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Robust Hierarchical-Optimization RLS

Against Sparse Outliers
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Abstract—This letter fortifies the recently introduced
hierarchical-optimization recursive least squares (HO-RLS)
against outliers which contaminate infrequently linear-regression
models. Outliers are modeled as nuisance variables and are
estimated together with the linear filter/system variables via a
sparsity-inducing (non-)convexly regularized least-squares task.
The proposed outlier-robust HO-RLS builds on steepest-descent
directions with a constant step size (learning rate), needs no
matrix inversion (lemma), accommodates colored nominal noise of
known correlation matrix, exhibits small computational footprint,
and offers theoretical guarantees, in a probabilistic sense, for
the convergence of the system estimates to the solutions of a
hierarchical-optimization problem: Minimize a convex loss, which
models a-priori knowledge about the unknown system, over the
minimizers of the classical ensemble LS loss. Extensive numerical
tests on synthetically generated data in both stationary and
non-stationary scenarios showcase notable improvements of the
proposed scheme over state-of-the-art techniques.

Index Terms—RLS, robust, outliers, sparsity.

I. INTRODUCTION

T
HE recursive least squares (RLS) has been a pivotal method
in solving LS problems in adaptive filtering and system

identification [1], with a reach that extends also into contempo-
rary learning tasks, such as solving large-scale LS problems in
online learning, e.g., [2]. Nevertheless, the performance of RLS
(LS estimators in general) deteriorates in the presence of outliers,
i.e., data or noise not adhering to a nominal data-generation
model [3]. This work focuses on outliers that contaminate infre-
quently data models, e.g., impulse noise [4]–[6].

Methods that strengthen RLS against outliers have been
reported in [7]–[13]. Propelled by robust-regression argu-
ments [3], studies [7]–[9] utilize M-estimate losses instead of
typical LS ones to penalize system-output errors. The non-
recursive algorithm of [7] employs Huber’s loss, while the
recursive schemes of [8] and [9] build on Hampel’s three-part
redescending objective [3] and a modified Huber’s loss, respec-
tively. The numerical tests of [7] show that [7] outperforms
median filters [14], a classical solution to mitigate impulse noise,
while those of [8], [9] show that [8], [9] are more effective
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than order-statistics techniques [15]. Notwithstanding, noise and
error-filtering statistics need to be known a-priori to set the
parameters of Hampel’s objective in [8], while the solutions
of [8], [9] to the M-estimate normal equations are built on the
assumption that filter’s estimates do not change significantly for
certain amounts of time [10]. Studies [10], [11] update filter’s
estimates by minimizing weighted LS error costs subject to
“ball” constraints to prevent from large perturbations which may
be inflicted by outliers: A Euclidean-ball constraint onto filter
estimates is advocated by [10], while an ℓ1-ball constraint onto
the RLS gain vectors is utilized in [11]. The numerical tests
of [10], [11] demonstrate the improved performance of [10],
[11] over [8], [9].

Outliers are modeled as nuisance variables and are jointly
estimated with the filter’s coefficients in [12], [13]. To address
identifiability issues in the estimation task due to the ever-
growing number of the outlier unknowns with recursions (time
instances), filter and outlier vectors are updated per recursion via
the minimization of an LS data-fit loss plus a surrogate of the
ℓ0-norm of the outlier vector to exploit sparsity: The ℓ1-norm
is utilized in [12], while non-convex surrogates in [13]. The
composite minimization task is solved in an alternating way:
First, the outlier vector is updated, and then the classical RLS is
used to update the filter’s estimates. Methods [12], [13] accom-
modate also colored nominal noise of known correlation matrix
to avoid any prewhitening that would spread the outliers in the
nominal data, adding further complication to the challenge of
outlier removal. Numerical tests in [12], [13] show the improved
performance of [12], [13] over [10], [11].

