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Computing the Carathéodory Number of a Point

Sergey Bereg*

Abstract

Carathéodory’s theorem says that any point in the con-
vex hull of a set P in R? is in the convex hull of a
subset P’ of P such that |P/| < d + 1. For some sets
P, the upper bound d + 1 can be improved. The best
upper bound for P is known as the Carathéodory num-
ber [2, 15, 17]. In this paper, we study a computational
problem of finding the smallest set P’ for a given set
P and a point p. We call the size of this set P’, the
Carathéodory number of a point p or CNP. We show
that the problem of deciding the Carathéodory number
of a point is NP-hard. Furthermore, we show that the
problem is k-LDT-hard. We present two algorithms for
computing a smallest set P’, if CNP= 2, 3.

Bérdny [1] generalized Carathéodory’s theorem by us-
ing d+ 1 sets (colored sets) such that their convex hulls
intersect. We introduce a Colorful Carathéodory num-
ber of a point or CCNP which can be smaller than d+1.
Then we extend our results for CNP to CCNP.

1 Introduction

The well-known Carathéodory’s theorem deals with the
convex hull of a set P, denoted by conv(P).

Theorem 1 (Carathéodory’s theorem [8, 13])

Let P be a set of points in R and p be a point in
conv(P). Then there is a subset P’ of P consisting of
at most d + 1 points such that p € conv(P’).

Sometimes there is a set P’ of smaller size such that
p € conv(P'), see Figure 1 for an example. We define a
Carathéodory number of a point.

Definition 2 For a set of points P C R and a point
p € conv(P), Carathéodory number of p with respect
to P, denoted by C(P,p), is the smallest integer k such
that p € conv(P’) for a subset P' C P of size k.

Carathéodory’s theorem guarantees that for every set
of points P C R? and p € conv(P), C(P,p) is well-
defined and C(P,p) < d + 1. This is related to the
well-known concept of the Carathéodory number of a set
that is the smallest integer k such that, for any point
p € conv(P), there is a subset P’ of P consisting of at
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most k points such that p € conv(P’). Equivalently, it
can be defined using C(P, p) as follows.

conv(P)

Figure 1: Point p € conv(P) with C(P,p) = 2.

Definition 3 For a set of points P C R?,
Carathéodory number of P, denoted by C(P), is the
largest integer k where there exists a point p € conv(P)
such that C(P,p) = k.

The Carathéodory number of a set is being studied
for more than 90 years [15, 17], in a more general set-
ting. The Carathéodory number of any set P C R¢
is at most d + 1 by Carathéodory’s theorem. For a
compactum P C R? Bérdny and Karasev [2] found
sufficient conditions to have Carathéodory number less
than d + 1. Kay and Womble [22] showed a relation
between the Carathéodory, Helly, and Radon numbers.
Recently, Ito and Lourengo [19] showed an upper bound
for the Carathéodory number of a set. Much research
has been done on the Carathéodory number for some
specific sets. Sierksma [27] studied the Carathéodory
number for convex-product-structures, Naldi [25] for
Hilbert cones of quadratic forms and binary forms. Bui
and Karasev [7] showed the Carathéodory number for
arbitrary gauge set K in R? is greater than d — 1. Also,
the Carathéodory number for several graph convexities
is studied in graph theory [4, 11, 12].

In this paper, we are interested in computing the
Carathéodory number of a point. We found the fol-
lowing characterization of the Carathéodory number of
a set in R?. This characterization of the Carathéodory
number could be known but we were not able to find it!.
Recall that the affine hull of a set S is the smallest affine

IWe found that the upper bound of the Carathéodory number
of a set follows from Proposition 1.15(ii) [28], see the proof in
Section 2.
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set containing S (a set A is affine if, for any a,b € A,
the line passing through a and b is also contained in A).
We denote it by aff(S). The dimension of an affine set
S, denoted by dim(.S) is the dimension of its underlying
linear subspace.

Proposition 4 The Carathéodory number of any non-
empty set P C R? is equal to dim(aff(P)) + 1.

The Carathéodory number of a finite set in R? can be
computed using Proposition 4. In this paper, we study
the computational problem of finding the Carathéodory
number of a point with respect to a finite set.

Problem 5 (CoMPUTINGCNP)

Given a set of points P in R? and a point p €
conv(P).

Compute a subset P’ of P such that (i) p €
conv(P’) and (ii) the size of P’ is minimized.

