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ABSTRACT 
The Electrical capacitance tomography (ECT) method 

has recently been adapted to obtain tomographic images of the 
cross section of a diesel particulate filter (DPF). However, a 
soot mass estimation algorithm is still needed to translate the 
ECT image pixel data to obtain soot load in the DPF. In this 
paper, we propose an estimation method to quantify the soot 
load in a DPF through an inverse algorithm that uses the ECT 
images commonly generated by a back-projection algorithm. 
The grayscale pixel data generated from ECT is used in a 
matrix equation to estimate the permittivity distribution of the 
cross section of the DPF. Since these permittivity data has 
direct correlation with the soot mass present inside the DPF, 
a permittivity to soot mass distribution relationship is 
established first. A numerical estimation algorithm is then 
developed to compute the soot mass accounting for the mass 
distribution across the cross-section of the DPF as well as the 
dimension of the DPF along the exhaust flow direction. 
Experimental data has been used to validate the proposed soot 
estimation algorithm which compared the estimated values 
with the actual measured soot mass. The estimated soot mass 
for various soot load amounts were found to correlate 
reasonably well with the measured soot masses in those cases. 

Keywords: Electrical capacitance tomography, diesel 
particulate filter, soot load, electrical capacitance tomography, 
robust design, fuel efficiency. 

1. INTRODUCTION
It has been estimated that emission from diesel engines 

accounts for two-thirds of all particulate matter (PM) from the 
US transportation sources. Particulate matter or soot is created 

during the incomplete combustion of diesel fuel, which 
contributes to the problem by releasing particulates directly 
into the air and by emitting nitrogen oxides and sulfur oxides, 
which transform into "secondary" particulates in the 
atmosphere [1]. Due to stricter regulatory requirements for 
diesel engines emissions, there has been significant research 
and development work to introduce new technological 
solutions for the diesel aftertreatment systems in order to meet 
the emission requirements [1][2]. According to U.S. 
Environmental Protection Agency (EPA), all diesel engine 
manufacturers are required to meet these regulatory 
requirements. 
Modern Diesel Engines use a diesel particulate filter (DPF) as 
shown in figure 1 to capture particulate matter emission with 
efficiency level of more than 90%. With this type of 
aftertreatment emission elimination system, DPF retains 
exhaust gas particles by forcing the gas to flow through the 
filter and then intermittently burn the captured particles 
through either an active or a passive regeneration process. This 
process prevents gradual accumulation of trapped particulate 
matter inside Diesel Particulate Filter. Without the 
regeneration process, the trapped particles can clog the filter 
and creates back pressure in the mean exhaust stream of the 
engine resulting in a loss of engine efficiency. The back 
pressure of the engine exerts more loads on pistons, produces 
more emission, results in higher temperature which can lead to 
DPF structural failure, and increases fuel consumption.  

Hence an accurate estimation of soot load is needed in order 
to establish the optimal operation of the DPF regenerative 
process where injected fuel timing plays a major role. This 
would have positive impact on the DPF life span. 
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Figure 1: Schematic of a Diesel Particulate Filter [3]. 
 
Traditionally estimation of the accumulated soot load inside 
DPF largely relied on a differential pressure measurement. 
However, this method has a major drawback with relatively 
poor accuracy of soot estimation (±50%  from the true soot 
load) [3], specifically at a lower exhaust volumetric flows, and 
due to the pulsating airflow of engine exhaust gas, which lead 
to significant irregularities in determining the soot load. Such 
inaccuracies has direct effect on the efficiency of the 
regeneration process to purge the restrictive soot load. Since it 
depends on diesel fuel injection, this affects the optimum 
operation of the active regeneration process. It has been shown 
that fuel penalty caused by regeneration could be in the range 
of (2.2% to 5.3 %) which is more than fuel penalty due to 
backpressure (1.5% to 2.0 %) [1]. As a result, it is necessary 
to improve the accuracy of soot load estimation and to 
accurately determine the regeneration timing. 

Electrical capacitance tomography (ECT) has been developed 
and used since late 1980s for visualization and measurement 
of a permittivity distribution in a cross section of a pipe 
carrying fluid using a multi-electrode capacitance sensor [4]. 
In the past several years there have been a lot of focus on 
addressing the issue with the measurement of accumulated 
particular matter inside the DPF, one effective approach is the 
Electrical Capacitance Tomography using a multi-electrode 
capacitance sensor to estimate the soot load. This method 
utilizes the measurement of the soot load   permittivity 
distribution across-section of a DPF using a multi-electrode 
capacitance sensor. In this paper, a novel approach to estimate 
DPF’s soot load based on its ECT reconstructed image’s 
(pixel) gray-level value is presented. This is done by 
developing a novel inverse back procejection algorithm that 
takes into account the proportional relationship between the 
dielectric soot load filled inside  the DPF and the permitivity 
values calculated using the measured electrical capacitances. 

