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ABSTRACT

Monazite is a light rare earth element (REE) phosphate found in REE mineral deposits,
such as those formed in (per)alkaline and carbonatite magmatic-hydrothermal systems,
where it occurs in association to the development of alteration zones and hydrothermal
veins. Although it has been recognized that monazite may undergo replacement by
coupled dissolution-precipitation processes, currently there is no model describing the
compositional REE variations in monazite resulting from direct interaction with or
precipitation from hydrothermal fluids. To develop such a model requires quantification
of the thermodynamic properties of the aqueous REE species and the properties of the
monazite endmembers and their solid solutions. The thermodynamic properties of
monazite endmembers have been determined previously using calorimetric methods and
low temperature solubility studies, but only a few solubility studies have been conducted
at > 100 °C. In this study, the solubility products (logKyo) of LaPO4, PrPO,4, NdPO4, and
EuPO,4 monazite endmembers have been measured at temperatures between 100 and 250
°C and saturated water vapor pressure. The solubility products are reported with an

uncertainty of £0.2 (95% confidence) according to the reaction, REEPOy(s) = REE’" +

PO,
£ (°C) logKy (LaPO,) logKy (PrPO,) logKy, (NdPO,) logKy, (EuPOy,)
100 -28.0 -28.0 -28.1 -27.7
150 -28.8 -29.0 -29.0 -28.5
200 -30.2 -30.4 -30.6 -30.2
250 -32.1 -32.0 -32.3 -32.1
The REE phosphates display a retrograde solubility, with the measured Ky values

varying several orders of magnitude over the experimental temperature range.
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Discrepancies were observed between the experimental solubility products and the
calculated values resulting from combining calorimetric data of monazite with the
properties of the aqueous REE®" and PO,> species available in the literature. The
differences between the calculated and measured standard Gibbs energy of reaction
(ArGO) for PrPO4, NdPO,4, and EuPO, increased with higher temperatures (up to 15 kJ
mol™! at 250 °C), whereas for LaPO, these differences increased at lower temperatures
(up to 8 kJ mol™ at 100 °C). To reconcile these discrepancies, the standard enthalpy of
formation (AfHO) of monazite was optimized by fitting the experimental solubility data
and extrapolating these fits to reference conditions of 25 °C and 1 bar. The optimized
thermodynamic data provide the first internally consistent dataset for the solubility of all
the monazite endmembers, and can be used to model REE partitioning between monazite

and hydrothermal fluids at > 100 °C.

1. INTRODUCTION

Monazite is a common accessory mineral, and has proven to be a useful geological tracer
for geochronology and geothermometry in sedimentary, metamorphic, and igneous
environments (Montel et al., 1996; Poitrasson et al., 1996; Gratz and Heinrich, 1997;
Heinrich et al., 1997; Pyle et al., 2001; Farley and Stockli, 2002; Harrison et al., 2002;
Spear and Pyle, 2002; Schaltegger et al., 2005; Rasmussen et al., 2011). The dominant
REE phosphate endmember composition found in nature is monazite-(Ce), with the other
light (L)REE (La, Pr, Nd, Sm, Eu, and Gd) preferentially incorporated over the smaller

heavy (H)REE in its monoclinic (P2;/n) structure (Ni et al., 1995). The stability of
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hydrothermal monazite can provide insights into the development of alteration zones in
REE mineral deposits, such as in the giant Bayan Obo carbonatite deposit in China
(Smith et al., 1999, 2000, 2016), the Browns Range vein deposit in Australia (Cook et al.,
2013), and in metamorphic systems such as the Olserum-Djupedal in SE Sweden
(Andersson et al., 2018a, 2018b). The stability of hydrated REE phosphates is also
important in the formation of REE ion-adsorption deposits upon weathering and regolith
development, such as those found in southern China and the southeastern United States
(Foley et al., 2014; Xu et al., 2017; Li et al., 2019). In iron-oxide-apatite (IOA) deposits,
such as Pea Ridge (Missouri, USA) and Kiruna (Sweden), monazite typically forms also
as a hydrothermal phase associated with the replacement of apatite (Harlov et al., 2002,
2016). Experimental studies have confirmed the important role of aqueous fluids in the
stability of REE phosphates and their control on the mobility of trace elements during
crustal metasomatism (Ayers and Watson, 1991; Teufel and Heinrich, 1997; Seydoux-
Guillaume et al., 2002; Poitrasson et al., 1996, 2004; Schmidt et al., 2007; Hetherington
et al., 2010; Harlov et al. 2011; Tropper et al., 2011; Williams et al., 2011; Mair et al.,
2017). Thus, determining the stability of monazite in hydrothermal fluids is paramount
because its composition may be a useful tracer of fluid-rock interaction processes in these
natural systems.

The thermodynamic properties of monazite endmembers have been determined
from calorimetric measurements (Ushakov et al., 2001; Thiriet et al., 2005; Popa and
Konings, 2006; Janots et al., 2007; Gavrichev et al., 2009, 2016; Thust et al., 2015; Bauer

et al., 2016; Geisler et al., 2016; Hirsch et al., 2017; Neumeier et al., 2017). Several



88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

calorimetric, spectroscopic, and computational studies have recently shown that monazite
displays non-ideal solid solution behavior, despite the similarity in ionic radii of the
different REE (Popa et al., 2007; Li et al., 2014; Bauer et al., 2016; Geisler et al., 2016;
Gysi et al., 2016; Hirsch et al., 2017; Huittinen et al., 2017; Neumeier et al., 2017). While
data for the thermodynamic properties of most of these solids seem to be reliably known,
the calculated versus the measured solubility of the REE phosphates in aqueous solution
still displays significant discrepancies (Pourtier et al., 2010; Gysi et al., 2015, 2018). This
results from combining calorimetric data from these minerals with the available
thermodynamic data of the REE aqueous species from different literature sources. The
latter have been mostly estimated and/or extrapolated to higher temperatures from low
temperature data (Haas et al., 1995), except for the REE chloride, sulfate, and fluoride
complexes (Migdisov et al., 2009, 2016).