We show that the decision version of CoOMPUT-
INGCNP is NP-hard if the dimension d is part of the
input. Furthermore, we show that the problem is k-
LDT-hard if dimension d is fixed. We present two algo-
rithms for COMPUTINGCNP when C(P,p) = 2, 3.

Bérdny [1] generalized Carathéodory’s theorem by us-
ing d+ 1 sets (colored sets) such that their convex hulls
intersect. As in [24], we call these sets color classes and
we call a set of d+ 1 elements, one from each color class,
a colorful choice.

Theorem 6 (Colorful Carathéodory theorem [1])
Let P = {P,Ps,..., Py1} be a collection of
sets of points in R and p be a point such that
p € Nlconv(P;). Then there is a colorful choice P’

1=

such that p € conv(P’).

It is known that the number of color classes in The-
orem 6 cannot be reduced. One may ask whether the
number of colors in set P’ can be reduced. Sometimes
there is a set P’ of size smaller than d + 1 such that
p € conv(P’), see Figure 2 for an example. In this paper,
we define a Colorful Carathéodory number of a point.
We call a set of at most d + 1 elements, one from color
class, a rainbow, i.e. a rainbow is a subset of a colorful
choice for P. We use notation [k] = {1,2,...,k}.

Definition 7 Let P = {P,Pa,..., Pai1} be a col-
lection of sets of points in R and p be a point such
that p € N lconv(P;). The Colorful Carathéodory
number of p with respect to P, denoted by CC(P,p),
is the smallest size of a rainbow P’ for P such that
p € conv(P’).

The colorful Carathéodory theorem guarantees that
CC(P,p) < d+ 1. In this paper, we also propose to
study a new problem of computing CC(P, p).

Figure 2: Three sets capturing p in the plane. There
is a 2-colorful choice using one red point and one blue
point.

Problem 8 (CoMPUTINGCCNP)

Given a collection P = {P1, Py, -+ , Piy1} of sets
of points in R? and a point p € ﬂfillconv(Pi).

Compute a rainbow P’ of the smallest size such
that p € conv(P’).

Related work. Bérany and Onn [3] describe an ap-
proximation algorithm to find a colorful set P’ such that
point p has distance at most € from conv(P’). Bar-
man [6] showed that a rainbow P’ of size O(y?/€?) for
v = maxep ||z|| such that the distance between p and
conv(P’) is at most e. Mulzer and Stein [24] studied
a different approximation using m-colorful sets. A set
P’ is m-colorful if P; N P’ < m for each color set P;.
Mulzer and Stein [24] give a polynomial algorithm to
find a [ed]-colorful choice P’ such that p € conv(P’)
for some fixed € > 0. Meunier et al. [23] show that the
problem of finding a colorful choice is PPAD and PLS.

CoMPUTINGCNP is related to the sparse linear re-
gression problem [18, 26] where a d x n matrix M and a
vector ¢ € R? are given and the task is to find a k-sparse
vector 7 minimizing ||¢ — M7||2. Natarajan [26] proved
NP-hardness of this problem. Har-Peled, Indyk and Ma-
habadi [18] presented an algorithm with n*~1S(n, d, )
space and n*~1Tg(n,d,e) query time where S(n,d,¢)
denotes the preprocessing time and space used by a (1+
€)-ANN (approximate nearest-neighbor) data-structure,
and Tg(n,d,e) denotes the query time. Recently, Car-
dinal and Ooms [9] studied the sparse regression prob-
lem and found a O(n*~!log? *2 n)-time randomized
(1 + €)-approximation algorithm for this problem with
d and € constant.

Our results can be summarized as follows.

e We characterize the Carathéodory number of a fi-
nite set of distinct points in R? (Proposition 4).

e We introduce new problems COMPUTINGCNP and
CoMPUTINGCCNP for computing C(P,p) and
CC(P,p). We show that DECIDINGCNP, the de-
cision version of COMPUTINGCNP, is
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— NP-hard (Theorem 10) if the dimension d is
part of the input,

— is k-LDT-hard if dimension d is fixed (Theo-
rem 13).

e We present two algorithms in Section 4 for CoMm-
PUTINGCNP when C(P,p) = 2, 3.

e Then we extend our results for COMPUTINGCNP
to CoMPUTINGCCNP in Section 5.

2 Proof of Proposition 4

Let P be a finite set of distinct points in R?. Theorem
4 states that

C(P) = dim(aff(P)) + 1.

