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Embedding percolating networks of nanoparticles (NPs) within polymers is a promising approach for

mechanically reinforcing polymers and for introducing novel electronic, transport, and catalytic properties

into otherwise inert polymers. While such networks may be obtained through kinetic assembly of unary

system of NPs, the ensuing structures exhibit limited morphologies. Here, we investigate the possibility of

increasing the diversity of NP networks through kinetic assembly of multiple species of NPs. Using lattice

Monte Carlo simulations we show that networks obtained from co-assembly of two NP species of

different sizes exhibit significantly more diverse morphology than those assembled from a single species.

In particular, we achieved considerable variations in the particle spatial distribution, proportions of intra-

and interspecies contacts, fractal dimension, and pore sizes of the networks by simply modulating the

stoichiometry of the two species and their intra and inter-species affinities. We classified these distinct

morphologies into “integrated”, “coated”, “leaved”, and “blocked” phases, and provide relevant phase dia-

grams for achieving them. Our findings are relevant to controlled and predictable assembly of particle

networks for creating multifunctional composites with improved properties.

1 Introduction

Nanoparticles (NPs) are often added to polymers to improve
their mechanical properties or introduce new functions into
the polymers.1,2 The spatial distribution of NPs plays a critical
role in governing the properties of the resulting polymer nano-
composites. In general, NPs can be present in three distinct
states: dispersed, ordered, or random aggregate. In the dis-
persed state, the NPs remain stably separated from each other
due to repulsive or weak interparticle interactions. This state
represents the most common scenario in applications, as it
provides spatially uniform and predictable enhancement in
properties, usually proportional to the NP loading fraction.3,4

In the ordered state, the NPs exhibit stronger interactions and
self-assemble into strings, sheets, or globular superstructures
with periodic arrangement of particles.5–8 This requires the
particles to be highly uniform in size and shape, and also
demands stringent thermodynamic assembly conditions for
the NPs to attain their globally stable configuration, both of
which are challenging to achieve in the case of nanoscopic par-
ticles in viscous polymer melts. The more likely outcome of NP
assembly within polymers is the random aggregate state,

where NPs get kinetically trapped into fractal, often percolat-
ing networks.9,10 Such random fractal and percolating struc-
tures have many promising applications. For example, perco-
lating NP structures provide significantly higher mechanical
reinforcement to polymers in the melt state than dispersed
NPs at equivalent loadings.5,11 Fractal and percolating NP
structures embedded within a polymer could also find appli-
cations in solid-state electrolytes,12,13 flame retardants,14 and
in catalysis and sensing.15,16

Kinetically-trapped aggregates of particles are ubiquitous in
nature, occurring in systems as diverse as colloids,17,18 aero-
sols,19 foods,20 soot,21 and blood clots.22 The mechanism and
kinetics of aggregation, and the morphology of the resulting
aggregates, are well described by the cluster–cluster aggrega-
tion (CCA) model.23,24 In this model, diffusing particles stick
to each other irreversibly upon contact to form rigid clusters,
which continue to diffuse and grow by colliding with other
diffusing particles or clusters. A cluster size-dependent diffu-
sivity is often considered and so is a contact area-dependent
sticking probability which accounts for the presence of energy
barriers in the interparticle interaction potential that may
prevent particles from sticking the instant they come into
close proximity.25–28 Depending on the relative timescales of
diffusion versus sticking, two regimes emerge: diffusion-
limited cluster aggregation (DLCA) and reaction-limited cluster
aggregation (RLCA).17 In the DLCA regime, the energy barrier
is negligible, so the aggregation kinetics are limited by the col-
lision time of particles, and the assembled structures are more
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tenuous and extended.23,24 In contrast, in the RLCA regime,
the aggregation kinetics are limited by the time taken by the
particles to overcome the repulsive barrier, and the formed
structures are denser with a higher fractal dimension.29

Most aggregation studies have focused on systems contain-
ing a single species of particles. According to the CCA model,
the size distribution and morphology of aggregates in mono-
disperse systems is controlled by particle volume fraction,
their sticking probability, and the scaling of diffusivity with
respect to cluster size,23,24,29 though this last parameter is
usually constrained by physical laws such as the Stokes–
Einstein relationship where diffusivity scales inversely with
cluster dimension. While extreme values of the above para-
meters can lead to low- and high-density aggregates character-
istic of the DLCA and RLCA regimes, the overall morphology
remains random fractal-like. Furthermore, as we recently
showed,25,30 NPs aggregating within polymer thin films exhibit
striking similarity in cluster growth and morphology, irrespec-
tive of the particle size and shape and the molecular weight of
the polymer matrix. For instance, in all studied systems, the
mean size of NP clusters grew as a power-law with time and
their size distributions at all time points (except early stages of
assembly) exhibited characteristic bell-shaped curves that
could be collapsed onto a universal “master curve” upon
appropriate time and size normalization based on CCA theory.25

Thus, achieving unique and complex aggregate morphologies
seems to be beyond the reach of monodisperse systems.

In this work, we explore the possibility of expanding the
diversity of NP assembly morphologies achievable by random
aggregation through the introduction of a second species of
NPs of size, diffusivity, and sticking propensity different from
the first species. We hypothesize that the addition of a new,
distinct NP species will introduce additional length and time
scales into the assembly system and alter the sequence of
assembly events, leading to new and interesting aggregate mor-
phologies. For instance, depending on the affinity between the
two species, the larger, slow-diffusing NPs could act as
obstacles or seeds to the assembly of the smaller, more mobile
NPs.31–35 Indeed, a few studies have shown the potential of co-
assembly of binary NPs in creating mesoscale-sized structures
and interpenetrating gels.10,36,37 To investigate such kinetic co-
assembly of two species of NPs, we used lattice-based CCA
simulations, an approach that allowed us to efficiently capture
differences in the size, diffusivities, and contact areas of the
two species of NPs, as well as differences in affinities within
and across species, permitting rapid exploration of the vast
parameter space. We demonstrate that the time scale of intra-
versus inter-species assembly events can be tuned by the
affinities between NPs and exploited to create a variety of
heterogeneous structures, which we classify as “integrated”,
“coated”, “leaved” and “blocked” phases. We characterize the
local spatial organization, composition, porosity, fractal
dimension, and structural factor of these structures. Such
structures with unique and controllable spatial distribution of
NPs could lead to polymer nanocomposites with novel
mechanical,3,4 electromagnetic,38,39 and optical properties.2,16

