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Orientational phase behavior of polymer-grafted
nanocubes†

Brian Hyun-jong Lee and Gaurav Arya *

Surface functionalization of nanoparticles with polymer grafts was recently shown to be a viable strategy

for controlling the relative orientation of shaped nanoparticles in their higher-order assemblies. In this

study, we investigated in silico the orientational phase behavior of coplanar polymer-grafted nanocubes

confined in a thin film. We first used Monte Carlo simulations to compute the two-particle interaction

free-energy landscape of the nanocubes and identify their globally stable configurations. The nanocubes

were found to exhibit four stable phases: those with edge–edge and face–face orientations, and those

exhibiting partially overlapped slanted and parallel faces previously assumed to be metastable. Moreover,

the edge–edge configuration originally thought to involve kissing edges instead displayed partly overlap-

ping edges, where the extent of the overlap depends on the attachment positions of the grafts. We next

formulated analytical scaling expressions for the free energies of the identified configurations, which were

used for constructing a comprehensive phase diagram of nanocube orientation in a multidimensional

parameter space comprising of the size and interaction strength of the nanocubes and the Kuhn length

and surface density of the grafts. The morphology of the phase diagram was shown to arise from an inter-

play between polymer- and surface-mediated interactions, especially differences in their scalings with

respect to nanocube size and grafting density across the four phases. The phase diagram provided

insights into tuning these interactions through the various parameters of the system for achieving target

configurations. Overall, this work provides a framework for predicting and engineering interparticle

configurations, with possible applications in plasmonic nanocomposites where control over particle

orientation is critical.

Introduction

Self-assembly of nanoparticles (NPs) offers an attractive
approach for bottom-up fabrication of materials in a highly
parallelized fashion over macroscopic scales. Shaped (aniso-
tropic) NPs, in particular, have the potential to expand the
horizon of material architectures achievable through assembly,
beyond close-packed structures with simple symmetries
formed by spherical particles.1 Improvements in synthesis
have allowed fabrication, and subsequent assembly explora-
tion, of a diverse set of NP shapes including ellipsoids,2,3

rods,4 stars,5 triangular prisms,6 and cubes,7 among

others.8–14 Unlike their spherical counterparts, shaped NPs
offer the unique challenge of controlling not only their transla-
tional order but also rotational order during assembly.15–18 In
general, shaped NPs exhibiting attractive interactions or sub-
jected to strong confinement tend to form close-packed
arrangements via their most prominent surfaces to maximize
enthalpic interactions or translational–rotational entropy,
respectively. However, in many applications such as separation
membranes,19,20 solid-state electrodes,21,22 and plasmonic
composites,23,24 a more open structure with control over the
relative distance and orientation between particles is desired.

Recently, we stumbled upon a simple strategy for control-
ling the orientation between faceted NPs while studying
polymer-grafted silver nanocubes undergoing assembly within
polymer thin films.16,17 The experiments found that, depend-
ing on the length of the polymer grafts, neighboring NPs in
the assembled particle aggregates exhibited edge–edge and
edge–face configurations, in addition to the face–face configur-
ation expected of bare NPs. We proposed that the grafts intro-
duce an orientation-dependent steric repulsion between the
nanocubes that competes with van der Waals (vdW) attraction
between them, which also depends on orientation, to yield
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these additional edge-mediated configurations. Using Monte
Carlo (MC) simulations of polymers grafted on surfaces, we
showed that while the closer proximity of nanocube surfaces
in the face–face configuration leads to significantly stronger
vdW attraction compared to the edge–edge configuration, the
face–face configuration also confines the polymer chains into
a much smaller volume, leading to stronger steric repulsion.
Hence, nanocubes with short grafts that are still dominated by
vdW interactions assemble into the face–face configuration
expected of bare nanocubes, while those with long grafts
where the steric repulsion becomes more dominant form
edge–edge configurations.

While this previous work demonstrated the ability to
control the relative orientations of shaped NPs based on
polymer grafting, several key questions remain open that we
seek to address in this work. First, the experiments observed a
number of nanocube configurations in addition to the ideal-
ized face–face and edge–edge orientations with full and no
overlap between faces considered in our previous simulations.
In particular, edge–face contacts as well as imperfect face–face
(with partial overlap between faces) and edge–edge contacts
(with overlapping edges) were observed. Whether these “inter-
mediate” configurations represent trapped metastable states or
stable states unexplored in simulations remains unknown.
Second, a more in-depth analysis of the factors affecting nano-
cube orientations is required. Our work so far examined only
the effect of graft length and graft–cube interactions. However,
the overall free energy of particle assembly is expected to be
governed by other parameters capable of affecting the vdW
attraction or steric repulsion between the nanocubes whose
interplay determines their assembly configurations.
Identifying all possible stable orientational configurations of
nanocubes and constructing a “phase diagram” of these con-
figurations in the multiparameter design space would help
develop approaches for controlling the assembly of nanocubes,
and other types of faceted NPs, and for reconfiguring them
from one orientation to another.

In this study, we addressed these open questions through
an approach combining simulations and analytical modeling.
In particular, we computed via MC simulations the two-par-
ticle free energy landscapes spanning all possible cube orien-
tations and separation distances for parameters found to affect
vdW and steric interactions between nanocubes. By analyzing
the global free energy minima from these energy landscapes,
we were able to identify and characterize the stable orienta-
tional phases exhibited by the nanocubes. While computing
such landscapes for every parameter combination should yield
the orientational phase diagram we seek, this procedure
entails prohibitive computational costs due to the large para-
meter space. Hence, we adopted a different route where we
analyzed the contributions of vdW and steric interactions to
the overall free energy of each orientational phase, and devel-
oped simple scaling relationships for these free energies as a
function of system parameters. These scaling relations were
then used to construct a phase diagram of nanocube orien-
tations over an extensive parameter space. In addition to pro-

viding researchers simple “design rules” for controlling nano-
cube orientations, the free energy relationships also lend new
physical insights into how different properties of the nano-
cubes and the grafts affect their configurations. Moreover, the
relationships are sufficiently simple that they can be readily
adapted to other kinds of faceted particles. Overall, the results
obtained here advance our understanding of how polymer
grafts could be used to influence the interactions and self-
assembly of shaped NPs.

Computational methods
Overview

The experimental system underpinning this work comprises of
polymer-grafted nanocubes undergoing assembly within a
planar polymer thin-film. The film is sufficiently thin to
prevent the nanocubes from translating or rotating in the z
direction normal to the film, effectively constraining their
assembly to two dimensions. At the same time, the film is
thick enough to fully encapsulate the NPs, including their
grafts. In this work, we investigated the free energy of inter-
actions between a pair of such film-encapsulated, coplanar
NPs as a function of their relative configuration, which can be
described by three geometric variables: their center-to-center
distance d and their respective orientations θ1 and θ2 within
the x–y plane (Fig. 1). The two nanocubes were treated using a
coarse-grained (CG) model that accounts for vdW interactions
between the nanocubes and the conformational flexibility of
the grafted chains. The free energy landscape F(d,θ1,θ2) was
calculated as the potential of mean force (PMF) defined as the
restricted free energy of the system subjected to the constraints
that the nanocubes are separated by a distance d and exhibit
orientations θ1 and θ2:

Fðd; θ1; θ2Þ ¼ �kBT ln
ð
� � �

ð
exp �UtotðrN ; d; θ1; θ2Þ

kBT

� �
drN

� �
;

ð1Þ
where the integral represents the partition function of the grafted
chains integrated over their configurations rN described by N
Cartesian coordinates in the coordinate frames of their respective

Fig. 1 Schematic of simulation setup and coarse-grained model. Gray
squares depict the nanocubes from top view and blue spheres represent
the polymer segments. Small gray spheres shown on the left nanocube
portray the underlying atomic lattice making up the nanocubes. The
configuration of a two-nanocube system is fully described by distance d
and orientations θ1 and θ2.
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nanocubes, and Utot(r
N,d,θ1,θ2) is the total potential energy of the

system. The energy landscape was computed using MC simu-
lations, and orientational phases exhibited by the nanocubes
were then identified from the global minima of such landscapes
computed for a range of parameters.

CG model

To keep the computational costs manageable, the polymer
grafts and the nanocubes were treated at a CG resolution and
the surrounding polymer matrix was neglected (Fig. 1). Such
treatment allowed us to capture the most essential physics of
this system—the interplay between shape-dependent vdW and
steric interactions—with minimal number of parameters.
Many previous studies have demonstrated the effectiveness of
this reduced representation for modeling polymer-grafted
NPs.25–32 The nanocubes of edge length D were constructed
out of a rigid, cubic lattice of spherical atoms of size σcc. The
polymer grafts were modeled as bead-chains of length L
(beads), where each bead represents a polymer segment of size
σpol (equal to σpp as defined below). The grafts were attached to
the faces of the nanocubes in a square pattern with a spacing
consistent with the grafting density Γ.