The solubility of REE phosphate hydrates (rhabdophane, REEPO4-0.667H,0) has
been determined in aqueous solutions at low temperatures (< 100 °C) for all the
endmembers (Jonasson et al., 1985; Firsching and Brune, 1991; Byrne and Kim, 1993;
Firsching and Kell, 1993; Liu and Byrne, 1997; Poitrasson et al., 2004; Cetiner et al.,
2005; Gausse et al., 2016; Shelyug et al., 2018). However, only a handful of monazite
solubility experiments have been conducted in aqueous solutions at temperatures > 100
°C (Poitrasson et al., 2004; Cetiner et al., 2005; Pourtier et al., 2010; Gysi et al., 2018).
Here we present experimental solubility data for the monazite LaPO,, PrPO,, NdPO,, and
EuPO, endmembers over a temperature range of 100 to 250 °C and saturated water vapor

pressure (swvp). This work is part of a series of experimental solubility studies aimed at
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constructing a comprehensive internally consistent dataset for the REE phosphates and
REE aqueous species (Gysi et al., 2015, 2018). Comparison of the measured monazite
solubility with previously reported thermodynamic properties for REE phosphates and
REE aqueous species are used to reconcile the inconsistencies resulting from a
combination of different sources of data. The experimental data are then extrapolated to
reference conditions of 1 bar and 25 °C, and we provide recommended thermodynamic

data for modeling the solubility of REE phosphates in hydrothermal fluids.

2.1. MATERIALS

Individual mm-sized LaPOy, PrPO4, NdPO4, and EuPOy crystals of monazite were grown
from a Na,CO3-MoO3 melt flux utilizing the synthetic method outlined in Cherniak et al.
(2004). This synthesis method yields high-purity euhedral monoclinic monazite crystals
(99.97 — 99.99%; Electronic Annex). The use of single crystals in solubility studies
presents advantages over the use of poorly crystalline fine-grained mineral powders,
which is discussed in more detail in the solubility study by Gysi et al. (2018). For the
synthesis of these crystals, REE phosphate hydrates were precipitated from solution by
mixing aqueous REE(NOs); and NH4H,PO4. The resulting precipitates were dried and
dry-mixed with a Pb-free Na,CO3-MoO3 mixture (75Na;CO3:25Mo00O3:REEPOy). This
mixture was then heated in a Pt crucible to 1375 °C over 4 hours and then allowed to
‘soak’ for 15 hours. The now molten flux was then subsequently cooled from 1375 °C to
870 °C at a rate of 3 °C/hour over a period of approximately 5 days. The Pt crucible was

then removed from the oven and air-cooled. The Pt crucible, with the solidified flux plus
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embedded crystals, was then placed in successive beakers of boiling distilled H>O until
the crystals were freed from the flux material, the cloudy dissolved flux poured off, and
the H,O completely clear.

The experimental starting solutions utilized in the solubility experiments were
prepared using trace metal grade perchloric (HClO4) and phosphoric (H3POy) acid (Fisher
Scientific). Concentrated perchloric acid was added dropwise to 400 ml of milli-Q
filtered water (18 MQ-cm) until a pH of 2.00 +0.02 was measured at ambient temperature
(22 +2 °C). These pH measurements were used to determine the perchloric acid
concentration in the starting solutions. Perchloric acid was used to buffer the pH of the
experimental solution because ClO4 does not readily form complexes with REE cations
in aqueous solutions (Migdisov et al., 2016). A pH of 2.0 was selected to limit the
formation of REE hydroxyl complexes and to increase the dissolution of the REE
phosphate crystals. Then a 200 pl aliquot of 0.045 m phosphoric acid was added to the
400 ml perchloric acid solution to fix the minimum phosphate concentration in the
experimental solution and to reduce the uncertainty in the measurement of P
concentrations using inductively coupled plasma mass spectrometry (ICP-MS) analysis.
Sample holders utilized in the solubility experiments were hand-made from annealed Ti

foil (99.7 % metal basis, Alfa Aesar).

2.2. ANALYTICAL
The pH of the starting experimental solutions was measured at room temperature using a

Metrohm unitrode with an integrated Pt1000 temperature sensor (model 6.0260.010) and
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a Metrohm 913 pH meter (precision of +0.003 pH units and resolution of 0.001 pH units).
The electrode was calibrated using commercial buffer solutions (Fisher Scientific; pH
2.00, 4.00, and 7.00; accuracy of +0.01); pH-temperature compensated reading for the
buffer solutions are considered by the built-in temperature sensor of the electrode to
measure deviations from 25 °C. The ionic strengths of the experimental starting solutions
(0.01 m) and the buffer solutions used for pH calibration (0.05 m) are relatively dilute;
minor deviations are expected in the measured pH as a result of variations in liquid
junction potentials. The estimated accuracy of pH measurements for the perchloric acid
buffered starting experimental solutions is within £0.03 pH units.

Dissolved REE and P concentrations were measured in the reacted experimental
solutions (Appendix A) using a Perkin Elmer NexION quadrupole inductively coupled
plasma-mass-spectrometer (ICP-MS). Samples and standards were all diluted using 2%
nitric acid (Fisher Scientific, trace metal grade) blank solutions and were mixed in-line
with an In internal standard (SCP Science, NIST traceable certified standard) to correct
for instrumental drift. Calibration was carried out using multi-element REE and P
standards, and individual La and Ce standards (SCP Science, NIST traceable certified
standard). The individual REE standards of La and Ce were used to correct for
interference from the formation of REE oxides (REEO'®) utilizing the method presented
in Aries et al. (2000). Phosphorus is difficult to analyze in the lower ppb range (< 100
ppb) due to mass interference with the 2% nitric acid blank ("N'®OH and “N'0)
resulting in high background counts. To avoid this problem, standard curves were created

above 10 ppb, and the P concentration ranges of the diluted experimental solutions
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corresponded to values ranging between 100 and 800 ppb. The limit of detection (LOD)
values determined from multiple analyses of the matrix-matched blank (36) were 11 ppb
for P, 4 ppt for La, 2 ppt for Pr, 8 ppt for Nd, and 1 ppt for Eu. The analytical precision of
triplicate ICP-MS runs based on a 95 % confidence level were < 3 % for P, and < 1 % for

La, Pr, Nd, and Eu.

