Acyclic Cucurbit[n]uril-Type Receptors: Optimization of Electrostatic Interactions for Dicationic Guests

Xiaoyong Lu, * Sandra A. Zebaze Ndendjio, * Peter Y. Zavalij, and Lyle Isaacs*

Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742 Supporting Information Placeholder

ABSTRACT: The synthesis of acyclic CB[n]-type host (1) is reported. By optimizing the placement of the sulfate groups nearby the electrostatically negative ureidyl C=O portals, the binding affinity of this class of receptors toward hydrophobic (di)ammonium guest molecules (5 – 23) is maximized. The x-ray crystal structures of 1.6a and 1.6d are reported.

Molecular container compounds and their use in basic science and real world applications is a focal point of modern supramolecular chemistry.¹⁻⁶ For example, cyclodextrins are used as solubilizing excipients for hydrophobic drugs, as the active ingredient in FebreezeTM, and as a sequestration agent for neuromuscular blockers (NMBA, Sugammadex).7-9 Cucurbit[n]urils (CB[n]) have become increasingly popular due to their high affinity toward hydrophobic (di)cations (K_a commonly >10⁶ M⁻¹) and their stimuli responsive host • guest binding properties. 10 CB[n] hosts are thereby well suited as components of functional systems (e.g. sensing ensembles, drug delivery systems, and supramolecular materials). 10-14 Recently, we and others, have been exploring the synthesis and molecular recognition properties of acyclic CB[n]-type receptors (e.g. M1, Scheme 1) which retain the essential binding properties of macrocyclic CB[n] but are more easily functionalized. 12,15-17 For example, M1 functions as a solubilizing excipient for insoluble drugs and a sequestration agent for NMBAs and drugs of abuse (e.g. methamphetamine and fentanyl). These applications require hosts with maximal binding affinities to outcompete the cognate biological receptors. 20-22 Herein, we report the synthesis of 1 whose anionic sulfate groups are positioned at the ureidyl C=O portals to complement cationic guests.

Previously, we studied the influence of the (CH₂)_n linker length between the aromatic walls and the SO₃ groups on their binding affinity toward guests but did not observe large differences for n = 2-4.²³ We reasoned that these alkylene linkers result in the anionic sulfonate groups being positioned away from the C=O portals of M1 and reduce the electrostatic driving force toward guest complexation. Accordingly, we hypothesized that complete removal of the linker would position the OSO₃ groups closer to the cation binding site at the C=O portals and thereby increase binding affinity toward cationic guests. Synthetically, we allowed tetramer (2)²⁴ to react with 3 in TFA at RT to deliver 4 in 99% yield. Reaction of 4 with pyridine SO₃ at 90 °C delivered 1 (60%, 0.5 gram scale) after purification by gel permeation chromatography. Host 1 was characterized spectroscopically and its structure was confirmed by x-ray crystallography of its host guest complexes (*vide infra*). For

example, the ¹H NMR spectrum of **1** shows six resonances for the diastereotopic CH₂-groups of the glycoluril oligomer in the expected 4:4:4:4:2:2 ratio along with a singlet for the aromatic Hatoms, two Me resonances, and two glycoluril methine resonances which is consistent with the depicted $C_{2\nu}$ -symmetric structure of **1**. In the ¹³C NMR we observe all 14 resonances expected based on the depicted of the $C_{2\nu}$ -symmetric structure of **1**. Finally, the electrospray ionization mass spectrum for **1** as its complex with **6d** exhibits a doubly charged ion ([M+**6d**-2Cl⁻]²⁻), calcd. for $C_{54}H_{70}N_{18}O_{24}Na_4^{2-}787.1642$, found 787.1679. Host **1** exhibits high water solubility (>40 mM). Next, we performed dilution experiments to ensure that self-association of **1** does not impinge upon the planned binding constant measurements.¹

Scheme 1. Synthesis of **1**. Conditions: a) TFA, 25 °C, N₂, 16 h; b) pyridine•SO₃, 90 °C, 18 h.

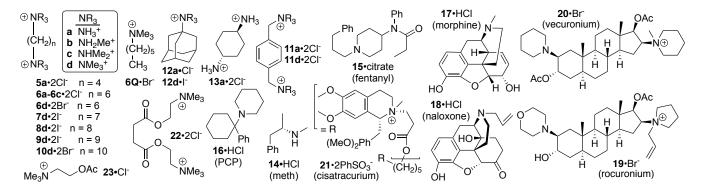


Figure 1. Structures of guests 5 - 23.