2 CCA simulations

As a first step to exploring the full range of aggregate mor-
phologies achievable through kinetic assembly of hetero-
geneous systems of NPs, we considered a binary system of
large and small NPs and studied their co-assembly using the
CCA model simulated on a two-dimensional (2D) lattice. As
shown previously,30 this model captures well the most salient
aspects of NP aggregation in polymers while enabling efficient
exploration of the parameter space. The 2D geometry not only
allows for easy visualization of NP aggregates and compu-
tational efficiency, but also represents the common experi-
mental scenario of NPs aggregating at fluid–fluid interfaces40

or within polymer thin films.7,30

All CCA simulations were conducted on a 400 × 400 square
lattice and implemented periodic boundary conditions to
avoid boundary effects. Each of the small and large NPs
denoted by “NP1” and “NP2” occupied 1 × 1 and 4 × 4 lattice
sites, respectively (Fig. S1†). This size ratio implies that the
diffusivity of NP2 is about one-seventh of that of NP1 (based
on the Stokes–Einstein relationship discussed below) and the
surface area is four times larger. We performed simulations
with varying numbers N1 and N2 of the two species to explore
the effects of particle area density ρ (fraction of lattice sites
occupied by NPs) and species area fractions ϕ1 or ϕ2 = 1 − ϕ1

(fraction of particle-occupied sites occupied by NP1 or NP2).
In particular, we considered N1 in the range 10 000 to 30 000
and N2 in the range 200 to 800 (all parameters used in this
study are summarized in Table 1), yielding particle area den-
sities in the range ρ = 0.0825 to 0.2675 and NP2 area fractions
in the range ϕ2 = 0.10 to 0.56. We also explored the effects of
varying probabilities p11, p12 and p22 for individual NPs to
stick together when they collide with each other. These prob-
abilities were varied between 10−4 to 0.4, reflecting different
modifications of the NP surfaces that lead to distinct associ-
ation energy barriers. Consistent with previous analysis of the
aggregation dynamics of polymer-grafted NPs,25 we chose a
maximum sticking probability of 0.4 to reflect the presence of
a small energy barrier that prevents instantaneous bonding
of NPs. We considered irreversible sticking of particles, a situ-
ation prevalent across many particle systems10,41,42 that arises
from strong interparticle interactions, which lead to large
energy barriers for cluster dissociation.28 The above prescrip-
tion allowed us to introduce distinct diffusivities, NP stoi-
chiometries, and assembly affinities between NPs into the
system.

Table 1 Parameters values used in CCA simulations

Parameter Value

p11 10−4, 10−2, 0.4
p12 10−4, 10−2, 0.4
p22 10−4, 10−2, 0.4
γ −0.7
N1 10 000, 20 000, 30 000
N2 200, 400, 800
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Each simulation was initiated by randomly placing onto the
lattice the desired amounts of the two species, ensuring that
no two NPs occupy the same lattice site. For convenience we
will use the term “cluster” to denote both isolated NPs and
their growing clusters. The diffusion of clusters was modeled
as a random walk on the lattice with self-diffusivity Ds given by

Ds ¼ D0ðs=s0Þγ ð1Þ

where s is the size of the cluster measured in terms of the
number of lattice sites it occupies, s0 = 1 and D0 are the size
and self-diffusivity of a reference cluster occupying a single
lattice site, i.e., an isolated NP1, and γ is a scaling coefficient
that reflects the size-dependence of the diffusivity of clusters.25

According to Stokes–Einstein relationship, the diffusivity
decays as Ds ∼ Rh

−1 with the hydrodynamics radius Rh of the
cluster. For nonspherical clusters, Rh is usually assumed to be
equal to the radius of gyration of the cluster Rg,

43 which can
then be related to the fractal dimension df of fractal clusters
via Rg ∼ s1/df,44 yielding Ds ∼ s−1/df. Comparing with eqn (1), we
obtain γ = −1/df. Based on df ≈ 1.4 obtained from image ana-
lysis of NP aggregates formed within polymer thin films,7,30 we
set the value of γ to −0.7. Estimating cluster diffusivities via
eqn (1) thus avoids the cost of computing instantaneous
values of Rg or df for each and every cluster at each simulation
step.

At the beginning of the simulation, when isolated NP1s still
exist, the time step was set at Δt = τ, where τ = 1 is the unit of
time in our simulations. At each time step, an attempt was
made to move each and every cluster by one lattice site along a
random direction with probability Ds/D0 = (s/s0)

γ. If the move
resulted in an overlap between two clusters, the move was
rejected, and the cluster stayed in its previous position. After
all clusters had completed their attempted moves, if two NPs
belonging to different clusters were in contact with each other,
then these two clusters were merged together into one cluster
with probability pij, which depends on the identities of the
contacting NPs, i.e., NP1 or NP2. At some point during the
simulation, all the isolated NP1s would get exhausted. If one
continues to use τ as the time step, the move probabilities
given by (s/s0)

γ would become increasingly smaller as the clus-
ters grow, causing the simulations to become increasingly
inefficient. This issue can be easily resolved by using an adap-
tive time step:25 at each time step, we identify the smallest
cluster in the system, whose size is denoted by smin, and
increase the move probability of each cluster to Ds/Dmax = (s/
smin)

γ, where Dmax is the diffusivity of this smallest cluster with
Dmax = D0 (smin/s0)

γ. To compensate for this increased mobility,
the time step is multipled by this same factor, i.e., Δt = (D0/
Dmax)τ. Thus, the adaptive time step keeps the move prob-
ability of the smallest cluster to 1 without sacrificing any accu-
racy. The sticking protocol at the end of the moves remains the
same as described above. The simulations were stopped when
all NPs had assembled into a single cluster. All the results
were averaged over 3 independent simulations starting from
different initial NP positions.