The total potential energy Utot of the system included con-
tributions from cube–cube vdW interactions Ucc, polymer–
cube interactions Upc, polymer–polymer intermolecular inter-
actions Upp, and polymer intramolecular interactions Uintra as
given by

U tot ¼ Ucc þ Upc þ Upp þ U intra: ð2Þ
Ucc, Upc, and Upp were all described using Lennard Jones (LJ)
potentials

Uαβ ¼
X

i[α;j[β

4εαβ
σαβ
rij

� �12

� σαβ
rij

� �6� �
; α; β ¼ p or c ð3Þ

where the summation is carried out over all interacting atoms
or beads i and j, rij is the separation distance between them,
and σαβ and εαβ are the size and energy parameters of their
respective interaction potentials. Uintra was described by har-
monic bond-stretching potentials between neighboring pairs
of beads and harmonic bond-bending potentials between
neighboring bead triplets of the grafts:

Uintra ¼
X

i[bonds

ks
2
ðli � l0Þ2 þ

X
i[angles

kθ
2
ðθi � θ0Þ2; ð4Þ

where the summation is carried out over bonds and bending
angles across all the grafted chains, li are θi are the bond
lengths and bending angles for the ith bead pairs and triplets;
l0 and θ0 are their equilibrium values; and ks and kθ are spring
constants. The grafts were also attached to the nanocubes via
harmonic springs with the parameters ks and l0.

Model parameters

Despite its simplicity, the above model still contains 13 para-
meters, all of which could potentially influence the orienta-

tional behavior of the nanocubes by affecting vdW or steric
interactions. Fortunately, several of these parameters either
have overlapping effects with other parameters or their magni-
tudes are experimentally constrained. This allowed us to
narrow down the parameter space to four most relevant para-
meters: the nanocube size D and the interatomic interaction
parameter εcc governing the strength of vdW attraction
between the nanocubes, and the segmental excluded volume
σpol and grafting density Γ of the polymer grafts expected to
affect the steric repulsion between the nanocubes. Previous
simulation studies on polymer-grafted spherical NPs have
shown that these parameters also govern the morphology of
the assembled NP aggregates.27,28,32

These four chosen parameters were varied within physically
relevant bounds, while the remaining parameters were held
fixed, also at physically reasonable values. In particular, we
examined two different nanocube sizes D = 10σ and 20σ, where
σ is an arbitrary length scale taken to be the characteristic
excluded volume of a polymer segment. If one considers σ ∼
1 nm, the typical Kuhn length of a polymer chain, the two NP
sizes would correspond to 10 and 20 nm, respectively. The
interaction strength εcc between the lattice atoms of the two
nanocubes was chosen in the range 0.25–4kBT, typical of par-
ticulate solids ranging from organic to metal crystals, such
that the attractive energy Ucc at complete face–face contact was
hundred- to thousand-fold larger than the thermal energy kBT.
The sizes σcc of these lattice atoms, which exhibit a small
experimental range, were fixed to a value of 0.4σ. For polymer
grafts, we examined chains of length L = 4 beads and segment
size σpol in the range 0.25 to 1σ attached to the nanocubes at
grafting densities Γ in the range of 0.04–0.16/σ2, corresponding
to 4 to 16 chains per face of the 10σ nanocube. Under these
conditions, the grafts exhibited largely mushroom confor-
mations, even in the most densely grafted nanocubes, and pro-
duced large enough steric repulsion to affect—but not prevent
—the assembly of nanocubes. The parameters εpp and εpc
describing polymer–polymer and polymer–surface interactions
were both set to a small value of 0.1kBT and 0.05kBT, given that
the experimental grafts were largely composed of nonpolar, ali-
phatic chains that are expected to exhibit weak interactions
amongst themselves and with the nanocubes.33 The excluded
volume size parameter for polymer–nanocube interactions was
obtained according to the Lorentz–Berthelot combining rule
σpc = (σcc + σpol)/2.

34 Lastly, the bond stretching and bending
parameters associated with the stiffness of the grafts were kept
fixed because the segment size σpol related to the Kuhn length
of the chains indirectly accounts for such stiffness effects. A
stretching constant of ks = 10kBT/σ

2 and l0 = σpol provided mod-
erate stretching rigidity to the chains, while a bending con-
stant kθ = 0.1kBT/rad

2 with θ0 = 180° yielded flexible chains.
The complete set of investigated parameters along with their
magnitudes are summarized in Table 1.

Free energy calculations

To obtain the free energy (PMF) landscape, we computed via
MC simulations the ensemble-averaged force 〈f(ξ,θ1,θ2)〉 experi-
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enced by one polymer-grafted nanocube from the other as a
function of their separation distance ξ for fixed orientations
θ1 and θ2. The PMF at distance d corresponding to these orien-
tations was then obtained by integrating the x-component of
this force (in the direction of the nanocubes’ center-to-center
axis) from ξ → ∞ to the required distance ξ = d:

Fðd; θ1; θ2Þ ¼ �
ðd
1
hfxðξ; θ1; θ2Þidξ: ð5Þ

In practice though the PMF was integrated from a finite refer-
ence distance by which point the force had decayed to zero.
The 3D landscape F(d,θ1,θ2) was obtained by repeating this cal-
culation for all possible combinations of θ1 and θ2.

The configurations of the nanocubes were discretized at a
finite resolution to explore all possible orientations and dis-
tances. The orientations were varied in 1° increments, and
degenerate configurations were avoided by setting the range of
angles to 0° ≤ θ1 ≤ 45° and θ1 ≤ θ2 ≤ 90° − θ1. This choice led
to configurations where the right-hand-side nanocube was
tilted at a greater angle than the other nanocube. For the inte-
gration carried out in eqn (5), ξ was varied from the contact
distance ξc to 20σ, where ξc is defined as the smallest possible
distance that avoided overlap between the nanocubes given by

ξc ¼ D
1þ sinðθ1 þ θ2Þ þ cos ðθ1 þ θ2Þ

2cosðθ1Þ
� �

ð6Þ

for configurations in which θ2 ≥ θ1. Since free energies were
more sensitive to changes in distance at small surface separ-
ations, ξ was changed in increments ranging from 0.1σ to 2σ
depending on its magnitude. Overall, a single free energy land-
scape required force calculations (simulations) across ∼42 000
nanocube configurations.

To sample conformations of grafted chains for each fixed
configuration (ξ,θ1,θ2), we used the efficient configurational-
bias MC method.35 In this approach, a polymer chain is ran-
domly chosen and regrown in a stepwise manner starting from
the bead attached to the nanocube. During regrowth, the posi-

tion of a bead is picked from a set of randomly generated trial
positions with a probability proportional to the Boltzmann
factor of the trial. The fully regrown chain generated in this
manner is then accepted or rejected according to Rosenbluth
weights of the regrown and original chain conformation; these
weights account for the bias introduced by the non-random
process of generating chain conformations. This procedure
was repeated up to 4 million steps to yield a reasonably-
sized ensemble of Boltzmann-distributed conformations for
obtaining accurate estimates of 〈fx(ξ,θ1,θ2)〉. A detailed descrip-
tion of this approach and its implementation is given
elsewhere.35,36

Free energy decomposition

For efficient calculation of the energy landscape, the net force
fx experienced by the nanocubes can be broken down into
cube- and polymer-mediated portions. The former portion,
denoted by fx,cc, remains constant during each simulation
carried out at fixed configuration. Hence, even though this
force calculation is computationally intensive due to the large
number of interatomic force evaluations across the nanocubes,
it needs to be carried out only once for each configuration.
The fixed configuration also implies zero entropic contribution
from this force, and therefore the free energy contributed by
fx,cc is simply equal to the potential energy Ucc of cube–cube
interactions. While the force fx,pp arising from polymer–
polymer interactions was computed on the fly during the
simulation, the force fx,pc arising from polymer–cube inter-
actions required a prohibitive number of calculations due to
the large number of atoms comprising each nanocube.
Therefore, we pre-calculated and stored the values of the ener-
gies and forces experienced by a “test” polymer bead at dis-
crete grid points around a nanocube, and used linear interp-
olation to obtain the energies and forces experienced by
polymer grafts at their actual positions during the simulation.
The overall free energy F was then obtained as Fcc + Fpp + Fpc,
where the three terms represent contributions from cube–
cube, polymer–cube and polymer–polymer interactions
obtained via

Fccðd; θ1; θ2Þ ¼ Uccðd; θ1; θ2Þ ð7Þ

Fppðd; θ1; θ2Þ ¼ �
ðd
1
h fx;ppðξ; θ1; θ2Þidξ ð8Þ

Fpcðd; θ1; θ2Þ ¼ �
ðd
1
h fx;pcðξ; θ1; θ2Þidξ ð9Þ

Such dissection of free energy also provided insights into
the role of each kind of interaction in governing the eventual
stable configuration of the nanocubes. The overall free energy
and its polymer-mediated portions can also be decomposed
further into entropic and energetic contributions by comput-
ing the ensemble-averaged potential energies U, Upc, and Upp.
The difference between these potential energies and their
corresponding free energies F, Fpc, and Fpp then yields the
entropic contributions TΔS, TΔSpc, and TΔSpp.