This short letter follows the path of [12], [13] to model
outliers as nuisance variables, but employs the recently intro-
duced hierarchical(-optimization) recursive least squares (HO-
RLS) [16] to update filter coefficients instead of the classical
RLS. Unlike RLS, which propels all of [7]–[13], HO-RLS
provides a way to quantify side information about the system
since it solves a hierarchical-optimization problem: Minimize a
convex loss, which models the available side information, over
the minimizers of the classical ensemble LS data-fit loss. The
proposed outlier-robust HO-RLS builds on steepest-descent di-
rections with a constant step size (learning rate), needs no matrix
inversion (lemma), exhibits similar computational complexity
with the implementations in [12], [13], accommodates colored
noise of known covariance matrix without any prewhitening,
and offers theoretical guarantees, in a probabilistic sense, for the
convergence of the filter/system estimates to the solution of the
aforementioned hierarchical-optimization task. Extensive nu-
merical tests on synthetically generated data, in both stationary
and non-stationary scenarios, showcase notable improvements
of the proposed scheme over the state-of-the-art [12], [13].
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II. THE PROBLEM AND STATE-OF-THE-ART SOLUTIONS

With the positive integer n denoting both discrete time and
recursion index, the following data model is considered:

yn = F∗xn + on + vn , (1)

where the L× P matrix F∗ is the wanted filter/system, the
L× 1 vector yn collects the output data, the P × 1 vector xn

gathers the input ones, vector on models the outlier data, vn

stands for zero-mean (colored) noise with correlation matrix
Rvv := E{vnv

⊺

n} that is assumed to stay constant ∀n, E{·}
is the expectation operator with respect to (w.r.t.) a probabil-
ity space [17], and ⊺ denotes vector/matrix transposition. The
multiple-input-multiple-output model (1) is chosen here to offer
a general model that is able to capture data-generation mecha-
nisms in numerous modern application domains, e.g., [18], [19]
and [1, p. 647]. To save space, yn, xn, on and vn represent
both random variables (RVs) and their realizations. Further-
more, equality in (1) is assumed to hold almost surely (a.s.)
w.r.t. the underlying probability space. Since outliers (on)n≥1

are assumed to appear infrequently in (1), vector on can be
considered to be sparse, i.e., most of its entries are zero ∀n. The
input-output data become available to the user sequentially: The
pair (xn,yn) is revealed to the user at time n. The problem is to
devise an iterative algorithm to estimate F∗ from the available
(xν ,yν)

n
ν=1, ∀n, and Rvv .

For every n, the typical LS estimator

(F̂n+1, {ôν,n}
n
ν=1) ∈ argmin

(F ,{oν}
n
ν=1

)

n
∑

ν=1

‖yν − oν − Fxν‖
2
R

−1
vv
,

(2)

does not offer significant help, since F̂n+1 := 0 and {ôν,n :=
yν}

n
ν=1 qualify as solutions to (2). Motivated by classical argu-

ments, e.g., [1, §29.6], the weighted norm ‖a‖2
R

−1
vv

:= a⊺R−1
vva

is introduced in (2) to handle entries of the error vector unequally
via the available R−1

vv . To avoid trivial solutions, a popular way
is to form a regularized LS estimation task

(F̂n+1, {ôν,n}
n
ν=1) ∈ argmin

(F ,{oν}nν=1
)

n
∑

ν=1

×
[

1
2‖yν − Fxν − oν‖

2
R

−1
vv

+ λνρ(oν)
]

, (3)

where ρ(·) is a sparsity-inducing loss with user-defined weights
λν > 0. However, this path seems to be impractical since the
LP + nL number of unknown variables at time n raises insur-
mountable computational obstacles when solving (3) at large
time instances n.

To address this “curse of dimensionality,” studies [12], [13]
adopt the following recursions for all n ≥ n0 + 1,

ôn ∈ argmin
o

1
2‖yn − F̂nxn − o‖2

R
−1
vv

+ λnρ(o) , (4a)

F̂n+1 := RLS
(

F̂n, (xn,yn − ôn)
)

, (4b)

where n0 is a user-defined time instance, RLS(F̂n, (xn,yn −
ôn)) denotes the classical RLS updates, with the newly intro-
duced data pair at time n being (xn,yn − ôn), and with R−1

vv

incorporated in the RLS formulae. A warm start is achieved by

solving the offline task (3) for (F̂n0
, {ôν}

n0−1
ν=1 ), where n0 − 1

is used in the place of n. Loss ρ(·) takes the form of the ℓ1-norm

in [12], rendering (3) and (4a) typical LASSO tasks [20], while
non-convex ρ(·) are promoted in [13] and non-convex optimiza-
tion solvers, e.g., [21], are required to solve (4a).