The above 2D lattice model makes several assumptions
about NP assembly. First and foremost, it assumes a co-planar
system of NPs, e.g., at an interface or in a ultrathin film, and
thus any interfacial deformations and wetting–dewetting
effects occurring in real systems are neglected. Second, the
model accounts for spatially-dependent interactions between
NPs only in terms of their “effects”: the overlap criterion that
prevents NPs from occupying the same lattice site accounts for
the sharp excluded-volume repulsion in the NP–NP inter-
actions; the irreversible bonding of NPs assumes a deep poten-
tial well that prevents NP clusters from dissociating within
aggregation timescales; and sticking probabilities smaller than
unity account for association energy barriers, e.g., from
polymer brushes on NPs. Third, the lattice model can only
accommodate translational diffusion of clusters, and
rotational effects are essentially ignored. Lastly, the model
assumes the formation of rigid clusters whose branches
cannot deform in response to interactions with other clusters.

3 Results
3.1 Overall morphology

We first examined the overall structure of the formed NP aggre-
gates, specifically how their morphology varied with the
various parameters of the system. We focused on the effects of
varying the sticking propensity of NPs, that is, the sticking
probabilities p11, p12, and p22 associated with the three kinds
of NP–NP contacts. Varying the numbers N1 and N2 of the two
species produced more subtle effects that are discussed later
in sec. 3.5. All the results presented till then are obtained
using systems with fixed numbers of NPs: N1 = 10 000 and N2 =
200, which yield an overall particle area density of ρ ≈ 0.08 and
an area fraction of ϕ2 ≈ 1/4 for the large species. Aggregate
structures assembled from a single species of NPs at similar
particle area density are shown in Fig. S2† for comparison.
Like unary assembly of NPs, the binary system of NPs also
formed ramified fractal network structures regardless of the
sticking probabilities, as shown in Fig. 1. Based on how NP2 is
incorporated into the network, we classified the structures into
three phases: “integrated”, “covered”, and “leaved” phases.
The corresponding morphological phase diagram as a func-
tion of the three sticking probabilities is shown in Fig. 1a, and
representative structures from the three phase labelled I1, I2,
C, L1, and L2 are provided in Fig. 1b–f.

In the “integrated” phase, both NP species are well-inte-
grated into the fractal network, with NP2 particles remaining
either isolated (Fig. 1b) or aggregated (Fig. 1c). This phase is
obtained when the small particles (NP1) bind to each other at
similar rates as they do to the large particles (NP2). When both
these rates are large, as in the case of p11 = 0.4, p12 = 0.4, and
p22 = 0.01 (yielding structure I1, Fig. 1b), the initial clusters
formed are a mixture of homogeneous clusters composed of
NP1 particles and heterogeneous clusters containing mostly
NP1 particles and few ½Oð1Þ� isolated NP2 particles, consistent
with their small number fraction of 2%. These clusters con-
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tinue to diffuse, collide, and grow over time to yield a network
structure with well dispersed NP2. Simulation snapshots of
these various intermediate stages of assembly are provided in
Fig. S3 and S4.† In contrast, when the rates of NP1 binding to
each other and to NP2 are small, as in the case of p11 = 0.0001,
p12 = 0.0001, and p22 = 0.01 (I2, Fig. 1c), it allows the NP2 par-
ticles to assemble first and form homogeneous clusters
(Fig. S5 and S6†). Only after these clusters are unable to grow
further due to their large size and vanishing diffusivities do
the NP1 particles start to form clusters of their own by sticking
to each other, sometimes using the NP2 aggregates as seeds.
Further assembly of these pure and NP2-seeded clusters leads
to the integrated phase containing aggregates of large NPs.

In the “coated” phase, the NP2 particles are fully coated
with NP1 particles and well dispersed within the NP1 network
(Fig. 1d). This phase is observed when the affinity between
NPs of different species is much greater than that between par-
ticles of the same species, causing NP1–NP2 binding events to
occur at much faster rates than NP1–NP1 and NP2–NP2
binding events. Fig. S7 and S8,† which depict the intermediate
stages of assembly for the representative structure obtained
with p11 = 0.01, p12 = 0.4, and p22 = 0.01 (C, Fig. 1d), illustrate
how NP1 rapidly coats the surface of NP2 and how the remain-
ing NP1 particles continue to assemble into larger clusters by
the sticking to themselves and to the NP1 particles coating
NP2 particles, ultimately forming the network structure C
shown in Fig. 1d. We find that >80% of the neighboring sites
of NP2 are occupied by NP1 particles in this phase, unlike the
integrated phase where the surface coverages range between
20% and 60%.

Lastly, the “leaved” phase is observed when the affinity
between NP1 particles is much stronger than that between

NP1 and NP2 particles, and accordingly NP1–NP1 binding
occurs at much faster rate than NP1–NP2 binding. In this
phase, NP1 particles assemble and form a network first, and
then individual or clusters of NP2 particles collide with the
NP1 network and attach to it like “leaves” attached to the
branches of a tree (Fig. 1e and f). When p11 = 0.4 and p12 =
0.0001, and p22 = 0.0001 is small, NP2 adheres as individual
particles to the network, as a result of slow NP2–NP2 binding
rates, to form a network with “small” leaves (L1, Fig. 1e). On
the other hand, when p11 = 0.4 and p12 = 0.0001, but p22 = 0.01
is large, the NP2 particles are able to form clusters of their
own before attaching to the network, leading to a network with
“big” leaves (L2, Fig. 1f). The intermediate stages of assembly
leading to both kinds of networks (with small and big leaves)
are provided in Fig. S9–S12.†

Our results demonstrate how the relative time scales or
rates of binding events between the two species of NPs govern
the resulting morphology of the NP aggregates and how this
morphology can be tuned via the sticking probabilities
between particles, in other words, the energy barriers in inter-
particle interactions. The apparent insensitivity of the phase
diagram shown in Fig. 1a to the magnitude of p22 is related
partly to the small proportion of NP2 particles in the system,
causing binding interactions mediated by NP1 to take pre-
cedence over those mediated by NP2, and partly to our defi-
nition of phases, where isolated and aggregated forms of NP2
particles in the integrated and leaved phases are classified as
sub-phases and not independent phases.

