

1
2
3
4 **SIMPLE-G: A Multiscale Framework for Integration of**
5 **Economic and Biophysical Determinants of Sustainability**
6
7
8

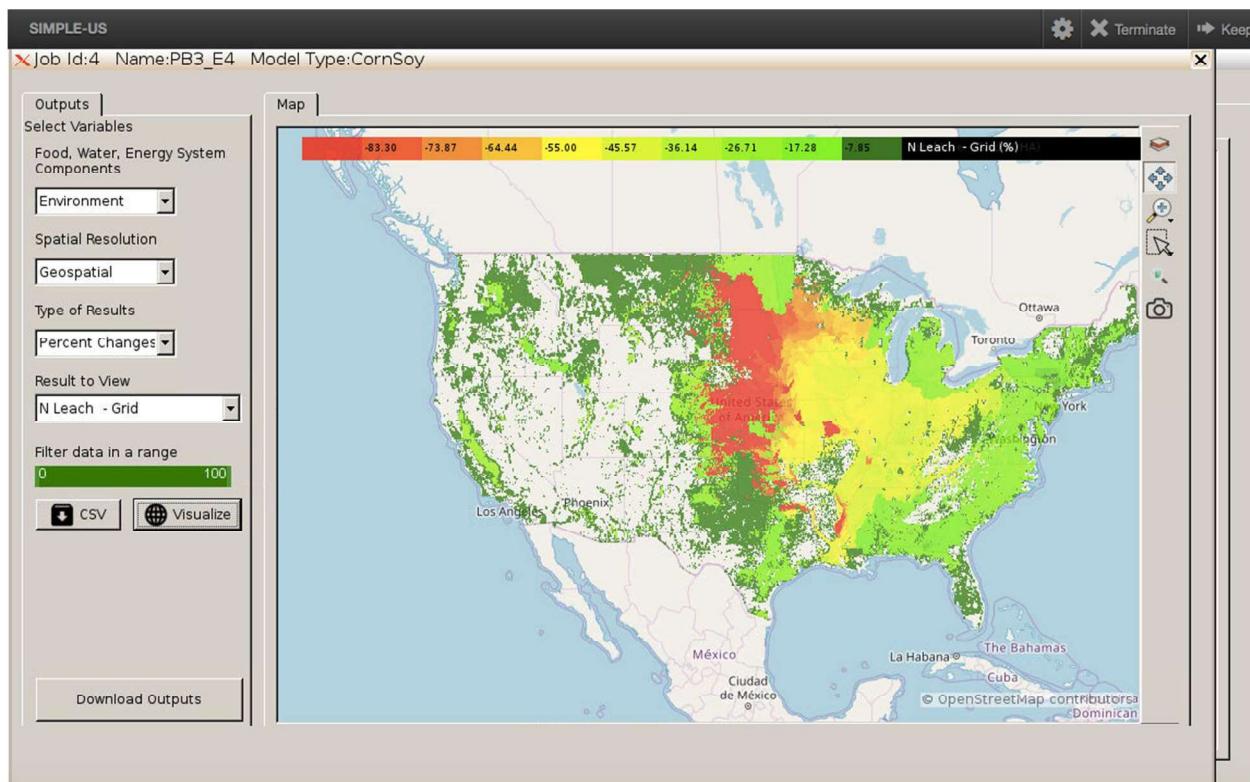
9 U. L. C. BALDOS¹, I. HAQIQI^{*1}, T. HERTEL¹, M. HORRIDGE², J. LIU¹
10
11

12 **Abstract:** We introduce SIMPLE-G, a Simplified International Model of
13 agricultural Prices, Land use, and the Environment- Gridded version, which is a
14 novel tool for evaluating sustainability policies in a global context, while factoring
15 in local heterogeneity in land and water resources and natural ecosystem services.
16 This multi-scale model can provide boundary conditions for local decision makers,
17 as well as capturing feedbacks from local policies to national and global scales. To
18 illustrate its value in environmental analysis, we provide two applications of the
19 model. First, we quantify the local stresses on land and water resources due to
20 global changes in population, income, and productivity. Second, we quantify the
21 global impacts of local policy responses and adaptations to water scarcity.
22
23
24
25
26
27
28
29

30 **Highlights:**
31

32 - Novel global-to-local-to-global modelling framework introduced
33 - Model condensation permits rapid solution with millions of grid cells
34 - GeoHub implementation allows users to run the model and explore results via the web
35 - Subtotals allow for attribution of local stresses to individual global change drivers
36
37

38 **Keywords:** Sustainability, agriculture, environmental stresses, multiscale modelling, global
39 change, water scarcity
40
41


42 **Software and data availability:** SIMPLE-G web application, SIMPLE-G-US web
43 application
44

45 ¹Center for Global Trade Analysis, Purdue University, West Lafayette, IN, USA
46

47 ²Centre for Policy Studies, Victoria University, Melbourne, Australia
48

49 *Corresponding Author
50
51
52
53
54
55
56

57
58
59
60
61
62
63
64
65 **Graphical abstract:**
66
67

91 A sample window from web application of SIMPLE-G-US:
92 <https://mygeohub.org/tools/simpleus>

93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

Outline

Contents

1	Introduction.....	5
2	Model.....	7
2.1	Global socioeconomic determinants of crop demand	8
2.2	Gridded crop production is the result of economic optimization	9
2.3	Nitrogen fertilizer and nitrate leaching.....	13
2.4	Local water withdrawals and irrigation	13
2.5	Gridded land use	14
2.6	Climate	15
3	Benchmark data and parameters.....	15
3.1	National and regional data	17
3.2	Cropland area.....	17
3.3	Cropland supply and transformation parameters	17
3.4	Crop yields and production.....	18
3.5	Nitrogen fertilizer application and leaching parameters.....	18
3.6	Nitrogen substitution parameters	19
3.7	Water withdrawal.....	19
3.8	Water supply parameters.....	20
4	Software.....	20
4.1	Condensation.....	21
4.2	Linearization	22
4.3	Decomposition	23
4.4	Web-application on GeoHub	23
5	Two Applications.....	24
5.1	Global drivers of local sustainability stresses.....	24
5.2	Limiting unsustainable water withdrawals	27
5.3	Other applications of SIMPLE-G	30
6	Discussion and Conclusions	32
	References.....	35
7	Appendix.....	39

169	
170	
171	7.1 Major variables of the model
172	39
173	7.2 Gridded Crop Production Module
174	40
175	
176	
177	
178	
179	
180	
181	
182	
183	
184	
185	
186	
187	
188	
189	
190	
191	
192	
193	
194	
195	
196	
197	
198	
199	
200	
201	
202	
203	
204	
205	
206	
207	
208	
209	
210	
211	
212	
213	
214	
215	
216	
217	
218	
219	
220	
221	
222	
223	
224	

225
226
227
228
1 **INTRODUCTION**
229

230
231 The world faces significant sustainability challenges in the decades ahead (United Nations,
232 2019). Growing populations and rising incomes are placing unprecedented stresses on the
233 planetary boundaries, with the world's land and water resources at growing risk (Steffen et al.,
234 2015). The challenge posed in making such assessments is that the sustainability stresses do not
235 respect disciplinary boundaries. Furthermore, while the stresses are often highly localized, the
236 drivers of these stresses are global, and the local responses can feed back to national and global
237 outcomes. For this reason, assessment of the underlying risks as well as potential solutions, is
238 typically undertaken with a suite of models using complex approaches that often preclude
239 replication and use by researchers outside the core group (Obersteiner et al., 2016; Springmann et
240 al., 2018).

241 Up to this point, there have been just a few open-source, bottom-up, economic-
242 environmental modelling framework capable of analyzing global sustainability at the resolution of
243 individual grid cells (Lotze-Campen et al., 2008; Valin et al., 2013). There is clearly a tradeoff
244 between complexity and accessibility. Models used in teaching and academic research are
245 generally simpler than those developed by national and international labs and research institutions.
246 Having a relatively simple, global, grid-resolving sustainability framework that can be also run
247 'in-cloud' will allow wider participation in sustainability discussions and can facilitate greater
248 crowd-sourcing of new ideas, data and parameters to enrich the representation of local stresses,
249 policies and adaptations. This paper introduces such a modelling framework: SIMPLE-G, a
250 Simplified International Model of agricultural Prices, Land use, and the Environment-Gridded
251 version.

252 The SIMPLE-G framework allows for analysis of the interplay between economic and
253 environmental systems, taking account of the actions of local agricultural producers pertaining to
254 land and water use, within the context of regional and global commodity markets. This model
255 integrates economic theories with environmental sciences to analyze the biophysical and economic
256 impacts at different geospatial scales. The economic supply of land and water takes account of
257 local institutions, biophysical characteristics, sustainability criteria, along with maximum available
258 resources. As a consequence, heterogeneity in local constraints leads to different rates of change
259 in land and water use. On the demand side, growth in income and population lead to changes in
260 food consumption baskets and changes in agricultural trade patterns.