Let d' = dim(aff(P)).

First, we will prove that C(P) > d’+1. There exists a
set Q of d’+1 points of P which are affinely independent.
Then S = conv(Q) is the (d’ + 1)-dimensional simplex.
Consider the set A defined as

a= U

P'CP,|P'|=d

aff(P").

Set A is the union of (g,) sets each of dimension smaller
than d’. Therefore ANS # S. For any point p € S\ A,
we have C'(P,p) > d + 1. Therefore C(P) > d' + 1.

Second, we show that C'(P) < d' + 1. This follows
from Proposition 1.15(ii) [28] if we write n points of P
as a d X n matrix X.

Proposition. Let X € R¥™" and z € RY If z €
conv(X), then = € conv(X’) holds for a subset X' C X
of at most rank( ;) = dim(conv(X)) + 1 vectors in X.

3 Hardness of COMPUTINGCNDP

First, we state the decision problem corresponding to
COMPUTINGCNP.

Problem 9 (DECIDINGCNP)

Given a set of points P C R%, a point p € conv(P)
and an integer k < |P].

Decide whether C(P,p) < k.

Observe that DECIDINGCNP can be solved in poly-
nomial time if dimension d is a constant. We show that
it is NP-hard if d is part of the input.

Theorem 10 DECIDINGCNP is NP-hard.

Proof. We reduce the following problem to DECID-
INGCNP.

Problem 11 (EXxACTCOVERBY3-SETS)

Given a set X = {1,2,3,...,m} such that 3
is a divisor of m and a collection & =
{Th,T5,...,T,} where T, C X and |T;| = 3,
for1<i<mn.

Decide whether there exists a subset S’ of S such
that S8’ is a partition of X, i.e. sets in S’ are
disjoint and their union is X .

Problem ExAcTCOVERBY3-SETS is a variant of EX-
ACTCOVER [21]. This problem is also known to be NP-
complete [20].

For an instance of EXACTCOVERBY3-SETS, a set
X = {1,2,3,...,m} such that 3 is a divisor of m
and a collection § = {T,Ts,...,T,} where T; C X
and |T;] = 3 for 1 < 4 < n, we construct an in-
stance of DECIDINGCNP as follows. Set k& = m/3,
p=(1,1,...,1) € R™ and P = {p1,p2,...,pn} Where
pi = (Pi1,Pi2s -+ -5 Piom) € R™ and

)k ifjeT,
bij = 0 otherwise.

We show that there exists an exact cover for set X if
and only if there exists a subset P’ C P of size k where
p € conv(P’).

= ) Suppose that S’ is a partition for X. Then for
every j € X there exists unique T; € 8" with j € T;.
Set P’ as the set of all points p; such that T; € S’. For
any j € [m], there is exactly one point p; € P’ with
pij = k and py; = 0 for all other points p; € P’
Therefore the j-th coordinate of Eme pr Di is equal to k
and Zmep, p; = kp. Hence, p € conv(P’).

<= ) Suppose that p € conv(P’), i.e. > cp Aipi =
p. Then each \; < %, otherwise some coordinate of
ZpieP’ A;p; is greater than 1. We have pr,eP’ Ai=1
and each A; > 0. Since |P’| = k, each \; must be equal
to 1/k. Let &' be the set of all T; such that p; € P’.
Then, &’ is a partition of X. O

Now, suppose that the dimension d is fixed. We show
that DECIDINGCNP is k-LDT-hard.

Problem 12 (k-LDT)

Given a set of A C R and a k-variate linear func-
. k
tion ¢(x1,x2,..., ) = ap+y_,_, cyx; where
ag, a1, ...,a €R.

Decide whether there exists x = (x1, 22, . ..
AF where x is a root of ¢.

7xk) S

k-LDT-hardness implies k-SUM-hardness and many
problems are known to be k-SUM-hard, see for example
[5, 16]. Erickson [14] proved any algorithm in r-linear
decision tree model for k-LDT problem has Q(nl21)
time complexity.
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Theorem 13 DECIDINGCNP for a fized dimension d
18 k-LDT-hard.

Proof. We show a linear-time reduction of k-LDT to
DECIDINGCNP. Let A = {a1,as,...,a,} be a set of
real numbers and linear function ¢(z1,za,...,2%) =
ao—i-ZE:O «;x; be an instance of k-LDT problem. An in-
stance of DECIDINGCNP must contain a set P, a point
p, and an integer k' (it could be different from k in k-
LDT). We construct an instance of DECIDINGCNP. We
choose k' = k + 1. We construct set P as follows.