2. ELECTRICAL CAPACITANCE TOMOGRAPHY 
(ECT) BACKGROUND 
 Electrical capacitance tomography (ECT) was first 
introduced in the early 1980s [5]-[7]. It is a method used to 
determine the spatial permittivity distribution for a region of 
interest. It is based on the measuring the capacitances between 
electrodes on the exterior of the region [8].  

ECT sensor is widely used in process control for monitoring 
and control the quality of an industrial process. It is used as 
one of non-destructive testing methods with potential 
applications in the measurement of flow of fluids in pipes [9]. 
It has been adopted in the industry in wide range of 
applications such as fluid flow monitoring and other industrial 
applications, however there are some challenges regarding 
ECT such as low accuracy of its reconstructed images as 
compared to other methods that are commonly used in image 
reconstruction [10]. On other hand, capacitive sensors are very 
convenient because they only consist of electrodes and are 
sensitive to the electrical properties of materials and their 
distribution. Moreover, they can work at low frequencies with 
low power consumption [11]. 
 
2.1 ECT Model Design  
A basic ECT system normally consists of a capacitance sensor, 
a measurement unit of capacitance and a computer system for 
image reconstruction process as shown in figure 2. For a set of 
n electrodes around the required imaging region, the total 
number of  independent combination of capacitance 

measurements is		
௡ሺ௡ିଵሻ

ଶ
		 used for image reconstruction. 

 
Figure 2: ECT sensor diagram [12]. 

 
The sensor is made up of n electrodes mounted on the 
perimeter of the imaging area. To eliminate external unwanted 
capacitance known as stray capacitance effects, the electrodes 
are externally shielded [13]. All independent mutual 
capacitance measurements are measured between sender 
electrodes connected to the source signal, and the other 
receiver electrodes where connected to the ground. Figure 3 
shows an ECT sensor with n numbers of electrodes.  
 
 

 

 

 
 
 

 
 
 
 
 

Figure 3: Diagram of a typical ECT sensor. 
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The capacitance between two pairs of electrodes, i.e. a source 
electrode and a detector electrode, is obtained through 
equation (1). 

Qi = ci jVj                  (1) 

where Qi is the charge quantity on electrode i, 
 cij represents mutual capacitance between electrodes i and j, 
and Vj is the voltage applied to electrode j. 
 
2.2 Direct Techniques to Generate Sensitivity Matrix  

Direct technique is used to generate sensitivity matrix model 
by measuring the  response of capacitance for permittivity 
perturbations. The basic idea relies on the assumption that the 
sensitivity is independent of permittivity distribution.  The 
matrix is formed by measuring the capacitances for each a pair 
of electrodes and constructing array of independent 
combination of electrodes measurement of high electrical 
permittivity in the imaging area of interest. Using high and low 
permittivity material, measurements can be normalized 
accordingly, as shown in equation (2) [12]: 
 

௜ܵሺNሻ ൌ
େ೔ሺ୒ሻିେ೔ሺୣ୫୮ሻ

େ೔ሺ୤୳୪୪ሻିେ೔ሺୣ୫୮ሻ
                        (2) 

 
where ௜ܵሺNሻ  is the sensitivity matrix element [S] 
C௜ሺNሻ is the measured capacitance. 
C௜ሺempሻ  the capacitance measurement when the sensor is 
filled with low permittivity. 
C௜ሺfullሻ  the capacitance measurement when the sensor is filled 
with high permittivity. 
 
2.3 Image Reconstruction using Linear Back Projection 

Linear back projection (LBP) was used to process ECT image 
reconstruction. In LBP, a multidimensional inverse problem 
needs to be solved. It has the advantage of dynamic and 
flexible process with good capability of image reconstruction, 
and it can be expressed as a function of sensitivity matrix as in 
equation (3) [12]: 
 

  [C]=[S]. [K]                             (3) 

[C] = Mc X 1 normalized electrode matrix.  
To determine the permittivity distribution matrix from the 
measured capacitance vector, a solution for equation (3) 
should be obtained. 
Let us consider a reconstructed square grid image of N pixels, 
generated by Linear Back Projection (LBP) algorithm, with 
known permittivity distribution matrix [S]. From the basic  of 
forward problem algorithm in (3) and the inverse transform Q  
in (4), an approximation of LBP method uses the transpose of 
[S] in (3), to have an pseudo-inverse matrix of the dimensions 
(N x M) that can be used in (5) where  [S]T assumed to be equal 
to [Q]. 

