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Abstract—Internet of Thing platforms prosper home au-
tomation applications (apps). Prior research concerns intra-app
security. Our work reveals that automation apps, even secured
individually, still cause a family of threats when they interplay,
termed as Cross-App Interference (CAI) threats. We systemati-
cally categorize such threats and encode them using satisfiabil-
ity modulo theories (SMT). We present HOMEGUARD, a system
for detecting and handling CAI threats in real deployments.
A symbolic executor is built to extract rule semantics, and
instrumentation is utilized to capture configuration during app
installation. Rules and configuration are checked against SMT
models, the solutions of which indicate the existence of corre-
sponding CAI threats. We further combine app functionalities,
device attributes and CAI types to label the risk level of CAI
instances. In our evaluation, HOMEGUARD discovers 663 CAI
instances from 146 SmartThings market apps, imposing minor
latency upon app installation and no runtime overhead.

I. INTRODUCTION

The rapid proliferation of Internet-of-Things (IoTs) has
advanced the development of smart homes to a new era.
Moreover, smart home platforms connect IoT devices and
offer programming frameworks for deploying home automa-
tion applications. Representative platforms include Samsung
SmartThings [2], Apple HomeKit [3], and IFTTT [4]. How-
ever, appified frameworks also introduce new app-level sur-
faces, which could be misused by homeowners and exploited
by attackers. For example, a burglar can exploit a vulnerable
IoT app to open a smart lock [5], which is impossible in
non-appified homes.

Many works contribute to enhancing the app-level secu-
rity in smart home systems [5]-[15]. Fernandes et al. [5]
revealed the overprivilege problem in the permission (a.k.a.,
capability) system of SmartThings and demonstrated ex-
ploits that expose smart homes to severe attacks. Follow-
up works propose to resolve overprivilege by patching the
existing permission system [11], developing new permission
mechanisms [9], detecting overprivileged apps [12], [13], or
enforcing non-overprivileged authorization [12]. This work,
however, shows that Cross-App Interference (CAl) threats
may be caused even if apps are secured individually: CAI
threats arise when IoT apps—coded for distinct automation

*An early version of this paper was posted on arXiv in August 2018 [1].

purposes but interplaying over the same home—are misused
by homeowners.

Individual IoT app developers are unlikely to avoid CAI
threats completely due to the lack of a predictive and global
view of what apps will be installed and how they are
configured by a user. As an increasing number of devices
and apps are installed at a smart home, CAI threats will
exacerbate. The goal of this paper is to (1) systematically
categorize CAI threats; (2) propose techniques to precisely
discover CAI threats; (3) evaluate the risks of identified CAI
instances to assist users to make informed decisions.

In this paper, each IoT app is modeled as automation rules
following a trigger-condition-action (TCA) paradigm. We
systematically categorize CAI by considering how the action
of one rule may affect the rrigger, condition, and action
of another rule, and obtain three corresponding categories
of CAI threats with totally ten types. Each CAI type is
encoded into a SMT (Satisfiability Modulo Theory) model
which comprises a set of constraints. The constraints de-
scribe cross-app-boundary semantic relations, i.e., how the
automation in one app interferes with that in another app.

With the SMT models of CAI threats, detecting CAI
threats is converted to a theorem-proving problem, i.e.,
checking every pair of automation rules, along with the asso-
ciated configuration, against SMT models; if a SMT model
is solvable, the rule pair could cause the corresponding CAI
threat. Therefore, how to extract TCA rule semantics defined
by IoT apps and how to collect user configuration during app
installation are two vital questions to answer for automated
CALI detection. In this paper, we explore viable techniques
to work with Samsung SmartThings, which at the time of
research supports the largest number of IoT devices and
apps. We develop a symbolic executor to perform static
analyses on the AST (Abstract Syntax Tree) representations
of SmartApps to extract TCA rule semantics along all paths.
Moreover, to overcome the challenge that SmartThings does
not provide interfaces for collecting user configuration, we
exploit an app instrumentation approach to resolving it.

The proposed system HOMEGUARD interposes whenever
a new app is to be installed and analyzes whether there exist
CALI threats between the new app and already-installed ones.
We develop a proof-of-concept prototype of HOMEGUARD.
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Our evaluation shows that HOMEGUARD can precisely dis-
cover CAI threats from real-world SmartApps, and generate
the analysis results instantly.

Our main contributions are summarized as follows:

o A comprehensive categorization and modeling of CAI
threats — To our best knowledge, this is the first work
that comprehensively categorizes CAI threats and the first
work that uses symbolic constraints to model CAI threats.
A precise rule extractor — We design and imple-
ment a symbolic executor for extracting rule semantics
from SmartApps. Compared to code analyses in previous
work [9], [12], [16], our approach is more complete and
precise by deriving constraints from path-level analysis
and modeling APIs residing in the opaque cloud.
Accurate and usable detection techniques — Recent
work [17]-[19] introduces model checking based tech-
niques for detecting CAI, and requires users to provide
safety specifications/policies. Unlike these solutions, we
are the first to leverage SMT solving for CAI detection.
Our detection technique does not need specification input
and could comprehensively detect CAI threats hidden
from specification definers (usually end users). Plus, we
combine rule semantics and home-specific configuration
to detect threats, reducing false alarms compared to prior
work that only considers rule semantics [16], [17], [20].
Risk ranking — we propose a risk ranking model to
evaluate risk levels of discovered CAI threats, which takes
into consideration three key factors of a CAI instance: its
influence on rule execution, functionality categories of the
involved rules, and security criticality of the devices being
controlled. The risk ranking model assigns a risk level
(high, medium, or low) to every CAI instance, assisting
end-users to prioritize handling higher-risk threats.
Implementation and evaluation — we build a prototype
HOMEGUARD with a viable deployment path that does
not require framework modifications of SmartThings. We
evaluate the effectiveness and efficiency of HOMEGUARD
over market apps. HOMEGUARD identifies 663 potential
CALI threat instances in 146 real market apps. The end-
to-end CAI detection incurs an averaged app installation
latency of 2.7s and no runtime latency.

II. RELATED WORK

With the popularization of appified IoT platforms, security
issues caused by app interference draw much research atten-
tion in very recent years. Table I illustrates the comparison
of our work with related work. SIFT [21] is a safety-
centric programming platform with action-conflict detection
and resolution. Surbatovich et al. [20] study the security
and privacy threats caused by the chained execution of
IFTTT recipes. IoTA [22] introduces a process calculus for
modeling IoT automation languages, and transforms the cal-
culus to model checking for conflict detection. Soteria [17],
IoTSan [18] and IoTGuard [19] employ model checking
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Figure 1: The home automation model.
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to detect action conflicts and chained execution; the CAI
threat detection relies on the correctness and completeness
of deployment-specific safety specifications input by users.
In contrast, our work detects threats without relying on the
expertise of end users. loTMon [16] focuses on physical
channels via which actuators and sensors interact, leading to
chained execution of apps. SafeChain [23] detects privilege
escalation and privacy leakage attacks caused by chained
execution. None of these works performs systematic cate-
gorization of CAI threats. Like our work, iRuler [24] also
uses symbolic constraints to describe different types of CAI
threats. iRuler uses NLP to extract rules from IFTTT applets,
but cannot handle code like SmartApps. Plus, it does not
rank the detected threats.