Let {e1,e2,...,ext1} be the standard basis of RF+1,
i.e. €;, = (6,’71,61'72,..., 6i7k+1) where €ij = 1 lf] =1
and e; ; = 0 otherwise. For every x; € 4,1 < i < n,
we construct k points in RFt! Yij, for 1 < j < k, as
follows

Yij = €j + QjTi€py1.

We also define p = (—apegs1 + Z?:l ei)/k.

= ) Suppose there is k integer i1,1s,...,1; where
1 <ij <nforl<j<ksuchthat ¢(x;,, xiy, ..., T5,) =
0. Consider set P’ of k points yi, 1,¥ip.2, - - Yip k- 1t

implies that Z§:1 Ayi;j = p where A\ = % Therefore,

p € conv(P') and C(P,p) < k.

<= ) Suppose there exist k pairs of integers
(ilajl)y(i27j2)a---a(ilﬁjk) where 1 <4, <n, 1< Jt <
k, for 1 < t < k, such that p € conv(py,ps,...,pk)
where p1 = Yi;, j1,P2 = Vis,jos - - s PkViy,jr- Lherefore,
there exists A\, for 1 <t < k, such that 0 < \; < 1, for
0<t<kand Zle)\tzland

k
Z Atpt = p- (1)
t=1

We claim that for every pair of integers ¢; and to
where 1 < t; < to < k, ji, # Jjt,, otherwise there
exists an integer m such that 1 < m < k and m ¢
{j1,J2,---,Jk}. Then the m-th coordinate of all points
P1,P2, ...,k 18 zero. Then p,, = 0 contradicting the
choice of p. Therefore, j1,7jo,...,jx is a permutation
of 1,2,...,k. By reordering points p1,po,...,pr We as-
sume that j, =¢ for 1 <t < k.

By taking mth coordinate, 1 < m < k, Equation (1)
implies

k
Z)‘tptﬂ"n - )\mpm,m = )‘m = 1/]@’

t=1

Now take (k + 1)th coordinate in Equation (1)

k k 1 k 1 o
—Qg

E A ——E — ——E - Xy, = ———.

2 tDt k+1 2 kpt,kJrl 2 L Qe i L

Hence, ag + Zle azx;, = 0 which is the solution for
k-LDT. O

4 Algorithms for COMPUTINGCNP

We present two algorithms for COMPUTINGCNP when
C(P,p) =2,3.

41 C(P,p)=2inR?

One can easily decide in O(n) time whether C'(P,p) =
1. In this section we discuss the problem of deciding
whether C(P,p) = 2. We assume that dimension d > 2
is a constant.

Theorem 14 Let P be a set of n points in R? and p
be a point in R, where d > 2 is fized. One can de-
cide whether C(P,p) = 2 and find the corresponding set
P’ in O(nlogn) time which is optimal in the algebraic
decision tree model.

Proof. The task is to compute a subset P’ C P such
that |P’/| < 2 and p € conv(P’) if it exists. We will
describe an algorithm and prove the lower bound.

Algorithm. First, we decide whether C(P,p) =1 in
O(n) time by searching p in P. Assume that C(P,p) >
2, i.e. p; # p for all p; € P. Compute normalized
vectors p} = ﬁ. We sort points pj,ph,...,pl, lex-
icographically and assume that they are in the lexico-
graphic order, i.e. p] < ph < --- 2 pl.

Since C(P,p) # 1, C(P,p) = 2 if and only if there
exist two points p;, p; € P such that p = ap; + (1 —a)p,
for some 1 < i < j <nand 0 < a < 1 (Clearly, if
a=0or a=1then C(P,p) =1). This equation can be
written as

0=a(p; —p)+(1—a)(p; —p) (2)
a(pi —p) = (a—1)(p; — p) (3)
alip; = (a — 1)l;p}, (4)

where l; = |[p; — p|| and I; = ||p; — p||. Since p; and pj
are unit vectors, we have |al;| = |(a — 1)l;]. Note that
al; > 0 and (a—1)l; < 0. Equation (4) implies that p} =
—pj. Conversely, if p; = —p then p = ap; + (1 — a)p;
fOI‘ a = lj/(l, + l])

The algorithm performs binary search of —p in the
sorted sequence pl,ph, ..., pl,, for each i € [n]. If —p} is
found then —p; = pj; for some p’;. Note that j must be
not equal to i since —p}; = p} would mean that p; = 0 but
Ilpi|] = 1. The time complexity of the above algorithm
is O(nlogn) where n = |P)|.