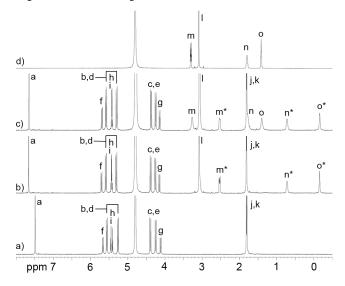
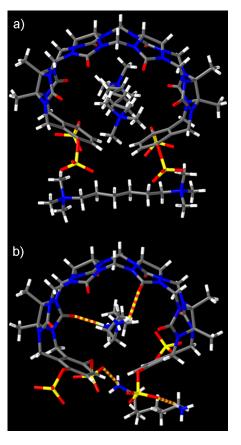



Figure 2. 1 H NMR spectra (D₂O, 600 MHz) recorded for: a) 1 (1 mM), b) 1 (1 mM) and 6d (1 mM), c) 1 (1 mM) and 6d (2 mM), and d) 6d (1 mM). *Resonances for 1-6d.

Accordingly, we measured the 1H NMR spectrum of 1 upon dilution from 40 to 1 mM. We did not observe significant changes in chemical shifts ($\Delta\delta$ <0.02 ppm) over this concentration range and therefore conclude that 1 is monomeric in water (Supporting Information).

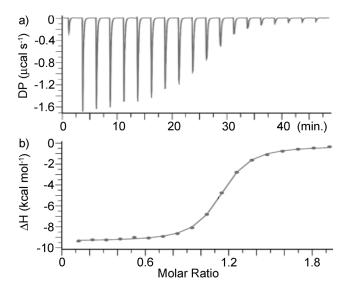

Next, we performed qualitative host • guest binding studies of 1 with guests 5-13 (Figure 1, Supporting Information) as monitored by ¹H NMR. Figure 2 shows the ¹H NMR spectra recorded for 1, 6d, and 1:1 and 1:2 mixtures of 1:6d. As expected the methylene resonances for guest **6d** (H_m, H_n, H_o) within the **1.6d** complex (Figure 2b) experience a sizable upfield shift upon complexation due to the anisotropic shielding effects of the aromatic walls and the glycoluril concavity. 15,25-26 At a 1:2 1:6d ratio, resonances are observed for both free 6d and 1.6d which indicates slow exchange on the ¹H NMR time scale which is usually observed only for tight host guest complexes. Similar ¹H NMR measurements were made for the remainder of the guests (Supporting Information). We find that the narrow guests (e.g. 11a,d and 6a-d) display slow exchange kinetics whereas the bulkier guests 12a,d display intermediate to fast exchange on the chemical shift timescale. We attribute this to their lower binding constants (vide infra) as a result of the expansion of the cavity of 1 required to accommodate the larger adamantane framework.

Figure 3. Renderings of the crystal structures of: a) **1.6d**, and b) **1.6a**. Color code: C, gray; H, white; N, blue; O, red; H-bonds red-yellow striped.

We obtained x-ray crystal structures of the 1.6d (CCDC 2003520) and 1.6a (CCDC 2003521) complexes (Figure 3; See Figure S54 for enlarged stereoviews). Figure 3a shows that 1.6d adopts a geometry that optimizes Me₃N⁺•••O=C electrostatic interactions at both portals and displays only small out-of-plane skewing of the terminal aromatic rings. The geometry of 1.6d is reminiscent of CB[n]•guest complexes where the Me_3N^+ •••O=C distances cluster in the 3.810-4.690 Å range to spread the positive charge to the carbonyl portals.¹⁴ Interestingly, a second molecule of **6d** fits into a cleft created by the sidewalls and the outward pointing OSO₃ groups to balance the overall 4- charge of 1. These OSO₃ groups also engage in electrostatic interactions with 6d (Me₃N⁺···O-S distances: 3.808-4.722 Å). The crystal structure of 1.6a (Figure 3b) also shows intracavity and extracavity molecules of 6a but displays significant out-of-plane twisting of the aromatic termini. Interestingly, one of the four OSO₃- groups turns inward toward the ammonium ion guest which establishes that this group can directly participate in the guest recognition process.