In short, HOMEGUARD (posted on arXiv in August
2018 [1]) is the first work that comprehensively categorizes
different types of CAI threats. It is also the first work that
uses symbolic constraints to precisely describe CAI threats,
and the first that leverages SMT solving for threat detection.

III. HOME AUTOMATION MODEL

A home automation model can be abstracted into a data
layer and a control layer.

Data Layer. The data layer consists of sensors, actuators,
and the environment. (1) A sensor may be a sensing compo-
nent that measures a physical feature (e.g., the temperature),
a device that reports its states (e.g., the on/off state of
an outlet), or a system state (e.g., mode). (2) An actuator
can be either a controllable device or a system state. An
IoT device may be a sensor, an actuator or a combination.
(3) The environment has a set of physical features such as
time, temperature, illuminance, etc. The interaction among
sensors, actuators and the environment is shown in Fig. 1.
Sensors observe the environment, while actuators can affect
sensors via device/system state (e.g., turning on a switch
produces an on event) or via physical channels [16] (e.g., a
thermostat influences a temperature sensor via temperature).
Control Layer. The control layer consists of automation
rules defined by apps; an app usually defines one or more
rules. In emerging appified home systems, the rule model
follows a trigger-condition-action paradigm, as depicted in
Fig. 1. Trigger subscribes to an event (e.g., television is
turned on) that activates the execution of a rule. Condition
is a set of constraints on home-related data (sensor readings,
device/system states, time, etc.) that must be satisfied for
the rule to proceed. The difference between trigger and
condition is that a fired trigger activates the execution while
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Table I: Comparison between HOMEGUARD and related work.

Publication # of CAI Systematic Symbolic Threat - .CAI Threat Detection Risk
Date! Threat Types | Categorization? Modeling? Precise Semantics | Leverage App | No Need For | Rapking?
Extraction? Configuration? | Specification?
SIFT [21] Apr 2015 1 X X X v v X
Surbatovish et al. [20] Apr 2017 1 X X X X v X
IoTA [22] Oct 2017 3 X X X v v X
Soteria [17] May 2018 3 X X v X X X
IoTSan [18] Oct 2018 2 X X v v X X
IoTMon [16] Oct 2018 1 X X V- X v v
IoTGuard [19] Feb 2019 3 X X v v X X
SafeChain [23] Oct 2019 1 X X X X X v
iRuler [24] Nov 2019 8 v v x* v v X
HOMEGUARD Aug 2018 10 4 v v v v v

! The earliest time when the work was published, including arXiv preprints.
3 Does not extract rule conditions.

a condition does not; also, condition is optional and can be
empty. The action is typically one or more commands issued
to actuators or notifications to users.

Interaction. The data layer and the control layer interact
in both directions. On the one hand, rules obtain data from
sensors and the environment (e.g., time). On the other hand,
rules send commands to actuators which further affect the
sensors and the environment.

IV. CATEGORIZATION OF CAI THREATS

Given a pair of automation rules R; and R, we com-
prehensively examine how R; may interfere with R, and,
accordingly, have identified three basic categories: Trigger-
, Condition-, and Action-Interference Threats, which arise
when the trigger, condition, and action of R, is interfered
with by the action of Rj, respectively (see Basic Pattern in
Table II). R; and R, may or may not belong to the same
app, and our HOMEGUARD system can handle both cases,
so we do not distinguish the two cases for the simplicity
of presentation. Next, by looking at the specific interference
contexts and effects in each category (see Auxiliary Pattern
in Table II), we identify multiple types of CAI threats, as
summarized in Table II.

A. Action-Interference Threats

Two rules may operate on the same actuator, but
issue conflicting commands (i.e., converse commands
such as open/close or the same command such as
setOvenSetpoint with different arguments) due to dif-
ferent automation purposes. When both rules are triggered
by the same event and pass the condition check, conflicting
commands issued by the two rules impose an Race on the
same actuator (A.l1 in Table II); thus, the final status of
the actuator turns out to be uncertain (may be a bad state),
varying with factors such as the arrival order of commands
and the device’s communication and processing sensitivity.
To validate, we ran two SmartApps on SmartThings which
turn on and off a light switch respectively when a door
sensor detects the door being opened. We observed a variety
of results: the switch is turned on only, turned off only,
turned on then off, and turned off then on.
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2 Needs users to define rules on interfaces provided by the researchers.
#Natural language processing (NLP) based approaches are less precise than code analysis (Section 9 in [24]).

Another Action-Interference type (A.2 in Table II) is more
subtle than A.1 since two rules are not triggered by the same
event and therefore not executed simultaneously, but perform
conflicting commands. The two rules work separately but
the latter rule overrides the command issued by the former
one immediately or after a while, which might or might not
cause a real threat. Fig. 2(a) shows an example of A.2.

B. Trigger-Interference Threats

A rule’s action may change the home context, producing
an event that triggers other rules; thus, new covert rules
are derived from a group of explicitly defined rules. Covert
Rules may or may not be desired by users.

Fig. 2(b) shows an example of T.1. A covert rule “when
a voice command is issued then disarm the cameras” is
formed. If the user perceives the safety implication and only
uses the voice command when she is at home, it is not a real
threat but a feature for her. However, if she is not clearly
aware of the covert rule and uses the voice command while
not home, a real safety threat arises.

Suppose rule R; triggers rule R, first; if R,’s action in turn
has impacts on R;’s action or trigger, three special cases of
Trigger-Interference, i.e., T.2, T.3, T.4 (in Table II), can be
derived. In T.2, R,’s action incurs a race with R;’s action on
the same actuator; as a result, the execution of Ry yields an
opposite effect. In T.3 and T.4, the execution of R, triggers
Ry such that Ry and R; trigger each other in a loop; the
difference between T.3 and T.4 is that Ry and R, perform
conflicting actions in T.4 but not in T.3. Fig. 3(a) and 3(b)
shows an example of T.2 and T.4, respectively. These threats
may lead to user confusion (e.g., cannot turn on the heater),
device damages (e.g., due to frequent toggling), or even
security and safety threats (e.g., light flashing in Fig. 3(b)
causes seizures to photosensitive epilepsy sufferers [25]).