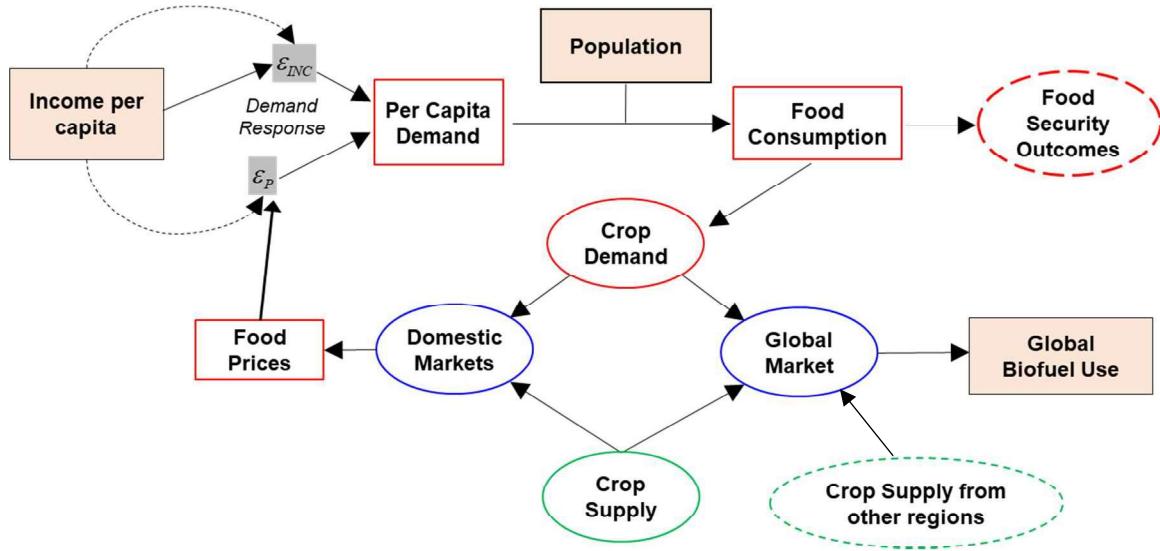
281
282
283
284
285 Integrating the human and earth system analysis within a global economic framework is a
286 challenging task and often focuses on one-way linkages, such as those used in down-scaling
287 regional results to a grid cell level (Reilly et al., 2012). It has also been common practice to
288 extrapolate from sophisticated grid-level analysis to national scale by assuming that the share of
289 production or land use is unchanging (Schlenker & Roberts, 2009). Bridging local, national and
290 global scales within a single framework is challenging, yet it is essential if we wish to bring into
291 consideration the behavior of local decision makers within the context of global sustainability
292 analysis. In the SIMPLE-G framework laid out here, these decisions are made endogenously
293 considering local biophysical characteristics and institutions as well as nationally determined input
294 prices and globally determined commodity prices.
295
296

301 Despite computational advances, model solution time remains another major challenge for
302 integrated frameworks – particularly those utilized by individual researchers without access to high
303 performance computing at national labs and major research institutions. With SIMPLE-G, we
304 introduce a solution strategy that dramatically reduces computing time, permitting individuals to
305 solve a version of SIMPLE-G with a million grid cells in a matter of minutes on a desktop
306 computer. Furthermore, by implementing SIMPLE-G on one of the NSF-funded HubZero sites
307 (GeoHub), we have made the model, along with visualization software, readily available to any
308 user with access to a web browser. This greatly expands access to multi-scale modelling of
309 sustainability challenges at the interface of agriculture and the environment. It should also
310 accelerate the development of new and improved data bases and representations of local
311 institutions and other constraints within this framework.
312
313

314 To the versatility of SIMPLE-G in sustainability analysis, we highlight an implementation
315 of this framework wherein the US has been broken out in detail (5 arc minutes), while other regions
316 are aggregated. Previous applications have disaggregated the globe uniformly (30 arc minutes)
317 (Liu et al., 2017). We undertake two experiments aimed at highlighting two different types of
318 analysis that can be undertaken with SIMPLE-G. In the first, we investigate the contribution of
319 global changes in population, technology, and income to change in gridded US water and land use
320 by mid-century. It includes global demand shocks as well as local supply responses. This
321 highlights locations most vulnerable to land and water stresses. Furthermore, we tie these stresses
322 to individual global change drivers, including, for example, population growth in Africa or income
323
324
325
326
327
328
329
330
331
332
333
334
335
336

337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
growth in Asia. By linking local environmental stresses in the US to global change drivers, we underscore the essence of 21st century global sustainability challenges.

In a second application of the SIMPLE-G framework, we focus on the local-to-global feedbacks associated with sustainability policies. In this case, we begin with the projections made in the first experiment, but now we overlay a location-specific sustainability policy. In particular, we do not allow irrigation withdrawals to increase from the present day in those grid cells where withdrawals currently exceed recharge rates. We then explore how these sustainability restrictions alter global prices, production, consumption and trade.


The remainder of the paper is organized as follows. Section two provides an overview of the model. Section three introduces the diverse information used in the construction of the database and parameters for SIMPLE-G-US. Section four describes the software and implementation of this model. Section five explores the two experiments mentioned above and the final section provides further discussion and conclusions.

2 MODEL

The SIMPLE-G model is based on SIMPLE, a Simplified International Model of agricultural Prices, Land use, and the Environment (Baldos & Hertel, 2013; Hertel & Baldos 2016). This is a partial equilibrium agricultural trade model which has been validated for the study of long run sustainability and food security (Hertel & Baldos 2016; Baldos & Hertel, 2014). We extend the SIMPLE model to include gridded biophysical and economic relationships – hence the name, SIMPLE-G. This model is multi-scale. In other words, it simultaneously solves for outcomes at the level of tens of thousands of grid cells within a region, at the same time global market equilibrium is also enforced. This allows SIMPLE-G to explicitly incorporate local heterogeneity in climate, soils, water and regulatory institutions while also capturing global change drivers and feedbacks for local adaptations to national and international markets.

At each grid cell, land and water resources comprise the linkage to the environment and natural ecosystems. We model economically motivated changes in land use as well as changes in water withdrawals which reflect differential resource availability and constraints. Figure 1 summarizes the main demand and supply components of the SIMPLE-G model. The model solves for equilibrium quantities and prices for land and nonland inputs as well as for irrigation water, and crop outputs. Equilibrium water withdrawals are endogenously determined at each grid cell

393
394
395
396
397 assuming a grid cell-specific shadow price for water within the grid cell. Crop prices are permitted
398 to vary by region based on the extent of domestic market segmentation from the world market.
399

400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415 Figure 1. Structure of regional food demand in SIMPLE-G model

422 2.1 Global socioeconomic determinants of crop demand

423 At regional scale, the consumption of different commodities is a function of population,
424 income, prices and biofuels. Prices are determined endogenously as a function of supply and
425 demand while population and income changes are exogenous to the model with increases in per
426 capita income driving diet changes. Population, income and biofuels production can be specified
427 to follow long run growth scenarios such as the Shared Socioeconomic Pathways (SSPs) or other
428 global economic projections. Within this framework global food and agricultural markets link the
429 changes in population, income and diets to gridded crop production and associated stresses on land
430 and water resources.

431 One of the best understood pattern of economic development is Engel's Law, which states
432 that, as per capita income rises, the share of income devoted to food will fall (Clements & Chen,
433 1996). SIMPLE-G captures this relationship by allowing the income elasticity of demand for food
434 (ε_i^y , the propensity to spend incremental income on food) to evolve with per capita income (Y),
435
436
437
438
439
440
441
442
443
444
445
446
447
448

449
450
451
452 based on the estimated parameters, α_i^y and β_i^y , and similarly for the price elasticity of food
453
454 demand (ε_i^p):
455

456 (1) $\varepsilon_i^y = \alpha_i^y + \beta_i^y \ln Y$
457

458 (2) $\varepsilon_i^p = \alpha_i^p + \beta_i^p \ln Y$
459

460 Equations (1) and (2) are indexed by type of food demand (i) and SIMPLE-G distinguishes
461 between direct consumption of crops and indirect consumption through either livestock product
462 consumption or processed food consumption. This results in the following equations describing
463 the evolution of per capita demands for each type of food product¹:
464
465

466 (3) $q_i = \varepsilon_i^p p_i + \varepsilon_i^y y$
467

468 Total demand for crops in a given region is found by first multiplying each per capita demand
469 by population in the region and then summing the total direct demand for crops in final
470 consumption together with the indirect demands in livestock and food processing. To this total we
471 also add the demand for crops in biofuel production – a derived demand that we assume to be
472 exogenously determined by government mandates. The livestock and food processing sector
473 demands for crops are endogenous and modeled using Constant Elasticity of Substitution (CES)
474 production functions that combine the raw crop input with other inputs used in livestock or
475 processed food production. The mathematical representation of these CES functions is developed
476 in the next section.
477
478

479
480 **2.2 Gridded crop production is the result of economic optimization**
481
482

483 Crop production is the result of representative producers' maximization of profits, subject to
484 technology, prices, policies and resource constraints. The crop production technologies (both
485 rainfed and irrigated production) in each grid cell allow for substitution between nitrogen fertilizer,
486 water, land, and other inputs (the latter is an aggregate of capital, labor, other chemicals, energy,
487 etc.). The particular mix of inputs employed in a grid cell depends on relative prices, government
488

489
490
491
492
493
494
495
496 ¹ The astute reader will ask why there are no cross-price effects in this demand equation. The answer is that SIMPLE-
497 G models only aggregate crop demand. If we were considering disaggregated crop products, we would need to account
498 for cross-price effects. While not 'integrable' into underlying utility or expenditure function, this demand system
499 allows for the evolution of price and income elasticities with per capita income in a manner which has been
500 documented by international cross section studies of food demand (Muhammad et al., 2011). This has proven essential
501 to the long run validation of the SIMPLE model (U.L.C. Baldos & Hertel, 2013).
502
503
504