Proof of the lower bound. We now prove that the
lower bound on the time complexity for the problem of
deciding C(P,p) = 2 is Q(nlogn). We use the 2-SUM
problem: Given n numbers, do any two of them sum
to zero? Chan, Gasarch and Kruskal [10] proved that
solving 2-SUM in algebraic decision tree model takes
Q(nlogn) time. Let X = {z1,22,...,2,} be set of
integers in an instance of 2-SUM.
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We construct a set P of n points in R2. If d > 3, we
can use a 2-dimensional plane in R¢ for the points in P.
Assign point p = (0,0). Consider the map u : R — R?
defined as p(z) := (sgn(x), x) where

sgn(z) = {x/|x if x # 0,

0 otherwise.

Find set P = p(X) in O(n) time, i.e. P = {p; | p; =
w(x;),i € [n]}. To show that the reduction is correct,
we prove the following claim. There are distinct integers
i,7 such that x; + 2; = 0 if and only if there are two
points p;,p; € P for which p € conv({p;,p;}).

Suppose that x; +x; = 0 for some integers %, j. Then
either z; = z; = 0 or z;2; < 0. If z; = ; = 0 then
p; = (0,0) € P, so p € conv({p;}). If z;z; < 0, then we
can assume x; < 0 < x;. Then 0 € conv({p;,p,}) since
Di = —Pj-

Now suppose that there exists a subset P’ C P such
that |P'| = 2 and p € conv(P’). If p € P’, then 0 € X.
Ifp ¢ P’ and P’ = {p;,p;}, then x; and z; have opposite
signs (since p, = 0). Then the convex combination p =
ap; + (1 —a)p; must have a = 1 —a (using z-coordinates
in p = ap;+(1—a)p;, 0=a-sgn(z;) +(1—a)-sgn(z;)).
Then a = 1/2 and x; = —z; (using y-coordinates in
p=ap;+ (1—a)p;). O

42 C(Pp)=3inR3

Theorem 15 Let P be a set of n points in R® and p be
a point in R®. One can decide whether C(P,p) = 3 and
find the corresponding set P’ in O(n?logn) time.

Let P = {p1,...,pn} C R®. We denote by a;;
the angle between vectors pp; and m, ie. cosay; =
PP -PD;

W and 0 < oy ; < m. Let k be an integer in
il j

{1,2,...,n}. Consider the plane 7 passing through
point p with ppy, is its normal vector. Let ¢; be the pro-
jection of p; on my, see Fig. 3. We apply the following
algorithm.

Input: p € R® and P = {py,...
p € conv(P).

Output: Decide if C(P,p) = 3. If C(P,p) = 3, com-
pute a subset S C P such that |S| = 3 and p € conv(S).

,Pn} C R? such that

1. Check if C(P,p) = 1 or C(P,p) = 2 from Section
4.1. Stop if C(P,p) < 2.

2. For each point px € P do the following:

3. Compute plane 7 (it can be computed since p #
p; otherwise C'(P,p) = 1). Compute points ¢; for
allt € {1,2,...,n},i # k, see Fig. 3.

4. Compute set Py, as follows. Initialize P, = P\{ps},
then prune Pj by repeating the following step.

Figure 3: Plane 7 is orthogonal to vector ppi. Point
qi,1 = 1,2, 3 is the projection of point p; onto the plane
Tk

5. The pruning step. Remove a point p; from P,
if there exists another point p; in Py such that

(a) Vectors ﬁ and p_qj> have same direction and

(b) ik < oy (if a k = a;  remove either p; or
p; from Py).

6. Compute Qi = {¢; | p; € Px}. For each point ¢; €
@k, use the binary search for —¢; in Q as in the
algorithm from Section 4.1. Suppose C(Qg,p) = 2
and a set Q" = {¢;,q;} is found such that p €
conv(g;, q;). Check if p € conv({p;,p;, pr}) in O(1)
time. If p € conv({p;,p;,pr}) then output the so-

lution P" = {p;,p;j,pr}. I p ¢ conv({pi,p;,px}),
check next point ¢; in the loop.

7. If a solution is not found in Step 6, then there is no
solution for C(P,p) = 3, so C(P,p) = 4.

First, we justify the pruning step.