3.2 Local composition and arrangement

We next analyzed the local composition and spatial distri-
bution of NPs in the obtained aggregates, properties expected

Fig. 1 Morphology phase diagram and representative structures of different morphologies obtained from simulations. (a) Phase diagram of inte-
grated, coated, and leaved morphologies as a function of intra- and inter-species sticking probabilities. (b–f ) Representative structures of an inte-
grated phase with large NPs dispersed (b), integrated phase with large NPs aggregated (c), coated phase (d), leaved phase with large NPs
dispersed (e), and leaved phase with large NPs aggregated (f ). These five representative structures are denoted by I1, I2, C, L1, and L2, with the
associated sticking probabilities specified as (p11, p12, p22). Small NPs are shown in black and large NPs in red, and the number of NPs are fixed at N1

= 10 000 and N2 = 200.
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to be important for applications that rely on coupling between
neighboring particles. For instance, plasmonic resonances
exhibited by assemblies of noble metal NPs are sensitive to not
only interparticle distances and orientations but also the type
and coordination number of interparticle contacts.7,39,45

Similarly, the presence of interparticle heterojunctions can
provide dramatically improved catalytic activity when the
different particle species function synergistically with each
other.42,46 The local stoichiometry and arrangement of par-
ticles could also be highly relevant to the conduction of charge
carriers47 and the collective optical properties48 of polymer
nanocomposites.

The local composition of our NP aggregates was character-
ized in terms of the fraction of neighboring sites of NP2 par-
ticles that are occupied by NP1 (Fig. 2a; also see Fig. S13†) and
NP2 (Fig. 2c; also see Fig. S14†), which are denoted by f21 and
f22. In the integrated phase, the NP1–NP2 and NP1–NP1
binding events occur at similar time scales, so a moderate
number of NP1 particles adhere to the surface of NP2 particles,
and the remaining NP1 particles stick to each other and from
clusters. Consequently f21 is in the intermediate range of 20%–

50% (Fig. 2a and b). The magnitude of f22 depends on the rate
of NP2–NP2 binding relative to the other two binding events,
and its value is close to zero when the rate is small (I1, Fig. 2c)
and reaches 15% to 25% when the rate is comparable or larger
(I2, Fig. 2d). In the coated phase, NP1–NP2 binding events
occur at a fast rate, and accordingly NP1 particles have
sufficient time to cover the entire surfaces of NP2 before they
successfully stick to each other. As a result, f21 is close to 1 and
f22 is close to 0 (Fig. 2b and d). In the leaved phase, NP1 par-

ticles form a network first before NP2 particles attach individu-
ally or in a clustered state to the network. Hence, only a few
NP1 particles contact NP2 particles, with f21 less than 20%
(Fig. 2b). Depending on whether NP2 attach individually or as
aggregates, f22 can be close to zero (L1, Fig. 2d) or reach 20%–

35% (L2, Fig. 2d). These results show that the binding kinetics
of NPs within and across species dictates not only the overall
morphology of the aggregates but also their local environment.

The spatial distribution of NPs was characterized in terms
of the radial distribution functions (RDFs) g(r) between NPs,
which was calculated as follows for like and unlike pairs of
NPs:

gααðrÞ ¼ 1
πrηαNα

XNα�1

i¼1

XNα

j>i

δ rij � r
�� ��� �� �

; ð2Þ

g12ðrÞ ¼ 1
2πrη2N1

XN1

i¼1

XN2

j¼1

δ rij � r
�� ��� �� �

; ð3Þ

where α = 1 and 2 denotes NP1 and NP2, N1 and N2 are the
number of NPs of the two species, η1 and η2 are their number
densities (number of particles per unit area), rij is the distance
between NP i and j, and δ is the Dirac delta function.

Fig. 3 presents the computed RDFs g11, g12, and g22 for all
identified phases. Note that due to the NPs being restricted to
lattice sites, the RDFs are discontinuous and exhibit discrete
peaks. Examining first the RDF between NP1 particles, we find
that all phases yield more or less similar g11, with all RDFs
exhibiting peaks at similar interparticle distances albeit with
slightly different heights. In particular, the peaks at short dis-
tances, e.g., the first four peaks, corresponding to the first-,
second-, and third-nearest neighbors, are slightly higher in the
integrated phase with aggregated NP2 particles (I2, Fig. 3b) as
compared to the rest of the phases, including the integrated
phase with isolated NP2 particles (I1, Fig. 3a; also see
Fig. S15†). The reason is that the sticking probability p11
between NP1 particles is much smaller in I2 as compared to
the other phases (e.g., p11 = 10−4 in I2 vs. 0.01 or 0.4 in other
phases). This leads to RLCA-like conditions whereby NP1 par-
ticles assemble into denser structures with more NP1 neigh-
bors around NP1 particles, leading NP1 network in I2 having
slightly thicker branches than in the other phases (see Fig. 1c).

We next examined the RDF between NP2 particles, which
exhibit a larger closest-separation distance of r = 4 due to their
larger size. As expected, the integrated and leaved phases in
which NP2 particles are present in an aggregated state (I2,
Fig. 1c and L2, Fig. 1f) exhibit the largest peaks in g22,
especially at distances between 4 and 5 representing directly
contacting particles (Fig. 3b and e; also see Fig. S16b and
S16e†). Even in the leaved phase in which NP2 particles
exhibit very slow sticking probability with each other and
remain relatively more dispersed (L1, Fig. 1e), we observe
appreciable peaks in g22 (Fig. 3d and Fig. S16d†). Only in the
integrated and coated phase in which NP2 particles gets incor-
porated individually as bare or NP1-coated particles into the
growing network of NP1 particles (L1, Fig. 1b and C, Fig. 1d),

Fig. 2 Local composition of binary NP aggregates. (a) Average value of
f21, the fraction of neighboring sites of NP2 occupied by NP1, as a func-
tion of sticking probabilities. “I”, “C” and “L” in the figure denote inte-
grated, coated and leaved phases. (b) Whisker plot of f21 for the five
representative structures shown in Fig. 1. The outliers are plotted indivi-
dually using the red “+” symbol. (c) Average value of f21, the fraction of
neighboring sites of NP2 occupied by NP2 as a function of sticking
probabilities. (d) Whisker plot of f22 for the same representative
structures.
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do these peaks in g22 become truly negligible (Fig. 3a and c;
Fig. S16a and S16c†). Thus, interestingly, the inter-species rate
of binding between NP1 and NP2 is more important than the
intra-species binding rate between NP2 in determining the
aggregation state of NP2.

