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ABSTRACT

The Electrical capacitance tomography (ECT) method
has recently been adapted to obtain tomographic images of the
cross section of a diesel particulate filter (DPF). However, a
soot mass estimation algorithm is still needed to translate the
ECT image pixel data to obtain soot load in the DPF. In this
paper, we propose an estimation method to quantify the soot
load in a DPF through an inverse algorithm that uses the ECT
images commonly generated by a back-projection algorithm.
The grayscale pixel data generated from ECT is used in a
matrix equation to estimate the permittivity distribution of the
cross section of the DPF. Since these permittivity data has
direct correlation with the soot mass present inside the DPF,
a permittivity to soot mass distribution relationship is
established first. A numerical estimation algorithm is then
developed to compute the soot mass accounting for the mass
distribution across the cross-section of the DPF as well as the
dimension of the DPF along the exhaust flow direction.
Experimental data has been used to validate the proposed soot
estimation algorithm which compared the estimated values
with the actual measured soot mass. The estimated soot mass
for various soot load amounts were found to correlate
reasonably well with the measured soot masses in those cases.

Keywords: Electrical capacitance tomography, diesel
particulate filter, soot load, electrical capacitance tomography,
robust design, fuel efficiency.

1. INTRODUCTION

It has been estimated that emission from diesel engines
accounts for two-thirds of all particulate matter (PM) from the
US transportation sources. Particulate matter or soot is created
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during the incomplete combustion of diesel fuel, which
contributes to the problem by releasing particulates directly
into the air and by emitting nitrogen oxides and sulfur oxides,
which transform into "secondary" particulates in the
atmosphere [1]. Due to stricter regulatory requirements for
diesel engines emissions, there has been significant research
and development work to introduce new technological
solutions for the diesel aftertreatment systems in order to meet
the emission requirements [1][2]. According to U.S.
Environmental Protection Agency (EPA), all diesel engine
manufacturers are required to meet these regulatory
requirements.

Modern Diesel Engines use a diesel particulate filter (DPF) as
shown in figure 1 to capture particulate matter emission with
efficiency level of more than 90%. With this type of
aftertreatment emission elimination system, DPF retains
exhaust gas particles by forcing the gas to flow through the
filter and then intermittently burn the captured particles
through either an active or a passive regeneration process. This
process prevents gradual accumulation of trapped particulate
matter inside Diesel Particulate Filter. Without the
regeneration process, the trapped particles can clog the filter
and creates back pressure in the mean exhaust stream of the
engine resulting in a loss of engine efficiency. The back
pressure of the engine exerts more loads on pistons, produces
more emission, results in higher temperature which can lead to
DPF structural failure, and increases fuel consumption.

Hence an accurate estimation of soot load is needed in order
to establish the optimal operation of the DPF regenerative
process where injected fuel timing plays a major role. This
would have positive impact on the DPF life span.
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Figure 1: Schematic of a Diesel Particulate Filter [3].

Traditionally estimation of the accumulated soot load inside
DPF largely relied on a differential pressure measurement.
However, this method has a major drawback with relatively
poor accuracy of soot estimation (£50% from the true soot
load) [3], specifically at a lower exhaust volumetric flows, and
due to the pulsating airflow of engine exhaust gas, which lead
to significant irregularities in determining the soot load. Such
inaccuracies has direct effect on the efficiency of the
regeneration process to purge the restrictive soot load. Since it
depends on diesel fuel injection, this affects the optimum
operation of the active regeneration process. It has been shown
that fuel penalty caused by regeneration could be in the range
of (2.2% to 5.3 %) which is more than fuel penalty due to
backpressure (1.5% to 2.0 %) [1]. As a result, it is necessary
to improve the accuracy of soot load estimation and to
accurately determine the regeneration timing.

Electrical capacitance tomography (ECT) has been developed
and used since late 1980s for visualization and measurement
of a permittivity distribution in a cross section of a pipe
carrying fluid using a multi-electrode capacitance sensor [4].
In the past several years there have been a lot of focus on
addressing the issue with the measurement of accumulated
particular matter inside the DPF, one effective approach is the
Electrical Capacitance Tomography using a multi-electrode
capacitance sensor to estimate the soot load. This method
utilizes the measurement of the soot load  permittivity
distribution across-section of a DPF using a multi-electrode
capacitance sensor. In this paper, a novel approach to estimate
DPF’s soot load based on its ECT reconstructed image’s
(pixel) gray-level value is presented. This is done by
developing a novel inverse back procejection algorithm that
takes into account the proportional relationship between the
dielectric soot load filled inside the DPF and the permitivity
values calculated using the measured electrical capacitances.

