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Abstract. Dujmović and Langerman (2013) proved a ham-sandwich cut
theorem for an arrangement of lines in the plane. Recently, Xue and
Soberón (2019) generalized it to balanced convex partitions of lines in
the plane. In this paper, we study the computational problems of com-
puting a ham-sandwich cut balanced convex partitions for an arrange-
ment of lines in the plane. We show that both problems can be solved in
polynomial time.
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1 Introduction

Dujmović and Langerman [5] proved a ham-sandwich cut theorem for an ar-
rangement of lines in the plane.

Theorem 1 (Dujmović and Langerman [5]). Given two finite sets A, B of
lines each in the plane, if no two lines of A ∪ B are parallel, there exists a line
` such that each of the two closed half-spaces it defines encloses a subset of at
least

√
|A| lines of A and a subset of at least

√
|B| lines of B.

We show that the ham-sandwich line can be computed in polynomial time.
The ham sandwich theorem has been generalized to convex partitions of the
plane. The following theorem was proven independently by Bespamyatnikh,
Kirkpatrick, and Snoeyink [1], by Ito, Uehara, and Yokoyama [9] and by Sakai
[13].

Theorem 2 ([1, Theorem 10]). Given rn red and rm blue points in the plane
in general position, there exists a subdivision of the plane into r convex regions
each of which contains n red and m blue points.

A subdivision of the plane satisfying Theorem 2 is called equitable [1]. The
main tool in the proof of Theorem 2 is equitable k-cuttings for k = 2, 3. A 2-
cutting is simply a partition of the plane by a line. A 3-cutting is a partition of
the plane into 3 wedges by 3 rays starting from the same point.

Recently, Xue and Soberón [15] generalized Theorem 1 as follows. Let L be
a set of lines in the plane. We denote by I(L) the set of pairwise intersection
points of L. We use notation [k] = {1, 2, . . . , k}.
? The research is supported in part by NSF award CCF-1718994.
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Theorem 3 (Xue and Soberón [15]). Let A,B be two finite sets of lines in
R2 such that A ∪ B is in general position, and let r be a fixed positive integer.
Then, there is a convex partition (C1, . . . , Cr) of R2 into r parts such that for
all j ∈ [r] there exist sets Aj ⊂ A, Bj ⊂ B such that I(Aj) ⊂ Cj , I(Bj) ⊂ Cj

and

|Aj | ≥ rln(2/3)|A|1/r − 2r, |Bj | ≥ rln(2/3)|B|1/r − 2r.

In this paper a convex partition satisfying the conditions of Theorem 3 is
called an equitable partition of sets A and B.

The proof of Theorem 3 is similar to the proof of Theorem 2 [1]. For this, we
need a measure µ defined as follows. For a set of lines L in the plane and a set
K ⊆ R2, we define

µL(K) = max{|L′| : L′ ⊆ L, I(L′) ⊆ K}.

The main idea is to apply equitable k-cuttings for k = 2, 3 to obtain the
desired partition.

Definition 1. A 2-cutting of the plane into two parts (C1, C2) is called equitable
if there exist two positive integers r1, r2 such that r1 + r2 = r and

µA(Ci) ≥
(

2|A|
3

)ri/r

− 2, µB(Ci) ≥
(

2|B|
3

)ri/r

− 2 for i = 1, 2.

Definition 2. A 3-cutting of the plane into three parts (C1, C2, C3) is called
equitable if there exist three positive integers r1, r2, r3 such that r1 + r2 + r3 = r
and

µA(Ci) ≥
(

2|A|
3

)ri/r

− 2, µB(Ci) ≥
(

2|B|
3

)ri/r

− 2 for i = 1, 2, 3.

A k-cutting is called convex if its parts are convex. Theorem 3 follows from
the following lemma [15].

Lemma 1. Let A,B be two finite sets of points in the plane, each in general
position, and r ≥ 2 be a positive integer. Then, there exists an equitable k-cutting
for some k ∈ {2, 3}.

Our results are the following.

– We show that the ham-sandwich line for two sets of lines in the plane can
be computed in polynomial time (Theorem 4 in Section 3).

– An equitable partition of two sets of lines in the plane can be computed in
polynomial time (Sections 4-7).
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2 Preliminaries

The key lemma in the proof of Theorem 1 (and Theorem 3) is the following
lemma [5].

Lemma 2. For any two open halfplanes H1 and H2 in the plane and any finite
set L of lines

µL(H1 ∪H2) ≤ µL(H1) · µL(H2).