Given the high binding constants typically observed for host guest complexes (acyclic) CB[n]-type receptors, 10,15 we elected to use isothermal titration calorimetry (ITC) to measure the Ka values between host 1 and guests 5–23. For the weaker binding complexes $(K_a \le 10^7 \,\mathrm{M}^{-1})$, we performed the direct titration of host 1 in the ITC cell with a solution of guest in the syringe and fitted the data to a 1:1 binding model implemented by the PEAQ ITC software to obtain K_a and ΔH values (kcal mol⁻¹). Table 1 reports the thermodynamic data for 1.5, 1.6Q, 1.12a, 1.13a, 1.14-1.18, and 1.21-1.23 obtained by direct ITC titrations (Supporting Information). Complexes with K_a values that exceed 10⁷ M⁻¹ cannot be measured accurately by direct titrations, so we turned to ITC competitive titrations.²⁷⁻²⁸ In competitive titrations, a solution of host and an excess of a weak guest of known ΔH and Ka is titrated with a solution of a tighter binding guest. Fitting of the heat released during the displacement process is analyzed by a competitive binding model in the PEAQ ITC data analysis software which delivers ΔH and Ka for the tighter complex. Figure 4a shows the thermogram recorded when a mixture of 1 and 13 was titrated with 6d; Figure 4b shows the fitting of the integrated heats to a competitive binding model to determine $K_a = 6.79 \times 10^9 \text{ M}^{-1}$ and $\Delta H = -12.1 \text{ kcal mol}^{-1}$. Table 1 reports K₁ and ∆H values for the remaining 1•guest complexes obtained in an analogous manner (Supporting Information).

Figure 4. a) ITC titration of **1** (100 μ M) and **13** (2 mM) in the cell with a solution of **6d** (1.0 mM) in the syringe, and b) data fitting to a competition binding model to extract $K_a = 6.79 \times 10^9 \, M^{-1}$ and $\Delta H = -12.1 \, kcal \, mol^{-1}$.

Table 1. Binding constants measured by ITC for 1-guest complexes and comparative literature values for M1. Conditions: 20 mM sodium phosphate buffered H_2O , pH 7.4, $25\,^{\circ}\text{C}$.

	$K_{\rm a}$ [M ⁻¹]; Δ H (kcal mol ⁻¹)		
Guest	Host 1	Host M1 ^{e)}	
5	1.68×10^6 ; -6.76 ± 0.020^a	_	
6a	3.70×10^8 ; -8.60 ± 0.021 ^{b)}	5.05×10^7 ; -6.23±0.014	
6b	5.26×108; -9.82±0.038c)	9.43×10 ⁷ ; -7.15±0.025	
6c	5.74×108; -10.5±0.028c)	4.81×10 ⁷ ; -7.66±0.073	
6d	6.71×10°; -12.1±0.042°)	8.93×10 ⁷ ; -9.35±0.021	

6Q	7.57×10 ⁶ ; -9.68±0.063 ^{a)}	1.24×10 ⁶ ; -5.67±0.033
7 d	6.06×10 ⁹ ; -12.2±0.041 ^{c)}	-
8d	1.75×10 ⁹ ; -10.5±0.032 ^{c)}	_
9d	7.57×108; -10.2±0.030c)	-
10d	5.43×108; -10.3±0.088c)	-
11a	9.71×10 ⁸ ; -9.69±0.014 ^{b)}	1.67×10 ⁸ ; -8.09±0.018
11d	1.05×10 ⁹ ; -12.0±0.030 ^{b)}	1.78×10 ⁸ ; -11.4±0.022
12a	9.90×10 ⁵ ; -4.45±0.021 ^{a)}	9.62×10 ⁵ ; -6.55±0.029
12d	6.66×10 ⁶ ; -7.36±0.030 ^{d)}	1.70×10 ⁷ ; -9.09±0.027
13a	3.41×10^6 ; -2.92 ± 0.019^a)	1.95×10 ⁶ ; -5.70±0.027
14	3.02×10 ⁶ ; -9.28±0.058 ^{a)}	7.5×10 ⁶
15	3.64×10 ⁶ ; -12.2±0.076 ^{a)}	1.1×10 ⁷
16	1.89×10 ⁵ ; -6.18±0.069 ^{a)}	4.7×10 ⁴
17	7.69×10 ⁵ ; -8.03±0.07 ^{a)}	5.3×10 ⁵
18	4.85×10^6 ; -5.90 ± 0.205^a)	_
19	6.29×10 ⁸ ; -12.9±0.056 ^{b)}	8.4×10 ⁶
20	1.00×10°; -9.62±0.036°)	5.8×10 ⁶
21	5.32×10 ⁵ ; -15.4±0.174 ^{a)}	9.7×10 ⁵
22	2.41×10 ⁴ ; -5.26±0.372 ^{a)}	-
23	2.31×10 ⁵ ; -8.54±0.063 ^{a)}	2.4×10 ⁴