2. ELECTRICAL CAPACITANCE TOMOGRAPHY
(ECT) BACKGROUND

Electrical capacitance tomography (ECT) was first
introduced in the early 1980s [5]-[7]. It is a method used to
determine the spatial permittivity distribution for a region of
interest. It is based on the measuring the capacitances between
electrodes on the exterior of the region [8].

ECT sensor is widely used in process control for monitoring
and control the quality of an industrial process. It is used as
one of non-destructive testing methods with potential
applications in the measurement of flow of fluids in pipes [9].
It has been adopted in the industry in wide range of
applications such as fluid flow monitoring and other industrial
applications, however there are some challenges regarding
ECT such as low accuracy of its reconstructed images as
compared to other methods that are commonly used in image
reconstruction [10]. On other hand, capacitive sensors are very
convenient because they only consist of electrodes and are
sensitive to the electrical properties of materials and their
distribution. Moreover, they can work at low frequencies with
low power consumption [11].

2.1 ECT Model Design

A basic ECT system normally consists of a capacitance sensor,
a measurement unit of capacitance and a computer system for
image reconstruction process as shown in figure 2. For a set of
n electrodes around the required imaging region, the total

number of  independent combination of capacitance

(n-1)

. n . .
measurements is —— used for image reconstruction.

3D ECT system diagram and components.

Figure 2: ECT sensor diagram [12].

The sensor is made up of n electrodes mounted on the
perimeter of the imaging area. To eliminate external unwanted
capacitance known as stray capacitance effects, the electrodes
are externally shielded [13]. All independent mutual
capacitance measurements are measured between sender
electrodes connected to the source signal, and the other
receiver electrodes where connected to the ground. Figure 3
shows an ECT sensor with n numbers of electrodes.

Capacitance
Electrodes

R

Cylindrical
Sensor Body

-

Figure 3: Diagram of a typical ECT sensor.
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The capacitance between two pairs of electrodes, i.e. a source
electrode and a detector electrode, is obtained through
equation (1).

Oi=cV Q)

where Q; is the charge quantity on electrode i,
¢;; represents mutual capacitance between electrodes i and j,
and V;is the voltage applied to electrode j.

2.2 Direct Techniques to Generate Sensitivity Matrix

Direct technique is used to generate sensitivity matrix model
by measuring the response of capacitance for permittivity
perturbations. The basic idea relies on the assumption that the
sensitivity is independent of permittivity distribution. The
matrix is formed by measuring the capacitances for each a pair
of electrodes and constructing array of independent
combination of electrodes measurement of high electrical
permittivity in the imaging area of interest. Using high and low
permittivity material, measurements can be normalized
accordingly, as shown in equation (2) [12]:

Ci(N)—=C;(emp)

SiN) = C;(full)—C;(emp) @)
where S;(N) is the sensitivity matrix element [S]
C;(N) is the measured capacitance.
C;(emp) the capacitance measurement when the sensor is
filled with low permittivity.
C;(full) the capacitance measurement when the sensor is filled
with high permittivity.

2.3 Image Reconstruction using Linear Back Projection

Linear back projection (LBP) was used to process ECT image
reconstruction. In LBP, a multidimensional inverse problem
needs to be solved. It has the advantage of dynamic and
flexible process with good capability of image reconstruction,
and it can be expressed as a function of sensitivity matrix as in
equation (3) [12]:

[CI=I8]- [K] 3

[C]=M. X 1 normalized electrode matrix.
To determine the permittivity distribution matrix from the

measured capacitance vector, a solution for equation (3)
should be obtained.