Table 1 Model parameters explored in simulations

Symbol Description Value

D Edge length of a nanocube 10σ, 20σ
L Number of beads per polymer graft 4
Γ Grafting density 0.04–0.16/σ2

εcc Energy parameter for cube–cube interactions 0.25–4.0kBT
εpc Energy parameter for polymer–cube interactions 0.05kBT
εpp Energy parameter for polymer–polymer

interactions
0.1kBT

σcc Size parameter for cube atoms 0.4σ
σpol Size parameter for polymer beads 0.25–1.0σ
ks Spring constant of the harmonic stretching

potential
10kBT/σ

kθ Bending constant of the harmonic bending
potential

0.1kBT/rad
2

l0 Equilibrium bond length between adjacent
graft beads

1σpol

θ0 Equilibrium bending angle between
adjacent bonds

180°
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Results
Orientational phases identified from simulations

One of the goals of this study is to uncover all possible orienta-
tional phases exhibited by a pair of polymer-grafted nano-
cubes. To this end, we computed their free energy landscape
F(d,θ1,θ2) at various points across the parameter space. To
ensure that no phase was missed, we explored as many
different parameters and as many different combinations of
parameter values as was computationally feasible. Specifically,
we examined nanocube systems of different sizes D, vdW inter-
action strengths εcc, polymer segment excluded volumes (Kuhn
lengths) σpol, and grafting densities Γ as reported in Table 1.
Fig. 2a showcases one such energy landscape computed for a
representative set of parameters. To identify orientational
phases, we determined from each such landscape the global
minimum denoting the most stable nanocube configuration.

The complete set of globally stable configurations, identi-
fied from all the computed landscapes for the D = 10σ nano-
cubes, is presented in a d–θ1–θ2 plot in Fig. 2b. Note that the
number of data points in the plot appear to be much fewer
that the 960 different systems (landscapes) investigated. The
reason is that many of these identified configurations possess
the same d, θ1, and θ2 values to within the finite resolution of
the landscape (Δd = 0.2σ, Δθ1 = Δθ2 = 1°). We therefore also
provide in the plot the populations (when greater than 20) of

systems yielding each visible data point. The plot reveals
several highly populated configurations. The most populated
configuration, and also the most isolated in terms of location,
resides at θ1 ≈ θ2 ≈ 0 and d ≈ D. This configuration clearly
corresponds to two nanocubes juxtaposed face to face, which
we termed the face–face or FF phase in our earlier work. The
next most populated configuration resides at θ1 ≈ 37°, θ2 ≈
38°, and d ≈ 12.6σ, though this configuration does not appear
to be as isolated given the presence of many less populated
configurations in its vicinity. These configurations appear
decidedly less tilted and more compact than the pure edge–
edge or EE phase with θ1 = θ2 = 45°, and d � 14:1σ ¼ ffiffiffi

2
p

D
	 


considered in our earlier work.16 Besides these two highly
populated configurations, there also exist a spectrum of less
populated configurations located on and off the θ1 = θ2 line
symbolizing parallel faces.

Closer inspection of the identified configurations revealed
that they can be more effectively categorized based on the
fraction of grafts confined between the interacting faces of the
nanocubes, as illustrated by their representative snapshots
shown in Fig. 2c. In the FF phase, representing the most popu-
lated configuration discussed above (colored blue in Fig. 2c),
all of the grafts are enclosed by the interacting faces of the
nanocubes. The two faces are fully overlapped, oriented paral-
lel to each other, and separated by a narrow gap just wide
enough to accommodate a monolayer of polymer segments.

Fig. 2 Orientational phases predicted from simulations. (a) Free energy landscape F(d, θ1, θ2) along with several of its cross-sections shown for one
representative set of parameters (D = 10, εcc = 2kBT, Γ = 0.16/σ2, σpol = 0.5σ). This specific nanocube system exhibits a global minimum at d ≈ 10.4σ
and θ1 ≈ θ2 ≈ 0. (b) Global free-energy minimum configurations for D = 10σ nanocubes identified from 960 such landscapes corresponding to
different combinations of εcc, Γ, and σpol. Configurations are color-coded according to their phase assignment, and populations of configurations
greater than 20 are specified within parenthesis. (c) Representative snapshots of the four observed orientational phases: FF, Ik, I/, and EE.
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The next most populated configuration, along with several of
its neighboring configurations (colored red), also display paral-
lel interacting faces, though their overlap is restricted to small
portions near their edges. In fact, the faces exhibit the
maximum possible overlap without enclosing any polymer seg-
ments in between them. Due to the close similarity between
these configurations and the idealized edge-to-edge geometry
with no overlap, we still call this set of slightly overlapping con-
figurations as the EE phase. Note that because the degree of
overlap depends on parameters such as the grafting density Γ

(which determines the attachment positions of grafts) and the
segmental excluded volume σpol, the EE phase displays some
spread in the d–θ1–θ2 space. The rest of the configurations then
represent nanocubes with a fraction of grafted chains enclosed
in between the interacting faces. These intermediate configur-
ations were further classified into two phases based on the rela-
tive orientation of the interacting faces. Configurations with par-
allel faces were termed as the parallel intermediate phase Ik
(colored purple), while those with slanted faces were termed the
slanted intermediate phase I| (colored green). The above results
thus significantly depart from the idealized notions of the FF
and EE phases being the only two stable orientations exhibited
by polymer-grafted nanocubes and of the EE phase involving
touching edges with no overlap.16,17,37

Orientational phase diagram predicted by simulations

The relationship between the identified phases and the para-
meters explored here can be better visualized and understood
through a phase diagram. However, a phase diagram con-
structed directly from the putative minimum-free-energy
(MFE) configurations presented in Fig. 2b may lead to inac-
curacies. Each of these configurations were identified from a
discrete free energy landscape computed over a coarse 3D grid
of 0.2σ × 1° × 1° spacing. While this resolution was adequate
for surveying the possible set of stable nanocube configur-
ations and categorizing them into distinct phases, the resolu-
tion is too coarse to accurately pinpoint the true location of
the global minimum for a given parameter set. The reason is
that both vdW and steric interactions vary sharply with the sep-
aration distance between nanocubes at close range (Fig. S1†).
Hence, the free energy of the nanocubes is very sensitive to
small changes in their configuration near the global
minimum, which typically involves interacting surfaces at
close proximity. Consequently, phase diagrams constructed
from configurations identified thus far may lead to underesti-
mation of the stability (free energy) of the identified globally
stable phase, and in some cases, assignment of an incorrect
phase as the globally stable phase. This issue of accuracy could
be resolved by using a finer grid, but it would entail prohibitive
computational costs. For instance, the landscape was calcu-
lated over 42 000 grid points, and using a 5-fold finer grid
along each dimension would increase the number of grid
points by a factor of ∼125. Using a finer grid locally around the
identified phase also will not address the problem for cases
where a different phase carries the true global minimum. To
this end, we used a distinct strategy that takes advantage of

certain observed geometric characteristics of each phase to
substantially narrow down the configurational search space
required for locating the MFE configuration within each of the
four phases. We refer to this reduced set of configurations
specific to each phase as “representative configurations”.

Representative configurations. Our strategy to obtaining
phase diagrams involves reduction of the 3D free-energy land-
scape F(d,θ1,θ2) to effectively a 1D free energy landscape FP(x)
along a judiciously chosen coordinate x unique to each phase
P = FF, Ik, I|, or EE. In this manner, the 3D search for the
global minimum across grid points is reduced to 1D line
search across the coordinate x for each phase. This enabled us
to more accurately identify the true globally stable phase for
constructing our phase diagram and also obtain more accurate
free energy values of each phase.

Starting with the FF phase, the nanocubes were found to
exhibit fully overlapping, parallel faces with θ1 = θ2 = 0°.
Furthermore, the interacting faces exhibited the smallest poss-
ible separation without excessively squeezing the confined
monolayer of graft segments. In this manner, the nanocubes
maximized their vdW interactions while avoiding excessive
steric repulsion from the confined grafts. Based on these
characteristics, the MFE configuration of the FF phase was
efficiently obtained by restricting the computation of free ener-
gies along a coordinate x = ds ≡ d − D + σcc representing the
surface-to-surface separation distance between the interacting
nanocube faces, while fixing θ1 and θ2 to 0° (Fig. 3a), and then
locating the global minimum of the resulting free energy
profile FFF(ds).

The EE phase was characterized by parallel, partly over-
lapping faces close to their edges that are devoid of grafts. To
maximize vdW interactions, these “bare” portions overlap to
the maximum extent possible in the lateral direction until they
press against the first row of grafted segments and maintain
surface contact with each other in the normal direction

Fig. 3 Representative configurations of the (a) FF, (b) EE, (c) Ik, (d) I/
phases. The left nanocube was held fixed, and the right nanocube was
held fixed (EE), translated (FF and Ik) or rotated (I/) as indicated by the red
arrows. White asterix represent the graft position on the left nanocube
under which the leading edge of the right nanocube rests.
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(Fig. 3b). Based on the EE configurations identified in Fig. 2b,
we observed that the edges tend to overlap to a distance dexc ≈
0.3σ below the attachment point of the first line of grafts, i.e.,
doverlap � 0:5=

ffiffiffiffi
Γ

p � dexc (marked by an asterix in the figure).
The MFE configuration of the EE phase was thus obtained
directly (without any energy minimization) as the configuration
exhibiting θ1 = θ2, contacting surfaces in the normal direction,
and lateral overlap of doverlap. The associated value of the free
energy was denoted by FEE.