Lastly, we examined the RDF between NP1 and NP2 par-
ticles. As expected, the coated phase exhibits the most signifi-
cant peaks in g12 (Fig. 3c; also see Fig. S17c†), as more than
90% of the surface of NP2 particles is covered by NP1 particles
in this phase, a result of p12 ≫ p11, p22. These peaks are less
significant but still appreciable in the integrated phase (Fig. 3a
and b; Fig. S17a and S17b†) and almost negligible in the
leaved phase (Fig. 3d and e; Fig. S17d and S17e†).

Overall, the most prominent peaks in the RDFs arise from
g11 in the integrated phase with dispersed NPs (I1, Fig. 3a),
from g12 in the coated phase (Fig. 3c), and from g22 in the
remaining phases (I2, L1 and L2, Fig. 3b, d and e).
Furthermore, among the three RDFs, g11 is clearly the most
insensitive to the nature of the phase formed. This is consist-
ent with NP1 particles dominating the overall morphology of
the binary aggregates (see Fig. 1), likely due to their higher
number density and diffusivities compared to NP2. Our results
also indicate that while NP1 always forms branched-network
structures, NP2 particles either form compact aggregates or
remain dispersed in the system.

3.3 Fractal dimension

An important feature of the obtained NP aggregates is their
self-similarity over different length scales, which can be
described by their fractal dimension df. In the context of
polymer nanocomposites, the fractal dimension of the particle
aggregates determines to an extent the measured optical scat-
tering and absorption spectra of the composites49,50 and the
particle loadings required to achieve percolation,18 which is

relevant to applications such as mechanical reinforcement.5,11

Unlike deterministic fractals, our structures are random frac-
tals and do not possess a specific repeating structural motif.
There are several methods to calculate the fractal dimension of
random fractals.51 One method is through the relationship
between the cumulative distribution function C(r) and the
radius r:30

CðrÞ � ðrÞdf�d; ð4Þ
where C(r) is the fraction of lattice sites occupied by NPs in a
circle of radius r centered at any point within the NP cluster,
and d is the system dimension (d = 2). Another method is
through the relationship between cluster mass M (cluster size
s) and its radius of gyration Rg:

M � ðRgÞdf : ð5Þ
A third method is through the structure factor S(q), which can
be calculated as:52,53

SðqÞ ¼ N�1
XN

i;j¼1

sinðqrijÞ
qrij

; ð6Þ

where q is the magnitude of the scattering wave vector, N is the
cluster size (total number of lattice sites occupied by the
cluster), and rij is the distance between NP i and NP j. At inter-
mediate values of q, i.e., 1/Rg < q < 1/s0, S(q) exhibits the power-
law behavior ∼q−df.

In this work, we used all three methods to calculate df.
Fig. 4a presents a typical C(r) function (calculated for the I1
structure presented in Fig. 1b) showing how it decays with r,
and how df can be estimated from the sum of its slope (in a
log–log plot) and d. Fig. 4b shows the scaling of M with Rg for
the same structure, and how df can be obtained from its slope
in a log–log plot. Lastly, Fig. 4c shows the structure factor (also

Fig. 3 NP–NP radial distribution function for the five representative structures shown in Fig. 1. Each figure is labeled with the corresponding struc-
ture I1 (a), I2 (b), C (c), L1 (d) and L2 (e). The arrows show the most prominent peaks in each figure. The number of NPs in the system are fixed at N1 =
10 000 and N2 = 200. The sticking probabilities are specified as (p11, p12, p22).
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see Fig. S18†), also for the same structure, which allows us to
estimate df from the slope of the S(q) in a log–log plot. The
values of df obtained by using the three methods (1.51, 1.54,
and 1.51) are quite close. Note that due to the random nature
of the aggregates, the methods are not expected to yield identi-
cal fractal dimensions.

The fractal dimensions of aggregates obtained for the
various combinations of sticking probabilities explored thus
far and calculated using these three methods are presented in
Fig. 4d–f. Even though the df values exhibit minor differences
between the three methods, the general trend we obtain is that
df is small when p11 and p12 are relatively large. The reason is
that the rate of successful NP1–NP1 and NP1–NP2 binding
events is generally higher than that of NP2–NP2 binding
events due to the small diffusivity and low concentration of
NP2 particles, and hence the aggregation process is dominated
by NP1–NP1 and NP1–NP2 bindings. Consequently, their stick-
ing probabilities p11 and p12 determine whether the assembly
process is diffusion limited, which leads to low df, or reaction
limited, which leads to higher df.