505
 506
 507 policies and production possibilities. Output levels expand or contract in order to ensure zero pure
 508 economic profits over the long run. Thus, unlike downscaling approaches, the spatial pattern of
 509 production is endogenously determined. Crop producers within a given grid-cell are price takers,
 510 as they are assumed to have no market power.
 511
 512

513 The equilibration of supply and demand for crops occurs at the level of market regions.
 514 Within the market regions in SIMPLE, crop demands are an aggregate of the four end uses
 515 described above. Demands may be satisfied from either from domestic or global markets
 516 depending on relative prices. This follows the method of Armington (Armington, 1969) which
 517 results in imperfect substitution between domestic and foreign products. Symmetrically, on the
 518 supply side, producers transform their products imperfectly between domestic and global markets.
 519 This permits us to calibrate the model to the observed data in which similar products are both
 520 imported and exported from the same country.
 521
 522

523 We consider a nested CES structure as shown in Figure 2. In each CES nest, two inputs are
 524 combined to produce a composite product using the following specification of technology:
 525

526 (4) $Q = A(\phi_N Q_N^{-\rho} + \phi_O Q_O^{-\rho})^{-1/\rho}$, where: $\sigma = 1/(1+\rho)$ and $\rho > -1$
 527

528 Each CES nest comprises three key behavioral equations which result from our assumptions of
 529 cost minimization, coupled with free entry and exit from these activities. In keeping with the model
 530 condensation and nonlinear solution strategy described in section 4, we write these equations in
 531 linearized (percentage change) form (Dixon, 1982). The following three equations pertain to the
 532 top-level nest, in which nitrogen fertilizer (N) and other inputs (O) are combined, in variable
 533 proportions, to produced aggregate crop output:
 534

535 (5) $p + a = \sum_j \theta_j (p_j - a_j)$: agricultural entry/exit; zero profits
 536

537 (6) $q_N + a_N = q - a - \sigma (p_N - a_N - p - a)$: demand for nitrogen fertilizer
 538

539 (7) $q_O + a_O = q - a - \sigma (p_O - a_O - p - a)$: demand for other inputs
 540

541 Here, lower case variables denote percentage changes in levels variables, i.e., $p = 100(dP/P)$ is the
 542 percentage change in crop price and $a = 100(dA/A)$ is the percentage change in total factor
 543 productivity. The variables p_j, q_j, a_j denote the percentage changes in input j's price, quantity and
 544 factor-augmenting productivity and θ_j is the share of that input in total costs.
 545
 546

561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
Equation (5) is the consequence of our assumption of unrestricted entry and exit from the crops sector. If output price rises, with unchanged technology and input prices, then there will be excess profits in the sector. This will attract new entrants, or encourage expansion of existing producers, which will drive up input prices and drive down output prices until zero pure economic profits are restored. Manipulation of equations (5) – (7) yields the following, equivalent, quantity-based, expression of this condition (dual to (5)) which we will use in the model to facilitate our condensation strategy described in section 4:

$$(8) \ q - a = \sum_j \theta_j (q_j + a_j)$$

577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
Equations (6) and (7) are the derived demand conditions for inputs. Thus the percentage change in demand for nitrogen fertilizer – a key source of non-point water pollution from agriculture – depends on changes in technology (a , a_N), changes in total crop output (q) and changes in the price of nitrogen fertilizer (p_N) relative to an index of all input costs (p). In section 3 below, we will discuss how the elasticity of substitution between nitrogen fertilizer and other inputs, σ , can be calibrated to reproduce grid-cell and practice-specific agronomic characteristics of crop production. It is evident from equation (6) that a large substitution elasticity will result in much greater response to (e.g.) a tax on fertilizer use in crop production. Therefore, σ is a key parameter in sustainability analysis.

592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
Returning to the production tree in Figure 2, we see that the ‘other inputs’ in equation (7) are a composite of water, land and the remaining inputs. Once again, there are three equations, analogous to (5) – (7), describing the substitution possibilities at this level in the production ‘tree’ (see Appendix). This is followed by a CES nest combining land and irrigation water. If crop output is strictly proportional to irrigation water delivered, then the elasticity of substitution between land and irrigation water is zero. On the other hand, if a reduction in water delivered to the crop does not go hand in hand with a proportionate reduction in output, then this elasticity is greater than zero and it captures the potential for deficit irrigation, i.e., achieving the same output level with less water, but more land.

606
607
608
609
610
611
612
613
614
615
616
The next CES nest in Figure 2 combines irrigation water and irrigation capital. The associated elasticity of substitution at the bottom of this production tree describes the potential for conserving irrigation water through investments in (e.g.) drip irrigation to replace sprinkler or canal-based irrigation capital. Once again, this is a key sustainability parameter which will be

discussed below in section 3. The final CES nest in Figure 2 combines surface and groundwater to create an irrigation water composite. The rationale for this nest is that surface and groundwater extraction often co-exists in a given grid cell, despite differences in cost. The two sources of water offer farmers different characteristics. Groundwater, for example, is available on demand, and largely independent of current weather conditions.

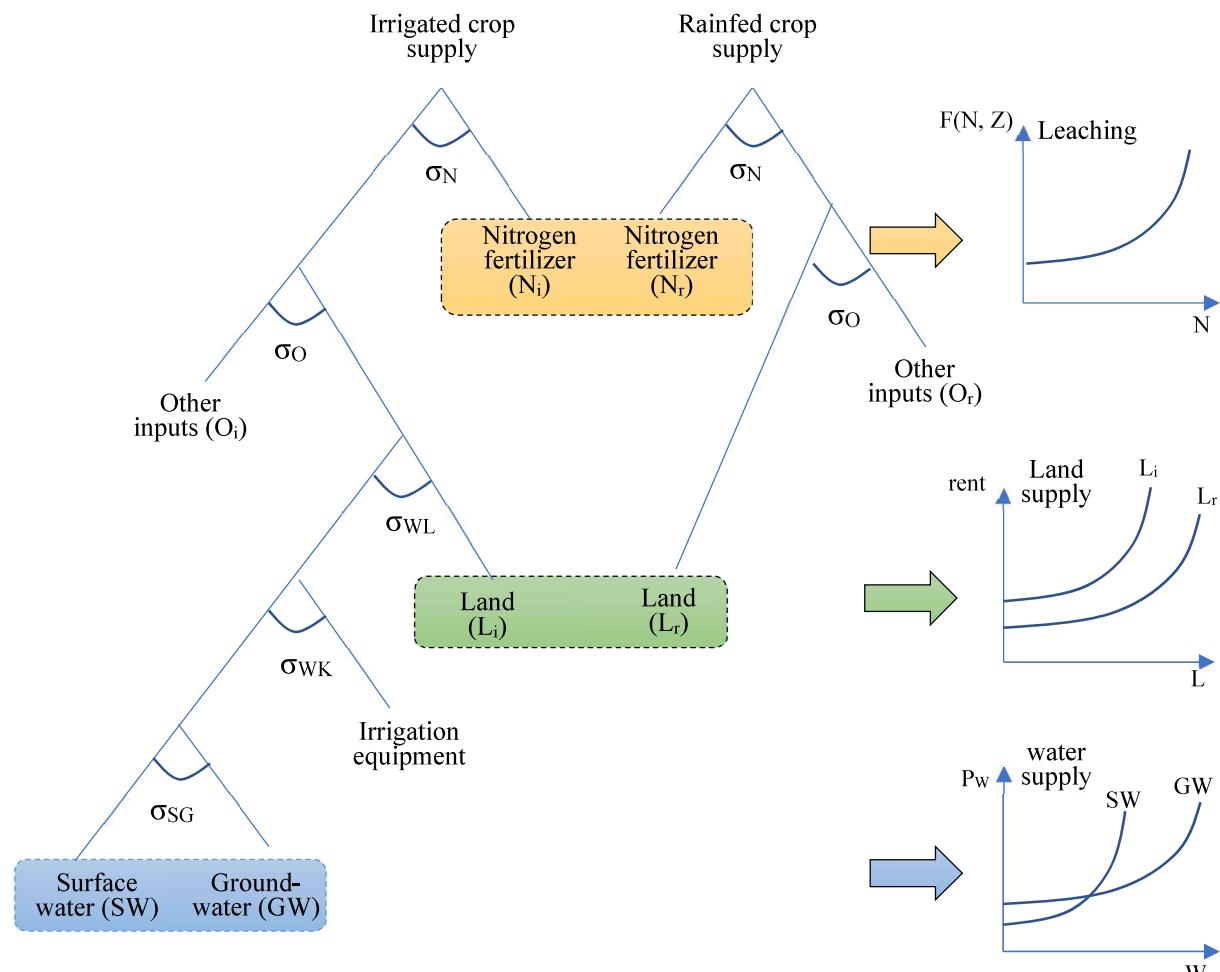


Figure 2. Structure of crop production at each grid cell. Shocks and policy variables are defined for surface water, groundwater, irrigation equipment, land, nitrogen fertilizer, and overall crop production. Elasticity of substitution is shown by σ . The equilibrium quantity and price of land and water are determined at local level. Irrigated and rainfed practices compete for land. Land supply depends on total cropland supply and the elasticity of transformation between irrigated and rainfed. The leaching function is different for irrigated and rainfed crop production.