2.3. SOLUBILITY EXPERIMENTS

Solubility experiments were carried out in 45 ml teflon lined stainless steel batch reactors
(4744, Parr Instruments) at 100, 150, 200, and 250 °C at swvp. Kinetic experiments were
conducted throughout a period of 1 to 23 days at 100 °C to verify approach to
equilibrium between the REE phosphate crystals and the aqueous solutions.

Experiments consisted of mounting mm-sized monazite crystals in hand-made Ti
holders, which were then placed in 25 ml of the perchloric acid starting solution. The
headspace was then purged with dry nitrogen gas for a period of 5 minutes upon which
the reactors were sealed and placed into a furnace (Cole-Parmer, EW-33858-70). The
temperature was maintained within 0.5 °C of the experimental setpoint and monitored
using an Omega® temperature logger with a K-type thermocouple located at the center of
the furnace. After completion of the experimental period, the reactors were removed and
quenched in a cold water bath within 20 min. The recovered experimental solutions were
diluted (1/6 per mass) with a 2% nitric acid (Fischer Scientific, trace metal grade) blank
in preparation for REE and P analysis using solution ICP-MS. Empty Ti-holders and

teflon vessels were then soaked in concentrated sulfuric acid solutions for approximately
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48 h and then rinsed with milliQ water, followed by a 24 h soak in milliQ water before
being utilized in new experiments. In-between experiments, a sulfuric acid wash was
used to rinse the walls of the Teflon liner of the autoclaves. These solutions were further
diluted with milliQ water and the REE were analyzed using ICP-MS to detect the
formation of any potential precipitates upon quenching. These tests did not provide any
evidence that quenching of the experiments led to the precipitation of additional REE

solid phases in this type of experiment.

2.4. DATA TREATMENT
Speciation and activities of aqueous ions were calculated using the GEMS code package
v.3.5 and the TSolMod library (Wagner et al., 2012; Kulik et al., 2013). Thermodynamic
properties of the aqueous species were calculated using the revised HKF equation-of-
state (Helgeson et al., 1981; Shock and Helgeson, 1988; Tanger and Helgeson, 1988;
Shock et al., 1992). The properties of water were calculated from the IAPS-84 equations-
of-state (Kestin et al., 1984). The thermodynamic data of the aqueous species considered
in the speciation calculations are listed in Appendix C and were taken from Shock and
Helgeson (1988), Shock et al. (1989, 1997), and Haas et al. (1995), which are collectively
referred to as the Supcrt92 database.

The activities of the aqueous species of interest (REE**, REEOH**, H*, H;PO,’,
H,PO., HPO42', and PO43') were determined at the experimental temperatures and swvp
using the measured concentrations of REE and P from the quenched experimental

solutions, and the ClO4 concentrations obtained from the measured pH of the starting

10
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solutions (Appendix A). The activity coefficients (y;) of charged aqueous species were
calculated using the extended Debye-Hiickel equation (Robinson and Stokes, 1959) ,

AzZ}NT
logy; = —#Bﬁ+ry+by1 (1)

where the effective ionic strength /, is given by,
I=1/2%;m;zf 2)
A and B are the Debye-Hiickel parameters (Helgeson and Kirkham, 1974; Helgeson et al.,
1981); a is the ion size parameter, which is 4.5 A for ClO4, and was selected from
Kielland (1937) for the other ions; I, is a mole fraction to molality conversion factor; m;
and z; are the molal concentration and charge number of the ith aqueous species,
respectively; b, is the extended term parameter. The b, term is an empirical parameter that
depends on the background electrolyte and has been experimentally determined for
perchlorate-based (HC104/NaClO4) aqueous solutions up to 250 °C as being equal to 0.21
(Migdisov and Williams-Jones, 2007).
The equilibrium constants for the dissolution of REE phosphate in aqueous

solutions as a function of pH are described by the following set of reactions:

REEPO,(s) = REE™ + PO, (Ksp) (3)
REEPO.(s) + H = REE** + HPO.> (Ks)) (4)
REEPO,(s) + 2H" = REE™ + H,PO, (Ks2) (5)
REEPO,(s) + 3H" = REE*" + H3PO. (Ks3) (6)

At a pH of 2.0, the dominant phosphate species in the experiments was H;PO4° and to a
lesser extent H,POs (Appendix A). Therefore, K3 was first determined at the

experimental temperature using Reaction (6), with the equilibrium constant given by,

11
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Kg3 = (7N

3
aH+

where a is the activity of H3PO4O, REE3+, and H", respectively. The deprotonation of

orthophosphate can be described by,

H;PO.’ = H" + H,PO, (K)) (8)
H,PO, = H" + HPO,* (K>) )
HPO,* =H" + PO, (K3) (10)

where K, K», and K3 are the first, second, and third dissociation constants of phosphoric
acid. The equilibrium constant of Reaction (3) can then be calculated by combining the
dissociation constants of phosphoric acid (Reactions 8-10) with Eq. (7),

