) , for φ̃i = 1

(ξi = 0), for φ̃i = 0
(30)

is a BNE of the mechanism design problem (8). In addition, the
expected payment to each selected agent is the effort cost for its
maximum effort level, i.e., E[pi] = ci(ξiu).

Proof: See Appendix B. �
Remark 3: The payments to the agents with φ̃i = 0 are set

as constant zero, which does not depend on their reports. By ex-
erting no effort, the utilities of these agents are zero irrespective
of their reporting strategies. For simplicity, they are not asked
to report their local estimates or measurements.

Similarly to Corollary 1, if there exists an honest agent who
reports its measurement and effort level truthfully, it is no longer

Fig. 3. Scatter plot and histograms of σ2
il and ciu.

needed to ask the strategic agents to report their measurements.
In this case, the desired strategy profile is the unique BNE in
strictly dominant strategies.

Corollary 2: Consider the setting in Theorem 2 with an
honest agent h who reports its measurement and effort level
truthfully, i.e., Yh = X + Vh with Vh ∼ N (0, ξ−1

h ), and yrh =
yh given the realization Yh = yh. Let the payment function to
each agent i be specified by (27), (28) and (29) after replacing
yrj and ξju with yrh and ξh respectively. The strategy profile
s∗′ = (s∗′1 , s

∗′
2 , . . ., s

∗′
N ) with

s∗′i =

{
(ξi = ξiu, x̂ri = x̂i), for φ̃i = 1

(ξi = 0), for φ̃i = 0
(31)

is the unique BNE in strictly dominant strategies.
The proof is omitted since it is similar to that of Corollary 1.

VI. SIMULATION EXPERIMENTS

In this section, we demonstrate our mechanisms with simula-
tion experiments. We first consider the setting of the problem in
Section IV-A2 and investigate the minimum payment at different
threshold Σt. N = 100 agents are simulated and the variance of
the prior distribution is selected as σ2

x = 1000. Further, fixing
the minimum variance of each agent σ2

il and its corresponding
maximum effort ciu allow us to study the effect ηmi , which can
be interpreted as the quantization level of the effort cost of each
agent. Without loss of generosity, we set ηmi = ηm for all i.
To make the agents heterogeneous on their highest accuracies,
we randomly generateσ−2

il ∼ U [0.0001, 0.01], which is selected
such that roughly a half of σ2

il fall in the range [100, 200]
and the other half of σ2

il fall in the range (200, 10000]. ciu
is randomly generated from a mixture Gaussian distribution
ciu ∼ .5N (50, 100) + .5N (100, 100). The scatter plot and his-
tograms of these two parameters are shown in Fig. 3.

The minimum payments with ηm = 2, ηm = 4, and ηm =
100 at different threshold Σt are shown in Fig. 4. In general,
greater ηm yields smaller payment. On the other hand, we
also study the effect of N . We use the same distributions to
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Fig. 4. Minimum payments with N = 100, and ηm = 2, ηm = 4, ηm =
100 respectively.

Fig. 5. Minimum payments with ηm = 2, and N = 100, N = 500, N =
1000 respectively.

Fig. 6. Comparison of minimum payments in the sub-optimal case and the
optimal case.

generate σ2
il and ciu. ηm is fixed as ηm = 2. As shown in

Fig. 5, more agents being available generally yields smaller
payments. Lastly, we compare our sub-optimal case with the
optimal case considered in Section IV-A2 under the same setting.
Recall that in the sub-optimal solution, our mechanism M2

yields all selected agents exerting maximum effort. Using the
same simulated parameters, the optimization problem (11) in
the sub-optimal case can be viewed a problem similar to (20),
but the decision variables are limited to be either 0 or ηm. In
Fig. 6, we show the comparison of minimum payments between
the sub-optimal case and the optimal case at different Σt with
ηm = 2 and N = 100.

VII. SUMMARY

In this paper, we designed incentive mechanisms for a static
estimation problem where the data sources are strategic agents
whose measurements and accuracies are both unknown to the es-
timator. The objective of the incentive mechanism is to minimize
the expected total payment made to the agents with a guaranteed
quality of global estimate. We formulated the problem in a very
general setting without assuming any specific format of the
agents’ cost functions. Instead, we designed an optimal incentive
mechanism for the cases where the cost functions satisfy certain
property and provided a sub-optimal incentive mechanism for
the other cases. We also demonstrated our mechanisms by
two special cases with continuous quadratic cost function and
discrete linear cost function. Both in the special case with the
discrete linear cost function and in the sub-optimal case, the
optimization problem were transformed to knapsack problems,
which can be solved in pseudo-polynomial time by dynamic
programming. Future work will include extending the results to
dynamic estimation problems.