673
674
675
676

2.3 Nitrogen fertilizer and nitrate leaching

677 As noted above, nitrogen fertilizer use is determined endogenously in the model considering
678 relative prices, technology, substitution possibilities and overall output level. The potential for
679 nitrogen-land substitution is grid cell and activity specific and is obtained from agronomic yield
680 functions as described in section 3. The price of nitrogen fertilizer is determined at the regional
681 level through a market clearing condition wherein regional supply equals demand which is, in turn,
682 determined by aggregating nitrogen use across all grid-cells and practices. Nitrate leaching
683 functions are quadratic in form and are practice and grid cell specific (see section 3).
684
685
686
687
688
689

690

2.4 Local water withdrawals and irrigation

691 Irrigation water is another focal point of SIMPLE-G. Irrigation water supply and demand
692 are endogenously determined for each grid cell. However, they are linked to exogenous
693 environmental factors. For example, heat stress may increase the water requirement of crops grown
694 in a grid cell; or a drought may reduce the environmental supply of water. Hydrological dynamics
695 are not directly modelled and are treated exogenously. However, SIMPLE-G can be readily paired
696 with a hydrological model to shed light (e.g.) on the economic consequences of changing basin-
697 level water scarcity or inter-basin transfers of water (Liu et al. 2017).
698
699

700 Water withdrawals are endogenously determined through the interaction of supply
701 constraints and irrigation demand for crop production. Demand for water depends on the irrigation
702 area, production levels, technology and relative prices. This includes likely adaptation channels
703 and adjustment mechanisms. We consider change in irrigation extension (Haqiqi & Hertel, 2019)
704 location of crop production, change in irrigation technology, change in water intensity, and trade
705 (Haqiqi & Hertel, 2016). Water supply at each grid cell is limited by hydrological constraints.
706 Figure 3 illustrates two examples. This form of water supply function is slowly increasing at the
707 beginning (up to A) and then rapidly increasing (after B) when approaching the asymptote (C).
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728

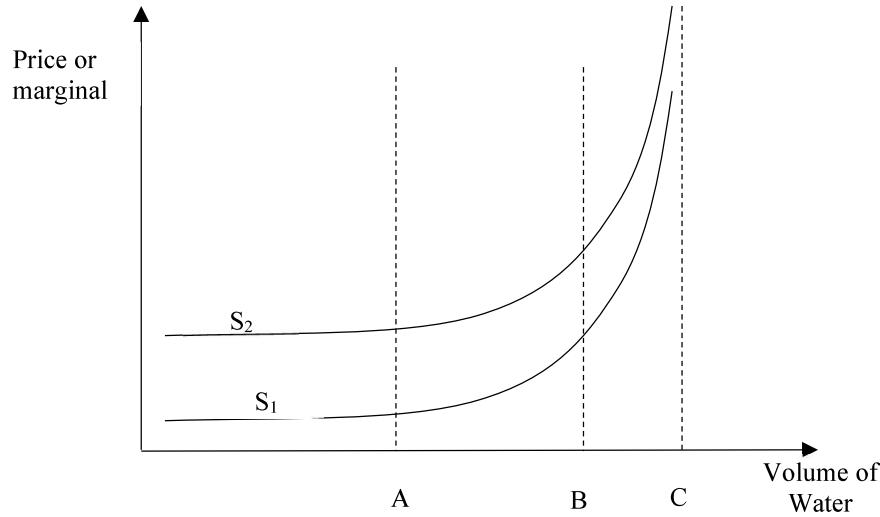


Figure 3. Economic supply for water with maximum availability (asymptote C). The marginal cost of water supply is nearly constant before point A. It starts increasing at a moderate speed up to point B. From B to C the marginal cost increases rapidly. With adverse changes in hydroclimatic conditions, the cost schedule may shift to S_2 (depending on the natural supply of water).

Withdrawal of water is constrained by maximum water available in each grid cell after subtracting non-agricultural water use. The supply elasticity of water, ε^s , varies by grid cell. It depends on the ratio of water extracted, relative to the sustainable extraction level (R) and calibrated parameters $\omega_1, \omega_2, \omega_3$. We assume a three-parameter Fréchet function for water supply.

$$(9) \quad \varepsilon^s = \omega_1 (R + \omega_2)^{-\omega_3}$$

where, R is calculated as the ratio of annual withdrawal to annual groundwater recharge or as the ratio of annual withdrawal to annual available surface water. We calibrate this supply function separately for surface water and groundwater at each grid cell based on economic and hydrologic information including: the annual water withdrawal for crop irrigation, sustainable extraction level of water by source, and the estimated value of water.

2.5 Gridded land use

Total cropland, divided into rainfed and irrigated practices, and the associated land rents are endogenously determined in the model. Land rents are grid cell-specific and depend on local biophysical characteristics, prices as well as technologies available to each production unit. Allocation of land to rainfed and irrigated production is determined according to their relative

785
786
787 returns (land rental). This is determined endogenously for each grid cell assuming a constant
788 elasticity of transformation function (Ahmed et al., 2008). The key parameter in this function is
789 the elasticity of transformation between irrigated and rainfed cropland. This elasticity measures
790 the responsiveness of the rainfed-irrigated crop mix ratio to changes in relative returns. A larger
791 elasticity value indicates easier transformation of cropland between irrigated and rainfed
792 categories. In the case of land conversion from rainfed to irrigated cropping this is heavily
793 influenced by water law which varies by locality in the US.
794
795
796
797
798
799
800

2.6 Climate

801 Climate is exogenous in SIMPLE-G. However, the consequences of climate change for land
802 and water use as well as food security may be explored by linking exogenous climate change to
803 key variables in the model. This includes total factor productivity, labor or land productivity, and
804 land and water availability. For example, excess heat stress may affect yields of irrigated and
805 rainfed crops; climate change may affect water availability; global warming may reduce labor
806 capacity, change the water requirements of crops, and alter the suitability of cropland.
807
808
809
810
811
812
813

3 BENCHMARK DATA AND PARAMETERS

814 SIMPLE-G requires benchmark gridded data for key economic and biophysical variables
815 describing the crop economy in initial equilibrium. This includes gridded cropland use, crop
816 production, nitrate leaching, and water use. The required data is obtained from global and national
817 products as shown in Figure 4. Here we describe the data for a US-focused version of SIMPLE-G,
818 wherein we utilize gridded data for the US, while employing regional information for other parts
819 of the world. However, there are efforts underway to implement SIMPLE-G for China and Brazil,
820 and the initial application of SIMPLE-G was undertaken at global scale – albeit at coarser
821 resolution (Liu et al., 2017). For SIMPLE-G-US, crop production is at the level of geo-referenced
822 grid-cell units at 5 arc min resolution (squares of side 9.26km at the equator). We add gridded
823 information for US crop production covering both irrigated and non-irrigated practices and
824 including the value and quantity of crop output, land use, nitrogen fertilizer input, water, and
825 aggregated other inputs.
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840

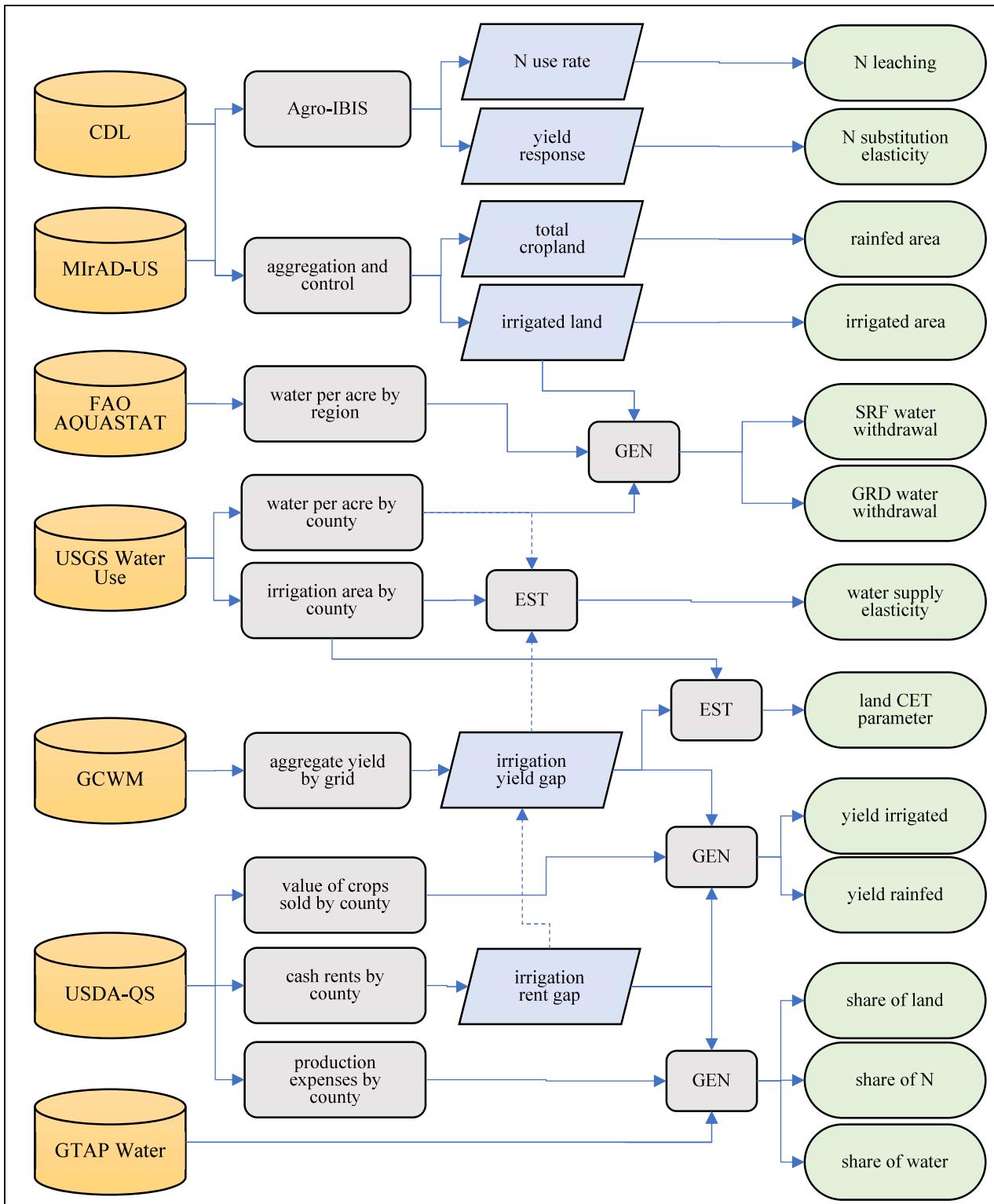


Figure 4: Overview of main data processing for SIMPLE-G-US at global, national, and 5 arcmin. Here, “GEN” represents a computation which does not involve statistical regressions; “EST” is a process which includes statistical estimation. Other versions, (gridded World, gridded China, and gridded Brazil) follow similar flows but employing rich national data sources.