Ko = Kg3 X Ky X K, X K3 (11)

with the corresponding solubility product,
Ko = agpps+ X Apo3- (12)

where a is the activity of REE** and PO,”".
The source of thermodynamic data for Reactions (8-10) are listed in Appendix C.
The dissociation constants of phosphoric acid were determined from standard
thermodynamic properties and HKF parameters derived by Shock and Helgeson (1988),
and Shock et al. (1989, 1997). These values are internally consistent and have been used
to evaluate the speciation of phosphorous in our experiments. The predicted values of the
first (K;) and second (K3) dissociation constants are consistent with the experimentally
determined values by Mesmer and Baes (1974) using potentiometric measurements to
300 °C. The accuracy of the first dissociation constant of phosphoric acid has also been

confirmed by a recent Raman spectroscopy study by Rudolph (2012). The third (K3)

12
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dissociation constant could not be determined accurately at infinite dilution and above
150 °C by Mesmer and Baes (1974) and are based on predictions from the HKF
correlations. The properties derived for the phosphate species from Shock and Helgeson
(1988), and Shock et al. (1989, 1997), are therefore used in the present study because of
their internally consistency and wide usage until further experimental data become

available.

3. RESULTS

3.1. KINETIC EXPERIMENTS

To verify that equilibrium was approached within the experimental period, a series of
kinetic runs was carried out over a period of 1 to 23 days at the lowest experimental
temperature of 100 °C for LaPO4 and NdPOy (Fig. 1). The solubilities of LaPO4 and
NdPO, were determined from the measured REE and P concentrations as a function of
time (Appendix A), and the activities of REE’" and PO43' were calculated to determine
the reaction quotient (Qg) according to Eq. (12). The results of the kinetic experiments
indicate that the logQy for LaPOy4 reached steady-state values of approximately -28.0
(0.2 within a 95% confidence interval) after an experimental period of 14 days. The
logQyo for NdPO, reached a steady-state value of -28.1 (0.2 within a 95% confidence
interval) after an experimental period of 5 days. These results suggest that equilibrium
concentrations are approached in our experiments within a period of 5 to 14 days. These
results are consistent with the solubility studies of Gysi et al. (2015, 2018), which

employed the same experimental method, and found that the solubility of monazite and

13
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xenotime crystals reached steady-state concentrations after 10 days at 100 °C, and after 5

days at 150 °C.

3.2. SOLUBILITY PRODUCTS

The solubility products (Ky) of LaPO4, NdPO4, PrPO4, and EuPO, monazite crystals
were determined from the measured REE and P concentrations of the quenched
experimental solutions and the calculated aqueous species activities (Appendix A). The
experimentally measured logKy, values at infinite dilution as a function of temperature
are reported in Table 1 and shown in Figure 2.

Replicate experiments display a standard deviations (lo) of the reported mean
logKyo values ranging between +0.01 and +0.40 (Table 1). Based on error analysis of
these replicate experiments, the uncertainty of the mean is estimated to be +0.2 on the 95
% confidence interval. These uncertainties are in line with previous hydrothermal REE
phosphate solubility experiments reporting an experimental reproducibility within or
better than +0.25 logKy units (Gysi et al., 2015, 2018). Possible uncertainties that can
result from the accuracy of the pH measurements of the starting solutions were also
evaluated. The initial perchloric acid concentrations of the experimental solutions were
varied in GEMS to reach pHjs oc values of 1.97, 2.00, and 2.03 (i.e., accuracy of pH
measurements). The activities of REE*" and PO43' were then recalculated at the
experimental temperatures and the resulting logKyy values were determined between 100
and 250 °C. This analysis yields logKyy values within +0.1-0.2 units at the higher and

lower pH ends, respectively, in comparison to the values determined at a pH of 2.

14



308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

All the REE phosphates display retrograde solubility and vary non-linearly between
100 and 250 °C. The logKy, values determined by this study vary four to five orders of
magnitude within the experimental temperature range but yielded similar values between
the different REE phosphate endemembers. The measured solubility products were fitted

to an empirical non-linear fit of the following form,
logKk =A+BxT+ % + Dlog(T) (13)

where T is the temperature in Kelvin. A, B, C, and D are the fitted coefficients, which are
related to the standard enthalpy (ArHoTr) and entropy (ArSOTr) of reaction for the
dissolution of monazite (Appendix D). In the experimental temperature range, only the
first three terms of Eq. (13) could be retrieved for the initial fitting of the experimental
data. The empirical fits and their prediction bound at 95 % confidence are displayed in
Figure 2, and the fitted coefficients are listed in Table 2 (Fit 1) with regression

coefficients (R?) ranging between 0.986 and 0.996.

4. DISCUSSION

4.1. COMPARISON TO PREVIOUS STUDIES: SOLUBILITY OF MONAZITE
AND RHABDOPHANE

Previous REE phosphate solubility studies were mostly conducted at ambient
temperatures or below 100 °C (Jonasson et al., 1985; Firsching and Brune, 1991;
Firsching and Kell, 1993; Byrne and Kim, 1993; Liu and Byrne, 1997; Cetiner et al.,
2005; Gausse et al., 2016). The major difficulty in evaluating the solubility of REE

phosphates stems from the formation of the metastable hydrated rhabdophane phase

15
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below 100 °C, which is more soluble than monazite (Du Fou de Kerdaniel et al., 2007;
Gausse et al., 2016; Shelyug et al., 2018). This was recently confirmed in the kinetic
study by Arinicheva et al. (2018). Other difficulties include the crystallinity of the solids
used in the experiment such as powders versus larger crystals (Cetiner et al., 2005; Gysi
et al., 2015, 2018). Hence most of the solubility data available below 100 °C seem to be
controlled by the stability of rhabdophane. This was confirmed in the experiments by
Gausse et al. (2016), who measured the solubility of rhabdophane between 25 and 90 °C,
from both over- and undersaturation. Comparison of our measured monazite solubilities
between 100 and 250 °C with previous experiments carried out at lower temperatures
(Fig. 3) reveals systematically lower logKy, values for monazite. Similar observations
were made in a recent solubility study for CePO4, SmPO4, and GdPOs monazite
endmembers measured between 100 and 250 °C by Gysi et al. (2018). Other monazite
solubility studies conducted above 100 °C are scarce. Cetiner et al. (2005) and Poitrasson
et al. (2004) measured the solubility of NdPO4 monazite powders at 150 to 300 °C. The
study of Poitrasson et al. (2004) shows excellent agreement with our solubility data at
200 and 300 °C, whereas the monazite data of Cetiner et al. (2005) displays an overall
lower solubility than measured in our experiments at 150 °C (Fig. 3c).