Lastly, the phases Ik and I| were both characterized by partly
overlapping faces that enclose a fraction of the polymer grafts.
The former displayed slightly separated, parallel faces to
accommodate a monolayer of grafted segments, while the
latter exhibited slanted faces with the edge of the slanted face
in complete contact with the opposite face to maximize vdW
interactions. Given that the grafts were attached in a square
pattern, the facing edges could rest under any one of the rows
of grafted segments. Hence, we use the notations Ik,n and I|,n
to denote phases in which the edges fall under the nth row of
grafts. As in the case of the EE phase, the edges were placed at
a small distance dexc ≃ 0.3σ below the graft attachment points.
The MFE configurations of the Ik,n phases were then obtained
from the computation, and subsequent minimization, of free
energies FIk,n(ds) as a function of separation distance ds between
the interacting faces, constraining them to be parallel and
fixing their edges to distances dexc below the nth line of grafts.
The MFE configuration of the I|,n phases were obtained simi-
larly, except that the parallel-face constraint was replaced by the
contacting-edge constraint. Furthermore, since the distance
between the interacting faces is not constant due to their rela-
tive tilt, the free energies FI|,n(ds) were computed as a function of

a representative separation distance ds defined at the location of
the most confined grafted segment in between the two interact-
ing faces. This location was found to be roughly a distance of σ
below the grafted position in the identified configurations.

Phase diagram. Using the above approach we determined
the MFE configurations and associated free energies of the
FF, Ik, I|, and EE phases for various combinations of εcc, σpol, Γ,
and D values, and used the results to generate the phase
diagram. Fig. 4 presents several 2D cross-sections of the phase
diagram at different fixed values of Γ and D, revealing phase
behavior as a function of σpol and εcc, two parameters found to
most strongly affect nanocube orientations. The nanocubes
were observed to form the FF phase at large values of εcc
(strong attraction between nanocubes) and small values of σpol
(small excluded volume of graft segments), while the EE phase
is formed under the opposite conditions of small εcc and large
σpol. Sandwiched in between these two phases at intermediate
values of εcc and σpol are the I| and Ik phases, with the former
occupying most of this remaining parameter space.
Comparison of phase diagrams at three different values of the
grafting density Γ (Fig. 4a–c) reveals expansion of the I| and Ik
phases into the surrounding EE and FF phases with increasing
Γ. Interestingly, the Ik phase disappears at the smallest graft-
ing density of Γ = 0.04 (Fig. 4a). Comparison of phase
diagrams at two different nanocube sizes D (Fig. 4a and d)
revealed an equally intriguing disappearance of the I| and Ik
phases in large nanocubes (D = 20; Fig. 4d). Note that we
explored only those regions of the parameter space that lead to
assembly, that is, sufficiently large values of εcc. Smaller values
would lead to repulsive or weakly attractive free energies for all
phases, so the nanocubes would prefer to remain dispersed.

Fig. 4 Orientational phase diagram obtained from simulations. Cross-sections of the phase diagram along σpol and εcc at fixed values of (a) D = 10σ,
Γ = 0.04/σ2, (b) D = 10σ, Γ = 0.09/σ2, (c) D = 10σ, Γ = 0.16/σ2, and (d) D = 20σ, Γ = 0.04/σ2.
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The phase behavior observed here must arise from an inter-
play between attractive vdW interactions across the nanocubes
and repulsive steric interactions from the grafted chains
squeezed in between the nanocubes. vdW interactions alone
would cause the nanocubes to assemble into the FF phase with
contacting faces, and so steric repulsion must be responsible
for the tilting and/or sliding of the nanocubes relative to each
other required to form the Ik, I|, and EE phases. To investigate
this interplay, we examined the free energy FP and its contri-
butions FPcc and FPpol ≡ FPpp + FPpc arising from vdW and steric
interactions for nanocubes yielding distinct phases. We chose
three different nanocube systems, denoted by “N1”, “N2”, and
“N3” in Fig. 4c, which differ in σpol and εcc and yield the FF, I|,
and EE phases, respectively. We then compared the free ener-
gies of the three systems exhibiting representative configur-
ations of the FF, I|, and EE phases, noting that only one of them
represents the globally stable phase of each system.

Fig. 5a–c presents a comparison of the free energies FFF(ds),
FI|(ds), and FEE, of the three phases, and of their vdW contri-
butions FFFcc (ds), F

I=
ccðdsÞ, FEEcc and steric contributions FFFpol(ds),

F
I=
polðdsÞ, and FEEpol, respectively. As expected, the two free energy

contributions are of opposite sign with FPcc< 0 and FPpol > 0, and
the overall free energies FP of the three nanocubes at the
energy minimum are indeed the lowest (most favorable) for
the configuration representing their stable phase, i.e., FF, I|,
and EE for N1, N2, and N3. Furthermore, the magnitudes of FPcc
and FPpol decrease in the order FF > I| > EE, trends that easily
explained by the representative snapshots of nanocube phases
shown in Fig. 2c: FPcc is expected to correlate with the surface
area of the nanocube faces in close proximity to each other
(due to the sharp decay of vdW interactions with distance),
and the amount of overlap between the interacting faces
indeed decreases in the same sequence for the three phases as
the computed FPcc; in similar vein, FPpol should correlate with
the number of graft segments confined between the interact-

ing faces, and the number of such confined chains decreasing
in the same sequence for the three phases as FPpol.

We next turn to differences in the strengths of vdW and
steric interactions across N1, N2, and N3 to explain how this
interplay between the two interactions yields distinct phases
for the three systems (Fig. 5). For N1 with small σpol = 0.5σ
(Fig. 5a), the FF configuration exhibits the strongest steric
repulsion FPpol as well as the strongest vdW attraction FPcc
amongst the three configurations. However, due to the small
excluded volume of the grafted polymer segments, the steric
interactions are weak compared to vdW interactions for all
configurations. Therefore, in this “surface interactions-domi-
nated” regime, the FF configuration with the strongest vdW
interactions ends up yielding the deepest minimum in the
overall free energy profiles FP amongst the three configur-
ations. In other words, the weak steric repulsion here allows
the two nanocubes to come into closer proximity (ds ≈ 0.4σ),
allowing them to avail of the strong vdW interactions provided
by the FF configuration. This situation is reversed for N3 with
large σpol = 0.75σ and small εcc = 1kBT (Fig. 5c), where the large
excluded volume of the graft segments leads to strong steric
repulsion for all configurations, except the EE configuration
which does not confine any polymer chains in between its con-
tacting faces. Hence, in this “polymer interactions-dominated”
regime, the EE configuration which does not contain any con-
fined grafts and exhibits negligible steric repulsion ends up
exhibiting the most favorable overall free energy. In fact, the
strong steric repulsion pushes the FF and I| nanocubes apart
to separations where the vdW interactions become even
weaker than that of the EE configuration. Finally, for N2 pos-
sessing grafts with large σpol = 0.75σ and large εcc = 3kBT
(Fig. 5b), vdW and steric interactions are more or less equally
strong (except for the EE configuration where steric repulsion
remains weak). In this intermediate regime, the I| configur-
ation yields the lowest interaction free energy of the three con-

Fig. 5 Role of vdW and steric interactions in governing orientational phase behavior. Free energy contributions from vdW attraction (dash-dotted
lines) and steric repulsion (dashed lines) to the overall free energy (solid lines) plotted as a function of surface separation distance ds for the
FF (blue), I/ (green), and EE (red) representative configurations. The free energies are plotted for the three nanocube systems labelled N1, N2, and
N3 in Fig. 4c of same size and grafting density (D = 10σ, Γ = 0.16/σ2) but different polymer excluded volumes and/or nanocube attraction strengths:
(a) σpol = 0.5σ and εcc = 3kBT (N1), (b) σpol = 0.75σ and εcc = 3kBT (N2), and (c) σpol = 0.75σ and εcc = 1kBT (N3).
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figurations, providing a compromise between the FF configur-
ation, which yields strong vdW interactions but still suffers
from strong steric repulsion, and the EE phase, which consist-
ently yields weak steric repulsion and weak vdW interactions.

The above analysis illustrates how the interplay between
vdW and steric interactions yields the observed sequence of FF,
I|, and EE phases with increasing σpol and decreasing εcc in
Fig. 4. In particular, increasing the magnitude of σpol, which
controls the strength of polymer-mediated steric interactions
between the nanocubes, causes them to go from a surface
interactions-dominated regime, where phases that maximize
vdW interactions are preferred, to a polymer interactions-domi-
nated regime, where phases that minimize steric interactions
are preferred. The same argument can be used to explain the
opposite sequence of phases (EE to I| to FF) observed upon
increasing εcc. This parameter controls the strength of vdW
interactions between the nanocubes, and an increase in the
magnitude of εcc should cause the system to go from a regime
dominated by polymer interactions to a regime dominated by
surface interactions, the opposite of what is observed with
increasing σpol. However, these simple reasonings are unable to
explain the observed broadening of the I| phase with increasing
grafting density Γ, the small size and location of the Ik phase, or
the complete disappearance of both I| and Ik with increasing
size of the nanocubes. These effects will be explained with the
scaling expressions developed below.