897
898
899
900
901 **3.1 National and regional data**

902 The benchmark regional data for 2010 is taken from the FAOSTAT (FAO, 2014) and GTAP
903 (Aguiar et al., 2019) global data bases as documented in Hertel and Baldos (2016). This includes
904 regional data on supply and demand for crops, as well as regional cost and sales structures for the
905 crops, livestock and processed food sectors. Consumer demand elasticities are based on the work
906 of Muhammed et al. (2011) who use international cross-section data to estimate food demand
907 systems spanning the full range of national per capita incomes. Estimation of equations (1) and (2)
908 is described in Hertel and Baldos (2016).
909
910
911
912
913
914

915 **3.2 Cropland area**

916 Cropland area is obtained from the USDA Cropland Data Layer (Han et al., 2012) at 30
917 meter resolution and aggregated to 5 arc min. Irrigated cropland is from the Moderate Resolution
918 Imaging Spectroradiometer (MODIS) Irrigated Agriculture Dataset for the United States (MIRAD-
919 US) provided by USGS at 250 meter resolution (Brown & Pervez, 2014) and aggregated to 5 arc
920 min. This data determines the distribution of irrigated and non-irrigated cropland in the US.
921
922
923
924
925

926 **3.3 Cropland supply and transformation parameters**

927 Cropland supply function determines the willingness to supply cropland given the land rents.
928 The main parameter is the supply elasticity which shows the percentage change in cropland supply
929 as a response to a one percent change in cropland average rent. Regional cropland supply
930 elasticities are taken from the SIMPLE model, while gridded land supply elasticities for the US
931 are based on the statistical model developed by Villoria and Liu (2018) using gridded data from
932 the Americas.
933
934

935 A constant elasticity of transformation function determines the allocation of land to irrigated
936 and rainfed. The transformation elasticity parameter determines the percentage change in the ratio
937 of each land type in response to change in relative rents. This parameter shows the flexibility of
938 converting cropland to irrigated or rainfed. In the US, this parameter is estimated following (Jame
939 et al., 2017) considering US water rights. Different water rights can restrict the extension or
940 intensity of irrigation in one location. For this estimation, we employ county level information
941 from USDA including the Cash Rents for irrigated and non-irrigated cropland, as well as total
942
943
944
945
946
947
948
949
950
951
952

953
954
955 irrigated and non-irrigated cropland area by county. We assume all the grid cells within a county
956
957 follow the estimated parameter for the county.
958
959
960

961 3.4 Crop yields and production

962 Aggregated output at each grid cell is the corn-equivalent total crop output which is
963 calculated as the summation of the value of each crop sold divided by the price of corn in the base
964 year. We take the value of crop sold per acre from USDA-NASS by county (USDA-NASS, 2019)
965 and use GCWM (Siebert & Döll, n.d.) simulated yields to generate gridded yield for all the grid
966 cells in each county. GCWM is aggregated over all crops using USDA/FAO actual prices to
967 calculate corn-equivalent crop output for each grid cell.
968
969

970 We split the base data into irrigated and rainfed crop production employing various satellite
971 data sets, and county level information from USDA and USGS, as well as the simulated yield of
972 irrigated and non-irrigated crops. For yield estimation, we assume that grid cell aggregated yield
973 per hectare is equal to the county average in which the grid cell is located. We split the gridded
974 total production into irrigated and non-irrigated components using total, irrigated, and non-
975 irrigated land as obtained from MIRAD-US and the CDL; and the ratio of rainfed to irrigated yields
976 in a given grid cell as estimated by Siebert and Döll (2010) for 29 crop categories, and aggregated
977 to all crops according to production value weights. Total cropland area from the CDL is matched
978 with USDA county level cropland to ensure consistency of yield and area at the county level.
979
980

981 3.5 Nitrogen fertilizer application and leaching parameters

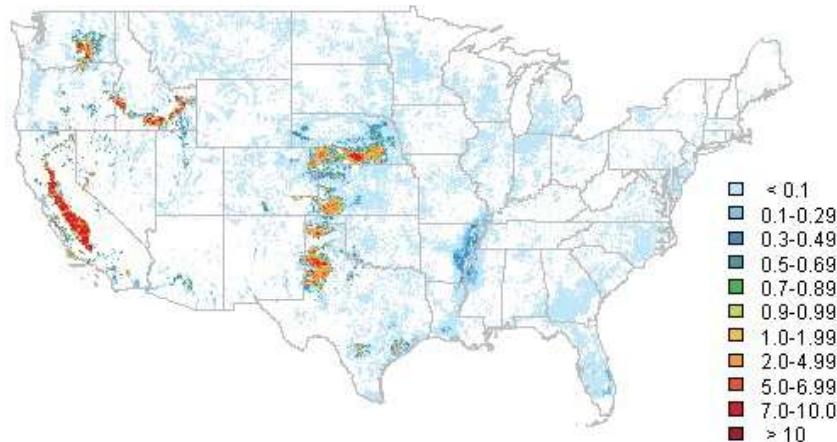
982 Nitrogen fertilizer application rates per hectare per year for each grid cell were obtained
983 from either Agro-IBIS for rainfed and irrigated production of major crops (Lark et al., 2020). This
984 product provided high-resolution (8 arc-second) land cover and nutrient application maps across
985 the continental United States (CONUS) for the time period of 1750 to 2017 accounting for the
986 nutrient legacies of historical land use/cover. Their land cover categories are determined based on
987 the vegetation types simulated in Agro-IBIS. This product is also consistent with our land cover
988 data. This is based on several gridded land cover datasets as well as historical county-level USDA
989 Census of Agriculture data. Also, their irrigation maps are created based on the (MIRAD-US) and
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008

1009
1010
1011 historical data from the USDA Census of Agriculture. With its reach information, Agro-IBIS
1012 helped us to estimate the irrigated versus non-irrigated fertilizer rates.
1013
1014

1015 Thee has been efforts to estimate the leaching parameters from Agro-IBIS to construct a
1016 nutrient leaching module for all the grid cells in the SIMPLE-G-US (Liu et al., 2018). This is a
1017 non-linear leaching function which shows the nutrient leaching will increase quadratically when
1018 the nitrogen application rate increases. The parameters are specific to unique biophysical
1019 characteristics of each grid cell including soil type, irrigation, land cover, etc.
1020
1021
1022
1023

1024 3.6 Nitrogen substitution parameters 1025

1026 The substitution elasticity between nitrogen fertilizer and other inputs is an important
1027 parameter in the model. It determines the likely changes in nitrogen application rate in response to
1028 change in relative price of nitrogen fertilizer. We have estimated this parameter for each grid cell.
1029 We follow Liu et al. (2020) to establish a framework for estimating this parameter. This includes
1030 obtaining the yield response functions from Agro-IBIS. Then we combined this response function
1031 with estimated yields of irrigated and non-irrigated crops to find the substitution elasticity for
1032 irrigated and rainfed crop production (Liu et al., 2020).
1033
1034
1035


1036 3.7 Water withdrawal 1037 1038

1039 Irrigation water withdrawal rates are estimated using USGS county level water use data
1040 (Maupin et al., 2014). We calculate total water withdrawal per irrigated hectare and split it into
1041 ground water and surface water using USGS county level water use by source. The information
1042 about groundwater recharge is taken from the Annual Estimate of Recharge (Reitz et al., 2017).
1043 Figure 5 depicts the ratio of groundwater withdrawal to local recharge in 2010. The red color
1044 shows the locations with a very rapid depletion of groundwater. A ratio equal to ten means the
1045 amount of groundwater withdrawal in one year is equal to ten years of groundwater inflow. The
1046 High Plains Aquifer, the Central Valley of California, the Snake River Basin and western
1047 Washington show dramatic levels of unsustainability, based on this index. The maximum surface
1048 water available at each grid cell is calculated after subtracting non-agricultural water use from
1049 locally-generated runoff (Wolock, 2003). Maximum available ground water available is
1050 determined with groundwater stock (Befus et al., 2017; Gleeson et al., 2016).
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064

1065
1066
1067
1068 **3.8 Water supply parameters**

1069
1070 We have calibrated the gridded water supply schedules for the continental United States to
1071 the benchmark year: 2010. For groundwater, the elasticity of supply is determined based on the
1072 ratio of groundwater withdrawal to groundwater recharge (Figure 5). The red areas in this figure
1073 have a high ratio of withdrawal to recharge. In these grid cells, the expansion of irrigation is more
1074 costly, compared to grid cells with a lower ratio. In other words, given a similar increase in crop
1075 prices, expansion is expected to be more rapid in areas with a lower ratio, holding all other factors
1076 constant.
1077
1078