3.4 Porosity and aggregate size

Another useful property to characterize, especially for the
network-like structures obtained here, is their porosity, a prop-
erty that is highly relevant to applications in gas separation, fil-
tration, sensing, and catalysis.15,16,54 To obtain the pore size
distribution and overall compactness of our aggregates, we
employed the following scheme (Fig. 5a). We first retrieved the
unwrapped coordinates of the aggregate. Next, we obtained the
smallest possible ellipse that encapsulates roughly 60% of the
NPs; the area πR1R2 of the ellipse, where R1 and R2 are its
semi-major and semi-minor axes, provides a measure of the

size of the aggregate and its compactness. Then, we sampled
the pores within the aggregate, using the ellipse as a boundary.
To this end, we randomly picked an unoccupied lattice site
within the ellipse and used that point as the origin of a circle
whose size was expanded until it began to contact the aggre-
gate. If the circle exhibited one contact point with the aggre-
gate, the circle was translated along the line connecting the
origin and the contact point and expanded in an iterative
manner until the circle started to contact another point on the
aggregate. Such a circle with two contact points was translated
along the perpendicular bisector of the line connecting the
two contact points and expanded in an iterative manner until
the circle contacted a third point on the aggregate. If the three
contact points formed an acute triangle, then the circle was
completely confined by the NPs of the aggregate. If the three
points formed an obtuse triangle, then the circle was further
translated and expanded until it was completely confined by
the aggregate. The diameter dp of the confined circle then
gives the pore size of the aggregate at the initially chosen
lattice site. Sampling dp across multiple (100 000 times for
each aggregate) such randomly-picked unoccupied sites within
the ellipse yielded the area-weighted pore-size distribution,
which can be appropriately averaged to obtain the number-
and area-averaged pore size. See ESI† for more details.

Fig. 5b–d shows the aggregate size and their number- and
area-averaged pore sizes for the 27 systems investigated here
with distinct combinations of sticking probabilities. To
improve accuracy, all results were averaged over 15 indepen-
dent simulation runs at each condition. Our results indicate
that the size of the aggregates is determined primarily by the
magnitude of p11, with large sticking probabilities leading to
large aggregates, and p12 and p22 play a negligible role

Fig. 4 Fractal dimension of aggregates. (a–c) Calculation of the fractal dimension df for the representative I1 structure shown in Fig. 1b (with p11 =
0.4, p12 = 0.4, and p22 = 0.01) using 3 different methods involving computation of cumulative correlation function C(r) (a), cluster mass M (b), and
structure factor S(q) (c). (d–f ) Fractal dimension of aggregates obtained as a function of sticking probabilities using the three methods involving
computation of C(r) (d), M (e), and S(q) (f ). “I”, “C” and “L” in the figure denote integrated, coated and leaved phases.
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(Fig. 5b). As the total number of particles is held constant, a
large aggregate also means a more extended structure, and a
small aggregate means a more compact structure. These
results are consistent with NP1–NP1 assembly driving the
overall morphology of the aggregates and with the aggregates
becoming increasingly tenuous and extended with increasing
sticking propensities, as discussed earlier. We find that vari-
ations in p11 can cause up to two-fold variations in the com-
paction or extension of the aggregates. The relationship
between average pore size and p11 is also very clear: reducing
p11 results in structures with smaller pore size (Fig. 5c and d),
although this trend is less evident for the area-averaged pore
size than the number-averaged pore size. Interestingly, we
observe a large, almost five-fold, difference in the values of the
area- and number-averaged pore sizes. This difference clearly
arises due to the large polydispersity in pore sizes, a testament
to the random and fractal nature of the structures. Overall, our
results indicate that the cluster size and porosity of the aggre-
gates can be tuned by changing the affinity between the NPs,
especially the dominant species.

3.5 Effects of NP stoichiometry, loading, and system size

All results presented so far were obtained using systems con-
taining N1 = 10 000 and N2 = 200 particles, corresponding to
NP2 area fraction of ϕ2 = 0.24 and an overall particle density of
ρ = 0.083. We also investigated 8 additional systems with N1 =
10 000, 20 000, or 30 000 and N2 = 200, 400, or 800, spanning a
broad range of area fractions (ϕ2 = 0.10–0.56) and overall den-

sities (ρ = 0.083–0.27) to study the effects of these two para-
meters. We characterized the morphologies of the aggregate
structures obtained from these additional systems, and also
computed the local composition, fractal dimension, size, and
porosity of the aggregates for one of the additional systems,
the one with high NP loading of N1 = 30 000 and N2 = 800.
While complete phase diagrams in morphologies and pro-
perties along with representative structures for these new
systems are provided in Fig. S19–S29 in the ESI,† below we
highlight only the most salient aspects of these results.

We found that systems with mass fractions ϕ2 ≲ 0.25, irre-
spective of the overall particle loadings, yielded phase dia-
grams with integrated, coated, and leaved morphologies very
similar to those presented in Fig. 1. This includes systems
with [N1 N2] = [20 000 200] (Fig. S21†), [20 000 400] (Fig. S22†),
[30 000 200] (Fig. S24†), and [30 000 400] (Fig. S25†).

The rest of the systems with [N1 N2] = [10 000 400]
(Fig. S19†), [10 000 800] (Fig. S20†), [20 000 800] (Fig. S23†),
and [30 000 800] (Fig. S26†) in which NP2 particles are present
at higher mass fraction exhibited a new morphology (in
addition to the integrated, coated and leaved phases) that we
refer to as the “blocked” phase. Fig. 6 illustrates various pro-
perties of this phase using the example of a system containing
N1 = 10 000 and N2 = 800 at ϕ2 ≈ 0.56. In the blocked phase,
the two species of NPs are well segregated, as in the leaved
phase with aggregated NP2 particles (L2; Fig. 1f), except that
the NP2 leaves are long enough to bridge distinct portions of
the NP1 network, resulting in a contiguous network of long
branches or blocks of NP1 and NP2 particles (Fig. 6b;
Fig. S19f, S20f, S23f, and S26f†). The phase diagram presented
in Fig. 6a reveals that the blocked phase appears when NP1
particles stick to each other at much higher rates than they do
to NP2 particles, again, conditions similar to those producing
the leaved phase at smaller NP2 fractions. Here, though, the
NP2 particles are available at high concentration, which allows
the particles to assemble into large clusters while the NP1 par-
ticles are still in the process of forming the network. This pro-
vides these large NP2 clusters the time to integrate with the
NP1 clusters before they all come together to form a closed
network. However, if the sticking probability p22 between NP2
particles is very small, they assemble too slowly and are unable
to properly integrate with the network, and the usual leaved
phase ensues (green triangle in Fig. 6a). Since NP1 and NP2
particles are segregated from each other, the RDF peaks in
both g11 and g22 are strong while those in g12 remain quite
weak (Fig. 6c). The fractal dimension of the structure is about
1.54, as calculated from its structure factor (Fig. 6d), which is
quite similar to that of the integrated phase.