APPENDIX A
PROOF OF THEOREM 1

It suffices to prove that if the strategy profile of all the other
agents follow the stated equilibrium, denoted as s−i = s∗−i, agent
i does not have another strategy which yields greater expected
utility than s∗i . Mathematically, when s−i = s∗−i, the optimal
strategy for agent i is given by

(ξ∗i , x̂
∗
ri, y

∗
ri) = arg maxE[Ui]

= arg maxE
[
γi − βi(x̂ri − Yj)

2 − ci(ξi)
]
.(32)

First notice that the estimator cannot verify the reports x̂∗
ri

and y∗ri jointly, since

x̂i =
ξ−1
x

ξ−1
x + ξ−1

i

yi, (33)

and ξi is unknown to the estimator. Therefore, the agent can
optimize x̂∗

ri and y∗ri independently. However, the expected
utility is indifferent to yri, hence no other value can yield greater
utility than y∗ri = yi.

Next, we prove that for any exerted effort ξi along with the
corresponding obtained x̂i, the optimal x̂∗

ri = x̂i. Since βi and
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γi are positive constants and ξi is fixed,

x̂∗
ri = arg minE

[
(x̂ri − Yj)

2|x̂i

]

= E[Yj |x̂i]

= CYjX̂i
C−1

X̂iX̂i
x̂i, (34)

where CYjX̂i
and CX̂iX̂i

are computed as

CYjX̂i
= E

[
(X + Vj)

ξ−1
x

ξ−1
x + ξ−1

i

(X + Vi)

]
=

ξ−2
x

ξ−1
x + ξ−1

i

,

(35)
and

CX̂iX̂i
= E

[(
ξ−1
x

ξ−1
x + ξ−1

i

(X + Vi)

)2
]
=

ξ−2
x

ξ−1
x + ξ−1

i

, (36)

since the measurement noises and X are all independent to each
other. Therefore, after obtaining its local estimate at any effort
level, truthfully reporting on the local estimate, i.e., x̂∗

ri = x̂i, is
the best response to s−i = s∗−i.

Now, we show that with βi given by (23) and if the constraint
(9) is satisfied, then the optimal ξ∗i = ξ̃i. Before choosing to exert
its effort ξi to obtain a measurement, the local estimate is still
random hence denoted by the uppercase letter X̂i. The expected
utility with the optimal choice of X̂ri = X̂i is given by

E[Ui(ξi)] = γi − βi E[(X̂i − Yj)
2]− ci(ξi), (37)

where

E[(X̂i − Yj)
2] = E

[(
ξ−1
x

ξ−1
x + ξ−1

i

(X + Vi)− (X + Vj)

)2
]

=
ξ−1
i ξ−1

x

ξ−1
x + ξ−1

i

+ ξ̃−1
j

=
1

ξx + ξi
+ ξ̃−1

j . (38)

Thus, setting the first derivative of E[Ui(ξi)] over ξi to zero
yields the unique maximum ξ∗i if E[Ui(ξi)] is concave:

∂ E[Ui(ξi)]

∂ξi
=

βi

(ξx + ξi)2
− ∂ci(ξi)

∂ξi
= 0, (39)

where the solution is ξ̃i if βi is given by

βi =
∂ci(ξi)

∂ξi

∣∣∣∣
ξi=ξ̃i

(
ξx + ξ̃i

)2

. (40)

To guarantee the concavity of E[Ui(ξi)],

∂2
E[Ui(ξi)]

∂ξ2i
=

−2βi

(ξx + ξi)3
− ∂2ci(ξi)

∂ξ2i
< 0, (41)

which implies the constraint (9) should be satisfied for any ξi.
Lastly, the maximum expected utility of agent i is given by

E[Ui(ξ̃i)] = γi − βi

(
1

ξx + ξ̃i
+ ξ̃−1

j

)
− ci(ξ̃i). (42)

Therefore, γi given by (24) is designed to satisfy individual
rationality. Meanwhile, the expected payment is as small as the
effort cost ci(ξ̃i).

APPENDIX B
PROOF OF THEOREM 2

The proof is similar to that of Theorem 1, except for that βi is
designed to ensure that the derivative over ξi as shown in (39) is
always positive so that the selected agents would prefer to exert
maximum effort.
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