1079 For the US grid cells, the water supply elasticity is calculated using the ratio of withdrawal
1080 to recharge, and empirically estimated parameters ω_1 , ω_2 , and ω_3 from equation (9). These are
1081 estimated using water withdrawal data from USGS for 2010 and estimated value of water (Haqiqi
1082 et al., 2016). Then, we apply the estimated function to all the grid cells to find the unique water
1083 supply elasticity for each grid cell.
1084
1085

1090
1091 Figure 5. Ratio of groundwater extraction over local groundwater recharge
1092 By 5 arc min grid cells for 2010.
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103

1104 **4 SOFTWARE**
1105
1106
1107

1108 The SIMPLE-G model and database are prepared and solved with the GEMPACK modelling
1109 suite (Horridge et al., 2018). This software package is specifically designed for the solution of
1110 large-scale economic equilibrium models with numerous markets and agents. The database files
1111 can readily store multi-scale and multi-dimensional variables. Other attractive features of this
1112 software are discussed below. However, the unique advantage of GEMPACK in the context of
1113
1114
1115
1116
1117
1118
1119
1120

1121
1122
1123 multi-scale modelling is the capability to condense the model and later backsolve for key
1124 endogenous variables.
1125
1126
1127
1128

1129 4.1 Condensation

1130 Solution times can be substantial for an equilibrium model with many equations and with
1131 complex interconnections between the unknown variables (e.g. the market responds to farmer
1132 decisions even as the farmers respond to market outcomes). Researchers have designed different
1133 algorithms to reduce the solution time. Most algorithms iterate between two phases: a linear
1134 algebra phase which solves a first-order approximation to the non-linear equation system; and a
1135 ‘formula’ phase which updates variable values and re-computes coefficients of the linear system.
1136 In GEMPACK, solution time for the linear phase rises with the square or cube of the number of
1137 equations, while time for the formula phase tends to increase only linearly.
1138
1139

1140 A typical SIMPLE-G application might distinguish 2 million grid cells and 7 regions. For
1141 each grid cell, a system of about 20 equations (some shown above) determines crop output of that
1142 grid cell, given grid-level exogenous settings and the price of output (which is the same for all
1143 cells within a given region). So, these grid level equations may number about 40 million. For each
1144 region, other equations add up grid cell output to obtain total crop supply, or inter-relate region
1145 level prices and quantities. There might be 100 such equations per region, or 700 in total. Hence
1146 the overwhelming majority of equations are at grid cell level.
1147
1148

1149 A linear system of 20 million equations is impossibly slow to solve, and might require
1150 enormous amounts of RAM. We need to greatly reduce the number of equations by substitution
1151 (a.k.a. condensation).
1152
1153

1154 For example, we could rewrite equation 6 above as (the grid index is omitted):
1155
1156

1157 (6') $q_N = q - a - a_N - \sigma(p_N - a_N - p - a)$: demand for nitrogen fertilizer.
1158
1159

1160 Then, we could replace each occurrence of q_N in *other* equations by
1161
1162

$$q - a - a_N - \sigma(p_N - a_N - p - a)$$

1163 and drop equation (6) from the system, so reducing its size by 2 million equations. After the linear
1164 system was solved, we could use equation (6') to recover (or backsolve for) values of q_N .
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176

Such techniques are often used by modelers, who manually perform such substitutions in their model specification file. The drawback is, especially when a number of substitutions are performed, that the necessary algebra is difficult and the remaining equations become extremely complicated and un-transparent. However, GEMPACK is able to do the algebra to perform such substitutions (and the backsolves) automatically, reaping a performance gain while leaving the model specification (TABLO) file in its original, simpler, uncondensed form.

In fact, for SIMPLE-G *all* equations at grid level are substituted out leaving a regional level linear system of modest (700) size. Such a system takes very little time to solve. However, the coefficients of the system involve calculations at grid level; the time taken is proportional to the number of grid cells. Hence (see Figure 6) solution time increases only linearly as a function of the number of grid cells.

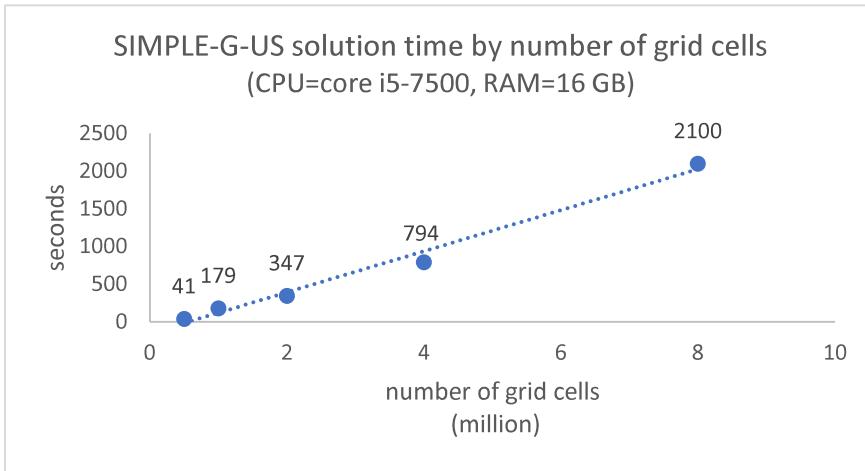


Figure 6. Linear relationship between solution time and number of grid cells. Condensation allows users to solve SIMPLE-G system of equations with one million grid cells (~10 million endogenous variables) on a laptop in a few minutes.

4.2 Linearization

GEMPACK can automatically translate the original equation system into a linearized system (reformulated as a system of first-order partial differential equations). Alternatively, the modeler can specify conveniently interpretable linearized forms of the underlying behavioral equations, as in equations (5) – (7). Clever representation of the model (e.g., using equation (8) in place of (5)) can facilitate condensation as well as more rapid solution of the model. In our case, we substitute out all of the variables with a grid cell index. In SIMPLE-G, all of the cross-grid cell interactions are transmitted through regional market prices. Once we know the regional crop, nitrogen,

1233
1234
1235 irrigation capital and other input prices, we can backsolve for crop output, input use, land prices
1236 and the shadow price of irrigation water in each grid cell independently.
1237
1238

1239 However, since the model is non-linear (recall equation (1)), the cost shares in equation (5)
1240 must be updated at each step in the solution process. Consequently, the model is solved by
1241 multistep methods such as the Euler method or Gragg's modified Midpoint method (Pearson,
1242 1991). The solution of a large system of linear equations is accomplished using sparse matrix
1243 techniques (Schiffmann & Jerie, 2019). Richardson extrapolation is used to improve accuracy
1244 (Pearson, 1991). This linearized approach has proven capable of solving very large, non-linear
1245 models (e.g., one data point in Figure 6 is a model with 8 million grid cells).
1246
1247
1248

1249 **4.3 Decomposition**

1250
1251

1252 In addition to these features, GEMPACK has some extensions which prove invaluable in
1253 SIMPLE-G applications. It provides a way to formulate inequality constraints or non-differentiable
1254 equations as complementarities (Bach & Pearson, 1996) which can be important in sustainability
1255 analyses. It also offers a technique to decompose changes in model variables due to several shocks
1256 into components due to each individual shock (Harrison et al., 2000). We will illustrate this in the
1257 first application undertaken in the next section of the paper.
1258
1259

1260 **4.4 Web-application on GeoHub**

1261

1262 The web-app version of SIMPLE-G permits users to simulate, explore and visualize the
1263 results of SIMPLE-G without installing the GEMPACK program or any visualization software.
1264 (Linux versions of GEMPACK programs run on the GeoHub server.) The GeoHub also includes
1265 pre-solved experiments, and demonstrations of how to run the model and analyze results, based on
1266 the policy briefs presented at the 2018 Conference on Long Run Sustainability of US Agriculture
1267 (<https://mygeohub.org/groups/glass/npa2018>).
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288

Figure 7. A sample window from web application: <https://mygeohub.org/tools/simpleus>

5 TWO APPLICATIONS

Here, we illustrate the usefulness of the SIMPLE-G model through two applications. Since we use the US-focused version of SIMPLE-G, these two applications focus on the US. However, similar applications of SIMPLE-G in other regions are underway. The first application evaluates the role of global drivers of local sustainability stresses within the continental US. In the second, we consider the feedback to national and global markets stemming from locally implemented sustainability policies on irrigation water use. Together, these applications demonstrate the capacity of SIMPLE-G to capture global-to-local-to-global interactions.

5.1 Global drivers of local sustainability stresses

In the coming decades, changes in population, income, and technology will alter the pattern of agricultural crop consumption, production and international trade. We expect that productivity growth will lead to higher yields, thereby moderating the demand for scarce land and water resources. On the other hand, we expect the changes in population and income growth will create heightened sustainability pressures. For projecting this footrace between supply and demand forward to mid-century, we take predicted changes in population, income and total factor

productivity as in Baldos and Hertel (2014). These are reported in Figure 8 and are based on the ‘business as usual’ Shared Socioeconomic Pathway (SSP2) (O’Neill et al., 2014). We also assume that historical agricultural productivity growth rates persist to mid-century (Fuglie, 2012). South Asia and China are projected to have the greatest cumulative per capita income growth over this period – rising by 641% and 607% respectively. Sub Saharan Africa is expected to experience the highest rate of population growth: 139%. In contrast, East Europe and Japan and Korea are expected to see declines in their populations by mid-century.