Apart from the new phase, the phase diagram in Fig. 6a
shows another difference, albeit subtle, from that of Fig. 1a.
Specifically, all systems with p11 = 0.01, p12 = 0.4 that formed a
coated phase at low ϕ2 now form an integrated phase at high
ϕ2. The reason is the number of NP1 particles are not
sufficient to completely coat the surface of NP2 particles. As a
result, the final structure with relatively bare NP2 particles
integrated within the NP1 network resemble more the inte-

Fig. 5 Cluster size and pore size of the aggregates. (a) Unwrapped
structure of an aggregate obtained using p11 = 0.4, p12 = 0.4, and p22 =
0.01. The black ellipse is the smallest ellipse enclosing 60% of the NPs in
the aggregate. R1 and R2 are the semi-major and semi-minor axes of the
ellipse. The two circles of diameter d1 and d2 depict two representative
pores in the structure. The scale bar corresponds to a length of 100
lattice sites. (b) Size of aggregates, as given by the area of the ellipse, as
a function of sticking probabilities. The number of NPs are fixed at N1 =
10 000 and N2 = 200. “I”, “C” and “L” in the figure denote integrated,
coated and leaved phases. (c and d) Area-average (c) and number-
average (d) pore size of the aggregates as a function of sticking
probabilities.

Paper Nanoscale

Nanoscale This journal is © The Royal Society of Chemistry 2020

Pu
bl

is
he

d 
on

 1
2 

Fe
br

ua
ry

 2
02

0.
 D

ow
nl

oa
de

d 
by

 D
uk

e 
U

ni
ve

rs
ity

 o
n 

2/
18

/2
02

0 
6:

23
:4

9 
PM

. 
View Article Online

https://doi.org/10.1039/c9nr09900j


grated phase than a coated phase, see Fig. S27† for the
structure.

We next compared the local compositions, fractal dimen-
sions, cluster sizes, and porosities discussed thus far for the
system at low particle loading (Fig. 2, 4, and 5) against those
computed for one of the additional systems in the opposite
regime of high loading (Fig. S28†). Our comparison revealed
that many of the already discussed trends in these properties
with respect to the sticking probabilities are also observed at
high loading, though some intriguing differences also arise. In
particular, we found that the computed f21 and f22 remain
similar across the two systems (Fig. 2a and b vs. Fig. S28a and
S28b†), suggesting that the local composition of aggregates is
not affected by NP loading. The cluster size also decreases
with decreasing p11 in both systems (Fig. 5b vs. Fig. S28c†),
though the relative size variation with p11 is much smaller at
high loading. Interestingly, we found that the pore size
becomes larger with increasing p11 at high loadings
(Fig. S28d†), a trend opposite to that observed at low loadings
(Fig. 5c). This difference may be understood as follows: at low
loading, increasing p11 leads to larger and sparser clusters,
which naturally then leads to larger pores. However, at high
loading, the cluster sizes are comparable at small and large
p11, but decreasing p11 leads to thicker network branches and
thereby larger pore (see Fig. S29†). This observation also likely
explains why the fractal dimension was found to increase with
increasing p11 at high loading (Fig. S28e†), but decrease with
the same sticking probability at low loadings (Fig. 4f).

We also found that the fractal networks become increas-
ingly compact with smaller pores and higher percolation as
the overall density is increased, keeping the mass fraction of

the two species more or less constant. Comparing for instance
the structures obtained with [N1 N2] = [10 000 200] at ρ = 0.083
(Fig. 1), [N1 N2] = [20 000 400] at ρ = 0.17 (Fig. S22†), and
[N1 N2] = [30 000 400] at ρ = 0.23 (Fig. S25†) in the case of p11 =
0.4, p12 = 0.4, and p22 = 0.01, we found the area-average pore
size decreases from 39 to 23 to 12 while the fractal dimension
only changes little between 1.53 and 1.57.

Lastly, to confirm that all intensive properties of aggregates
reported so far are insensitive to our choice of system size, we
performed simulations using a 4× larger simulation box (800 ×
800 lattice with N1 = 40 000, N2 = 800, p11 = p12 = p22 = 0.4)
corresponding to one of the studied systems (with N1 = 10 000,
N2 = 200, p11 = p12 = p22 = 0.4). Our results show that the local
distribution of NPs and the fractal dimension of the aggregates
are indeed unaffected by system size (Fig. S30 and S31†),
whereas the overall size of aggregates and their average pore
size shift towards larger values as the clusters grow into larger
aggregates on the larger lattice and larger pores begin to
appear (compare Fig. S30a and S30b†). Although the absolute
values of the pore sizes may change, the relative variation in
pore sizes as a function of sticking probabilities, NP densities
and stoichiometries is not expected to change with box size.

4 Discussion

We used lattice Monte Carlo simulations to explore the poss-
ible kinetically-trapped aggregate morphologies obtained from
co-assembly of a binary system of NPs in two dimensions. This
work is motivated by the observation that the random aggre-
gates typically obtained from homogeneous systems of par-