Free-energy scaling relations

We next formulated analytical expressions for the free energy
profiles FFF(ds), F

Ik(ds), F
I|(ds), and FEE computed earlier from

simulations for each phase for different values of parameters
D, εcc, σpol, and Γ. The motivation for developing such an
analytical framework was three-fold: to provide new and
deeper insights into the morphology of the orientational phase
diagrams shown in Fig. 4; to allow interpolation and extrapol-
ation of free energies to a wider range of conditions than
explored by simulations for generating a more complete phase
diagram; and to provide researchers a more rapid and accessible
means to predicting phase diagrams that does not involve per-
forming costly simulations. In the following sections, we
develop analytical scaling relationships for the free energy con-
tributions FPcc, FPpp, and FPpc arising from vdW, polymer–cube,
and polymer–polymer interactions, whose summation should
then yield the overall free energy profiles FP we seek.

vdW interactions. The free-energy contribution FPcc from
vdW interactions is expected to vary not only with separation
distance ds, size D, and energy parameter εcc, but also grafting
density Γ, which determines the amount of overlap between
the nanocube faces in the Ik, I|, and EE phases. While FPcc
clearly scales linearly with εcc, its dependence on the remain-
ing parameters is not so obvious. To obtain these other depen-
dencies, we analyzed the variation of FPcc with distance ds for
different values of D and Γ, noting that the distance depen-
dence only applies to the FF, Ik, I| phases, and not the EE
phase where the MFE configuration is already known to be the
contact distance. The vdW energies were computed by

summing the LJ interactions (with εcc = 1kBT ) across all pairs
of atoms comprising the two nanocubes.

Fig. 6 presents representative plots showing the depen-
dence of FPcc on ds for the four phases and the variation of
these FPcc(ds) profiles with size D for one of the phases (FF);
additional plots showing dependence on Γ and D are provided
in Fig. S1.† Since nanocubes exhibit short separation distances
at the MFE configuration in each phase (see Fig. 2 and 5), the
vdW energies need to be plotted over only small distances ds.
Importantly, this allows us to obtain simple and accurate
power-law scaling relationships between FPcc and ds that only
need to be valid over this short range of relevant distances. We
found that the computed vdW energies could be well described
by the following scaling relationship:

FP
cc ¼ �cεccDαds�β; ð10Þ

where α > 0 is a scaling exponent that accounts for the increase
in vdW energy with size D; β > 0 is another scaling exponent
that accounts for the decay in the strength of vdW forces with
distance ds; and c is a coefficient that captures the dependence

Fig. 6 vdW interaction energy FPcc as a function of surface separation
distance ds. Results are plotted for (a) FF phase for nanocubes of sizes
D = 10, 14.8, and 20σ; and (b) all phases of D = 10σ nanocubes with Γ =
0.16/σ2. Solid lines (and symbols) represent computed values and
dashed lines are fits to this data using a power-law. FEEcc is plotted as a
fixed value corresponding to contact distance.
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on grafting density and also provides quantitative agreement
with computed interaction energy. The obtained values of α, β,
and c are summarized in Table 2.

The tabulated values reveal similar size and distance scal-
ings, albeit with different coefficients, for the FF, Ik and EE
phases exhibiting parallel nanocubes. First, FPcc scales as D2 for
these phases, which may be explained as follows. At the small
separation distances ds of interest in this study, most lattice
atoms comprising the two nanocubes interact at distances much
larger than σcc, the characteristic range of the LJ potential under-
lying vdW interactions. Hence, FPcc is dominated by local inter-
actions across lattice atoms at or close to the two facing surfaces
of the nanocubes. As a result, the size scaling is proportional to
the area of the overlapped surfaces of the two nanocubes. By
similar reasoning, F

Ik
cc and FEEcc should be smaller than FFFcc (at equi-

valent ds) by a proportionality factor γcc equal to the fraction of
overlap between the interacting surfaces of the nanocubes in the
two phases. For instance, F

Ik;2
cc for nanocubes with Γ = 0.16/σ2 exhi-

biting 59.5% overlap between their surfaces is equal to 0.595 × FFFcc
at equivalent ds. Our choice of grafting an integer number ns of
chains per side of a nanocube leads to a γcc of

γcc ¼
D� n� 0:5ffiffiffiffi

Γ
p � dexc

D
; ð11Þ

where n = 1,…ns − 1 for the Ik,n phases, and n = ns for the EE
phase. Note that FEEcc is also dependent on Γ. Second, FPcc scales
as ds

−3 for the three phases. Note however that the distance
scaling exponent for the EE phase is listed as β = 0 in Table 2
to imply that its MFE configuration has already been estab-
lished to exhibit contact distances (ds = 0). Theoretically, the
vdW interaction energy between two infinitely thin surfaces is
expected to scale as d−4 with separation distance d, whereas
that between two infinitely thick surfaces (half-planes) is
expected to scale as d−2.38 It therefore seems reasonable that
our finite-sized nanocubes, which are neither infinitely thin
nor infinitely thick, exhibit an intermediate distance scaling of
ds

−3. We emphasize at this juncture that the observed distance
scalings for all nanocube phases are meant to be approximate
and valid only for the short range of small separation dis-
tances relevant for assembly.

The scaling behavior of FPcc is vastly different for the I|
phase. First, it scaled linearly and not quadratically with D
(Fig. S1†). In this phase, one edge of the nanocube is in
contact with the face of the other nanocube. Given that lattice
atoms separated by distances much larger than σcc exhibit neg-
ligible vdW interactions, only interactions mediated by the
contacting edge of the nanocube and the lattice atoms in its
immediate vicinity contribute to F

I=
cc. Therefore, F

I=
cc scales with

the length and not the surface area of the nanocube face. In
addition, the coefficient c denoting magnitude of vdW inter-
actions was found to be affected, albeit weakly, by the position
of the contacting nanocube edge. In general, the magnitude of
c increased with increasing “projected” overlap between the
facing surfaces of the two nanocubes, and hence, c decreased
with increasing n of I|,n. Second, we observed a distance
scaling exponent β = 1.5 for the I| phase, as opposed to β = 3
observed for the remaining three phases with parallel faces.
This was because the distances between the lattice atoms were
affected differently by the changes in ds depending on their
positions. For atoms at the contacting edge, changes in ds had
no effect on their interparticle distances, and β was effectively
zero for these atoms. However, for atoms at the location used
for defining the nanocube separation distance, the distances
from the other nanocubes surfaces were equivalent to ds. For
these atoms, changes in ds had a similar effect on F

I=
cc as they

did for the other phases, and hence β ≈ 3. The combined
effect of such position-dependent scalings likely leads to the
observed scaling of β = 1.5.

The observed differences in the vdW distance scalings β

and coefficients c of the phases implies that the phase with
the strongest favorable FPcc depends on ds, as demonstrated in
Fig. 6b. When ds is small, the FF phase exhibits the strongest
vdW energy, as expected. However, because FFFcc decays more
sharply with ds than F

I=
cc, the vdW energy of the FF phase is

eventually surpassed by that of the I| phase as ds increases.
Upon further increase in ds, the vdW energy of the EE phase
surpasses that of all other phases, as nanocubes always remain
in contact in this phase.

Polymer–surface interactions. We next investigated the free-
energy contribution FPpc arising from polymer–cube inter-
actions, beginning with that of the FF phase. To this end, we
varied εpc, σpol, and Γ expected to affect this interaction and
examined the effect of each parameter on the distance-depen-
dent FFFpc (ds) profiles computed from simulations. As the
primary effect of the grafted chains is the steric hindrance they
impose through the excluded volume of their segments, the
impact of the nanocube separation distance on FFFpc could be
conveniently represented in terms of a normalized separation
distance dn given by (see Fig. S2†):

dn ¼ ds
2σpc

: ð12Þ

In addition, we found that the behavior of FFFpc could be
better modeled by decomposing it into its energetic and entro-
pic components, denoted by UFF

pc and −TΔSFFpc , and separately

Table 2 Values of coefficients and exponents of the analytical free
energy model derived in this study for the four orientational phasesa

Phase c α β nconf

FF 2.256 2 3 2ΓD2

Ik,n 2.256γcc 2 3 2ðns � nÞD ffiffiffiffi
Γ

p
I|,1, Γ = 0.04 40.49 1 1.5 2D

ffiffiffiffi
Γ

p
I|,1, Γ = 0.09 33.33 1 1.5 2D

ffiffiffiffi
Γ

p
I|,2, Γ = 0.09 30.28 1 1.5 2D

ffiffiffiffi
Γ

p
I|,1, Γ = 0.16 29.1 1 1.5 2D

ffiffiffiffi
Γ

p
I|,2, Γ = 0.16 27.69 1 1.5 2D

ffiffiffiffi
Γ

p
I|,3, Γ = 0.16 24.97 1 1.5 2D

ffiffiffiffi
Γ

p
EE γccFFFcc (contact) 2 0 0

a Ftot = −cεccDαds
−β + 15.0nconfσpc

3εpc[dn
−12 − dn

−6] + 6.52nconfdn
−2.82.
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examining their variation with the aforementioned para-
meters, which modulated the two components in very
different ways. For instance, Fig. 7a depicts FFFpc and its two
components computed for a representative system with Γ =
0.16/σ2, εpc = 0.1kBT, and σpol = 0.75σ, and it can be observed
that UFF

pc decays more strongly with dn than −TΔSFFpc .
By analyzing the variation of UFF

pc with εpc, σpol, and Γ, as
shown in Fig. 7d–f, we arrived at the following simplified
description of the potential energy:

UFF
pc

¼ 15:0nconfσpc3εpc½dn�12 � dn�6�; ð13Þ

where nconf denotes the number of confined polymer chains
given by 2ΓD2. The above expression indicates that UFF

pc is line-
arly proportional to nconf and εpc, and also scales like the LJ
potential with respect to dn. Thus, the overall potential energy
of interactions between the polymer grafts and nanocubes is
given by the sum of LJ interactions between each polymer
segment with the outermost lattice atoms of the nanocube.
Given that the ensemble-averaged potential energy exhibits the
same functional form as the underlying pair potential suggests
that other interactions such as those between the segments do
not significantly affect the effective interactions between the

polymer and the nanocube. The origin of UFF
pc ∼ σpc

3 depen-
dence is less straightforward to explain. This scaling likely
occurs from our treatment of nanocubes as a simple-cubic
lattice of LJ atoms. This results in an atomically corrugated
nanocube surface, which causes the grafted chain segments
confined in between nanocubes to experience an uneven con-
finement volume. Consequently, polymer segments with small
σpc are better able to accommodate within the cavities in
between lattice atoms to lower the interatomic LJ repulsion as
compared to large segments (see Fig. S3†).