not reported. a) Direct titration. Competive ITC using: b) 5 as competitor, c) 13a as competitor, d) 6d as competitor, e) Literature values.^{18,29-31}

The binding constant data reported in Table 1 allows us to draw some conclusions about the molecular recognition preferences of host 1 in comparison to M1. As expected, we find that the 1•guest complexes are uniformly driven by favorable enthalpic (ΔH) contributions. In the CB[n] series of hosts these favorable enthalpy values are attributed to the presence of high energy host intracavity water molecules that are released upon guest binding.³²⁻³³ Host 1 displays high affinity toward hexanediammonium ion guests 6a -6d with K_d values in the single digit nM to sub-nM range. Host 1 prefers the quaternary ammonium ion guest 6d by ≈10-fold over the primary - tertiary ammonium ions 6a - 6c. In selected contexts, related preferences have been seen for CB[7]34 where they are attributed to the more efficient spreading of positive charge to the entire ureidyl C=O portal. Host 1 binds quaternary monoammonium ion guest 6Q 890-fold weaker than the corresponding quaternary diammonium 6d; this ≈10³ M⁻¹ difference in affinity is also noted for CB[n]-type receptors. 10 Importantly, we find that 1 binds to guests **6a** – **6c** 5.6 – 11.9-fold stronger than **M1**, but 75fold stronger than M1 toward bis(quaternary) guest 6d. Similar preferences are observed for dicationic guests 11a and 11d but not for monocationic guests 12a and 12d which suggests that the defined separation between OSO3 groups in 1 makes it especially complementary to diammonium ion guests. Host 1 also binds with high affinity (single digit nM to sub nM K_d values) toward the longer alkanediammonium ions 7d - 10d although 6d is the tightest binder in this series which reflects the ability of acyclic CB[n] to flex their cavity to accommodate larger guests and optimize binding affinity. Related preferences have previously been seen for M1 and related receptors toward primary alkane diammonium ion guests.²⁴

We have previously studied the use of M1 and a naphthalene walled analogue known as M2 as *in vivo* sequestration agents for drugs of abuse (e.g. methamphetamine (14)).¹⁸ Accordingly, we decided to measure the binding affinities of some compounds (14)

- 18) relevant to counteracting the effects of drugs of abuse. We find that host 1 binds less tightly than M1 toward 14 and 15. In contrast, host 1 binds somewhat tighter to PCP (16) and morphine (17) than M1 does, but the single digit μ M dissociation constants are unlikely to render 1 an efficient *in vivo* sequestration agent for 16 and 17. Accordingly, 1 is not an improved lead compound for the sequestration of drugs of abuse (14 – 17). This is perhaps not surprising given that 1 has a distinct preference for bis(quaternary) diammonium ions whereas 14 – 17 are secondary and tertiary ammonium ions.

In a separate line of inquiry, we have shown that M1 and M2 act as *in vivo* reversal agents for NMBAs 19-21.^{29,35-37} Accordingly, we measured the binding constants of 1 toward a panel of compounds relevant to its potential use as an *in vivo* reversal agent. Table 1 shows that 1 possesses higher binding affinity toward 19 (75-fold) and 20 (172-fold) than M1. Importantly, 1 binds >2700-fold tighter to 19 or 20 than to 23. Acetylcholine is also present in the neuromuscular junction and must not be sequestered. The affinity of 1-19 (6.29×10⁸ M⁻¹) and 1-20 (1.00×10⁹ M⁻¹) are comparable to those of M2-19 (3.4×10⁹ M⁻¹) and M2-20 (1.6×10⁹ M⁻¹) which function very well *in vivo*.²⁹ Host 1, however, possesses superior solubility (>40 mM) compared to M2 (18 mM) which might prove advantageous for formulation purposes.