In addition to the measured solubilities, solubility curves were calculated (Fig. 3)
by combining the available calorimetric data for LaPO,, PrPO4, NdPO,4, and EuPOy4
(Table 3) with the thermodynamic properties of the REE™ and PO, ions from the
Supcrt92 database (Appendix C). The calculated solubility curves for NdPO4 and EuPOy4

are consistently an order of magnitude lower than our experimental measurements (Fig.
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3c-d). In contrast, the calculated solubility curves for LaPO, and PrPO, partly overlap
with our experimental data and the measured solubilities for rhabdophane (Fig. 3a-b).
The source of these discrepancies can result from the incompatibility of combining the
thermodynamic properties of the minerals and aqueous species from different sources,
whereas in the solubility experiments, the solubility products are solely calculated based
on the speciation and activities of aqueous species and measured REE and P
concentrations of the experiments.

The differences between the measured and calculated solubilities were further
evaluated by constructing residual plots of the standard Gibbs energy of reaction (A,G).

The latter was retrieved from the measured solubilities according to,

—ArG°
RTIn(10)

logK = (14)

where R is the ideal gas constant and T is the temperature in K. Residual plots (Fig. 4)
show that these discrepancies are generally larger with increasing temperatures for
PrPO,4, NdPO,4, and EuPQO,, with negative residuals for ArGO indicating higher measured
solubilities in comparison to the calculated ones. In contrast, LaPO, shows higher
discrepancies with decreasing temperatures, with positive residuals for A,G’ indicating

lower measured solubilities in comparison to the calculated ones.

4.2. EXTRAPOLATION OF THE SOLUBILITY PRODUCTS TO REFERENCE
CONDITIONS
Using the measured REE phosphate solubility products between 100 and 250 °C, it is

desirable to extrapolate the empirical fits to reference conditions of 25 °C (T;) and 1 bar
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(P,). Using a three-coefficients empirical fit (Fit 1, Table 3) would lead to large 95 %
prediction intervals for extrapolated values at 25 °C. However, these fits can be improved
by using the relationship between the fitted empirical coefficients A-D (Eq. 13) and the
standard enthalpy (ArHOTr,pr) or the standard entropy (ArSOTr,pr) of reaction (Appendix D).
This method utilizes the data available from the calorimetric measurements of the
monazite endmembers to constrain a four-coefficient fit through the experimental data
(Gysi et al., 2015, 2018). This optimization procedure consists of retrieving a four
coefficient fit by either fixing ArHOTr,pr and retrieving a value for ArSOTrJ:r (Fit 2, standard
enthalpy of formation, AfHOTr,pr, of monazite optimized) or vice versa (Fit 3, absolute
entropy, SOTr’pr, of monazite optimized). The results of this optimization technique and the
fitted coefficients are listed in Table 2.

In the first optimization method (Fit 2, Table 2), the AfHOTr’Pr values derived by
Ushakov et al. (2001) from high temperature oxide melt solution calorimetry of the
monazite endmembers were used in combination with the data from Supcrt92 for REE™
and PO43' (Appendix C) to calculate and fix ArHOTnpr and coefficient D from Eq. (13).
The fitted coefficient A was used to retrieve ArSOTnpr, and was then used to solve for a
new SOTr,pr value for monazite. Comparison of the new optimized SOTr,pr value with
calorimetric measurements (Thiriet et al., 2005; Popa et al., 2006; Gavrichev et al., 2009,
2016) indicates that this optimization results in poor agreement with the measured
calorimetric data for monazite. The relative entropy values differ by 5 to 30 J mol™ K in
comparison to the reported values from the calorimetric studies (Table 2).

In the second optimization method (Fit 3, Table 2), the SOTr,pr values of monazite,
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derived by Thiriet et al. (2005), Popa et al. (2006), and Gavrichev et al. (2009, 2016)
from low temperature adiabatic relaxation calorimetry, were used to calculate ArSOTr,pr
and fix coefficient A during the fitting procedure (Eq. 3). The coefficient D was then
retrieved from the fit and related to the ArHOTr,pr (Appendix D), which was then used to
solve for a new AfHOTr,pr value for monazite. The agreement between these new AfI‘IOTr’Pr
values, retrieved from the fits of the solubility data and the measured calorimetric
enthalpies (Ushakov et al., 2001; Janots et al., 2007; Hirsch et al., 2017; Neumeier et al.,
2017), was used to evaluate the quality of these fits (Table 2). The new AfHOTr,Pr values,
determined for PrPO4, NdPO,4, and EuPO,4 from the solubility experiments, display an
excellent agreement with the calorimetric studies, and range within 3 kJ mol™ of the
values reported by Ushakov et al. (2001). In contrast, the AfHOTnPr value obtained from the
solubility experiments for LaPOy4 (-1980.5 kJ mol™) is 10 kJ mol™ more negative than the
value reported by Ushakov et al. (2001), but is within the range of other reported
enthalpy values (Janots et al., 2007; Hirsch et al., 2017; Neumeier et al., 2017). The
agreement between this optimization and the calorimetric AfHOTr’Pr data for monazite
suggests that Fit 3 is the most accurate for extrapolating our data to reference conditions.
To test whether Fit 3 (Table 2) can be used to reconcile the discrepancies observed
between the calorimetric data of monazite combined with the aqueous species of the
Supcrt92 database, these logKy values were recalculated between 100 and 250 °C with
the newly optimized AfHOTrJar values. As shown in Figure 5, discrepancies are still
observed between the measured solubility products and the optimized values, especially