Fig. 6 Structural characteristics of the blocked phase. (a) Morphology of the blocked phase. The sticking probabilities are marked in the figures as
(p11, p12, p22). The number of NPs in the system is N1 = 10 000 and N2 = 800. (c) Radial distribution functions between NPs for the structure shown
in (b). (d) Structure factor of the structure shown in (b), and the fractal dimension df obtained from it.
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ticles exhibit a limited set of morphologies. Therefore, we
sought to examine if the addition of a second species of par-
ticles of different size, diffusivity, and binding propensity
could increase the diversity of morphologies achievable
through random aggregation. We hypothesized that the new
species would introduce additional length and time scales
related to the size of the new species and its rates of assembly
with itself and with the existing species. Our simulations show
that, indeed, the random fractal networks formed from binary
mixtures of small and large NPs exhibit much larger variations
in morphology compared to those formed from a single NP
species. In particular, based on the relative concentration of
the two species and the magnitudes of intra- and inter-species
sticking probabilities, the NPs were found to assemble into
one of the four distinct morphologies that we termed inte-
grated, coated, leaved, and blocked phases. These mor-
phologies differed most significantly from each other in: (1)
local distribution of small NPs around the large NPs, with the
fraction of surface area of large NPs occupied by small NPs
varying from 3% to 98% across the various morphologies; and
(2) spatial organization of large NPs within the networks,
where the large NPs were present in either dispersed or aggre-
gated form and either segregated or fully integrated into
the small-NP structures. The fractal networks assembled
from binary systems also exhibit much larger variations
in pore sizes compared to those assembled from a single
species at equivalent particle area densities (28–44 from two
species vs. 32–36 from one species; Fig. 7c; also see Table S1†),
though the corresponding increases in the range of achievable
fractal dimensions (1.50–1.64 vs. 1.53–1.62; Fig. 7a) and cluster
sizes (32 000–64 000 vs. 39 000–64 000; Fig. 7b) are more
modest.

Our results demonstrate how the morphology of binary
aggregates of NPs can be effectively tuned by varying the rela-
tive rates of the three binding events underlying assembly, i.e.,
NP1–NP1, NP2–NP2, and NP1–NP2 binding. One can estimate
these rates at the early stages of assembly when only isolated
particles exist. Based on reaction-rate theory,55 the rate of NP1–
NP2 binding events in 2D is given by R12 ≃ 2π(D1 +
D2)η1η2p12f (s1s2), where η1 and η2 are the concentrations

(number densities) of the two species, D1 and D2 are their self-
diffusivities, and f (s1s2) is a logarithmically increasing func-
tion of their sizes. Similarly, the rates of NP1–NP1 and NP2–
NP2 binding events are given by R11 ≃ 4πD1η1

2p11f (s1) and R22

≃ 4πD2η2
2p22f (s2). Given that diffusivity and particle size have

opposite effects on the rate, and in fact almost cancel out in
3D, the NP binding rates then mostly depend on the concen-
trations and the sticking probabilities of the binding partners.
While both effects similarly modulate the binding rates (both
proportionally), the sticking probabilities enable the widest
possible modulation in binding rates. The reason is that one
can achieve orders of magnitude variations in binding rates
through moderate changes in the interaction energy barriers
between particle due to exponential dependence of sticking
probabilities on energy barriers. Indeed, the largest variations
in network morphologies obtained in this work were achieved
by orders of magnitude variations in the three sticking prob-
abilities, and the effects of stoichiometry, which only varied
four-fold, were understandably more subtle.

The NP networks predicted here could be especially rele-
vant in polymer nanocomposites, where fractal networks have
been shown to significantly enhance the mechanical pro-
perties of polymers,5,11 improve the ionic conductivity of solid
polymer electrolytes,12,13,56–58 and enable other applications in
optical data storage, sensing, imaging, catalysis, gas–liquid
barriers, and photothermal therapy,16,59–62 where porous net-
works of NPs are required. The new network morphologies
obtained could enable further improvements in such func-
tions. For instance, the modulus and yield stress of polypropyl-
ene were found to be most strongly enhanced when both nano-
clay and CaCO3 NPs were incorporated into the polymer as
opposed to individual species of NPs at similar volume frac-
tions.63 Furthermore, the existence of two species of NPs
within the networks coupled with the ability to tune the
number of contacts and overall organization of the two species
of NPs within the networks could impart new functions into
composites not possible with single species of NPs. For
instance, interfaces between two types of NPs are highly rele-
vant to heterogeneous catalysis,15,42 electron tunnelling,64

charge separation,65 and plasmonics.7,39,45,66

Fig. 7 Comparison of the fractal dimension (a), cluster size (b) and pore size (c) of aggregate structures obtained from binary and unary NP systems.
Red circles and blue triangles show property values obtained from binary and unary systems, respectively. For binary assembly, the number of NPs in
the system are fixed at N1 = 10 000 and N2 = 200, and the sticking probabilities are varied from 10−4 to 0.4. For unary assembly involving only small
NPs, the number of such NPs is fixed at 13 200, and the sticking probabilities are varied from 10−4 to 0.4 (10−4, 10−3, 10−2, 0.1, 0.4). Fractal dimen-
sions were calculated from structure factors.
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While this study focused on a 2D assembly system, the
aggregate morphologies and trends in properties presented
here should remain qualitatively similar to those expected
from 3D systems. Given that the underlying physics governing
assembly morphology remains the same across 2D and 3D
systems (i.e., large NPs diffusing slower than small NPs but
providing a larger contact area for collision and sticking, par-
ticle stoichiometry governing frequencies of intra- vs. inter-
species collisions, and sticking probabilities governing reac-
tion- vs. diffusion-limited regimes of assembly), we expect the
same integrated, coated, leaved, and blocked phases to also
appear in 3D. In the same vein, we also expect to observe
similar trends in the relationship between the local distri-
bution, fractal dimensions, and porosities of the aggregated
structures with the input sticking probabilities, even though
the absolute values of some of these properties will likely be
different in 3D. Thus, while it is necessary to extend the
assembly of binary NPs to 3D systems, the results obtained
here from the 2D model already provides useful insights and
guidelines for understanding assembly of binary networks
in 3D.

5 Conclusions

We investigated via lattice simulations the range of network
morphologies achievable through kinetic assembly of binary
systems of NPs. We showed how the sizes, stoichiometries,
and affinities between NPs could be exploited to regulate the
kinetics of intra- and inter-species binding events and create a
range of heterogeneous network morphologies, which could
be categorized into four main classes—integrated, coated,
leaved, and blocked phases. These phases exhibited striking
differences in the local composition and spatial distribution of
NPs as well fractal dimensions and porosities. These new
heterogeneous particle networks have the potential to intro-
duce novel properties into polymer–NP composites, or improve
existing properties of composites, especially in the context of
mechanical, electrical, and optical composite materials. From
a more general point of view, our study also provides funda-
mental insights into the assembly kinetics of multicomponent
particle systems.
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