Let us consider a reconstructed square grid image of N pixels,
generated by Linear Back Projection (LBP) algorithm, with
known permittivity distribution matrix [S]. From the basic of
forward problem algorithm in (3) and the inverse transform Q
in (4), an approximation of LBP method uses the transpose of
[S]in (3), to have an pseudo-inverse matrix of the dimensions
(N x M) that can be used in (5) where [S]T assumed to be equal

to [Q].
[K]=[Q]. [C] “

[K]=[S]". [C] (6))

[C] =M X 1 matrix containing the normalized electrode-pair
capacitances Cy (in the nominal range 0 to 1).

[K] = N X 1 matrix containing the normalized pixel
permittivity’s (in the nominal range 0 to 1) N is the number of
pixels representing the sensor cross-section [1]

[S]=M X N matrix containing the set of sensitivity matrices
for each electrode-pair.

3. SIMULATION RESULTS

As the sensitivity matrix forms a basis set from which image
vectors can be obtained. Basically, each row of [S] represents
the response of the sensor system to a small individual
permittivity pixel in a uniform background [13] using direct
techniques equation (2) and having normalized capacitance
data, a sensitivity matrix has been built.

Table 1: Sensitivity Matrix

0.000 0.000  0.000 0.000 0.000 0.000
0.018 0.039 0.058 0.045 0.040 0.044
0.037 0.078 0.116 0.089 0.079 0.087
0.203 0.254 0.237 0.134 0.101 0.114
0.257 0.321 0.251 0.265 0.210 0.197
0.257 0315 0.319 0.286 0.283 0.303
0.257 0.308 0.388 0.307 0.355 0.409
0.290 0326 0419 0414 0.521 0.452
0.322 0343 0450 0.520 0.686 0.495
0.487 0376 0475 0.611 0.714 0.541
0.651 0.409 0.500 0.703 0.742 0.587
0.946 0.579 0.542  0.750 0.752  0.600
0.953 0.605 0.545 0.753 0.754 0.613
0.963 0.620 0.559 0.770 0.759 0.614
0.980 0.681 0.608 0.832 0.813 0.687
1.000 1.000 1.000 1.000 1.000 1.000

Table 2: Capacitance (V) measurements for different soot
mass (grams)

A-B A-C A-D B-C B-D C-D
0 3.63 371 3.68 375 379 3.68
9.35  3.60 3.67 3.61 370 374 3.64
18.7 3.58 3,62 354 364 369 3.59
374 334 343 338 359 3.66 3.57
56.3 327 335 337 343 353 349
65.8 3.27 336 328 340 344 338
84.8 327 337 319 337 335 328
942 322 335 315 324 314 324
112 3.17 333 311 311 293 3.19
132 294 329 3.08 3.00 290 3.15
151 2.71 325 3.05 288 286 3.10
172 2.30 307 3.00 282 285 3.09
192 2.29 304 299 282 285 3.08
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210 2.27 302 298 280 284 3.08 112.6 gram fill DPF
220 225 295 291 272 278 3.01
232 222 260 242 251 254 270
FULL 2.22 260 242 251 254 270
EMPTY | 3.63 371 3.68 375 3.79 3.68

Once normalized capacitances are obtained [C], a numerical
simulation using MATLAB software was used to generate
pixel gray-level matrix [K] digital image for all given
experimental soot load capacitance measurements. Figures 4,
5, and 6 show the ECT images for soot masses of 172.2, 56.6,
and 112.6 grams respectively.

Figure 6: ECT image for a soot mass of 112.6 grams.

4. SOOT MASS ESTIMATION

From the capacitance measurements obtained from
inter-electrode data, we can observe the direct relationship
between capacitance and material deposited inside the DPF
exhibits an inverse relationship. However, the direct
contributions of pixels (gray-level) are assumed to be
proportional to the actual soot load deposited (W) at the time
capacitances were measured.
From linear back projection (LBP) algorithm, each of
sensitivity matrix multiplied by its corresponding sensor
reading to construct the digital image.
It has been observed from the experimental that, change in
material deposited (W4) in sensor results in variations in the
sensor measured capacitance.

Figure 4: ECT image for a soot mass of 172.2 grams.

From the experimental data in table 3, a proportional
relationship explicitly has been established between sensitivity
matrix and actual weight. These results are plotted as shown
in figure 7 and represented in polynomial curve from the 6
degree :

y = a;x® + ax® + azx* + a,x® + agx? + agx + a (7)

Where y represents estimated soot mass weight, x is the gray
level value.