Xue and Soberón [15] proved a key lemma for 3-cuttings.

Lemma 3. For any convex partition of the plane into three wedges C1, C2, C3

and any set A of n lines in general position in the plane

µA(C1)µA(C2)µA(C3) ≥ 2n

3
.

3 Computing Ham-Sandwich Cuts

Let h−(t) denote the set {(x, y) | x ≤ t} and let h+(t) = {(x, y) | x ≥ t}. The
following problem is the basis of our algorithms.

Problem P1. Given a set L of lines in the plane and an integer n0 ≤ n, find
smallest x0 such that µL(h−(x0)) ≥ n0.

Lemma 4. Problem P1 can be solved in O(n log2 n) time.

Proof. For a given t, we can compute µL(h−(t)) in O(n log n) time as follows.
Let L = {l1, . . . , ln}. For each line li in L, compute its slope si and intercept ri.
Therefore, the equation of the line li is y = si(x − t) + ri. We sort the line by
the intercept and assume that l1, . . . , ln is the sorted order, i.e. r1 ≤ r2, . . . , rn.
Compute l(t), the length of the longest increasing subsequence of s1, s2, . . . , sn
in O(n log n) time [8, 14].

To compute x0, we use an algorithm for the slope selection [2–4, 10, 12]. In
the dual setting this problem is the following. Given a set L of n non-vertical
lines and an integer number k ∈ [

(
n
2

)
], we want to find two lines from L such

that their intersection point has kth smallest x-coordinate. This problem can be
solved in O(n log n) time. We apply the binary search on the values of k and
compute smallest x0 such that µL(h−(x0)) ≥ n0 using log

(
n
2

)
= O(log n) tests.

The total running time is O(n log2 n). ut

Theorem 4. Let A and B be two finite sets of lines each in the plane such that
no two lines of A ∪B are parallel. A ham-sandwich line for the arrangement of
A ∪B can be computed in O(n2 log2 n) time where n = |A|+ |B|.

Proof. Using the algorithm for problem P1, we can compute

– x0, the smallest t such that µA(h−(t)) ≥
√
|A|, and

– x1, the largest t such that µA(h+(t)) ≥
√
|A|.
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The value x0 is computed by applying the algorithm to set A and the value x1
is computed by applying the algorithm to set A′ that is symmetric to A, i.e.
if a line with the equation y = ax + b is in A then the line with the equation
y = −ax− b is in A′. Then x1 = −t where t is the output value of the algorithm
applied to set A′.

The interval [x0, x1] is not empty because µA(h−(t)) · µA(h+(t)) ≥ |A| for
any value of t ∈ R. In other words, µA(h−(t)) ≥

√
|A| or µA(h+(t)) ≥

√
|A|.

The running time for computing [x0, x1] is O(n log2 n).

We also compute an interval [x′0, x
′
1] for set B using µB . If the intervals [x0, x1]

and [x′0, x
′
1] intersect then the line with equation x = t is a ham-sandwich line

for any t ∈ [x0, x1] ∩ [x′0, x
′
1]. Suppose that the intervals [x0, x1] and [x′0, x

′
1] do

not intersect. Wlog the interval for A is to the left of the interval for B, i.e.
x1 < x′0.

Let A(φ) (resp. B(φ)) be the set of lines A rotated clockwise by an angle φ
about the origin. Let X(φ) = [x0(φ), x1(φ)] and X ′(φ) = [x′0(φ), x′1(φ)] be the
corresponding intervals. We want to find an angle φ such that the intervals X(φ)
and X ′(φ) intersect.

For a set of lines L, we denote by A(L) be the arrangement of lines L.

Consider the arrangement A(A ∪ B). Let V be the set of
(|A|+|B|

2

)
vertices of

the arrangement A(A ∪ B). Let L be the set of all lines that contain at least
two points of V . Let φ1, φ2, . . . , φ|L| be the sorted sequence of the slopes of
lines in L. Consider an interval I = (φi, φi+1). For any φ ∈ I, the numbers
x0(φ), x1(φ), x′0(φ), x′1(φ) preserve the order since each of them corresponds to
a vertex of V rotated clockwise by angle φ. Therefore the intervals X(φ) and
X ′(φ) preserve the relation for all φ ∈ I, i.e. either (i) they intersect or (ii) X(φ)
is to the left of X ′(φ) or (iii) X(φ) is to the right of X ′(φ), for all φ ∈ I.