III. THE PROPOSED ALGORITHM

This work follows [12], [13], but instead of the classical
RLS in (4b), the recently introduced hierarchical-optimization
recursive least squares (HO-RLS) [16] is used. In the current
context, HO-RLS solves the following HO task: Given the
convex function g : R

L → R ∪ {+∞}, which is generally non-
differentiable, find

argminF g(F )

s.to F ∈ argmin
F ′

E

{

1
2‖yn − on − F

′xn‖
2
R

−1
vv

}

. (5)

Unlike the RLS in (4b), g(·) is able to quantify any a-priori
knowledge (side information) about the system. For example, if
F∗ is known to be sparse, g(·) := ‖ · ‖1 can be used to promote
sparse solutions in (5). To approximate the expectation in (5), the
following sample-average loss is adopted: ∀n ≥ n0, ln(F) :=
[1/(2Γn)]

∑n
ν=n0

γn−ν‖yν − ôν − Fxν‖
2
R

−1
vv

, with a “forget-

ting factor” γ ∈ (0, 1] to mimic the classical exponentially-
weighted RLS scheme [1, §30.6], and Γn :=

∑n
ν=n0

γn−ν . The

outlier vector on is replaced by its estimate ôn in ln(·). Notice
that in the case of g(·) := 0 and ôn := 0, the loss ln(·) is along
the lines of (2) with oν := 0.

Being an offspring of the stochastic Fejér-monotone hybrid
steepest-descent method [16], HO-RLS is based on the gradient
of ln(·). To this end, given two stochastic processes (an)n and
(bn)n, define ∀n ≥ n0, Rab,n := (1/Γn)

∑n
ν=n0

γn−νaνb
⊺

ν ,

so that for the processes (xn)n, (yn)n, and (ôn)n under study,
define Rxx,n, Ryx,n, and Rôx,n. Then, the gradient of ln can be

expressed as ∇ln(F) = R−1
vv (FRxx,n −Ryx,n +Rôx,n), ∀F.

Following the arguments of [16, Algorithm 1 and (5a)], the
previous gradient information is incorporated into HO-RLS via
the mapping Tn(F) := F− (1/̟n)∇ln(F), ∀F, with ̟n ≥
‖R−1

vv ‖ ‖Rxx,n‖, to produce Algorithm 1.
Any off-the-shelf solver can be employed to solve the sub-task

in Line 8. Several solvers are explored here: i) The alternating
direction method of multipliers (ADMM) [22], [23] and ii)
the recently developed Fejér-monotone hybrid steepest descent
method (FMHSDM) [24], which is the deterministic precursor
of [16], in the case of ρ(·) := ‖ · ‖1; as well as iii) the general
iterative shrinkage and thresholding (GIST) algorithm [21] in the
case where ρ(·) takes the form of any non-convex surrogate of
the ℓ0-norm, such as the minimax concave penalty (MCP) [13].
As it will be seen in Section V, only a small number of iterations
of the previous solvers suffice to provide the estimates ôn in
Line 8.

In Lines 6 and 12, the proximal operator is defined as
Proxλg(F) := argminF (1/2)‖F− F ‖2Fr + λg(F ), ∀F, where
‖ · ‖Fr denotes the Frobenius norm. Clearly, if g(·) = 0, then
Proxλg(F) = F. The computational complexity of Line 12
depends on the loss g(·). For example, if g(·) = ‖ · ‖1, then
Proxλg(·) operates on each entry of its matrix argument sepa-
rately, and boils down to the classical soft-thresholding map-
ping [25, Example 4.9]. Lines 9 and 10 realize the power
method [26] to provide running estimates of the spectral norm
‖Rxx,n‖, and the user-defined ǫ̟ > 0 helps to provide an
overestimate ̟n of that spectral norm.
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Unlike the classical RLS (Newton’s method in gen-
eral) [1, §9.8], HO-RLS uses ∇ln(·) in a way that avoids
any matrix inversion (lemma). The system updates which
take place within Lines 9 and 12 of Algorithm 1 show
a small computational footprint, with the main burden be-
ing the matrix multiplications in Line 11. Multiplications in

Line 11 amount only to R−1
vv (F̂nRxx,n −Ryx,n +Rôx,n),

since R−1
vv (F̂n−1Rxx,n−1 −Ryx,n−1 +Rôx,n−1) is already

available from the previous recursion.