with increasing temperatures. Calculated residuals (Fig. 4) indicate that the fits are mostly
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improved for NdPO, and EuPO4 but not for LaPO, and PrPO,4. These observations
suggest that some of the observed discrepancies result from the REE aqueous species.
The thermodynamic properties of the REE aqueous species from Supcrt92 derived
by Haas et al. (1995) may need to be reevaluated, which has been corroborated by
numerous previous experimental studies (Migdisov et al., 2009, 2016). The observed
discrepancies between the measured solubilities and the combination of different sources
of thermodynamic data for the minerals and aqueous species can result from the
calculated activities of the REE®" jon and additional REE hydroxyl complexes such as
REEOH?*; the latter is predicted to become important with increasing temperatures of the
experiments (Appendix A). Similar conclusions were made in the recent CePO4, SmPO,,
and GdPOy solubility study by Gysi et al. (2018), who showed a possible optimization
method for the REE aqueous species. Additional potentiometric studies may aid in better
recognizing which aqueous REE hydroxyl species need revision. Nonetheless, we can
currently recommend an optimized set of enthalpy data for monazite from our solubility
study, which is presented in Table 3, and which already yields an improvement in the

calculated solubilities of monazite in hydrothermal fluids.

4.3 MODELING THE SOLUBILITY OF MONAZITE IN HYDROTHERMAL
FLUIDS

Here we demonstrate an application of our experimental data by modeling the
partitioning of REE between an ideal monazite solid solution and an acidic hydrothermal

fluid (pH of 2) reacted with 1 g leucogranite per kg H>O. This model simulates the
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varying REE composition of monazite in a hydrothermal quartz-muscovite vein as a
function of temperature from 25 to 300 °C. Two different fluid compositions were used to
test the controls of aqueous speciation (NaCl-HCI-H,O-fluid with REE chloride
complexes) vs. solubility of the REE phosphates (HC1O4-H,O-fluid with only REE™* and
hydroxyl complexes).

Geochemical modeling was carried out using the GEMS code software package

(Kulik et al., 2013) and the MINES thermodynamic database (http://tdb.mines.edu).

Thermodynamic data of aqueous REE chloride complexes were taken from Migdisov et
al. (2009); REE™ and REE hydroxyl complexes were taken from the Supcrt92 database
(Haas et al., 1995). To evaluate the impact of the optimized dataset for monazite retrieved
from the solubility experiments, two ideal solid solution monazite phases were set up
comprising all the light REE monazite endmembers (i.e., LaPO4 to GdPOy,). The first
monazite solid solution utilized the newly optimized dataset from the present study
combined with the data for CePO4, SmPO,, and GdPO, from Gysi et al. (2018), and the
second solid solution utilized the previously available calorimetric data of monazite
(Table 3).

Comparison of the simulated monazite solid solution composition using the
optimized thermodynamic data from the solubility experiments and the previously
available data, indicates a significant impact on the simulated monazite compositions
(Fig. 6). Our new dataset results in an increased stability for LaPO,4, CePOy4, PrPOy4, and a
decreased stability for NdPO4, SmPO,4, EuPO4, and GdPQOy4. This results in a calculated

monazite composition that is consistent with natural monazite that is mostly composed of
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La, Ce, and Nd (Forster, 1998; Harlov et al., 2016). Although Pr is predicted to have a
higher stability than Nd, Sm, Eu, and Gd, natural monazite tends to only have 1-5 wt.%
Pr,03, which may partly reflect the relative crustal abundances of the different REE that
may also need to be considered in such model (McDonough and Sun, 1995).

The solubility products of the different REE phosphates derived in this study have
relatively similar values for an isotherm (Table 1). However, slight differences can affect
considerably the calculated REE composition of monazite and the aqueous fluids. This is
reflected by the model were monazite is equilibrated with the HClO4-H,O-fluid. A
decrease in temperature from 300 to 25 °C led to a shift from a monazite composition
with calculated Xggg approaching each other, towards a monazite composition with
highly fractionated Xgrgg values (Figs. 6a,c). This shift in monazite composition is
controlled by the relative solubilities of the different REE phosphate endmembers and
approach/divergence from saturation with monazite. The retrograde solubility of
monazite resulted therefore in an increased REE fractionation with decreasing
temperatures.

Figure 7 shows the experimental logKy, values as a function of temperature and
ionic radii of the REE, making a comparison between LaPO,4, PrPO4, NdPO,, and EuPO4
measured in our study, and the solubility data for CePO4, SmPQOy4, and GdPO4 from the
study of Gysi et al. (2018). The measured solubility products of the REE phosphate
endmembers are relatively similar, but there is a noticeable increase in solubility products
for the REE phosphates that have a smaller ionic radius and higher atomic number, such

as Sm, Eu, and Gd over the La, Ce, Pr, and Nd. There are also noticeable anomalies in Eu
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and Ce solubilities depending on temperature, which should be further explored. The
slight lower solubility of CePO4 compared to neighboring REE elements, is consistent
with Ce** being the dominant ion in natural monazite. When modeling the solubility of
monazite it has to be considered that the logKy, values and calculated REE phosphate
solubilities will depend, on both, the contribution of the Gibbs energy of the aqueous
species and monazite (Eq. 3 and Eq. 14). Therefore, similar logKy, values between the
different REE phosphate endmembers do not necessarily imply the same calculated
solubilities for all of the REE in full equilibrium speciation calculations. This explains
why the optimizations of the thermodynamic properties of monazite and/or the aqueous
REE species, and the checking of their compatibility retrieved from the solubility
experiments is so important for accurate speciation calculations.