We want to find an interval I = (φi, φi+1) such that X(φ) and X ′(φ) intersect
for all φ ∈ I. Note that, for all φ in the first interval φ ∈ (−∞, φ1) the interval
X(φ) is to the left of the interval X ′(φ) since 0 ∈ (−∞, φ1). Also for all φ in the
last interval φ ∈ (φ|L|,∞) the interval X(φ) is to the right of the interval X ′(φ)
since π ∈ (φ|L|,∞). We apply binary search on the sequence φ1, φ2, . . . , φ|L|. For
any interval I = (φi, φi+1), we pick φ ∈ I and compute the intervals X(φ) and
X ′(φ) in O(n log2 n) time (the rotation of the lines A ∪ B by φ can be done
in linear time). The total time for computing these intervals is O(n log3 n). For
binary search we use the slope selection for set of points V . Each slope selection
takes O(|V | log |V |) time [2–4, 10, 12]. Then the total time is O(n2 log2 n). ut

4 Computing an Equitable Partition

Our algorithm for computing an equitable partition of the plane is based on equi-
table 2- and 3-cuttings. In this section we show how 2-cuttings can be computed.
In particular, we need to find the pair (r1, r2) for an equitable 2-cutting.

For convenience, let M(X, i) =

⌈(
2|X|
3

)i/r⌉
− 2 for i ∈ [r − 1].



Computing Balanced Convex Partitions of Lines 5

We define the sign σ(i) for i ∈ [r− 1] as follows. As in the proof of Theorem
4, we compute

– x0, the smallest t such that µA(h−(t)) ≥M(A, i), and
– x1, the largest t such that µA(h+(t)) ≥M(A, r − i).

We also compute an interval [x′0, x
′
1] for set B using µB and the lower bounds

M(B, i),M(B, r − i). If the intervals [x0, x1] and [x′0, x
′
1] intersect then, for any

t ∈ [x0, x1] ∩ [x′0, x
′
1], the line with equation x = t is an equitable 2-cutting for

(r1, r2) = (i, r − i). We assign σ(i) = 0 in this case. Suppose that the intervals
[x0, x1] and [x′0, x

′
1] do not intersect. If x1 < x′0, we set σ(i) = 1; otherwise

x0 > x′1 and we set σ(i) = −1.
We apply the algorithm from Lemma 4 to compute the sign sequence σ(1),

σ(2), . . . , σ(r−1) inO(rn log2 n) time. If there is a sign σ(i) = 0 then an equitable
2-cutting (by a vertical line) is found. Suppose that σ(i) = ±1 for all i ∈ [r− 1].
We apply the following theorem from [1].

Theorem 5 ([1]). For any sequence of signs σ(1), σ(2), . . . , σ(r−1) with σ(i) =
±1, there is a pair (r1, r2) or a triple (r1, r2, r3) with sum r and the same signs
such that any 1 ≤ ri ≤ 2r/3.

The proof of Theorem 5 [1] implies that a pair (r1, r2) or a triple (r1, r2, r3)
can be computed in O(r) time if the sequence of signs is known. If it is a pair
(r1, r2) then we can compute an equitable 2-cutting for (r1, r2) as follows.

As in the proof of Theorem 4, we use the rotated sets A(φ) and B(φ)). We
can also define, for the sets A(φ) and B(φ)) and any i ∈ [r − 1],
(i) the corresponding intervals X(φ, i) = [x0(φ, i), x1(φ, i)] and X ′(φ) = [x′0(φ, i),
x′1(φ, i)], and
(ii) the signs σ(φ, i).

Suppose that σ(φ, i) 6= σ(0, i) for some angle φ and i ∈ [r − 1]. Then an
equitable 2-cutting for (i, r − i) can be found using binary search in the set of
slopes φ1, φ2, . . . as in the proof of Theorem 4.

X(0, r1) X ′(0, r1)

X(π, r2) X ′(π, r2)

Fig. 1. The intervals for φ = 0, i = r1 and φ = π, i = r2 projected on the x-axis.

Note that X(0, i) = X(π, r − i) and X ′(0, i) = X ′(π, r − i) for i ∈ [r − 1].
Then σ(π, r − i) = −σ(0, i). Then σ(π, r2) = −σ(0, r1) = −σ(0, r2), see Figure
1. Thus, we can find an equitable 2-cutting for (r1, r)2).
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Lemma 5. If there is a pair (r1, r2) such that σ(r1) = σ(r2), then an equitable
2-cutting for (r1, r2) can be computed in O(n2 log2 n) time.