C. Condition-Interference Threats

A rule R;’s action may change the satisfaction of another
rule R»’s condition and thus affect the execution of Ry, which
is referred to as Condition-Interference Threats. Unlike
Trigger-Interference, the action of R; does not necessarily
trigger the execution of Ry, as R, has its own trigger.
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Table 1I: Categorization of CAI threats. Let R; = (7;,C;,A;),i = 1,2 denote two arbitrary rules, where 7;, C;, A; are the trigger, condition and action,
respectively. = — denotes “conflicts with”; ~ denote negation; — denotes “triggers”; = and # denote “enables” and “disables”, respectively. Validation

indicates whether Ry and R; actually interact when both the basic and auxiliary pattern hold, according to our validation in SmartThings:

: always

happen, /*: never happen, and v conditionally happen (depending on platform-specific features, see Section VII-C).
Category Basic Pattern Auxiliary Pattern! ID Validation | Description
Ty =T, CiNCy Al v R, and R, are executed simultaneously to perform conflict actions.
Action-Interference A — A T =1, ~(CNC) - X R, and R, cannot be both executed although they are both triggered.
Threats 1= T #T, C, NG, A2 v R; and R, may be executed within a short period to perform conflict actions.
T # T, ~(CING) - X R; and R, are unrelated and have no interaction.
CiNCy, ~ (A= T), Al #-A2 | T v R, triggers R,, which does not interfere with Ry in turn.
Trigger-Interference CiANCy, ~ (A2 T)), Ay =—As | T.2 v R, triggers R,, which performs a conflict action and thus invalidate R;.
Threats A—T1 CiNCy, Ay — T, Ay # A, T.3 v R) and R, trigger each other alternately.
CiINCy, Ay — Ty, Ay = A, T.4 v R and R, trigger each other and perform conflict actions alternately.
~ (CiING) X R, fails its condition checking and cannot be executed.
A =C =1 C.1 v Ry turns a constraint in R,’s condition to true, which increases the
Condition-Interference ! 2 h#T C.2 v probability of R, being executed.
Threats A B C =T, C3 e R turns a constraint in R;’s condition to false, which decreases the
! 2 T #T C4 v probability of R, being executed.

! The auxiliary pattern of each CAI type does not conform to the basic pattern in other categories if not explicitly specified. We elide the negation constraints for conciseness.

T Acti Trigger Condition Action Trigger Condition Action
.~ Trigger ction
voice turn on TV and not set
Rule 1 presence unlock | Rule 3 command H None record a show Rule 5 | present | None away-mode
detected door —
Overlappin TV event PP Mode event: .~ ’
situations . (off>on) _ ="~ sleep -> away .
= . .- .
no motion 4| tumn off lights A" A
Rule 2 Lpm |_' detected /7| and lock doors v I i d turn on
) Rule 4 None urn o Rule 6 oor sleep-mode urn o
T turned-on cameras opened burglar alarm

(a) Action-Interference Threat (A.2)

(b) Trigger-Interference Threat (T.1)

(c) Condition-Interference Threat (C.4)

Figure 2: Examples of CAI threats. Rule 1 unlocks the front door when the user arrives home; Rule 2 turns off all lights and locks the front door at
11pm if no motion is detected; Rule 3 uses voice commands to turn on TV and record a TV show; Rule 4 turns off cameras while watching TV; Rule 5
sets the home to away mode when the user leaves; Rule 6 detects burglar break-in when the user is sleeping.

Heater-Control app
when: motion detected
then: turn on heater <¢

Energy-Save app [
when: power high
then: _turn off heater

Light-Control app rule-1_| [ Tight-Control app rule2_|

when: illuminance<100lux 4_____-when: illuminance>500lux
then: _turn off lights

then: turn on lights
(b) T4

trigger:

isables:

(a) T.2

Figure 3: Examples of other Trigger-Interference Threats: T.2 and T.4

There are two types of Condition-Interference Threats:
Enabling-/Disabling-Condition  Interference, based on
whether R;’s action changes R;’s condition from false
to true (Enabling) or from true to false (Disabling).
Fig. 2(c) shows an example of Disabling-Condition
Interference (C.4). Rule 5 sets “away” mode when a
member leaves, disabling Rule 6 to detect break-ins when
another member is sleeping.

Our validation of C.1 and C.3 shows that they happen
conditionally (marked as v* in Table II). In C.1 or C.3,
when R; and R, are triggered by the same event, whether
Ry’s action actually interferes with the condition checking
of R, (although the patterns match) depends on multiple
factors in the underlying platform design and runtime, e.g.,
processor scheduling, task scheduling, database I/O synchro-
nization, etc. See Section VII-C for more details.

V. THREAT MODEL AND PROBLEM SCOPE

Cross-App Interference occurs when multiple apps inter-
play, without relying on intra-app vulnerabilities. Hence,
CAI threats are stealthy and cannot be handled by ap-
proaches that analyze apps individually. CAI threats may
be caused for various reasons: (1) users misunderstand the
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full functionalities of apps based on app descriptions (which
may be imprecise) [18]; (2) users lack domain knowledge
to perceive subtle app interactions; (3) a global view is
difficult to acquire when it comes to app installation by
multiple homeowners over a long time span; and (4) users
misconfigure apps, which consequently leads to interference.
This paper broadly uses threats to refer to all discov-
ered interactions between rules, among which some may
be security-critical threats, some may be annoying-but-
innocuous, and others may be desired by users. Distin-
guishing different cases is not a completely computable
problem but depends on user intention. This paper focuses
on detecting all CAI threats in specific deployment, ranking
their risks, and presenting the detailed results to users in
a user-friendly manner (see Figure 5) for them to dictate
whether or not to keep the new app and/or re-configure it.
This work presents a technique for extracting automation
rules from the source code of smart apps, which is readily
available. How to extract rules from compiled code or
obfuscated code [26] is out of scope of this work.

VI. HOMEGUARD DESIGN

In this section, we present HOMEGUARD. As shown in
Fig. 4, modeling the automation (rule extractor and config.
collector) in a smart home (Section VI-B) is the foundation
for precise CAI detection. With precise modeling, HOME-
GUARD detects CAI threats (threat detector) when an app is
being installed or re-configured (Section VI-C). Moreover,
HOMEGUARD ranks the risk of every detected CAI instance
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Automation

to assist handling (Section VI-D). HOMEGUARD provides a
frontend app for users to view detection results.

A. Home Automation Rule Representation

Listing 1 shows the structured rule representation format
we use. It encapsulates the detailed information about a
rule: (1) trigger contains subject (e.g., a certain device),
attribute, and constraint (that should be satisfied); (2)
condition comprises data constraints (i.e., data quantitative
relations) and predicate constraints (i.e., boolean expres-
sions in path conditions); (3) action issues command to
control subject (e.g., a device), paras. denotes parameters of
the command, and data constraint denotes all quantitative
constraints related to the parameters; besides, when denotes
the scheduled time and period indicates the repetition inter-
val for issuing the command; by default, when and period
are equal to 0, meaning that the command is issued with no
delay and only once, respectively. In Section VI-B, we will
use an example to show how a rule is extracted from the
code in Listing 1 and is represented in Table III.