The entropic contribution −TΔSFFpc was found to exhibit a
weak dependence on εpc, almost no dependence on σpc after
normalization, and a strong dependence on nconf, as shown on
Fig. 7b and c. The magnitude of this contribution was found
to be reasonably described by

�TΔSFFpc ¼ 6:52nconfdn�2:82 ð14Þ

where the linear dependence on nconf (as in the case of UFF
pc )

indicates additivity of entropic contributions from the con-
fined grafts, and the inverse power-law dependence on dis-
tance is consistent with the expected increase in entropy loss

Fig. 7 Polymer–nanocube interaction free energies FPpc of the FF phase as a function of normalized separation distance dn. (a) Decomposition of
free energy into potential energy and entropy contributions for nanocubes with εpc = 0.1kBT. (b and c) Dependence of the entropic contribution on
interaction parameters σpol and εpc (b), and grafting density Γ (c). (d–f ) Dependence of potential energy contribution on εpc (d), σpol (e), and Γ (f ). The
nanocube parameters were set at Γ = 0.16/σ2, σpol = 0.75σ, εpc = 0.15kBT unless otherwise specified.
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with increasing confinement, though the physical basis for the
observed −2.82 scaling exponent remains unknown.

Interestingly, eqn (13) and (14) proposed for the FF phase
also provide good approximations for the polymer–surface
interactions of the Ik, I|, and EE phases, with the only distinc-
tion being the fewer number nconf of grafted chains these
phases confine compared to the FF phase (see Table 2). This is
demonstrated and further investigated in Fig. 8. Fig. 8a depicts
the FPpc(dn) profiles computed for the Ik,n phases (n = 1, 2, and 3)
and the EE phase for nanocubes with Γ = 0.16/σ2. Clearly,
the magnitude of steric repulsion for these phases decreases
in the same order as decreasing polymer confinement: Ik,1 >
Ik,2 > Ik,3 > EE. Moreover, the ratios of FPpc for the four phases to
that of the FF phase approximately equal the ratios of the
number of chains nconf they confine. For example, nconf for the
Ik,2 phase is half of that of FF and F

Ik;2
pc � 1=2� FFF

pc ; and nconf of
the EE phase is zero and FEEpc ≈ 0. More generally, nconf is equal
to 2ðns � nÞD ffiffiffi

Γ
p

for the Ik,n phases. Fig. 8b depicting FFFpc (dn)
profiles for the I|,n phases (n = 1, 2, and 3) at the same grafting
density reveal much smaller differences across the three
phases. This is understandable given that only the closest row
of grafted chains below the contacting edge of the nanocubes
are strongly confined and contribute significantly to FPpc. The
contact position of the nanocube edge, therefore, does not sig-
nificantly impact FPpc. The FPpc for the I|,n phases should then
scale as 2D

ffiffiffi
Γ

p
, the number of grafted chains in a single row.

Indeed, FPpc profiles computed for the I|,1 phase at different
values of Γ confirms this square-root dependence on the graft-
ing density (Fig. 8c). In addition to capturing the nconf-depen-
dence for the Ik and I| phases, Fig. 8a–c also importantly
demonstrate that the model provides reasonable predictions of
the distance dependence of FPpc.

Polymer–polymer interactions. Finally, we investigated the
behavior of the free energy contribution FPpp arising from
polymer–polymer interactions. Fig. 9a shows typical behavior
with respect to distance ds for the FF phase. Unlike polymer–
surface interactions, where contributions from potential ener-

gies are significant, FFFpp is dictated almost entirely by entropy.
This trend was observed even when εpp was increased ten-folds
to 1.0kBT. Furthermore, we observed that FFFpp repulsion rose
steadily with increasing confinement before plateauting off at
distances ≲1.7σ. In this “terminal” region, the confined
grafted chains were compressed into monolayers and their
conformations within the monolayer were entirely governed by
polymer–surface interactions, explaining why further reduction
in the confinement does not induce further increase in FFFpp. As

Fig. 8 Polymer–nanocube interaction free energies FPpc as a function of normalized separation distance dn for: (a) Ik,n and EE phases, (b) I/,n phases,
and (c) I/,1 phase at three different values of Γ. The nanocube parameters were set to σpol = 0.75σ, εpc = 0.05kBT, Γ = 0.16/σ2, unless otherwise specified.

Fig. 9 Polymer–polymer interaction free energies FFFpp. (a)
Decomposition of FFFpp (solid) into potential energy UFF

pp (dashed) and
entropy −TΔSpp (dash-dot). (b) FFFpp within the terminal region.
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all nanocube phases displayed small ds, we only examined FFFpp
in terminal regions.

The magnitude of FFFpp was further examined as a function
of grafting density Γ and σpp in Fig. 9b. The observed behavior
can be well described by

FFF
pp ¼ 28:21σpp3D2Γ 2: ð15Þ

Unlike FFFpc which scaled linearly with Γ, FFFpp was found to
scale quadratically with Γ. The reason is that FFFpp involves pair-
wise interactions between polymer segments, and the number
of segments contributed by each nanocube within the con-
fined volume in between them is proportional to Γ. However,
FFFpp still scales as D2 (Fig. S1†). This is because the radius of
gyration of the grafts is much shorter than D, and therefore,
the polymer–polymer interactions mediated by each grafted
chain are localized about its attachment position rather than
across the entire face of the nanocube. Lastly, FFFpp was found to
be proportional to the volume of the polymer segments. As the
grafted chains are squeezed into monolayers, the volume occu-
pied by each chain is proportional to the volume of its seg-
ments. Therefore, the entropy of the polymer chain confine-
ment, which played the dominant role in determining FFFpp, was
proportional to σpp

3.
It should be noted that even though FFFpp scaled quadratically

with Γ, its magnitude was still negligible compared to FFFpc.
For example, assuming dn of 0.7 and σpol of 1.0σ, Γ would have
to be ≳2.4/σ2 (exceeding the close-packed density) for FFFpp to
equal the magnitude of FFFpc. The polymer–polymer interactions
are even weaker for the I| and Ik phases and negligible for

the EE phase. Therefore, for constructing phase diagrams
based on the free energies of the different phases, we
ignored the small contribution from polymer–polymer
interactions.

Orientational phase diagram from scaling relationships

We next constructed an orientational phase diagram using the
functional forms of the free energies developed above. These
free-energy expressions FP(ds) summarized in Table 2 for all
four phases are functions of the separation distance ds. The
free energy of a phase is given by the global minimum
denoted by FPm, which can be obtained by solving ∂FP/∂ds = 0, a
13th order polynomial function; the separation distance at the
minimum denoted by dPm represents the “equilibrium” con-
figuration of the phase. Phase boundaries occur when two
different phases exhibit equivalent FPm for the same set of
nanocube parameters. Instead of numerically solving for these
boundaries, we obtained the phase diagram by calculating FPm
for each phase over a finely-spaced grid spanning the desired
parameter space, and then assigning phases to each grid point
based on the phase possessing the lowest FPm. Fig. 10a–d shows
various cross-sections of the resulting phase diagram depicting
phase behavior as a function of σpol and εcc at four different
fixed values of Γ and D. For comparison, we also included
within each plot the corresponding phase behavior obtained
earlier from simulations.

The phase diagram obtained from scaling analysis dis-
played similar morphology and trends as those computed
from simulations, and the scaling relations helped explain
many of these features of the phase diagram, several of which

Fig. 10 Orientational phase diagram obtained from free-energy scaling relationships. Cross-sections of the phase diagram in the σpol − εcc space
with (a) Γ = 0.04/σ2, (b) Γ = 0.09/σ2, (c) Γ = 0.16/σ2 for D = 10σ nanocubes, and (d) Γ = 0.04/σ2 for D = 20σ nanocubes.
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were not resolvable by simulations. First, the phases changed
in the order FF → I| → EE with increasing σpol or decreasing
εcc. While this effect was already well explained by the inter-
play between the simulated vdW and steric interactions
(Fig. 5), the scaling relations provide additional insight into
the phase transitions. In particular, the relations show how
increasing σpol, or decreasing εcc, increases the relative magni-
tude of the steric to vdW interaction terms, which in turn
increases the equilibrium distance dPmin in all phases, except
the EE phase where ds is considered fixed. Since the vdW
energy term FPcc decays the sharpest with distance for the FF
phase (scaling exponent β = 3), weaker for the I| phase (β =
1.5), and the weakest for the EE phase (β = 0), the increase in
dPmin penalizes the three phases in the decreasing order FF > I|
> EE, as best illustrated in Fig. 6b. In contrast, the steric repul-
sion term FPpol decays either similarly with distance (for FF and
I| phases) or remains constant (EE phase), and thus the
increase in dPmin does not reward the three phases as differently
(in terms of decreasing steric repulsion). Thus, the FF phase,
which is penalized the most in overall free energy, transitions
to the least-penalized EE phase via the I| phase with intermedi-
ate penalty upon increasing σpol and/or decreasing εcc.