In the subsequent sections we will deal with 3-cuttings. We also may assume
that, for any i ∈ [r − 1], the sign function σ(π, i) is invariant for all θ as an
equitable 2-cutting can be found otherwise.

5 Computing the Measure of a Wedge

In this section we present an algorithm for computing µL(W ) for any set of lines
L and a wedge W in the plane. We can assume that W = {(x, y) | x, y ≥ 0}
by using affine transformations. Lines in L intersect both x- and y-axis. Let
x1, . . . , xk and y1, . . . , ym be the sorted coordinates of the intersection points,
see Figure 2.

x1

y1

y2

y3

y4
y5

y6

y1

x2 x3 x4 x5 x6 x7

Fig. 2. 8 lines crossing the wedge W = {(x, y) | x, y ≥ 0}. µL(W ) = 5 and the
corresponding 5 lines are shown in bold.

The wedge W is between two rays RX = {(x, 0) | x > 0} and RX =
{(0, y) | y > 0}. There are three types of lines intersecting W . Let LX the
sets of lines intersecting RX but not RY and let LY be the sets of lines inter-
secting RY but not RX . Let LXY be the sets of lines intersecting both RX and
RY .

Lemma 6. Let L′ be a subset of L such that I(L′) ⊂ W . There exists a pair
(i, j) such that
(i) any line in L′ ∩ LXY intersects x-axis at xi′ ≥ xi and y-axis at yj′ ≥ yj,
(ii) any line in L′ ∩ LX intersects x-axis at xi′ < xi and
(iii) any line in L′ ∩ LY intersects y-axis at yj′ < yj.

Proof. Let xi be the smallest x-intercept of a line in L′ ∩ LXY and let l1 be
this line. Let yj be the smallest y-intercept of a line in L′ ∩ LXY and let l2 be
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this line. Clearly, the condition (i) holds. The condition (ii) holds too; otherwise
line l1 does not intersect all the lines in LX . Similarly, the condition (iii) holds;
otherwise line l2 does not intersect all the lines in LY . ut

We call a set of lines L′ satisfying the conditions (i)-(iii) of Lemma 6, (i, j)-set
of lines. For every (i, j), we compute L∗i,j , a largest (i, j)-set of lines. By Lemma
6, µL(W ) = |L∗i,j |.

Let x(l) and y(l) denote x- and y-intercept of a line, i.e. the equation of l
can be expressed as y = ax + y(l) and y = a(x − x(l)). For every pair (i, j)
with 1 ≤ i ≤ k and 1 ≤ j ≤ m, we show how to compute the largest set L′ ⊆
LXY such that I(L′) ⊂ W . Let L′ = {l1, . . . , ls} be a set of lines in LXY with
x(l1) ≥ x(l2) ≥ . . .x(ls) ≥ xi and y(l1),y(l2), . . . ,y(ls) ≥ yj . Then I(L′) ⊂W if
and only if y(l1) ≤ y(l2) ≤ · · · ≤ y(ls), for example three lines with x-intercepts
x6, x4, and x3 in Figure 2 have y-intercepts y3, y4, and y6, respectively. Therefore,
we can use an algorithm for computing the longest increasing subsequence of
y(l1),y(l2), . . . ,y(ls) in O(n log n) time [8, 14].

For every pair (i, j) with 1 ≤ i ≤ k and 1 ≤ j ≤ m, we show how to compute
the largest set L′ ⊆ LX ∪ LY such that I(L′) ⊂ W . Let L′ = {l1, . . . , ls} be
a set of lines in LX ∪ LY satisfying (i) and (ii). Suppose that they are sorted
as follows. The lines from LX first, then the lines from LY . The lines from LX

are sorted by x-intercept in decreasing order. The lines from LY are sorted by
y-intercept in increasing order. Then I(L′) ⊂ W if and only if the slopes of he
lines in L′ are decreasing. Therefore, we can use an algorithm for computing the
longest decreasing subsequence in O(n log n) time.

Therefore |L∗i,j | = |A∗i,j |+|B∗i,j | where |A∗i,j | is the maximum size of L′ ⊆ LXY

for (i, j) and |B∗i,j | is the maximum size of L′ ⊆ LX ∪LY for (i, j). If we use the
longest increasing/decreasing subsequence for all pairs (i, j), the total running
time will be O(n3 log n). We show that it can be reduced to O(n2 log n).