Listing 1: The rule representation format

Trigger :

(:subject) . (:attribute)

(:constraint)

Condition :

(:data constraints)

(:predicate constraints)

Action:

(:subject)->(:command) (:paras) (:delay) (:when) (:period)
(:data constraints)

B. Home Automation Modeling

Home automation modeling includes three aspects: rule
semantics extraction (Section VI-B1), configuration infor-
mation collection (Section VI-B2) and rule assembly based
on the two kinds of information (Section VI-B3). Given an
app, its execution varies with distinct configurations; for
example, users may bind different devices to the app or
specify different values for variables. Hence, configuration
information collection is vital. Note that Home Automa-
tion Modeling is platform-specific because different smart
homes may employ different IoT platforms which support
distinct programming languages and APIs. We perform code
analysis and code instrumentation to extract rule semantics
and collect configuration from apps, respectively. To prove
this concept, we concretely implement the techniques on
Samsung SmartThings platform. We use a SmartApp snippet
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Listing 2: Code snippet of ComfortTemp. Irrelevant lines (e.g., metadata
definition, Ul-related sections) are omitted.

input "mSensor", "capability.motionSensor", title: 1
"Which motion sensor?"
input "tSensor", "capability.temperatureMeasurement" 2
input "threshold", "number", title: "Lower than?" 3
input "fan", "capability.switch", title: "Which fan?" 4
input "ac", "capability.switch", title: "Which A/C?" 5
def installed() {subscribe(mSensor, "motion",actHandler) } 6
def updated() { 7
unsubscribe () ; subscribe (mSensor, "motion", actHandler) } 8
def actHandler (evt) { 9
def t=tSensor.currentValue ("temperature") 10
if ((evt.value=="active")s&& (t<threshold)) 11
adjustTemp () } 12
def adjustTemp () { 13
ac.on () 14
if (fan.currentSwitch=="on") fan.off () } 15

(see Listing 2) that turns off fans and turn on A/C when
motion is detected and the room temperature is below 70°F
as an example to help present our techniques.

1) Rule Semantics Extraction: Prior approaches [9], [27]
insert runtime logging logic to collect context information
when sensitive commands are issued. Such dynamic ap-
proaches do not work for our purpose as they only explore
the paths that have been executed, while our goal is to extract
all the rules before they are executed. Approaches [12], [13],
[16] search the Abstract Syntax Tree (AST) of SmartApps
to look for information of interest (e.g., the trigger event, the
attribute, and the action) without tracking the data flows, so
they cannot fully retrieve the constraint information due to
variable assignments, nested branches, API calls, etc., which
is critical for precise CAI threat detection.

In order to conquer the setback above and extract rules
from an app completely and precisely, we propose to sym-
bolically execute the app, exploring all of its execution paths.
Each path starts from an entry point and ends at a sensitive
command (i.e., sink): the command reveals the action of a
rule, while the path condition exposes the rule rrigger and
condition. To this end, the following questions or technical
challenges are addressed.

Path search strategy. A well-known limitation about sym-
bolic execution is poor scalability due to path explosion.
However, 0T apps are much smaller than applications in
other platforms (e.g., desktop, mobile) and have limited
number of paths, so a simple depth-first path search strategy
works well without encountering path explosion.

Symbolic inputs. Data whose values are not dependent on
other data are handled as symbolic inputs. In SmartApps,
they include device references, device attribute values, de-
vice events, user input, constant values, and API return
values (see API modeling below). To achieve automated
symbolic input identification, we parse all input method
calls to collect device references (each device reference
points to a globally unique 128-bit identifier for a device
connected to SmartThings) and user inputs (variables whose
values are specified by users during app configuration),
and add a symbolic input label to each of them. Besides,
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we define variables to denote device attribute values used
in the code and label them as symbolic inputs. Similarly,
variables which accept constant value are also labeled as
symbolic inputs. Consider the example in Listing 2, the
devices references (mSensor, tSensor, fan, ac), user
input (threshold), and return values of the API call at
Line 10 and 15 are identified as symbolic inputs.

Analysis entry points and sinks. In our implementation,
the analysis entry points include the lifecycle methods,
e.g., installed, updated. The analysis sinks include
capability-protected device commands and security sensitive
SmartThings APIs (such as setLocationMode ()). We
consider 126 device control commands protected by 104
capabilities [28] and 21 SmartApp APIs.

Generating Control-Flow Graph (CFG). We adapt the
approach in [9] to generate a control-flow graph from
the AST of each app. Our goal is to model the trigger-
condition-action structure of a rule. A rule with a trig-
ger usually starts from an event subscription method
subscribe (dev, attr,hndl) (typically invoked in the
analysis entry point methods). A subscribe call defines
that when an event (device dev’s attribute attr changes)
occurs, the handler method hndl will be invoked. There-
fore, each subscribe represents a rule trigger. Then we
trace into the invoked handler hndl to identify sinks along
the execution path. The path branches at conditional state-
ments (e.g., 1 f or switch) so we may reach different sinks,
which are extracted as rule actions; the boolean expressions
within the condition statements along the execution path
from an entry point to a sink are used to construct the rule
condition for that sink. The corresponding trigger, condition,
and action are assembled into a rule.

Constraints for the rule trigger and condition. The
subscribe method yields to a rule trigger by subscribing
to an event (e.g., Line 8 in Listing 2). If a conditional
statement follows along the execution path to compare the
event’s value (e.g., Line 11 in Listing 2), the comparison
is regarded as part of the trigger constraint; otherwise, the
trigger is only a state change and has no constraint.

We track all data and predicate constraints along every
execution path from the entry point to sinks and attach
them (excluding the trigger constraint) to rule conditions. We
establish data constraints from value assignment statements.
Specifically, we modify the compiler to handle the 38
expression types defined in Groovy’s documentation [29].
On the other hand, we also build predicate constraints from
conditional statements, i.e., each boolean expression in an
if statement or each case expression in a switch state-
ment is translated into a constraint. We handle the ternary
expressions by breaking each of them into two branches.

API modeling. A main challenge in this work is to deal with
the closed-source APIs provided by SmartThings. We first
model the 10 SmartApp APIs that can schedule the method
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Table III: One of the extracted rules from the code in Listing 2.

Action

subject: fan
command: off
paras: [ ]

data constraints:| |

Trigger Condition

data constraints:

t = tSensor.temperature,
tSensor.temperature=#DevState
predicate constraints:

subject: mSensor
attribute: motion
constraint:

mSensor.motion delay: null
X t < threshold, Y
==active - . when: null
fan.switch == on .
period: null

executions based on their arguments and functionalities. For
instance, runIn (delay, method) delays the execution
of method by a specified time delay. We attach the delay
information to runIn and continue to trace into the sched-
uled method to identify sinks. The successive sinks are also
attached with the delay. The delay is eventually inserted into
the when field (see Listing 1) of the extracted rule.

To handle APIs involved in constraint construction, we
model objects, methods and object property accesses by re-
viewing the SmartThings developer documentation [30]. The
return values of these methods and object property accesses
that do not rely on other data are also labeled as symbolic
inputs. We model 173 API methods and 94 object property
accesses in total and rewrite a static modeling function for
each method or property access according to its arguments
and return value. We further model a portion of external
Java APIs that are used by SmartApps. Based on these
modeling functions, we are able to construct constraints from
expressions that contain API calls.