IV. CONVERGENCE ANALYSIS

The convergence analysis of Algorithm 1 is based on the
following set of assumptions.

Assumption 1:

i) Rxx,n
a.s.
−→n Rxx :=E{xn′x

⊺

n′} and Ryx,n
a.s.
−→n Ryx :=

E{yn′x
⊺

n′}, ∀n′ ≥ 1, where
a.s.
−→n denotes a.s. conver-

gence [17].
ii) Both (xn)n and (vn)n are zero-mean processes, and

(xn)n is independent of (on)n and (vn)n.
iii) There exists C ∈ R>0 s.t. E{‖Ryx,n‖

2} ≤ C, ∀n.

iv) With Fn := σ({F̂ν}
n
ν=n0

) denoting the filtration (σ-

algebra) generated by {F̂ν}
n
ν=n0

, and E|Fn
{·} being

the conditional expectation given Fn [17], assume that
E|Fn

{Rxx,ν} = Rxx and E|Fn
{Ryx,ν} = Ryx, ∀ν ∈

{n0, . . . , n}.
v) Consider a sequence (Zn,Ξn)n s.t. (Zn,Ξn) ∈ Dom g ×

∂g(Zn), ∀n, where Dom g := {F ∈ R
L×P | g(F) < +

∞}, ∂g(·) stands for the subdifferential mapping
of g, i.e., ∂g(Z) := {Ξ ∈ R

L×P | g(Z) + Trace[(F−
Z)⊺Ξ] ≤ g(F), ∀F ∈ R

L×P }, and Trace(·) denotes the
trace of a square matrix. If (Zn)n is bounded a.s., then

(Ξn)n is also bounded a.s. Moreover, if (E{‖Zn‖
2
Fr})n is

bounded, then (E{‖Ξn‖
2
Fr})n is also bounded. �

Assumption 1(i) is motivated by ergodicity arguments [27],
and conditions which suffice to guarantee such an assumption
can be based on laws of large numbers through statistical inde-
pendency or mixing conditions [28]. Bounded-moment assump-
tions, such as Assumption 1(iii), appear frequently in stochastic
approximation e.g., [29, p. 126, (A2.1)]. Assumption 1(iv) is
a sufficient condition for the more relaxed and technical one
in [16, Assumption 6]. Due to space limitations, the stronger
Assumption 1(iv) is used here. Moreover, many candidate losses
for g(·) satisfy Assumption 1(v). Examples are: i) the zero
loss; ii) the indicator function ιC(·), used to enforce closed
convex constraints C ⊂ R

L×P onto the desired solutions, with
definition ιC(F) = 0, if F ∈ C, while ιC(F) = +∞, if F /∈ C;
iii) ‖ · ‖1; and iv) ‖ · ‖2.

The following theorem is a consequence of Corollary 1 in [16].
The subsequent proof translates the arguments of [16] into the
current context.

Theorem 1: Consider a large integer n♯ and set ôn equal to
zero in Line 8 of Algorithm 1, ∀n ≥ n♯. Moreover, set ̟n :=
̟ ≥ max{‖R−1

vv ‖ ‖Rxx‖, ‖R
−1
vv ‖ ‖Rxx,n‖}, ∀n > n♯.