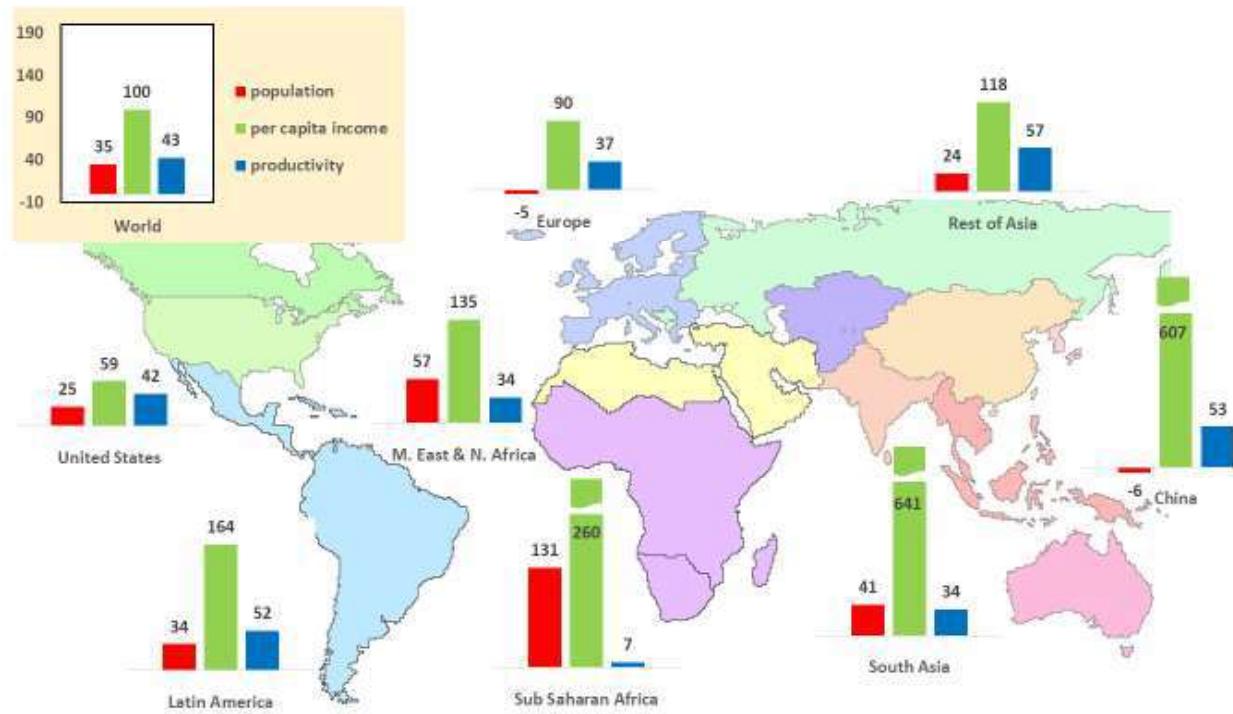


Figure 8. Growth rates for exogenous drivers: 2010-2050. Sources: Changes in population and income is obtained from Baldos and Hertel (2014) aggregated to 16 regions from country level information based on SSP2 (O’Neill et al., 2014). The changes for productivity are calculated based on Fuglie (2012).

The role of global change drivers in projected growth for US crop production by 2050 is shown in Figure 9, exploiting the decomposition feature of GEMPACK (Harrison et al., 2000). This figure shows that that one quarter of the projected US cropland expansion is due to demand growth in South Asia and China alone. Overall, growth in income and population outside the US is far more important in driving US crop production than growth within the US. This is due to higher income growth rates in the developing and emerging economies, coupled with higher

income elasticities of demand (1) and higher rates of population growth in Africa and other low-income regions.

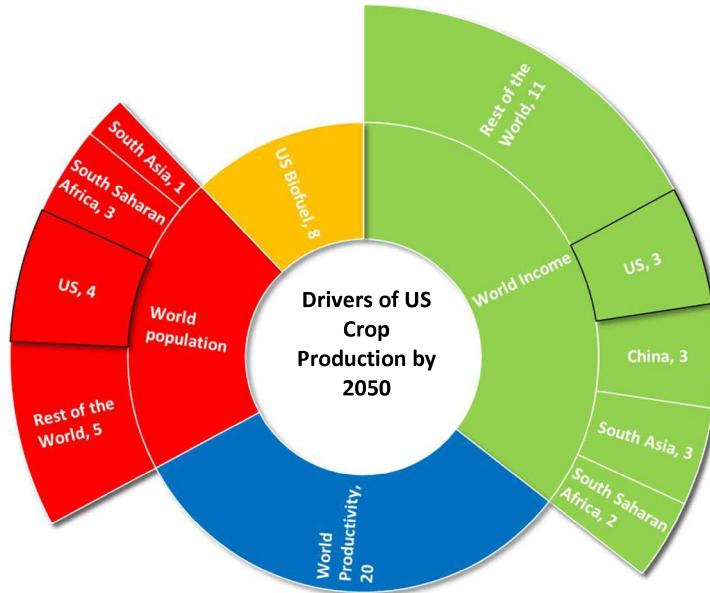


Figure 9. Drivers of US Crop Production: 2010-2050. Decomposition into biofuel demand (US only), productivity growth (worldwide), and regional changes in population and income.

Figure 10 shows the pattern of cropland expansion across the US over the projections period, as a percentage change from 2010. This particular indicator of sustainability stress reveals that, absent any policy interventions, the greatest land use change stresses will arise in the marginal areas on the edges of the Corn Belt. (There is very little remaining land available for expansion in the heart of the Corn Belt.) These marginal regions are often environmentally sensitive and they are also the areas where the largest land use stresses arose during the 2008-2012 biofuels boom period (Lark et al., 2015). These changes are based on the statistically estimated gridded land supply elasticities (Villoria & Liu, 2018).

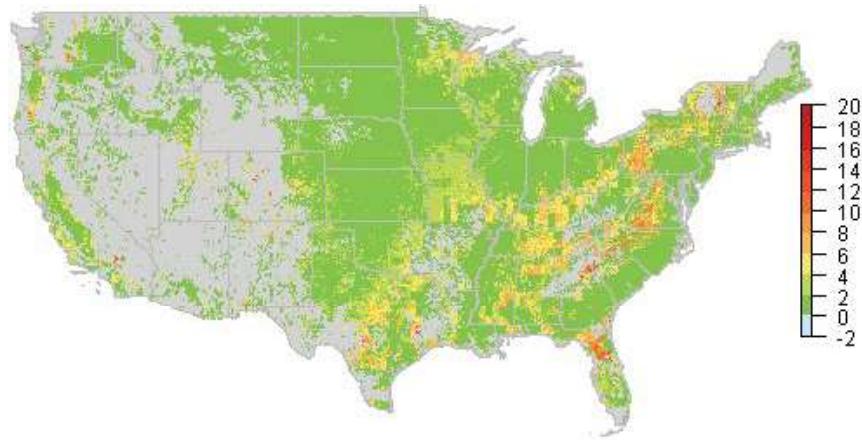


Figure 10. Projected percentage change in US cropland from 2010 to 2050 by 5 min grid cell

5.2 Limiting unsustainable water withdrawals

As seen in Figure 5 above, many locations in the Western US suffer from excess groundwater withdrawals. Despite productivity improvements, our projections suggest that this situation will become even worse under our business as usual baseline, due to global growth in the demand for US crops (Figure 11-a). Here, we examine the impacts of a counterfactual scenario in which we do not allow any increase in water withdrawals in locations showing withdrawals in excess of recharge in the base year of 2010 (Figure 11-b).