Compiler customization. To build the symbolic executor,
we implement a compilation customizer and add it to the
compiler configuration, which is supported by Groovy to
allow developers to modify the compilation process. We
choose to work at the semantic analysis phase where the
compiler creates a class node for each element (variable,
method, expression, statement), and we write a set of visit
methods that follow the generic Visitor pattern [31] to
specify how the compiler processes these class nodes.

2) Configuration Information Collection: Recall that we
identify symbolic inputs from input methods, which are
rendered as graphical interface elements by SmartThings
for users to configure apps. To detect CAI threats in a
specific home, we need to know configuration information,
i.e., symbolic input values. Configuration is not available
until apps are installed; thus, it cannot be obtained through
static code analysis. In other words, so far the extracted rule
semantics only contain variable names rather than concrete
values. For example, in Table III a reference “mSensor”
rather than the globally unique identifier of the granted
device is extracted and “threshold” is not concretized to
a value (e.g., 70°F). Without such information, the extracted
rules are incomplete and CAI detection becomes imprecise.

Solution. There are no APIs available to query configuration
information from SmartThings. To address the problem, we
collect configuration information by instrumenting Smar-
tApps. Code instrumentation has been used in previous
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Listing 3: Code snippet showing how the app in Listing 2 is instrumented.
Unaltered lines are omitted. Lines 3—7 and 11-19 are the inserted code.

/. 1
def updated() { 2
// collecting information 3
def appname = "ComfortTemp" 4
def devices = [[devRefStr:"mSensor", 5
devRef:mSensor], [devRefStr:"tSensor",
devRef:tSensor], [devRefStr:"fan",
devRef:fan], [devRefStr:"ac", devRef:ac]]
def values = [[varStr:"threshold", var:threshold]] 6
collectConfigInfo (appname, devices, values) 7
/] 8
} 9
//. 10
def collectConfigInfo (appname, devices, values) { 11
def params //Set the cloud messaging server, which 12
relays messages to HomeGuard frontend app
def config=["appname":appname, "devices":[:], 13
"variables":[:]]
devices.each { dev -> 14

config["devices"] [dev.devRefStr]=dev.devRef.getId() }15
values.each { val-> 16
config["variables"] [val.varStr]=val.var } 17
sendConfig(params, config) // Send the 18
configuration to the relay server by calling
API httpPoseJson
} 19

researches [9], [12], [19], [27]. In our case, instrumentation
is only to gather configuration during app installation, so it
introduces negligible complexity and overhead. We automate
instrumentation with a Groovy script. Listing 3 shows the
instrumented version of the app in Listing 2.

The lifecycle method updated is invoked when the app
is installed or re-configured. The appname can be obtained
from metadata. In each item of the lists devices and
values, devRefStr and varStr are variable names
defined in input methods, and devRef and var denote
real values specified by users. The Groovy script reuses
the code for symbolic input identification (Section VI-B1)
to identify appname, devRefStr, and varStr. The
collectConfigInfo method (Line 11) assembles a
JSON object config that stores the app name, map-
pings between each device variable name devRefStr
and the unique 128-bit ID of the configured device
(devRef .getId () ), and mappings between each variable
name and its specified value. sendConfig sends the
collected information from the cloud (where the SmartApp
runs) to the user’s smartphone via a relay server.

3) Rule Assembly: We combine the rule semantics with
configuration from the same app to complete rule extraction.
Upon receiving configuration, we parse key-value pairs in
config and construct a constraint for each pair; that is,
each key dev in config["devices"] or each key var
in config["variables"] generates a constraint in the
form of dev config["devices"] [dev] or var
config["variables"] [var], respectively. The de-
rived constraints are inserted to certain fields of all rule
semantics defined by the app; specifically, the constraints are
appended to the constraint field of rule trigger, and the data
constraints fields of condition and action, respectively. Thus,
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all the device references and variables in the extracted rule
semantics are concretized (e.g., the device IDs of mSensor,
tSensor, fan and the variable values of thresholdl
in Table III) , and the rules become complete.

C. CAI Threat Detection

Whenever a user installs a new app, HOMEGUARD detects
CALI threats between each rule from the new app and every
existing rule and between different rules in the new app to
see whether any pair meets patterns shown in Table II under
the current configuration. In general, the pattern evaluation
has two steps: candidate filtering and overlapping-condition
detection. Candidate filtering is performed first to avoid un-
necessary computation for overlapping-condition detection.

1) Detecting Action-Interference Threats: Action Inter-
ference is commutative, so the detection of rules Ry and R, is
performed once. Candidate filtering verifies whether Ry and
R, satisfy two constraints: A = —A, and 71 = T5. To evaluate
A1 = —A,, we first examine if the actions of R; and R, issue
contradictory commands, or issue the same command with
conflicting parameters; either situation indicates A} = —A».
If A; = —A; holds, the evaluation proceeds; otherwise, R
and R, do not have Action Interference. Next, if R; and R»
have the same trigger (77 = 7»), they are an A.1 candidate;
otherwise, they are an A.2 candidate.

To determine whether the candidate really causes an
Action-Interference threat, we need to know if they could
be executed under the same condition, i.e., overlapping-
condition detection (C; AC,). The overlapping-condition de-
tection is transformed into a constraint satisfaction problem
by merging all constraints in the conditions of the two rules.
If the problem is solvable (C; A C, holds), the candidate is
confirmed to cause an A.1 or A.2 threat. Our implementation
chooses the Java Constraint Programming (JaCoP) library as
the solver, which is efficient and open-source.

2) Detecting Trigger-Interference Threats: Trigger-
Interference is not commutative so the detection of two
rules R; and R, should be performed in both directions.
Without loss of generality, we discuss one direction
here. There are two ways that R’s action triggers R»
(A — T3): (a) Ry’s action (e.g., turning on a switch)
causes a state change of an actuator such that this event
(off—on) triggers R»; (b) the actuator controlled by R;
(e.g., turning on a heater) changes an environment channel
(e.g., temperature) that changes a sensor (e.g., temperature
sensor) measurement subscribed by R,.! First, we follow the
two ways above to determine if Aj — 7> holds. If A — T»
holds, we further evaluate if A, — 77 and A; = —A; hold;
based on the result, R; and R, are considered as a candidate
of T.1, T.2, T.3 or T.4 depending on which auxiliary pattern
in Table II the pair satisfies. Next, the overlapping-condition

! Determining case (b) precisely requires detailed knowledge about the in-
situ interactions between actuators and sensors. The techniques for learning
the knowledge, e.g., data mining, are out of the scope of this paper.
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Table IV: The effects of CAI threats on rule actions. See Table II for
CAI definitions and notations.