Lemma 16 Suppose p € conv({pi,p;,pr}) for some
points p;,p;,Pr € R3. If p; or p; 18 removed in the
pruning step for pi then there exist py,pjy € Py such
that p € COHV({pi/,pj/,pk,}).

Proof. It suffices to prove the lemma if only one point
from {p;,p;} is removed in the pruning step. If both of
them are removed, the argument can be used twice, see
Fig. 4(b) for an example.

Suppose that point p; is removed in the pruning step
for px. Then there exists another point p; in P such
that

1. Vectors ]ﬁz and W have same direction and
2. a5 < oy

Then points p,p;,p;,pr are coplanar. Without loss
of generality we can assume p;, p;, pj, pr € R?, py is on
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Figure 4: (a) The pruning step. Vectors P, =1,2,3
have the same direction d;. Points p; and ps will be
pruned based on a-angles. Vectors @J = 4,5,6,7
have the same direction do = —d;. Points p;,i =
4,5,6 will be pruned based on a-angles. (b) Point
p € conv({pk,p2,ps}) before the pruning for py and it
is in conv({pk, ps,pr}) after the pruning for py.

the y-axis and p is at the origin. We can assume that
z(pi), z(psr) > 0 and z(p;) < 0. The necessary and suffi-
cient condition for p € conv({p;,p;,pr}) is a; k + o >
m. Since ay ) < ayr i, we have ay 4oy > m. Therefore
p € conv({p;/,p;,pr}) and the lemma follows. O

Time Complexity. Plane 7 is computed in O(1)
time. Projection of P onto 7 takes O(n) time. The
pruning step can be done in O(nlogn) time by main-
taining the sorted order of points ¢; by the direction.
Finally, Step 6 takes O(nlogn) time since binary search
takes O(logn) time and it is done for every point in Q.
Therefore, the processing of py takes O(nlogn) time
and the total time is O(n?logn).

5 Hardness and Algorithms for CoMPUTINGCCNP

In this section we show that our results for COMPUT-
INGCNP can be extended directly to COMPUTINGC-
CNP.

5.1 Hardness

We show that DECIDINGCCNP (i.e.  deciding if
CC(P,p) < k), the decision version of COMPUTINGC-
CNP, is NP-hard. There is a natural reduction from
DECIDINGCNP problem to DECIDINGCCNP problem.
Consider an instance of DECIDINGCNP, i.e. a set of
points P in R, a point p € conv(P) and an integer k.
We construct an instance of DECIDINGCCNP by taking
d + 1 copies of P, the color classes P = {Py,...,Pi1}
and by using the same point p and integer k. Clearly,
this reduction can be computed in polynomial time.
It remains to prove that C(P,p) < k if and only if
CC(P,p) < k. If C(P,p) < k then there exists a subset
P’ = {p1,p2,...,pr} of P such that p € conv(P’). Then
CC(P,p) < k by selecting p; from color set P; (i.e. P’
is a rainbow for P). Similarly, CC(P,p) < k implies
C(P,p) < k. Therefore DECIDINGCCNP is NP-hard.

Similarly, one can prove that DECIDINGCCNP is k-
LDT-hard if dimension d is fixed (we omit details due
to lack of space).

52 CC(P,p)=2in Rd

We show that the algorithm from Section 4.1 can be
modified for deciding if CC(P,p) = 2 in R? and com-
puting the corresponding rainbow. In this problem, we
have d + 1 color classes, and they can be processed as
follows. We normalize the vectors (of all colors) again,
but this time there could be equal normal vectors of dif-
ferent colors. We store one vector for them and the list
of their colors. Then the binary search is modified to
select a vector of different color from the list.

The time complexity of this algorithm is O(nlogn)

where n = Zfill | P;].

53 CC(P,p)=3inR3

We briefly (due to lack of space) show that the algo-
rithm from Section 4.2 can be modified for deciding if
CC(P,p) = 3 in R? and computing the corresponding
rainbow. In step 2, we select py from UP;. In step 3, we
use the same colors for projected points. In the pruning
step, if there are more than two points ¢; and ¢; with
distinct colors with the same direction of p_qz> and jv—q]> , We
store the two with the largest a-angles. In steps 6, we
apply the algorithm for deciding CC(P,p) = 2 instead
of deciding C'(P,p) = 2. The total time complexity of
the algorithm is O(n?logn) where n = %! | P,
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