  [K]= [Q]. [C]                           (4) 

  [K]= [S]T. [C]                           (5) 

[C] = M X 1 matrix containing the normalized electrode-pair 
capacitances CM (in the nominal range 0 to 1).  
[K] = N X 1 matrix containing the normalized pixel 
permittivity’s (in the nominal range 0 to 1) N is the number of 
pixels representing the sensor cross-section [1] 
[S] = M X N matrix containing the set of sensitivity matrices 
for each electrode-pair. 
 
3. SIMULATION RESULTS 

As the sensitivity matrix forms a basis set from which image 
vectors can be obtained. Basically, each row of [S] represents 
the response of the sensor system to a small individual 
permittivity pixel in a uniform background [13] using direct 
techniques equation (2) and having normalized capacitance 
data, a sensitivity matrix has been built. 
 

Table 1: Sensitivity Matrix 

0.000 0.000 0.000 0.000 0.000 0.000 
0.018 0.039 0.058 0.045 0.040 0.044 
0.037 0.078 0.116 0.089 0.079 0.087 
0.203 0.254 0.237 0.134 0.101 0.114 
0.257 0.321 0.251 0.265 0.210 0.197 
0.257 0.315 0.319 0.286 0.283 0.303 
0.257 0.308 0.388 0.307 0.355 0.409 
0.290 0.326 0.419 0.414 0.521 0.452 
0.322 0.343 0.450 0.520 0.686 0.495 
0.487 0.376 0.475 0.611 0.714 0.541 
0.651 0.409 0.500 0.703 0.742 0.587 
0.946 0.579 0.542 0.750 0.752 0.600 
0.953 0.605 0.545 0.753 0.754 0.613 
0.963 0.620 0.559 0.770 0.759 0.614 
0.980 0.681 0.608 0.832 0.813 0.687 
1.000 1.000 1.000 1.000 1.000 1.000 

 
Table 2: Capacitance (V) measurements for different soot 

mass (grams)  

A-B A-C A-D B-C B-D C-D 

0 3.63 3.71 3.68 3.75 3.79 3.68 

9.35 3.60 3.67 3.61 3.70 3.74 3.64 

18.7 3.58 3.62 3.54 3.64 3.69 3.59 

37.4 3.34 3.43 3.38 3.59 3.66 3.57 

56.3 3.27 3.35 3.37 3.43 3.53 3.49 

65.8 3.27 3.36 3.28 3.40 3.44 3.38 

84.8 3.27 3.37 3.19 3.37 3.35 3.28 

94.2 3.22 3.35 3.15 3.24 3.14 3.24 

112 3.17 3.33 3.11 3.11 2.93 3.19 

132 2.94 3.29 3.08 3.00 2.90 3.15 

151 2.71 3.25 3.05 2.88 2.86 3.10 

172 2.30 3.07 3.00 2.82 2.85 3.09 

192 2.29 3.04 2.99 2.82 2.85 3.08 
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210 2.27 3.02 2.98 2.80 2.84 3.08 

220 2.25 2.95 2.91 2.72 2.78 3.01 

232 2.22 2.60 2.42 2.51 2.54 2.70 

FULL 2.22 2.60 2.42 2.51 2.54 2.70 

EMPTY 3.63 3.71 3.68 3.75 3.79 3.68 
 
Once normalized capacitances are obtained [C], a numerical 
simulation using MATLAB software was used to generate 
pixel gray-level matrix [K] digital image for all given 
experimental soot load capacitance measurements. Figures 4, 
5, and 6 show the ECT images for soot masses of 172.2, 56.6, 
and 112.6 grams respectively. 

  

Figure 4: ECT image for a soot mass of 172.2 grams. 
 

   

Figure 5: ECT image for a soot mass of 56.6 grams. 
 

  

Figure 6: ECT image for a soot mass of 112.6 grams. 
 

4. SOOT MASS ESTIMATION 
  From the capacitance measurements obtained from 
inter-electrode data, we can observe the direct relationship 
between capacitance and material deposited inside the DPF 
exhibits an inverse relationship. However, the direct 
contributions of pixels (gray-level) are assumed to be 
proportional to the actual soot load deposited (WA) at the time 
capacitances were measured.  
From linear back projection (LBP) algorithm, each of 
sensitivity matrix multiplied by its corresponding sensor 
reading to construct the digital image.  
It has been observed from the experimental that, change in 
material deposited (WA) in sensor results in variations in the 
sensor measured capacitance. 

From the experimental data in table 3, a proportional 
relationship explicitly has been established between sensitivity 
matrix and actual weight. These results are plotted as shown 
in figure 7 and represented in  polynomial curve from the 6th 
degree : 

ݕ  ൌ ܽଵݔ଺ ൅ ܽଶݔହ ൅ ܽଷݔସ ൅ ܽସݔଷ ൅ ܽହݔଶ ൅ ܽ଺ݔ ൅ ܽ  (7) 

Where y represents estimated soot mass weight, x is the gray 
level value. 