CAIType | A1 A2 T1 T2 T3 T4 C1 C2 C3 Cd4
Action A, — — — + )
Action A, — . + + + o + + - -

detection result in Action-Interference detection is reused
to finalize the detection: if C; A C» holds, a candidate is
confirmed to cause a Trigger-Interference threat.

3) Detecting Condition-Interference Threats: The detec-
tion of Condition-Interference is anticommutative and we
present one direction. To detect whether R; has Condition-
Interference with R,, we first evaluate whether A; =
or Ay # C, holds. Similar to Trigger-Interference threats,
there are two ways that R; can affect R,’s condition: (1)
R changes the state of an actuator, which changes the
satisfaction of R;’s condition directly (e.g., Ry turns on a
heater and R, checks if the heater’s state is on); and (2) R
affects an environment channel by controlling an actuator,
which changes the satisfaction of R;’s condition (e.g., Ry
turns on the heater and the condition of R, involves the room
temperature). We verify if R;’s action affects R»>’s condition
in either way; if so, the detection proceeds.

Next, we distinguish whether R; enables (A} = () or
disables (A; & C>) R»’s condition. To this end, we create an
effect constraint to denote the effect of A;. For instance,
if A; locks a door (doorl), we generate a constraint
doorl.lock=1locked; if R; sets the heating temperature
of a thermostat to a value T and R, uses a temperature
sensor (tSensor) in its condition, the effect constraint is
tSensor.temp>=T. We then merge the effect constraint
with R»’s condition and solve the new constraint satisfaction
problem. If the problem is solvable, A; = C; holds, and the
two rules are mapped to C.1 or C.2 depending on whether
T1 = T» holds; otherwise, A; # C> holds, and the two rules
are mapped to C.3 or C.4 in the same way.

D. Risk Ranking

As discussed in Section V, the outcome of CAI threats
ranges from security threats to user-desired features. Notify-
ing users of every CAI instance equally increases user efforts
and might annoy users, making them tend to underestimate
or even ignore the notifications. We propose a user-friendly
risk ranking model to help users evaluate notifications.

Observation 1: In general, each CAI threat type (Table II)
has specific impacts on the involved rules, i.e., promoting,
suppressing or looping the rule actions. For example, in
A.1, rules R; and R, perform conflicting actions (A; and
A, respectively) on the same actuator, whose final state
thus unpredictably violates the intention of either R; or Rj;
in other word, A.l suppresses the actions of R; and R;
(we consider that both actions are suppressed due to the
unpredictability). Likewise, in T.1, R’s action A; triggers
the execution of R; to take action Ajy; i.e., T.1 promotes A,.
In T4, Ry and R, trigger each other and perform conflict
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actions alternately on the same actuator (e.g., turn on and off
a switch); in this way, T.4 loops A| and A;. We use +, —, o
to denote promoting, suppressing and looping, respectively,
and summarize the effect of all CAI threat types on the
involved rule actions in Table IV.

Observation 2: The risk implication of promoting, sup-
pressing or looping a rule’s action depends on both the
functionality of the rule and the sensitivity of the action.
Consider a safety-critical rule Ry (“unlock the door and open
the window when smoke is detected”) and a non-safety rule
Ry (“open the window when air quality is low”). Given a
CALI threat that prevents opening the window, it imposes a
higher risk to R;’s action A; than to R,’s action A, since
users might install R; for security or safety functionality
but install R, for comfort or convenience. On the other
hand, while promoting opening the window or unlocking
the door has a low impact on the functionality of both R;
and R», it is risky in common cases based on the safety
nature of windows and doors. Therefore, we take both rule
Jfunctions and device control sensitivity into consideration for
evaluating the risk of a CAI instance.

We formally define the risk of a CAI threat instance
I(type,R1,R;) as Risk(I), where Ry = (T1,C,A;) and Ry =
(T,C2,A;) are the two involved rules (see Table II for
notations). Risk(I) has three possible values {1, 0, -1}
(interpreted as {high, medium, low}). From Observation 1
and 2, we know that a CAI instance has distinct effects and
therefore imposes different risks on the involved rules. The
risk risk; on each rule R; is calculated as a function of CAI
effect ¢; on R; (see Table IV), the functionality category c;
of rule R;, the device dev; and command cmd; of R;’s action:

risk; = max(M (e;, c;), Ma(e;,dev;,cmd;))

where M| (e;,c;) computes a risk value by factoring the rule
function of R; and M;(e;,dev;,cmd;) computes another risk
value by factoring the device control sensitivity of R;. In
SmartThings, each app is assigned a category field (e.g.,
Safety & Security, Convenience, Energy Management) in its
source code that specifies its functionality. In our risk model,
the functionality category c¢; of a rule R; is “safety” if the
category of the app that defines R; is “Safety & Security”;
otherwise ¢; is “non-safety”. Thus, M (e;,c;) produces a risk
value by looking up the pre-defined mapping in Table V,
which shows how the M risk level is determined by the
effect of the threat on a rule and the rule category.

To model the general sensitivity of controlling a de-
vice dev; with command cmd;, we analyze the 146 offi-
cial SmartApps given that the automation rules in these
apps provide information about how IoT devices are sup-
posed to be controlled for specific functionalities. For
example, automatically locking a door is typically con-
sidered a safe operation, since “safety” rules usually
lock (rather than unlock) a door to ensure safety. Thus,
(+) lock.lock () (promote locking a door lock) has a
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Table V: The risk level of a CAI threat instance I on a rule R;, given the
effect e; of I on R; and the functionality category ¢; of R;.

Category Effect(+) Effect(—) Effect(o)
safety rules low high high
non-safety rules low medium medium

low risk, (-)lock.lock () (suppress locking a door)
has a high risk and (o) lock.lock () (alternately lock
and unlock a door) has a high risk. Automatically turning
on a light is regarded as a low-risk operation since “non-
safety” rules usually turn on lights for convenience. Thus,
(+)light.on () hasalowrisk, (-) light.on () has
a medium risk and (o) light.on () hasamedium
risk (annoying users). Note that SmartThings uses capabil-
ities to model different device types and commands. Based
on the above idea, we build a general risk knowledge model
KM for each capability-supported command under different
CALI effects (i.e., +, —, 0), by analyzing all rules in the 146
SmartApps as shown in Algorithm 1; in total, we obtain the
KM of 46 capability-supported commands (Table VI). Next,
M (ej,devi,cmd;) uses dev; and cmd; to get a capability-
supported command capCmd and then use capCmd and e;
to retrieve a risk value from KM.