We compute |A∗i,j | using |A∗i+1,j |. Consider line lt with x(lt) = xi. If y(lt) <
yj , line lt can be ignored. If y(lt) ≥ yj , we add it to the sequence y(l1),y(l2), . . . ,y(ls)
and compute the length of the longest increasing subsequence (LIS) of the new
sequence. Since we add a new element to it, the length of LIS can be updated
in O(log n) time. Similarly, the values of |B∗i,j | can be computed. Then the total

running time be O(n2 log n).

Theorem 6. For any set L of n lines in the plane and any wedge W , the mea-
sure µL(W ) can be computed in O(n2 log n) time.

6 Computing Canonical Cuttings

Let (r1, r2, r3) be the triple provided by Theorem 5 (we assume that a pair
(r1, r2) does not exist).

Similar to [1, 15] we define a canonical cutting. For a point p, construct three
rays r0, r1 and r2 starting from p. The first ray r0 is pointing downwards. Let
Ci, i = 1, 2 be the region defined by rays r0 and ri as shown in Figure 3. Let
αi, i = 1, 2 be the angle rays r0 and ri. The canonical cutting is defined by
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choosing αi, i = 1, 2 to be the smallest angle such that µA(Ci) ≥ M(A, ri). We
also denote these angles αi(p), i = 1, 2. Let C3 be the region between rays r1
and r2, see Figure 3.

α1

α2

C1

C2

C3

I(A′)

I(A′′)

r0

r1

r2

p

Fig. 3. Canonical 3-cutting.

Lemma 7. For any point p in the plane, the canonical 3-cutting can be computed
in O(n2 log2 n) time.

Proof. First, we compute I(A) in O(n2) time. For every point q ∈ I(A), compute
the slope of the vector pq. Sort I(A) by slope. Compute ray r1 of the canonical
3-cutting at p by using binary search in the sorted set I(A). For any slope s in the
binary search, compute the measure µA(C1) using the algorithm from Theorem
6. Similarly the ray r2 can be computed. The total time is O(n2 log2 n). ut

The locus of all points p defining a convex canonical 3-cutting is

R = {p ∈ R2 | x0 ≤ px ≤ x1 and α1(p) + α2(p) ≥ π}.

The region R contains an apex of an equitable 3-cutting [15]. It can be proven
using a coloring: a point p ∈ R has color i ∈ [3] if µB(Ci) ≥M(B, ri). Note that
a point may have more than one color and a point with three colors is an apex
of the equitable 3-cutting. It exists by the following theorem.

Theorem 7 (Knaster, Kuratowski, Mazurkiewicz [11]). Let ∆ be a tri-
angle with vertices 1, 2, 3. Suppose that ∆ is colored with colors {1, 2, 3} such



Computing Balanced Convex Partitions of Lines 9

that every vertex i has color i, and every point on a side ij has at least one of
the colors i or j. If every color class is a closed set, then there is a point with
all three colors.

R

µA(h
−(x0))

µA(h
+(x1))

x0 x1

C1 C2

C3

C1
C2

C3

C1

C2

C3

Fig. 4. Region R.

7 Computing an Equitable 3-Cutting

In this section we show that an equatable 2- or 3-cutting can be computed
efficiently.

Theorem 8. Let A,B be two finite sets of points in the plane, each in general
position, and r ≥ 2 be a positive integer. An equitable k-cutting for some k ∈
{2, 3} can be computed in O(n6 log2 n) time.

Proof. Let V be the set of vertices of the arrangement of lines L = A ∪ B. Let
L be the union of
(i) the set lines passing through two points of V , and
(ii) the vertical lines passing through V .
Then the arrangement L contains O(n2) lines and O(n4) faces.

We apply the topological sweep method of Edelsbrunner and Guibas [6, 7] to
traverse the faces of the arrangement of L. For each face F of the arrangement,
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we can check the boundary conditions of the region R using angles αi, i ∈ [3]
computed for some point p ∈ F . If the canonical 3-cutting is convex, we compute
the coloring of the face. The algorithm stops if all three colors are used for p.
Note that all the points in F have the same coloring. When we reach the top
boundary of region R, we also check the sign of C3. If it is opposite of σ(r3) we
apply the algorithm for computing an equitable 2-cutting from Section 4. The
total running time is O(n6 log2 n). ut

Using the partition of r from Section 4, we conclude

Corollary 1. Let A,B be two finite sets of lines in R2 such that A ∪ B is in
general position, and let r be a positive integer. Then, an equitable partition of
R2 into r convex regions can be computed in O(n6 log2 n log r) time.
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