Using curve fitting tools in excel ܽଵ, ܽଶ,			ܽଷ,	, ܽସ, 
ܽହ, ܽ݊݀	ܽ଺	can be located respectively as below: 

 ܽଵ ൌ	-1.05E-13 ,																									ܽଶ ൌ ܧ1.68761 െ 10 

 ܽଷ, ൌ െ9.85783ܧ െ 08, 	,									ܽସ ൌ ܧ2.5877 െ 05 

  ܽହ ൌ-0.002829359, 																				ܽ଺ ൌ	0.401355946 
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Figure 7: Estimated Weight Polynomial Curve 

y = -5E-14x6 + 8E-11x5 - 4E-08x4 + 1E-05x3 - 0.0011x2 + 
0.3312x.                                                               (8) 

An estimated weight y can be obtained from the polynomial 
equation by substituting gray-level value in x at equation right 
hand as shown in table 3, this direct relationship between gray-
level value [K] and actual weight [WA] deposited inside the 
DPF can be concluded from  equation (5),  

        where          C ∝   .K ߑ

An example calculation of the estimated soot weight is shown 
below. Tables 1-2 show actual weight and sensitivity matrix 
data, where weight sample of 172.2 gram can be expressed as:  

       [K172.2] =[S]T. [C172.2]   

 		݁ݎ݄ܹ݁
[K172.2] is gray -level value of 172.2 gram pixel matrix. 
[S]T    is transpose of Sensitivity Matrix  ( Table 1). 
[C172.2] is normalized 172.2 gram victor. 
 
[K172.2] = 
 

30.73 29.75 29.75 29.75 

29.75 31.16 30.90 31.17 

29.75 30.90 31.68 30.82 

30.73 31.17 30.82 30.55 

 K172.2  =  489.369 ߑ   

Substitute ߑ K172.2 for x in equation (8). 

Estimated weight y = 186.35 gram. 

 The difference between actual and estimated weight (Error) is 
given by: 

Error = (WE - WA) /WA 

   = (186.35– 172.2)/172.2 
    = 8.22% 

Table 3: All estimated weights using nonlinear 
polynomial equation. 

Actual 
Weight 

Gray-Level 
Value 

Estimated 
Soot Mass 

Error1 
% 

0.00 0.000 0.00 0.00 

9.35 30.241 9.18 -1.80 

18.70 60.481 17.87 -4.44 

37.40 126.032 37.95 1.46 

56.30 180.111 56.28 -0.03 

65.80 213.169 67.87 3.15 

84.80 246.227 79.49 -6.26 

93.80 293.962 96.24 2.60 

112.60 341.697 113.54 0.83 

132.00 384.331 130.55 -1.10 

151.90 426.964 150.35 -1.02 

172.20 489.369 186.35 8.22 

191.60 495.969 190.67 -0.49 

210.50 503.527 195.71 -7.03 

220.50 542.391 222.93 1.10 

232.00 720.000 231.81 -0.08 
 

 

Figure 8: Actual soot mass vs Estimated soot mass. 

 

y = ‐5E‐14x6 + 8E‐11x5 ‐ 4E‐08x4 + 1E‐05x3 ‐
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Figure 9: Soot mass estimation accuracy  
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Figure 10: Soot mass comparison with gray level data. 
 
Table 3 shows the estimated soot masses computed using 
equation (8). It also shows the percentage error based on the 
actual soot mass for the given tomographic image. Figure 8 
shows the estimated vs actual soot masses which is a close 
match. Figure 9 plots the percentage error for each of the soot 
mass points. Higher than normal percentage errors was 
observed at three data points 7th, 12th, and 14th which can be 
attributed to the low voltage and weight measurement 
accuracies during the experiment. Estimated soot mass error 
averages around 5% of the average of the actual soot mass in 
the DPF for the given tomographic images. Figures 10 show 
the actual vs. estimated soot mass as a function of the Gray-
Level values. This also show a close match between the 
estimated and actual soot load.  
 
CONCLUSION 
The sensitivity matrix for an ECT image forms a basis set from 
which image pixel data can be obtained via simulation. In this 
paper, an approach is presented to estimate the soot mass in a 
Diesel Particulate Filter from an ECT image utilizing its 
permittivity (capacitance) data. The proposed approach was 
evaluated for its accuracy against actual soot mass and its 
corresponding tomographic images. The results obtained by 
combining the pixel value with soot load physical properties 
(weight) and permittivity parameters (capacitance) through 
nonlinear relationship showed reasonable accuracy in 
estimating the actual soot mass. 
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