Algorithm 1: The algorithm for extracting device control sensi-
tivity under different CAI effects from SmartApps

Input : Apps < the source code of all SmartApps
Output: Risk knowledge model of capability-supported commands KM
1 foreach app € Apps do
Rules < ExtractRuleSemantics (app)
catetory < ExtractCategory (app)
foreach rule € Rules do
capability < FindCapability (rule.action.device)
cmd < rule.action.command
capCmd < Concatenate (capability, cmd)
oppCapCmd < FindOppositeCmd (capCmd)
if category is “Safety & Security” then
count [capCmd] [’ +" ] [’ low’ ] ++
count [capCmd] [ =] ["high’ ]++
count [capCmd] [0’ ] ["high’ ]++
count [oppCapCmd] ["+’ ] ["high’ ]++
[
[

© % 9 B W

-
=

count [oppCapCmd] [/ =" ][’ low’ ] ++
count [oppCapCmd] [0’ ] ["high’ ]++
else

count [capCmd] +7 ][ low’ J++
count [capCmd] =1 ["medium’ ]++
count [capCmd] [" o’ ] ["medium’ ] ++

foreach capCmd € count.keys () do

foreach e € {"high’, 'medium’, ’low’} do
KM[capCmd] [e]= max(count [capCmd] [e] ["high’],
count [capCmd] [e] [ medium’ ],

count [capCmd] [e] [" low’])

I
I

E. HomeGuard Frontend App

HOMEGUARD frontend bridges the detection system and
smart home users. A rule interpreter component translates
newly installed rules into a human-readable form and dis-
plays them via a user interface, such that users can check if
the rules match their intention. A threat interpreter displays
the detected CAI threats to users in a readable manner,
allowing them to decide whether to uninstall some app(s)
or whether to re-configure the involved app(s). Fig. 5 shows
screenshots of interfaces provided by the frontend app.
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Table VI: The output KM of running Algorithm 1 on 146 SmartApps,
showing the risk level of a CAI threat instance I on capability-supported
commands under different effect ¢;. H: high, M: medium, L: low. Partial
results (out of 46) are listed due to space limits.

Capability.c d Effect(+) Effect(—) Effect(o)

alarm.off

alarm.siren

light.off

location.setLocationMode

lock.lock

lock.unlock

switch.on

valve.close

jun! N onl N onl ool Nl Nl Hanl Nenl Bun}
clz 2l =z 2 e
an] sl o s Rl R R e e

valve.open

HomeGuard HomeGuard

Installing: AutoMode
When person1.presence == not present
Do set away mode

Installing: AutoLock
When pSensor1.presence == present
Do unlock lock1

Action-Interference (A.2) High Risk Condition-Interference (C.4)  High Risk
AutoLock unlock lock1 BurglarAlarm ~ cannot siren  alarm1
GoodNight  lock lock1 failing mode == sleep
When pSensor1.presence == present caused by AutoMode
timeOfDay == 23:00 through set away mode
mSensor1.motion == inactive When person’.presence == not present,
mSensor2.motion == inactive door1 contact == open
(a) (b)

Figure 5: Screenshots that show the HOMEGUARD frontend app interface
when (a) installing AutoLock when GoodNight has been already
installed; (b) installing AutoMode when BurglarAlarm has been in-
stalled. AutoLock, GoodNight, AutoMode and BurglarAlarm are
SmartApps that define Rule 1, 2, 5, 6 in Fig. 2, respectively.

VII. EVALUATION

HOMEGUARD is evaluated on a Dell desktop (rule ex-
traction) with 3.4GHz Intel Core i7 CPU-6700 and 8GB
memory and a Samsung Galaxy S8 smartphone (CAI threat
detection and configuration collection) with Android OS
8.1.0. We study whether CAI threats can be identified by
HOMEGUARD from real market apps.

A. Test Cases

We create two test suites. The first set is used to explore
the status in quo of CAI threats in market apps and evaluate
the performance of HOMEGUARD in a large scale. The
second set is a subset of the first one and used to validate
the detected CAI threats in a real-world environment.

Market apps. We collect 146 out of 182 SmartApps from
the public repository [32], removing 36 web service Smar-
tApps which do not implement any rules but just expose
web endpoints for device or service integration [30]. We
use this set to (1) exhaustively identify CAI threats in
market apps and learn the distribution of risk levels among
the discovered instances, and (2) evaluate the performance
of HOMEGUARD at a large scale. In this experiment, it
is impossible to iterate over all configuration possibilities
without concrete user input; instead, we confine the detection
based on the following configuration situations that CAI
detection really cares about: (1) whether two apps work with
the same device(s) (if they request the same device type)
and (2) whether one app really affects another one through
physical channels (for example, turning on/off a light might
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1. Motion sensor  13. Humidifier
2.Oven 14. Ventilator

3. Fan 15. Light

4. Temp. sensor  16. Luminance sensor
5. Switch 17. Contact sensor

6. Door Lock 18. Luminance sensor
7. Presence sensor 19. Light

8. Thermostat 20. Floor Lamp

9. Temp. sensor  21. Motion sensor

10. Fan 22. Alarm

11. Power meter  23. Light

12. Humidity sensor 24. Fan

Figure 6: Devices and their layout in the real-world deployment.

or might not affect the measurement of an illuminance sen-
sor, based on their positions). Thus, we address the infinite
configuration issue by enumerating the binary answers (YES
or NO) to the two configuration questions above.

Real-world deployment for validation. To validate the
detected CAI threats by HOMEGUARD in real deployments,
we select 18 market apps that are found cause threats from
the second test case and configure them to work with 24
typical IoT devices (Fig. 6); these apps generate all CAI
threat types (see Table VII for the selected apps, app-device
bindings, and CAI threats to validate). We run these apps to
verify the detection results of HOMEGUARD.

B. Correctness of Rule Extraction

We first evaluate rule extractor’s ability to extract rule
semantics from the test suite. We manually review the code
and record the rules in the first test suite. To avoid human
errors, we also run these apps with simulated devices to
verify the correctness. Finally, we obtain 1107 rules in total.
The manual analysis results are used as ground truth.

We encountered several exceptions due to a lot of
unforseen code dynamics and variations. For example,
Feed My Pet uses device.petfeedershield in
the input method instead of a regular capability; Camera
Power Scheduler uses a public API runDaily which
was not documented by SmartThings. We fine-tune the rule
extractor by, e.g., adding the nonstandard device types into
the capability list and modeling the undocumented APIs we
encountered. Eventually, the rule extractor extracts all rules
from the market apps precisely and completely.

To test the rule extraction speed, we extract rules from
146 market apps and get an average execution time of
1341ms per app. Rule extraction can be performed only
once for market apps and the result can be shared via public
databases, so it is a one-time effort and can be done offline.

C. CAI Threat Detection

Detecting threats from market apps. We perform CAI
threat detection over the 146 market apps in the second
test set and record the results. We identify 663 CAI threat
instances in total and find that 101 out of 146 apps are
susceptible to at least one type of CAI threat. The statistics
of the detection results and vulnerable apps are shown in
Fig. 7. Fig. 7(a) shows that the total instance number and
the high/medium/low-risk instance number over each CAI
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Figure 77: Statistics of detection results on 146 SmartApps: (a) the number
and risk ranking distribution of detected instances for each CAI threat type;
(b) the number and risk ranking distribution of the SmartApps that are
vulnerable to each CAI threat type. See Table II for the threat acronyms.
type have different distributions. Among all CAI types, A.2
has the most instances while T.1 has the most high-risk
instances. From Fig. 7(b), we can see that fewer apps are in-
volved in high-risk instances than those in medium/low-risk
instances. Therefore, the risk ranking reduces user burden
significantly on making decisions if they are only concerned
about high-risk threats and also provides flexibility for
advanced users to eliminate problematic app interactions by
also looking at medium- and low-risk threats.