i) Under Assumptions 1(i) to 1(v), the set of cluster points

of the sequence (F̂n)n≥n0
is non-empty, and any of those

cluster points solves (5) a.s.
ii) If g(·) = 0 and Rxx is positive definite, then under As-

sumptions 1(i) to 1(iv), the sequence (F̂n)n≥n0
generated

by Algorithm 1 converges a.s. to the unknown F∗. �
Proof: i) First of all, notice that under the hypothe-

ses of the theorem, Rôx,n = (1/Γn)
∑n♯−1

ν=n0
γn−ν ôνx

⊺

ν . Since

limn→∞ Γn = +∞, if γ = 1, and limn→∞ Γn = 1/(1− γ) as
well as limn→∞ γn−ν = 0, if γ < 1, it can be verified that
limn→∞ Rôx,n = 0 a.s. According to [16, Thm. 1 and Cor. 1],
only Assumptions 2, 6, 7(ii) and 8 of [16] need to be veri-
fied to establish Theorem 1. Assumptions 3 and 4 of [16] are
trivially satisfied due to the construction of problem (5). The
ergodicity Assumption 2 of [16] is satisfied via Assumption 1(i),
Assumption 7(ii) of [16] is guaranteed by Assumption 1(iii), and
Assumption 8 by Assumption 1(v). The proof of [16] adapts to
the present context via the following mappings: By the definition
of Tn in Section III, let Qn(F) := Tn(F)− (1/̟n)R

−1
vvRyx,n,

while T (F) := Q(F) + (1/̟)R−1
vvRyx, with Q(F) := F−

(1/̟)R−1
vvFRxx and̟ ≥ ‖R−1

vv ‖ ‖Rxx‖. The application now
of the conditional expectation E|Fn

{·} to the terms that ap-
pear between (19b) and (19c) of [16] and define ϑn, yields
E|Fn

{ϑn} = 0, a.s., and thus Assumption 6 of [16] is satisfied by
setting ψ = 0, a.s. Therefore, [16, Thm. 1 and Cor. 1] establish
Theorem 1.

ii) Multiplying both sides of (1) from the right side by x⊺

n

and by applying E{·}, it can be verified via Assumption 1(ii)
that F∗ = RxyR

−1
xx . The loss in the constraint of (5) becomes

Trace{F⊺R−1
vvFRxx − 2F⊺R−1

vvRxy +R−1
vvRyy}. Hence, the

minimizer Fopt of this loss satisfies the normal equations

R−1
vvFoptRxx = R−1

vvRxy ⇒ Fopt = RxyR
−1
xx = F∗. Since the

minimizer is unique, Theorem 1(i) suggests that all cluster points

of (F̂n)n coincide with Fopt = F∗. �
Setting ôn equal to zero, for all sufficiently large n, has been

also used in the convergence analysis of [12]. Moreover, the
assumption on the positive definiteness of Rxx in Theorem 1(ii)
holds true for any regular stochastic process, e.g., a process with
non-zero innovation [30, Prob. 2.2].
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Fig. 1. NRMSE values vs. iteration / time indices.

V. NUMERICAL TESTS

To validate the contributions of this letter, extensive numerical
tests on synthetically generated data were conducted vs. the
classical RLS [1] and the state-of-the-art [12], [13]. Two variants
of [12] were employed to tackle (4a) with ρ(·) := ‖ · ‖1: i) The
OR-RLS(ADMM) that employs ADMM [22], [23], and ii) a
coordinate-descent approach OR-RLS(CD-L1) [12]. For [13],
two variants were used to solve (4a) with ρ(·) being the MCP: i)
The OR-RLS(MCP) that employs the GIST method [21], and ii)
its coordinate-descent flavor OR-RLS(CD-MCP) [13]. OR-HO-
RLS appears in three flavors, namely OR-HO-RLS(ADMM),
OR-HO-RLS(GIST) and OR-HO-RLS(FMHSDM), depending
on the solver of Line 8 in Algorithm 1. The outlier-agnostic
HO-RLS is also considered in Figure 1, with g(·) := 0 in (5)
and ôn := 0, ∀n. The performance metric is the normalized root

mean squared error NRMSE := ‖F̂n − F∗‖Fr/‖F∗‖Fr, where

F̂n stands for the estimate of any of the employed methods at
time n. The software code was written in Julia (ver. 1.0.3) [31].
The Julia package JuMP [32] was utilized, along with the Gurobi
solver [33], to solve (3) for [12], [13] (ρ(·) = ‖ · ‖1, n = 500),
and Line 2 of Algorithm 1 for OR-HO-RLS (ρ(·) = ‖ · ‖1,
n0 = 500) as a warm start. Warm-start iterations and times
are not included in any of the subsequent numbers and fig-
ures. One hundred independent tests were run and averaged
values are reported. The parameters of all methods, including
those of any off-the-shelf solver, were carefully tuned s.t. op-
timal performance is achieved in all scenarios. In all cases,
α := 0.5 and ǫ̟ := 5e− 2 which help Algorithm 1 reach a
“sweet spot” with regards to convergence speed and estimation
accuracy.