In summary, we have presented the synthesis of host 1 with OSO₃ groups directly connected to the aromatic walls. Host 1 has excellent solubility (40 mM), does not self-associate, and binds to quaternary diammonium ions tighter than M1 which features propylene linkers. The x-ray crystal structures of 1.6a and 1.6d show cavity inclusion of the diammonium guest and an external diammonium ion that balances the overall charge of tetraanionic 1. In conclusion, we find that the OSO₃ groups do not merely function as solubilizing groups, but rather their close proximity to the C=O portals of 1 delivers enhanced binding affinity toward quaternary diammonium ions including important NMBAs 19 and 20. Host 1 should be considered alongside M1 and M2 as *in vivo* reversal agents for neuromuscular blockers.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on ACS publication website at DOI: xxxxxxx.

Experimental procedures, characterization data, ¹H and ¹³C NMR spectra for new compounds, ¹H NMR spectra for **1**•guest complexes, and data from ITC experiments (PDF); crystallographic information files for **1**•**6a** and **1**•**6d** (CIF).

AUTHOR INFORMATION

Corresponding Author

Lyle Isaacs – University of Maryland, College Park, Maryland, United States; orcid.org/0000-0002-4079-332X; E-mail: LIsaacs@umd.edu

Other Authors

Xiaoyong Lu - University of Maryland, College Park, Maryland, United States; orcid.org/0000-0002-8188-0569; E-mail: xiaoyonglu1@gmail.com

Sandra A. Zebaze Ndendjio – University of Maryland, College Park, Maryland, United States; orcid.org/0000-0002-8460-2732; E-mail: szebazen@umd.edu Peter Y. Zavalij – *University of Maryland, College Park, Maryland, United States;* orcid.org/0000-0001-5762-3469; E-mail: pzava-lij@umd.edu

Author Contributions

[†]X.L. and S.Z.N. contributed equally. X.L. and S.Z.N. performed experiments and analyzed data. P.Y.Z. collected x-ray diffraction data and solved the crystal structures. L.I., X.L., and S.Z.N. wrote the paper. All authors have given approval to the final version of the manuscript. L.I. supervised the entire project.

Notes

L.I. is an inventor on patents held by the University of Maryland on the use of acyclic CB[n]-type receptors in biomedical applications.

ACKNOWLEDGMENT

We thank the National Science Foundation (CHE-1404911 to L.I.) and the National Institutes of Health (GM-132345) for financial support of this work.

References.