Second, the phase boundaries exhibit a parabolic depen-
dence of εcc on σpol. In other words, phase transitions, such as
those between the FF and I| phases or between I| and EE
phases, becomes more sensitive to changes in σpol and less
sensitive to changes in εcc with increasing magnitude of σpol.
This is easily explained by the functional forms of the vdW
and steric interaction energy terms. Whereas FPcc depends line-
arly on εcc, FPpol exhibits a cubic power-law dependence on σpol.
Hence, the overall free energy, and thereby the phase tran-
sitions, are more sensitive to changes in σpol as compared to
εcc.

Third, the Ik phase is observed only in a small sector of the
parameter space in between the FF and EE phases at low σpol
and εcc for all Γ and D. This is primarily because FPcc and FPpol
expressions for both the Ik and FF phases scale similarly with
respect to ds, and differ from each other only in the relative
magnitudes of the prefactors c and nconf. Consequently, the
phase boundary εcc(σpol) between these two phases exhibits a
much gentler curvature compared to those between the other
phases. The Ik phase is favored over the FF phase only at
sufficiently large σpol and small εcc (Fig. S4a†). In this region of
the parameter space, the loss in vdW interactions associated
with nanocube surfaces (in the FF phase) sliding off each
other to form the Ik phase is more than compensated by the
reduction in the steric repulsion associated with sliding.
However, in a large portion of this region, the nanocubes also
prefer to form the EE phase over the Ik phase (Fig. S4b†). This
allows the nanocubes to fully eliminate all steric repulsion
without sacrificing much vdW interactions given the large σpol
associated with this region (in some cases the nanocubes may
even exhibit stronger vdW interactions in the EE phase due to
its contacting surfaces). As a result, the Ik phase appears as the
globally stable phase in only a small window of the parameter
space (Fig. S4c†).

Fourth, the phase diagram shows that the I| phase broad-
ened and encroached into both the FF and EE phases as Γ was
increased (Fig. 10a–c). The encroachment into the I| phase
may be explained by considering that the number of confined
chains nconf increases more dramatically with increasing Γ for
the FF phase as compared to the I| phase. Specifically, the ratio
of nconf for the two phases is given by

nFFconf
n
I=
conf

¼
ffiffiffiffi
Γ

p
D: ð16Þ

Thus, an increase in Γ is more unfavorable, in terms of
steric interactions, for the FF phase than I|. The encroachment
into the EE may also be explained in terms of increasing nconf.
While this increase amplifies the steric repulsion in the I|
phase, as explained above, it also leads to reduced overlap
between the nanocubes in the EE phase (via eqn (11)), which
leads to a reduction in the vdW attraction. Apparently, the loss
in vdW interactions for the EE phase is larger in magnitude
than the increase in steric repulsion of the I| phase, causing
the I| phase to also encroach into the EE phase.

Lastly, we observed the complete disappearance of the I|
when D was increased from 10σ to 20σ (cf. Fig. 10a and d). This
effect occurs because the vdW attraction FPcc scales linearly
with D for the I| phase due to the tilted faces, whereas it exhi-
bits a quadratic scaling with D for all remaining phases with
parallel faces. Thus, the doubling of the nanocube size
doubled the vdW attraction between nanocubes for the I|
phase, but quadrupled the vdW attraction in the remaining
phases, causing these phases to become more stable than the
I| phase and leading to its disappearance from the phase
diagram.

The scaling relationships also importantly allowed us to
investigate phase behavior at much higher grafting densities
than those explored by simulations, which focused on Γ ≤
0.16/σ2. The derived relationships should remain valid for
higher values of Γ as long as the grafted chains are in the
mushroom regime. Larger grafting densities, however, yield an
increasingly larger number of intermediate states I|,n and Ik,n
exhibiting different extents of overlap between the two nano-
cubes. For convenience, we considered only one of these I|
phases, where the edge of one nanocube contacted the face of
the other nanocube at its middle (see Fig. S1d† for details on
estimating coefficients c for large Γ values), and ignored the Ik
phase, which occupies only a small fraction of the parameter
space.

Fig. 11 shows various Γ − εcc cross-sections of the phase
diagram obtained at three different values of σpol for the 10σ
nanocubes. The scaling relations recapitulate the orientational
phase behavior obtained from simulations with small Γ, even
though the simulations considered all possible I|,n and Ik,n
phases. More importantly, the scaling relations demonstrate
that nanocubes exhibit very different phase behavior in the
Γ − εcc parameter space depending on the magnitude of σpol.
At σpol = 0.25σ, the FF phase occupies a large portion of the
phase diagram; in this regime, the nanocube faces are able to
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access small separation distances with strong vdW attraction,
due to the small excluded volume of the polymer segments.
Only at sufficiently high values of Γ, or sufficiently small
values of εcc, do the nanocube faces tilt to form the I| phase, as
reflected in the small slope of FF − I| phase boundary. The EE
phase forms only at very small values of εcc, irrespective of the
grafting density. When σpol increases to 0.5σ, the FF − I| phase
boundary exhibits a sharper slope as the free energy of the FF
phase is more adversely affected than the I| phase with
decreasing εcc or increasing Γ, as discussed before. The EE
phase, which is least affected by decreasing εcc (as the separ-
ation distance ds remains constant in the EE phase while that
of the other phases needs to expand in response to increasing
relative strength of steric repulsion), then occupies a larger
fraction of the phase diagram. At even larger values of σpol =
0.75σ, the FF phase, interestingly, completely vanishes. In this
regime, the large excluded volume of the graft segments
pushes the nanocubes so far apart that they are no longer able
to access strong vdW interactions (due to its sharp decay with
distance), and the phase diagram is reduced to a competition
between the I| and EE phases.

Discussion

One of the main results of this work is that grafted nanocubes
exhibit a variety of thermodynamically stable interparticle con-
figurations, which we classified into the FF, EE, Ik, and I|
phases based on the orientation and degree of overlap
between the interacting faces of the nanocubes. This finding
goes beyond our earlier investigation which considered only
the FF and EE configurations. Our present work shows that the
Ik and I| configurations are legitimate phases that occupy a
large portion of the phase diagram, especially the I| phase that
provides a compromise between the FF phase with strong
interactions (both vdW attraction and steric repulsion) and the
EE phase with weak interactions. In addition, our earlier study

examined only the “idealized” EE configuration with touching
edges, whereas we show here that the EE phase exhibits some
overlap between the bare edges of the nanocube faces. The
overlap allows for much stronger vdW interactions between
the nanocubes without gaining much steric repulsion. For
example, our current study predicts that FEEcc = −301.2εcc for the
10σ nanocubes with Γ = 0.16/σ2, whereas Fcc = −85.1εcc in the
idealized EE configuration. The amount of overlap was found
to decrease with increasing grafting density, implying that the
idealized EE configuration would occur only when the grafted
chains covered the entire face of the nanocubes. While this
may be the case at high grafting densities, dense grafting and
uniform coverage of the surfaces are not always possible,
especially near the edges of the nanocubes.

Our finding of the partly overlapped EE phase and the Ik,
and I| phases also provides a possible explanation for the
various kinds of “imperfect” nanocube configurations
obtained experimentally.16,17,39,40 For instance, assembly
experiments on polyethylene glycol (PEG)-grafted Ag nano-
cubes observed face–edge configurations with a wide range of
angles between the contacting surfaces similar to our I| phase,
and configurations with partly overlapping parallel faces
similar to our EE and Ik phases (see, for example, Fig. 5 of
Gurunatha et al.17). While these configurations were initially
attributed to grafting imperfections or to kinetically trapped
states, our results demonstrate that these observed configur-
ations could also represent thermodynamically stable states.

Another key result of this work is the orientational phase
diagram we obtained, which should provide guidance to
researchers for predicting orientational phases based on nano-
cube parameters or, vice versa, designing nanocubes to achieve
specific phases. The phase diagram cross-sections plotted in
Fig. 10 indicate that increasingly larger changes in the vdW
interaction strength εcc or polymer segment excluded volume
σpol are required to observe phase transitions between the
FF, I|, and EE phases when the nanocubes exhibit strong
vdW and/or steric interactions. For instance, nanocubes with

Fig. 11 Phase diagram cross-sections in Γ – εcc obtained from scaling relations exploring a broader range of grafting densities for D = 10σ nano-
cubes with: (a) σpol = 0.25σ, (b) σpol = 0.5σ, and (c) σpol = 0.75σ.
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εcc = 3kBT and σpol = 0.75σ exhibiting the I| phase in Fig. 10b
would require about a 2kBT reduction in εcc or a 0.25σ increase
in σpol to convert nanocube configurations into the EE phase.
Thus, strong vdW and steric interactions between nanocubes
are required to achieve highly stable orientational phases.
Contrarily, the opposite strategy of designing nanocubes with
weak interactions could be used for assembling weakly stable
phases. For example, nanocubes exhibit a “triple point” at low
εcc and σpol where all three phases FF, Ik, and I| coexist (see
Fig. 10). Nanocube orientations near the triple point are
expected to be very sensitive to small changes in εcc and σpol
that could for instance be brought about by changing external
conditions (e.g., temperature and pH). This concept raises the
intriguing possibility of creating reconfigurable phases that
can reversibly switch between distinct orientational states
based on small external field triggers. Lastly, Fig. 11 demon-
strates that altering the grafting density Γ is not a viable
approach for achieving the EE phase. While an increase in
Γ leads to suppression of the FF state, the nanocubes tran-
sition to the I| phase rather than the EE states. Thus, changes
in parameter like εcc or σpol are recommended over changes in
Γ to induce the EE configuration.