An additional factor that affects the relative stability of the different monazite
endmembers in the solid solution is the stability of REE aqueous complexes, which are
controlled by the fluid chemistry and temperature. This is illustrated by the model were
monazite is equilibrated with the NaCl-HCI-H,O-fluid (Figs. 6b,d). Using the optimized
data from this study, indicates that with increased temperature (> 250 °C), there is an
overall increase in the middle REE content in monazite (Fig. 6b). This shift in monazite
composition can be explained because the lower atomic number REE, such as La and Ce,
tend to form stronger chloride complexes in the fluid in comparison to the middle REE,

such as Gd and Eu (Migdisov et al., 2009), making them therefore more mobile.

S. CONCLUSION
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We have measured the solubility of LaPO4, PrPO4, NdPO4, and EuPO, in aqueous
perchloric acid solutions at temperatures from 100 to 250 °C at swvp. The results
demonstrate thatLREE phosphates display a retrograde solubility which decreases
sharply with increasing temperature. Since the more soluble metastable rhabdophane
phase controls the solubility of REE phosphates below 100 °C, additional thermodynamic
constraints were needed to extrapolate the measured solubility products to 25 °C and 1
bar.

The combined available calorimetric data for monazite and the thermodynamic data
for REE aqueous species from the Supcrt92 database (Shock and Helgeson, 1988; Shock
et al., 1989, 1997; Haas et al., 1995) show significant discrepancies with the measured
solubility products between 100 and 250 °C (Fig. 3). To reconcile these discrepancies,
optimization of the enthalpy of formation of monazite (AfHOTLPr) can be done while
maintaining consistency with the calorimetric entropy data. While this method alleviates
some of the observed discrepancies, the optimization analysis indicates a need to revise
the thermodynamic properties of REE’" and/or the REEOH™ species. The latter are
currently based on the theoretical predictions of Haas et al. (1995), which have been used
by the research community in the past decades but may be the source of the observed
discrepancies at elevated temperatures. REE hydroxyl complexes are among the least
studied complexes under hydrothermal conditions (Migdisov et al., 2016). Currently, the
only reported stability constants above 100 °C were measured in the study of Wood et al.
(2002) for Nd complexes. The stability of NdOH™, for example, was determined only at

250 and 290 °C, but more complete experimental datasets are needed to evaluate the
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stability of these species as a function of temperature.

With the addition of solubility data for monazite collected in this study, coupled
with the data available from Gysi et al. (2018), a complete internally consistent
thermodynamic dataset is now available for modeling all monazite endmembers in
hydrothermal systems (Table 3). While major revision of the stability of REE species
may still be needed, and solid solution properties still need to be quantified to interpret
REE signatures in natural monazite, the dataset provided in this study have proven to be
able to more reliably replicate the dominant REE compositional trends observed in
natural monazite (Fig. 6). It is shown that additional factors, such as the relative stability
of the REE complexes and the REE crustal abundance, may account for some of the
compositional variations that can be observed in the simulated monazite. Recent studies
have also shown that the monazite solid solutions display a non-ideal mixing behavior
(Popa et al., 2007; Li et al., 2014; Bauer et al., 2016; Geisler et al., 2016; Gysi et al.,
2016; Hirsch et al., 2017; Huittinen et al., 2017; Neumeier et al., 2017). Thus,
experimental measurement of the excess properties of mixing, in addition to the stability
of missing REE complexes at elevated temperature, will be the next step to producing a

predictive solid solution model for monazite formation in hydrothermal systems.
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Table all

Table 1. Mean values of the logarithm of the solubility products (Kyy) and standard deviations of the mean (16) for measured monazite endmembers
between 100 and 250 °C at swvp. Values in parentheses are the number of replicate experiments used to evaluate the experimental uncertainty. Experimental
data are listed in Appendix A.

Temp. LaPOy, PrPOy4 NdPO, EuPOy4
°O) logKyo lo logKyo lo logKyo lo logKyo lo
100 -27.97(33) £0.11 -28.03(4) +0.18 -28.07(5) x0.20 -27.67(3) +0.23
150 -28.79(2) +0.01 -29.01(3) #0.18 -28.95(3) 0.26 -28.53(2) #0.05
200 -30.19(3) #0.11  -30.36(2) #0.01 -30.59(3) +0.08 -30.21(2) #0.40
250 -32.07(4) 0.16 -31.97(2) +0.06 -32.33(2) +0.29 -32.08(2) +0.01

Table 2. Empirical coefficients retrieved by regression of the experimental values listed in Table 1 for the temperature (in Kelvin) dependence of the
logarithm of the solubility products (Kyo) of monazite endmembers. Three fits were evaluated including an unconstrained fit (Fit 1) and two constrained fits,
where either A}‘HO was fixed and S° calculated (Fit 2) or AfHO was calculated and S° fixed (Fit 3). Thermodynamic relationships are given in Appendix D.

logKs = A + BT + C/T + Dlog(T) R’ logK AH 3 pr S%mepr
A B C D (25°C,1bar) kJmol' Jmol' K"

Fit 1, unconstrained
LaPOy 24.73 -7T471E-02 -9.261E+03 - 0.996 -28.60 - -
PrPO4 7.00 -5.443E-02 -5.490E+03 - 0.993 -27.63 - -
NdPO, 18.60 -6.883E-02 -7.827E+03 - 0.986 -28.16 - -
EuPO, 24.20 -7.518E-02 -8.881E+03 - 0.989 -28.01 - -
Fit 2, AH® optimized, S° calculated
LaPO, -904.63  -2.452E-01 2.449E+04 3.509E+02  0.996 -27.18 -1970.7° 137.1
PrPO4 -379.76  -1.260E-01 8.469E+03 1.462E+02  0.993 -27.11 -1969.5° 135.4
NdPO, -493.68 -1.618E-01 1.092E+04 1.931E+02  0.985 -27.42 -1968.4" 114.0
EuPOy4 -717.78  -2.106E-01 1.817E+04 2.800E+02  0.988 -26.98 -1870.6" 112.0
Fit 3, S” optimized, AH’ calculated
LaPOy -769.46  -2.205E-01 1.957E+04 2.999E+02  0.996 -27.33 -1980.5 108.2°
PrPO, -352.57  -1.209E-01 7.500E+03 1.359E+02  0.993 -27.17 -1971.2 130.3¢
NdPO, -539.30  -1.703E-01 1.255E+04 2.104E+02  0.985 -27.22 -1965.4 122.9¢
EuPOy, -744.65  -2.157E-01 1.912E+04 2902E+02  0.988 -26.96 -1868.9 117.1°

3Ushakov et al. (2001), °Thiriet et al. (2003), “Gavrichev et al. (2016), dPopa et al. (2006), and “Gavrichev et al. (2009).