- 1) Diederich, F., Complexation of neutral molecules by cyclophane hosts. *Angew. Chem., Intl. Ed. Engl.* **1988**, *27*, 362-386.
- 2) Ogoshi, T.; Yamagishi, T.-A.; Nakamoto, Y., Pillar-shaped macrocyclic hosts pillar[n]arenes: New key players for supramolecular chemistry. *Chem. Rev.* **2016**, *116*, 7937-8002.
 - 3) Gutsche, C. D., Calixarenes. Acc. Chem. Res. 1983, 16, 161-170.
- 4) Cram, D. J., The design of molecular hosts, guests, and their complexes (nobel lecture). *Angew. Chem. Int. Ed.* **1988**, *27*, 1009-1020.
- 5) Rebek, J., Molecular behavior in small spaces. *Acc. Chem. Res.* **2009**, 42, 1660-1668.
- 6) Harris, K.; Fujita, D.; Fujita, M., Giant hollow mnl2n spherical complexes: Structure, functionalisation and applications. *Chem. Commun.* **2013**, *49*, 6703-6712.
- 7) Bom, A.; Bradley, M.; Cameron, K.; Clark, J. K.; Van Egmond, J.; Feilden, H.; MacLean, E. J.; Muir, A. W.; Palin, R.; Rees, D. C.; Zhang, M.-Q., A novel concept of reversing neuromuscular block: Chemical encapsulation of rocuronium bromide by a cyclodextrin-based synthetic host. *Angew. Chem., Int. Ed.* **2002**, *41*, 265-270.
- 8) Stella, V. J.; Rajewski, R. A., Cyclodextrins: Their future in drug formulation and delivery. *Pharm. Res.* **1997**, *14*, 556-567.
- 9) https://www.febreze.com/en-us/safety/science-and-chemicals-in-febreze (accessed March 9).
- 10) Shetty, D.; Khedkar, J. K.; Park, K. M.; Kim, K., Can we beat the biotin–avidin pair?: Cucurbit[7]uril-based ultrahigh affinity host–guest complexes and their applications. *Chem. Soc. Rev.* **2015**, *44*, 8747-8761.
- 11) Dsouza, R. N.; Hennig, A.; Nau, W. M., Supramolecular tandem enzyme assays. *Chem. Eur. J.* **2012**, *18*, 3444-3459.
- 12) Liu, J.; Lan, Y.; Yu, Z.; Tan, C. S. Y.; Parker, R. M.; Abell, C.; Scherman, O. A., Cucurbit[n]uril-based microcapsules self-assembled within microfluidic droplets: A versatile approach for supramolecular architectures and materials. *Acc. Chem. Res.* **2017**, *50*, 208-217.
- 13) Walker, S.; Oun, R.; McInnes, F. J.; Wheate, N. J., The potential of cucurbit[n]urils in drug delivery. *Isr. J. Chem.* **2011**, *51*, 616-624.
- 14) Yin, H.; Wang, R., Applications of cucurbit[n]urils (n=7 or 8) in pharmaceutical sciences and complexation of biomolecules. *Isr. J. Chem.* **2017**, *58*, 188-198.
- 15) Ganapati, S.; Isaacs, L., Acyclic cucurbit[n]uril-type receptors: Preparation, molecular recognition properties and biological applications. *Isr. J. Chem.* **2018**, *58*, 250-263.
- 16) Bauer, D.; Andrae, B.; Gass, P.; Trenz, D.; Becker, S.; Kubik, S., Functionalisable acyclic cucurbiturils. *Org. Chem. Front.* **2019**, *6*, 1555-1560.