The trends from the computed phase diagram agree well
with the limited amount of experimental work carried out so
far on polymer-grafted nanocubes. For example, one set of
experiments have shown that large nanocubes (D = 45 nm)
assemble into FF configurations with much higher propensi-
ties than smaller nanocubes (D = 25 nm).39 While this may not
seem obvious, as larger nanocubes also carry more grafted
chains, comparison of phase diagram cross-sections at two
different nanocube sizes (see Fig. 10a and d) shows that the FF
phase indeed becomes more dominant with increasing size.
Another set of experiments have found that nanocubes tran-
sition from face–face to face–edge to edge–edge configurations
with an increase in the molecular weights of the grafted
chains.17 This sequence of transitions in interparticle orien-
tation mirrors the phase transitions observed in our phase
diagram with increasing steric repulsion from grafted chains
(see Fig. 10). This encouraging congruence with experiments
illustrate the value of our computational predictions in
guiding experiments on polymer-grafted nanocube systems.

A third important result is the analytical expressions for the
free energies of the orientational phases developed in this
study. These expressions allowed us to construct a more com-
prehensive phase diagram than afforded by simulations alone,
and also provided simple, physically intuitive explanations for
the various features exhibited by the phase diagram. For
instance, the expansion and contraction of the I| phase region
with increasing grafting density and nanocube size, respect-
ively, could be easily explained through differences in the free
energy scalings of I| phase as compared to those of the FF and
EE phases; these scaling differences in turn arose from the
slanted configuration of the interacting nanocubes in the I|
phase versus the parallel configuration exhibited by the
remaining phases. Moreover, the free energies are provided as
simple functions of experimentally accessible parameters that

could be readily used by researchers to study the phase behav-
ior of other kinds of faceted, polymer-grafted nanoparticles, as
long as the underlying assumptions of the model are not
violated.

All these results discussed above would be especially rele-
vant for plasmonic applications. Studies have shown that plas-
monic resonances exhibited by clusters and larger assemblies
of faceted NPs made out of plasmonically-active metals like Ag
or Au are sensitive to not only the size of the gap between NPs,
but also their relative orientations.16,39,41,42 Differences in the
surface curvatures of particle faces and edges lead to distinct
electromagnetic field localization effects. In the case of nano-
cubes, field localization is concentrated at the edge–edge junc-
tion in EE configurations, while the field is delocalized over
the entire face–face junction in FF configurations. In one
study, these effects led EE-oriented chains of nanocubes to
exhibit red-shifted surface plasmons (compared to isolated
nanocubes) and FF chains to exhibit broadband scattering.16

Such plasmonic couplings also lead to huge enhancements in
electric fields and Raman spectra in closely-spaced assemblies
of nanocubes compared to assemblies of spherical NPs or
nanocubes present in a dispersed state.39 These studies clearly
demonstrate the need to understand interparticle interactions
and to control their spacings and orientations.

Our results come with several caveats. First, all nanocube
phases involving confined grafts exhibited equilibrium surface
separation distances smaller than the Kuhn length of the
grafts. This effect stems from the strong, short-ranged nature
of vdW interactions between nanocubes and the mushroom-
like conformations of the grafted chains, where the enthalpic
advantage gained from decreasing the separation distance out-
weighs the entropic penalty of squeezing the grafts. Only at
separation distance smaller than the Kuhn length does the
repulsion become comparable to the vdW attraction. At this
point, the behavior of the grafts is more akin to that of con-
fined particles than polymer chains, as noted from the LJ-like
behavior of the steric repulsion term (eqn (13)). For the nano-
cube sizes investigated in this study, this is true even when the
grafted chains are much longer as the polymer segments can
escape out of the junction between the nanocubes (Fig. S5†).
However, we expect that significantly stiffer grafts or longer
grafts on larger nanocubes would lead to much larger entropic
penalties of confinement, and thereby equilibrium separation
distances larger than the Kuhn length. In this regime, the
steric repulsion may scale differently with distance.43 Thus,
the phase diagram presented in this study may no longer be
numerically accurate in this regime, though its overall features
should likely be preserved. This study also did not investigate
systems in which nanocubes assemble due to attractive
polymer–polymer interactions. While the LJ potential used for
modeling polymer–nanocube interactions has both attractive
and repulsive portions, the small separation distances man-
dated that all of polymer–cube interactions were in the repul-
sive region. Therefore, the grafts only provided steric repulsion
and never acted as “bridging agents” between the nanocubes.
Previous studies have demonstrated that attractive polymer–
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nanocube interactions could also play a role in determining
their orientations.16,17 Further studies with longer/stiffer grafts
and stronger polymer–nanocube interactions are required to
properly reveal the role of these effects on nanocube phase
behavior.

Another effect neglected in this study is the depletion force
arising from the solvent, which can be quite large in polymeric
melts.32 Depletion effects may be even more important for
nanocubes, which provide a larger surface area of interaction
compared to spherical particles, and hence larger overlaps
between their solvent-excluded volumes. For instance, rod-like
particles were found to be more significantly affected by
depletion effects than spherical particles.44 We hypothesize
that the FF and Ik phases with larger overlap between their
solvent-excluded volumes will exhibit larger depletion inter-
actions and will be favored over the I| and EE phases. Future
studies with explicitly-modeled solvents should reveal the mag-
nitude of such orientation-dependent depletion effects and
the extent to which they affect the phase behavior of
nanocubes.

It should also be noted that our results were obtained using
idealized systems. Experimental systems are however likely to
exhibit uneven surface grafting of polymer chains, polydisper-
sity in the length of the polymer grafts, and variations in the
size and shape of the nanocubes, including rounding of their
edges and corners, each of which could affect particle assem-
bly in distinct ways. For example, in this work we considered
uniform spatial distribution of grafts on nanocube faces. This
may be a reasonable approximation for short grafts chemically
attached as fully-grown chains from the solution onto the
surface of the NPs via a “grafting-to” mechanism,16 whereby
chains tend to attach more or less uniformly to surfaces.45

Hence, one would expect such chains to predominanly attach
to nanocube faces due to the much larger surface area they
present for attachment as compared edges. However, longer
and densely-grafted polymers have been shown to preferen-
tially graft to the edges of the nanocubes where they are less
sterically constrained by other chains.46 Therefore, the scaling
relationships and the phase diagram presented here should be
treated as general guiding principles rather than quantitative
solutions for controlling the orientations of nanocubes in
their assemblies.

Lastly, our current work focused on the orientational behav-
ior of an isolated pair of polymer-grafted nanocubes. We did
not account for steric constraints and other multibody inter-
actions that may also influence interparticle orientations in
larger assemblies of nanocubes. Nevertheless, the results
obtained here should still be applicable to assembly of grafted
nanocubes at low particle volume fraction, where nanocubes
tend to assemble into quasi-linear chains.16,17,39 Indeed, most
of the experimental results used earlier to demonstrate agree-
ment between experiments and computational predictions
were taken from such linear assemblies. Interestingly, our
results also seem to relate well to crystal lattices of nanocubes
grafted with single-stranded DNA or organic ligands that were
assembled via DNA hybridization or solvent evaporation,

respectively.46,47 These studies showed a transition from
simple cubic (SC) to body-centered tetragonal (BCT) lattices
with increasing steric repulsion between grafts brought about
by increasing the length of the DNA strands or swelling the
ligand grafts. In effect, nanocubes exhibiting face–face con-
tacts in the SC lattice translated and rotated into a BCT lattice
with partly-overlapping nanocube faces to minimize the steric
repulsion from their grafts, very similar to the FF → Ik phase
transition observed in our simulations. Thus, unlike polymer-
grafted spherical NPs which have access to only translational
degrees of freedom to minimize their interaction free energy,
structures assembled from polymer-grafted nanocubes must
take into account both translational and rotational degrees of
freedom.

Conclusions

We investigated the orientational phase behavior of polymer-
grafted nanocubes using MC simulations and free-energy
scaling relations derived from simulations. Consistent with
experiments, our simulations predicted that the nanocubes
may assemble into face–face, edge–edge, or a spectrum of
intermediate configurations of varying overlap with parallel or
slanted faces. The simulation results also helped us in formu-
lating simple analytical expressions for the free energies of
these four phases. The free energies were found to exhibit dis-
tinct scalings with respect to nanocube size, separation dis-
tance, and grafting densities for the four phases as a result of
their geometric differences. The free energies were also used
to construct an orientational phase diagram over a multi-
dimensional parameter space comprised of nanocube size,
nanocube interaction strength, grafting density, and polymer
segment size. We showed how the morphology of the phase
diagram is intrinsically related to differences in the free energy
scalings of the four phases. Overall, these results demonstrate
how particle size, interactions, and polymer grafting could be
used to control the relative orientation and overlap between
adjacent nanoparticles in their higher-order assemblies.
Ultimately, such control should enable fabrication of advanced
catalytic, optical, and plasmonic nanocomposites with pre-
cisely-oriented nanoparticles with their assemblies.
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