In all tests,P = 20 andL = 10, and noise (vn)n is modeled as
zero-mean and colored Gaussian, generated by an autoregressive
(AR) model, where the state matrix is randomly generated with

TABLE I
AVERAGE VALUES ± STANDARD DEVIATIONS OF THE RUN TIMES (IN SECS)

PER ITERATION FOR THE SCENARIO OF FIGURE 1A

maximum singular value 0.95. To generate sparse outliers, the
entries of on (also across time) are modeled as independent
and identically distributed (IID) Bernoulli RVs with parameter
po. Following [12], the nonzero entries of on are drawn from a
uniform distribution with zero mean and variance 1e4. Although
OR-HO-RLS behaves well also in cases with smaller outliers
variance, 1e4 was chosen to highlight OR-HO-RLS’s perfor-
mance in extreme scenarios. The entries of (xn)n are modeled
(also across time) as IID Gaussian RVs with zero mean and unit
variance.

Figure 1a and 1b refer to the “stationary” case where F∗

stays fixed ∀n. Matrix F∗ is “dense,” i.e., with no zero en-
tries. The entries are IID Gaussian RVs with zero mean and
unit variance. Figure 1a considers the case of (SNR = 20 dB,
po = 0.2), while Figure 1b the case of (SNR = 10 dB, po =
0.1). In these scenarios, g(·) := 0 in Algorithm 1. Moreover,
in all stationary scenarios γ = 1. All robust techniques outper-
form the classical RLS and the outlier-agnostic HO-RLS. OR-
RLS(ADMM) and OR-RLS(MCP) perform identically to their
coordinate-descent counterparts, while all flavors of OR-HO-
RLS outperform all other outlier-robust schemes. This behavior
is also observed in Figure 1b, but OR-RLS(MCP) and OR-
RLS(CD-MCP) seem to reach the levels of OR-HO-RLS(GIST)
and OR-HO-RLS(FMHSDM). It is worth noticing here that
OR-HO-RLS(FMHSDM) outperforms OR-HO-RLS(ADMM)
even though FMHSDM and ADMM solve the same ℓ1-norm
penalized LS task in Line 8 of Algorithm 1.

A sparse stationary F∗ is examined in Figure 1c. Non-zero
values are placed randomly at 10% of the entries of F∗, while
the rest of the entries are zero. Here, g(·) :=‖ · ‖1 in Algorithm 1.
All curves exhibit similar behavior to that in Figure 1a and 1b.
In Figure 1d, a sudden system change is introduced at time
2,500, by randomly re-initializing F∗, to examine how fast
the employed algorithms adapt to the change. Here, g(·) := 0
in Algorithm 1. In this scenario, γ = 0.97 for all methods.
Figure 1d shows that OR-HO-RLS(FMSHDM) exhibits fast
adaptation to system changes while scoring the lowest levels
of NRMSE among all methods.

Table I lists the computation times (in secs) per “iteration”
on an Intel(R) Xeon(R) CPU E5-2650v4 which operates at
2.20 GHz with 256 GB RAM. “Iteration” refers to a single
pass through (4) for [12], [13], and to the iterations within
Lines 8 and 12 of Algorithm 1 for OR-HO-RLS. Each iteration
includes also the 100 recursions of the off-the-shelf solvers
which are employed to generate the estimates ôn in (4a) and
in Line 8 of Algorithm 1. It can be seen that the proposed
OR-HO-RLS(ADMM) and OR-HO-RLS(FMHSDM) are the
fastest solutions among all methods.
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