- 17) Mao, D.; Liang, Y.; Liu, Y.; Zhou, X.; Ma, J.; Jiang, B.; Liu, J.; Ma, D., Acid-labile acyclic cucurbit[n]uril molecular containers for controlled release. *Angew. Chem. Int. Ed.* **2017**, *41*, 12614-12618.
- 18) Ganapati, S.; Grabitz, S. D.; Murkli, S.; Scheffenbichler, F.; Rudolph, M. I.; Zavalij, P. Y.; Eikermann, M.; Isaacs, L., Molecular containers bind drugs of abuse in vitro and reverse the hyperlocomotive effect of methamphetamine in rats. *ChemBioChem* **2017**, *18*, 1583-1588.
- 19) Thevathasan, T.; Grabitz, S. D.; Santer, P.; Rostin, P.; Akeju, O.; Boghosian, J. D.; Gill, M.; Isaacs, L.; Cotton, J. F.; Eikermann, M., Calabadion 1 selectively reverses respiratory and central nervous system effects of fentanyl in a rat model. *Br. J. Anaesth.* **2020**, *124*, DOI: 10.1016/j.bja.2020.02.019.
- 20) Zhang, X.; Xu, X.; Li, S.; Li, L.; Zhang, J.; Wang, R., A synthetic receptor as a specific antidote for paraquat poisoning. *Theranostics* **2019**, *9*, 633.
- 21) Zhang, X.; Cheng, Q.; Li, L.; Shangguan, L.; Li, C.; Li, S.; Huang, F.; Zhang, J.; Wang, R., Supramolecular therapeutics to treat the side effects induced by a depolarizing neuromuscular blocking agent. *Theranostics* **2019**, *9*, 3107-3121.
- 22) Huang, Q.; Cheng, Q.; Zhang, X.; Yin, H.; Wang, L.-H.; Wang, R., Alleviation of polycation-induced blood coagulation by the formation of polypseudorotaxanes with macrocyclic cucurbit[7]uril. ACS Appl. Bio Mater. **2018**, *1*, 544-548.
- 23) Sigwalt, D.; Moncelet, D.; Falcinelli, S.; Mandadapu, V.; Zavalij, P. Y.; Day, A.; Briken, V.; Isaacs, L., Acyclic cucurbit[n]uril-type molecular containers: Influence of linker length on their function as solubilizing agents. *ChemMedChem* **2016**, *11*, 980-989.
- 24) Ma, D.; Zavalij, P. Y.; Isaacs, L., Acyclic cucurbit[n]uril congeners are high affinity hosts. *J. Org. Chem.* **2010**, *75*, 4786-4795.
- 25) Masson, E.; Ling, X.; Joseph, R.; Kyeremeh-Mensah, L.; Lu, X., Cucurbituril chemistry: A tale of supramolecular success. *RSC Adv.* **2012**, *2*, 1213-1247.
- 26) Mock, W. L.; Shih, N.-Y., Structure and selectivity in host-guest complexes of cucurbituril. *J. Org. Chem.* **1986**, *51*, 4440-4446.
- 27) Wiseman, T.; Williston, S.; Brandts, J. F.; Lin, L.-N., Rapid measurement of binding constants and heats of binding using a new titration calorimeter. *Anal. Biochem.* **1989**, *179*, 131-137.
- 28) Broecker, J.; Vargas, C.; Keller, S., Revisiting the optimal c value for isothermal titration calorimetry. *Anal. Biochem.* **2011**, *418*, 307-309
- 29) Ma, D.; Zhang, B.; Hoffmann, U.; Sundrup, M. G.; Eikermann, M.; Isaacs, L., Acyclic cucurbit[n]uril-type molecular containers bind neuromuscular blocking agents in vitro and reverse neuromuscular block in vivo. *Angew. Chem. Int. Ed.* **2012**, *51*, 11358-11362.
- 30) Xue, W.; Zavalij, P. Y.; Isaacs, L., Triazole functionalized acyclic cucurbit[n]uril-type receptors: Host-guest recognition properties. *Org. Biomol. Chem.* **2019**, *17*, 5561-5569.
- 31) Xue, W.; Zavalij, P. Y.; Isaacs, L., Acyclic cucurbit[n]uril type receptors: Secondary versus tertiary amide arms. *Supramol. Chem.* **2019**, *31*, 685-694.
- 32) Biedermann, F.; Uzunova, V. D.; Scherman, O. A.; Nau, W. M.; De Simone, A., Release of high-energy water as an essential driving force for the high-affinity binding of cucurbit[n]urils. *J. Am. Chem. Soc.* **2012**, *134*, 15318-15323.
- 33) Biedermann, F.; Nau, W. M.; Schneider, H.-J., The hydrophobic effect revisited-studies with supramolecular complexes imply high-energy water as a noncovalent driving force. *Angew. Chem. Int. Ed.* **2014**, *53*, 11158-11171.
- 34) Cao, L.; Sekutor, M.; Zavalij, P. Y.; Mlinaric-Majerski, K.; Glaser, R.; Isaacs, L., Cucurbit[7]uril.Guest pair with an attomolar dissociation constant. *Angew. Chem. Int. Ed.* **2014**, 53, 988-993.
- 35) Hoffmann, U.; Grosse-Sundrup, M.; Eikermann-Haerter, K.; Zaremba, S.; Ayata, C.; Zhang, B.; Ma, D.; Isaacs, L.; Eikermann, M., Calabadion: A new agent to reverse the effects of benzylisoquinoline

- and steroidal neuromuscular-blocking agents. *Anesthesiology* **2013**, *119*, 317-325.
- 36) Haerter, F.; Simons, J. C. P.; Foerster, U.; Moreno Duarte, I.; Diaz-Gil, D.; Ganapati, S.; Eikermann-Haerter, K.; Ayata, C.; Zhang, B.; Blobner, M.; Isaacs, L.; Eikermann, M., Comparative effectiveness of calabadion and sugammadex to reverse non-depolarizing neuromuscular-blocking agents. *Anesthesiology* **2015**, *123*, 1337-1349.
- 37) Ganapati, S.; Zavalij, P. Y.; Eikermann, M.; Isaacs, L., In vitro selectivity of an acyclic cucurbit[n]uril molecular container towards neuromuscular blocking agents relative to commonly used drugs. *Org. Biomol. Chem.* **2016**, *14*, 1277-1287.