Validation of the CAI threats detected from market apps.
We validate CAI threats in real-world settings; specifically,
we bind 24 typical devices (Fig. 6) to 18 martket apps se-
lected from involved market apps (see Table VII for details).
By experiments, we confirm that all the listed threats, except
for Set 7, occur as indicated by our detection results. In C.1
(or C.3), two rules R; and R; are triggered simultaneously;
thus, whether R;’s action that leads to SmartThings updating
its database actually interferes with R,’s condition checking
cannot be determined by pattern-proving but depends on
how SmartThings handles the execution of simultaneously
triggered apps, which is a blackbox to us.

Our observation is that C.1 in Set 7 does not occur
but C.1 and C.3 in Set 9 always occur. In Forgiving
Security, the condition checking (if home is in “Away”
mode) is deferred by a scheduling API runIn (delay,
method), allowing Rise and Shine’s changing mode
to take effect before method (where condition check-
ing is performed) is called. We verify the influence of
runIn(delay, method) by (1) setting delay to 0 and
(2) deleting runIn and instead running method without
delay. C.1 and C.3 always occur in case (1) but never occur
in case (2) (same as Set 7). The result shows that C.1 and
C.3 always occur when the condition checking (which may
be interfered with) is scheduled by the platform runtime in
a waiting queue and otherwise never occur. Thus, theorem-
proving based CAI threat detection could get rid of some
false positives by taking this platform-specific feature into
consideration when detecting C.1 and C.2.

Detection speed. To evaluate the efficiency of CAI de-
tection, we test the averaged execution time for detecting
each CAI threat type between two rules on a Samsung
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Table VII: The apps and app-device bindings for constructing CAI threats.

App Name Rule and Configuration Set # | CAI Type
CurlingIron When motion @ detected, turn on oven @ and fan @ for 30 minutes. | Al
Virtual Thermostat When motion @ detected, if temperature @ is lower than 72°F, turn off fan @ :
NFCTagToggle ‘When the user touches on mobile app, toggle switch @ and toggle door lock @ 2 A2
LockItWhenILeave When presence sensor (7) becomes “not present”, lock door (). -
CurlingIron When motion @ detected, turn on oven @ and fan @

SwitchChangesMode When oven @ is turned on, set home to “party” mode. 3 T.1
MakeItSo When changed to “Party” mode, unlock door @ and turn on thermostat .

It’ sTooHot When temperature @ exceeds 80°F, turn on fan . 4 T2
EnergySaver When power usage (i1) exceeds 3000 W, turn off fan (i0). ;
SmartHumidifier When humidity @ is below 30%, turn on humidifier @; when humidity @ exceeds 50%, turn off humidifier @ 5 3
HumidityAlert! When humidity @ exceeds 50%, turn on ventilator ; when humidity @ is below 30%, turn off ventilator . -
LightUptheNight When illuminance exceeds 50 Ix, turn off light @; when illuminance gets below 30 Ix, turn on light @ 6 T.4
Brighten Dark Places When door (17) is opened, if illuminance is below 10 Ix, turn on light (19). 7 ci1
LetThereBeDark When door @ is opened, turn off lights ; when door @ is closed, restore the state of lights . :
Forgiving Security When motion sensor @ or @ becomes “active”, if the home is in “Away” mode, siren alarm @ 3 C2 C4
Scheduled Mode Change Set home to “Away” mode at 10 am and set home to “Night” mode at 6pm. s
Forgiving Security When motion sensor (21) becomes “active”, if home is in “Work” mode, turn on light (23) after 1 second. 9 C3(C1)
Rise and Shine When motion sensor @ becomes “active”, set home to “At-Home” mode (“Work™ mode). - .
GoodNight When motion @@ detected, if switches (2)3)3)10)(13)14)15)(19)20)23)24) are all off, set home to “sleep” mode.

Once a Day Turn on fan at 11 pm and turn off fan at 12 am. 10 C4
MakeItSo When changed to “sleep” mode, lock door @
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Figure 8: CAI detection overhead for a pair of rules. Green dotted lines
mean the constraint solving for detecting A.2, T.1,T.2,T.3,T.4 threats can
reuse the solving result of A.1 and the constraint solving for C.2, C.3, C.4
can reuse that of C.1. The threat acronyms are defined in Table II.

Galaxy S8 smartphone. As shown in Fig. 8, the most time-
consuming operation is constraint solving. The constraints
solving overhead in Condition-Interference Threats is lower
since the involved number of constraints is about half of
that in Action-Interference Threats. To avoid unnecessary
constraint solving, we first perform a light-weight candidate
filtering based on the pre-stored mapping lists and reuse the
constraint solving result across detecting different threats.
For an arbitrary pair of rules, the maximum total time for
detecting all CAI threats is 671 ms. The actual detection
time is usually much shorter since two rules rarely fit all
threat patterns and may fail partial or all candidate filtering
operations; thus, constraint solving overhead is avoided.

VIII. D1scUSSION

User effort. Users need extra operations to download instru-
mented apps before installation. A mitigation solution is to
automate this process by running a script. We have demon-
strated this solution by developing a Python script with
Selenium webdriver to automatically obtain the source
code from SmartThings Web IDE [33], run the instrumenta-
tion script (in Section VI-B2), and install instrumented apps
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in the web IDE. Users only need to provide the SmartThings
IDE log-in account to the script.

Multi-Platform Applicability. The rule extractor and con-
figuration collector in HOMEGUARD are platform-specific
since platforms use different programming languages and
APIs. When source code [34] or bytecode [35] is available,
engineering effort for code analysis and instrumentation
could be made to support another platform. Besides apps,
some platforms (e.g., IFTTT) define rules on mobile or web
user interfaces (Uls). Rules can be extracted by crawling
free texts from Uls and parse the texts with natural language
processing (NLP) techniques [13], [24], [36].

IX. CONCLUSION

We comprehensively categorized CAI threats, and de-
signed and built a system HOMEGUARD to address the prob-
lem. HOMEGUARD applies symbolic execution to extract
rules from apps completely and precisely, and employs a
constraint solver to evaluate the relation between rules for
systematic threat detection, without needing users to specify
security goals. Moreover, we have proposed a practical
deployment path that utilizes code instrumentation to collect
the installation information and a frontend app to perform
the detection and risk ranking on the user’s smartphone. We
evaluated HOMEGUARD using real SmartApps from the app
store and validated the detection results in real-world envi-
ronments. The evaluation results show that HOMEGUARD is
effective, efficient, and precise.
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