Table 3. Thermodynamic properties of monazite endmembers at reference conditions (1 bar and 25 °C) derived in this study (in italics) and from

calorimetric measurements. Values in bold are recommended for modeling the solubility of monazite in hydrothermal aqueous solutions.

AG e AHp S Vo  Cp° Cp'=a+bT+c/T T Range
kImol'  kJmol’ Jmol' XK' Jbar! Jmol'K'  Jmol'K' (K)
a bx 10° cx 10°
LaPO; -1861.2 -1980.5 108.24° 4.603° 101.28° 121.1275% 30.1156* -2.5625* 300-1570*
-1850.5%  -1970.7 +£1.8°  106.3¢ 4.617* 100.8¢ 102.96° 53¢ -1.4322¢ 143-723°
-1865.9°  -1985.7+£3.0° 104.9+1.6° 4.601° 102.1°
-1994.36 + 2.68" 46217 101.78
-1994.26 + 4.25"
PrPO, -1855.6 -1971.2 130.25' 4.445° 105.60 + 0.03' 124.4998" 30.3743" -2.4495* 300-1570*
-1850.5%  -1969.5 +3.7° 4.463°
-1979.84 + 6.86" 4.4841
NdPO, -1846.2  -1965.4 122.9 4.386" 104.8 1329631 22.5413" -3.1009" 300-1570"
-1849.6%  -1968.4 +2.3° 4.398°
EuPO, -1746.0 -1868.9 117.06 £ 0.15' 4.240° 113.05 £ 0.09' 137.5600" 17.6934" -2.7854* 300-1570"
-1747.8%"  -1870.6 £ 2.6° 4.248° 110.28
-1870.70 + 3.32f 4.254" 111.5%

“Thiriet et al. (2005), °Ni et al. (1995), “Ushakov et al. (2001), IBauer et al. (2016), “Janots et al. (2017), Neumeier et al. (2017), EThust et al. (2015), "Hirsch et

al. (2017), ‘Gavrichev et al. (2016), jPopa et al. (2016), kPopal and Konings (2006), 'Gavrichev et al. (2009).
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Fig 1. Kinetic plots showing the logarithm of the reaction quotient (Qy) as a function of time (in days)
for the solubility of (a) LaPO,4 and (b) NdPO, at 100 °C and swvp. Steady-state concentrations in the
experiments were reached within 5-14 days.
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Fig 2. Logarithm of the solubility products (Kyy) of monazite endmembers as a function of inverse
temperature (10°/T, in Kelvin) between 100 and 250 °C at swvp. Experimental data are listed in Table 1
and Appendix A. Solid black lines are the non-linear regressions using Eq. 13 (Fit 1, Table 2), and the
gray dotted lines are their prediction bounds at the 95% confidence.
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Fig 3. Comparison of the logarithm of the solubility products (Ky) of monazite endmembers as a
function of inverse temperature (103/T, in Kelvin) between 100 and 250 °C at swvp (Table 1). Also
shown are the results from other solubility studies: (1) Jonasson et al. (1985), (2) Firsching and Brune
(1991), (3) Byrne and Kim (1993),jpg) Liu and Byrne (1997), (5) Poitrasson et al. (2004), (6) Cetiner et
al. (2005), and (7) Gausse et al. (2016). The red curve corresponds to the calculated logKyy values from
the calorimetric data of monazite (Table 3) combined with the thermodynamic data of aqueous species
from Supcrt92 (Appendix C).
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Fig 4. Residuals standard Gibbs energy of reaction (ArGO) before (red lines) and after (blue lines)

optimization of AfHO

values of monazite. The residuals represent the difference between the

experimental fits and calculated values from calorimetric data of monazite (Table 3) combined with the
properties of aqueous species from Supcrt92 (Appendix C). The symbols show the residuals of the
measured experimental solubility data.
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correspond to the calculated solubilities using the new AfHOTr’Pr values for monazite retrieved in this
study (Table 3). The red curves correspond to the calculated solubilities from the calorimetric data of
monazite (Table 3) combined with the thermodynamic data of aqueous species from Supcrt92
(Appendix C).
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Fig 6. Simulated REE composition (X, mole fraction) of an ideal monazite solid solution in equilibrium
with 1000 g of an acidic hydrothermal fluid (pH of 2, 5 ppm P, and 1 ppm of each REE) cooled from
300 to 25 °C at saturated water vapor pressure. (a-b) Simulations using the optimized enthalpy data for
monazite derived from the solubility experiments (Table 3) and from Gysi et al. (2018), and (c-d) from
combining previous literature data for monazite with Supcrt92. Two initial fluid compositions were
reacted with 1 g of leucogranite (35 wt.% quartz, 29 wt.% albite, 17 wt.% microcline, and 19 wt.%
muscovite), consisting of either perchloric acid (a,c: HC1O4-H,O-fluid) or hydrochloric acid and 10
wt.% NaCl (b,d: NaCl-HCI-H,O-fluid), to test the effects of aqueous REE chloride complex formation
on the model.
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