Using curve fitting tools in excel a4, a, as,ay,
as, and ag can be located respectively as below:

a; =-1.05E-13, a, = 1.68761E — 10
Figure 5: ECT image for a soot mass of 56.6 grams.

as, = —9.85783EF — 08, , a, = 2.5877E — 05

as =-0.002829359, aes = 0.401355946
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The difference between actual and estimated weight (Error) is

Estimated Weight

given by:
y = -5E-14x° + 8E-11x° - 4E-08x* + 1E-05x3 -
300 0.0011x? + 0:3312x Error = (Wg - Wa) /Wa
250 =(186.35-172.2)/172.2
200 ° =8.22%
® Table 3: All estimated weights using nonlinear
150 polynomial equation.
100 Act'ual Gray-Level  Estimated  Errorl
Weight Value Soot Mass %
5 0.00 0.000 0.00 0.00
9.35 30.241 9.18 -1.80
0 18.70 60.481 17.87 -4.44
0.000 200.000 400.000 600.000 800.000 37.40 126.032 37.95 1.46
Figure 7: Estimated Weight Polynomial Curve 56.30 180.111 56.28 -0.03
6580  213.169 67.87 3.15
y = -5BE-14x° + 8E-11x° - 4E-08x* + 1E-05x> - 0.0011x> + 84.80 246227 79.49 626
0.3312x. (®) 93.80  293.962 96.24 2.60
An estimated weight y can be obtained from the polynomial 112.60 341.697 1354 0.83
equation by substituting gray-level value in x at equation right 132.00 384.331 130.53 -1.10
hand as shown in table 3, this direct relationship between gray- 151.90 426.964 150.35 -1.02
level value [K] and actual weight [W] deposited inside the 172.20 489.369 186.35 8.22
DPF can be concluded from equation (5), 191.60 495.969 190.67 -0.49
21050  503.527 195.71 -7.03
where  Coc XK. 22050 542391 22293 0
232.00  720.000 231.81 -0.08

An example calculation of the estimated soot weight is shown
below. Tables 1-2 show actual weight and sensitivity matrix
data, where weight sample of 172.2 gram can be expressed as:

Actual and Estimated Soot
[Ki722] =[S]. [Ci722]

Weight
Where 550
[Ki722] is gray -level value of 172.2 gram pixel matrix.
[S]' is transpose of Sensitivity Matrix ( Table 1). £ 200
[Ci72.2] is normalized 172.2 gram victor. g;
E‘ 150
[Ki722] = '§ 100
3073 2975 2975 29.75 3 50
29.75 31.16 3090 31.17 0

29.75 3090 31.68 30.82 123456 7 8 910111213141516

30.73  31.17 30.82 30.55 _ ,
=@==Actual Weight  ==@==Estimated Soot Mass

2 K172‘2 = 489.369
Substitute £ K72 for x in equation (8). Figure 8: Actual soot mass vs Estimated soot mass.

Estimated weight y = 186.35 gram.
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Figure 9: Soot mass estimation accuracy
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Figure 10: Soot mass comparison with gray level data.

Table 3 shows the estimated soot masses computed using
equation (8). It also shows the percentage error based on the
actual soot mass for the given tomographic image. Figure 8
shows the estimated vs actual soot masses which is a close
match. Figure 9 plots the percentage error for each of the soot
mass points. Higher than normal percentage errors was
observed at three data points 7%, 12", and 14" which can be
attributed to the low voltage and weight measurement
accuracies during the experiment. Estimated soot mass error
averages around 5% of the average of the actual soot mass in
the DPF for the given tomographic images. Figures 10 show
the actual vs. estimated soot mass as a function of the Gray-
Level values. This also show a close match between the
estimated and actual soot load.

CONCLUSION

The sensitivity matrix for an ECT image forms a basis set from
which image pixel data can be obtained via simulation. In this
paper, an approach is presented to estimate the soot mass in a
Diesel Particulate Filter from an ECT image utilizing its
permittivity (capacitance) data. The proposed approach was
evaluated for its accuracy against actual soot mass and its
corresponding tomographic images. The results obtained by
combining the pixel value with soot load physical properties
(weight) and permittivity parameters (capacitance) through
nonlinear relationship showed reasonable accuracy in
estimating the actual soot mass.
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