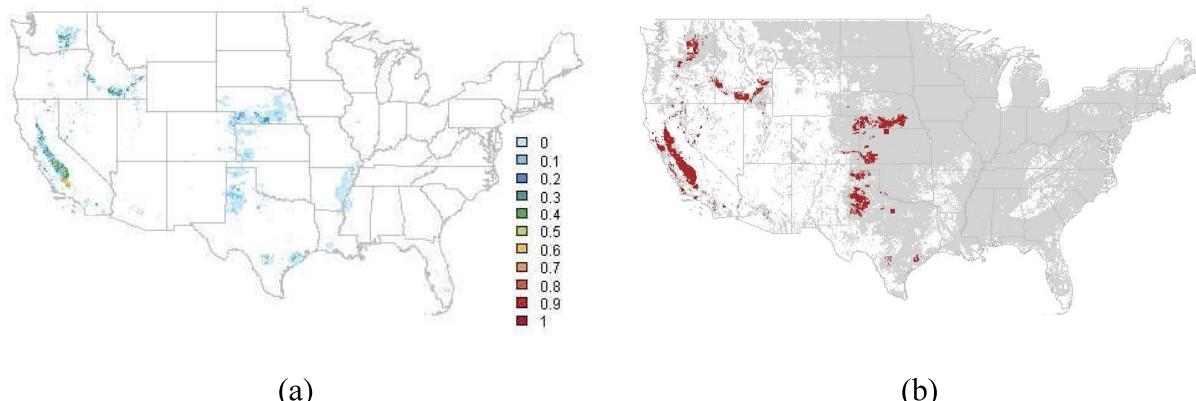
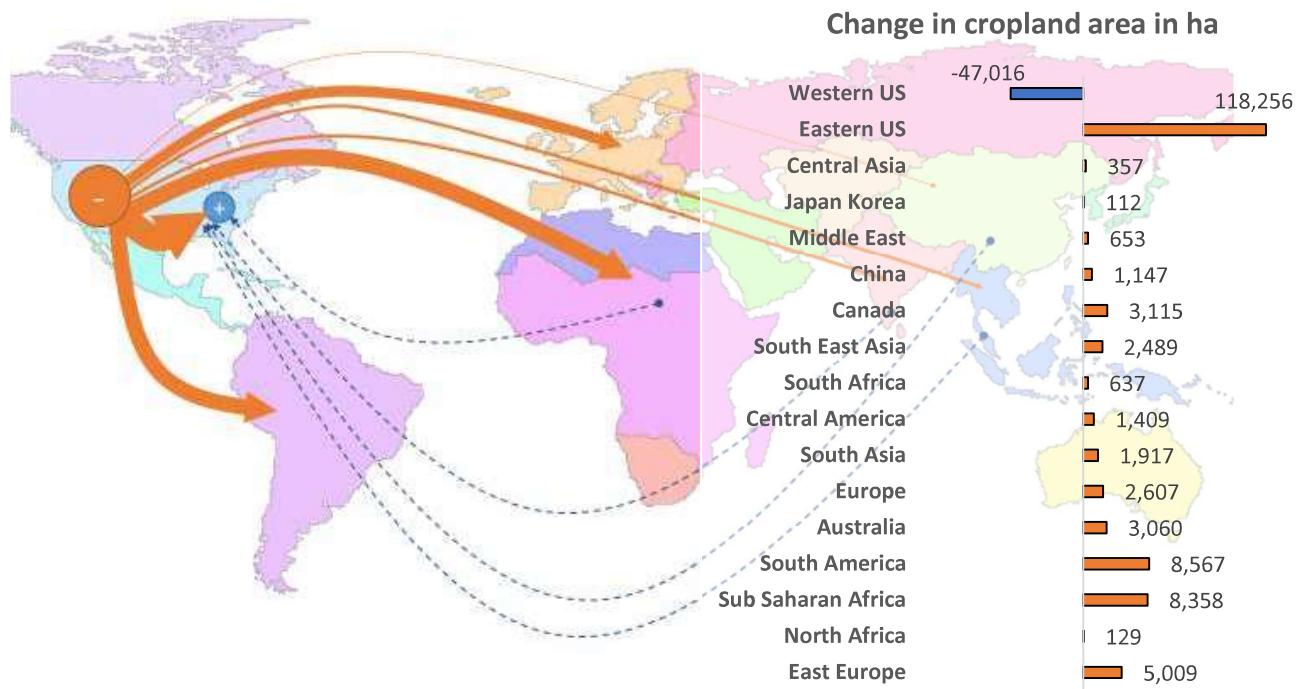
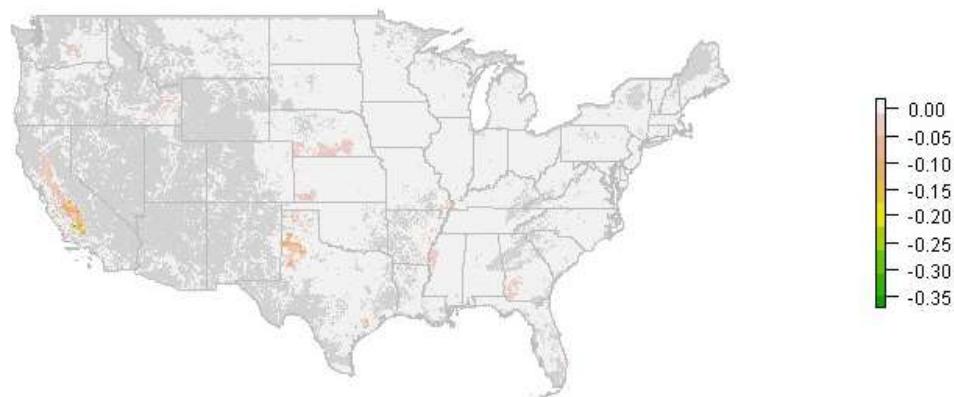
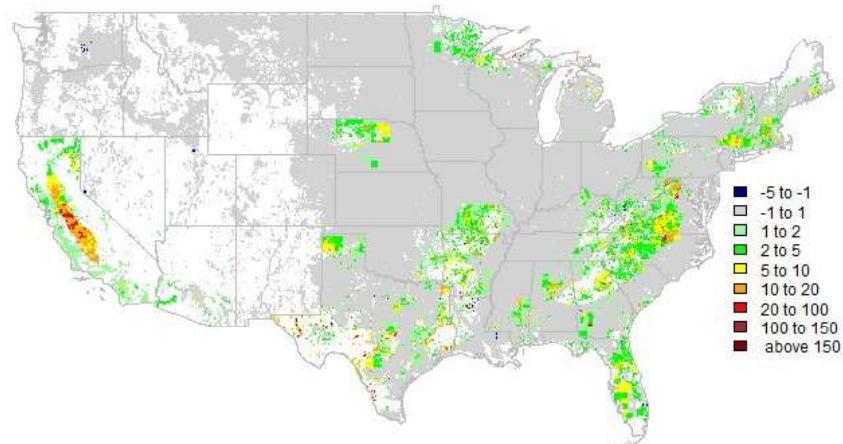


Figure 11. (a) The change in the ratio of water withdrawal to recharge: 2010-2050, business as usual baseline. (b) Grid cells affected by the counterfactual policy shown in red.

Figure 12 shows the impact of this water sustainability policy on irrigated cropland area in the US, as well as global changes in cropland and production owing to this policy. While the aggregate impact of the water withdrawal restriction on US crop production and land use is less

than 1%, it nonetheless has a significant impact on the pattern of crop production and the irrigated area. The reduction in US production is partially offset by increased production in other regions of the world, with EU, South America, China, and Sub Saharan Africa, offsetting 19%, 19%, 12%, and 11% of the reduction respectively.


Figure 12. Changes in irrigated area and the relocation of global crop production owing to groundwater sustainability policy in the Western US. This policy does not allow additional water withdrawals in grid cells where withdrawals are already in excess of recharge rates.

Compared to the baseline, US aggregate water withdrawals decrease by 1.82%, irrigated area declines by 0.13% and rainfed area increases by 0.08%. While this figure seems to be very small for the whole country, there are significant impacts on many local communities. Compared to the baseline, irrigated area declines by as much as 17.7% in some grid cells and may increase by up to +5.7% in other grid cells. Rainfed area may also decline by up to 5.7% and may increase by +163.1% in other grid cells. As shown in Figure 13, irrigation is reduced in locations facing the sustainability restriction. In a few grid cells rainfed land is converted to irrigated land in response to water limits which involves improvement in irrigation efficiency. Not allowing the unsustainable grid cells to increase groundwater withdrawal reduces irrigated area by up to 370 ha in some grid cells (each grid cell can have 3500-7000 ha of cropland) (Figure 13).

1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586 Figure 13: Absolute change in irrigated area (in 1000 ha) can be up to 370 ha per affected grid
1587 cell.
1588
1589
1590
1591

1592 While the rainfed cropland is projected to increase in most of the US in response to the
1593 water withdrawal restrictions, the highest absolute increase in rainfed land arises in the locations
1594 with water withdrawal limits, as land reverts from irrigated to rainfed production. Increases in
1595 rainfed land is also projected to be higher in the marginal area as a response to the higher crop
1596 prices as shown in Figure 14.
1597
1598
1599

1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616 Figure 14: Percentage change in non-irrigated area
1617
1618
1619
1620
1621
1622
1623
1624

1625
1626
1627
1628
5.3 Other applications of SIMPLE-G

1629 While these two applications use the high-resolution US version of SIMPLE-G, there are other
1630 applications of this framework designed to address different research questions. These models may
1631 have different production structures (Figure 2), different spatial focus, different resolution,
1632 different crop coverage, and some employ different modules. In one such application of SIMPLE-
1633 G, changes in ecosystem services are linked to land use, as well as the productivity of land. Loduca
1634 et al (2020) specify grid-cell specific wetland expansion and habitat conservation measures in
1635 SIMPLE-G for the Chesapeake Bay Watershed in the US. Hertel, Ramankutty and Baldos (2014)
1636 use the gridded terrestrial carbon data base from West et al. (2010) to deduce changes in terrestrial
1637 carbon emissions stemming from an African Green Revolution based on cropland changes in the
1638 SIMPLE model.

1639 Given its importance to the sustainability debate, SIMPLE-G has a nutrition module which
1640 allows users to assess the impact of changes in price and income on the prevalence and depth of
1641 undernutrition in developing countries. It follows the FAO (Neiken, 2003) approach, modelling
1642 the distribution of caloric intake in a region using a log-normal distribution. When coupled with
1643 information about the mean and standard deviation of consumption, as well as the minimum caloric
1644 intake, it is possible to deduce the prevalence of undernutrition as well as the average caloric gap
1645 of those who are undernourished. This module allows for assessment of a variety of important
1646 questions, such as the impact of climate change on food security (Baldos and Hertel 2014). This
1647 nutrition extension of the model links the local resources (mainly land and water) to global food
1648 security. The goal is to create opportunities for analyzing the trade-off between global food
1649 security goals and local sustainability of land and water resources (Kabir et al., 2019).

1650 One early application of this model has treated the world as a uniformly distributed set of grid
1651 cells (Liu et al., 2017). That research focused on the impact of emerging water scarcity at global
1652 scale, and was undertaken in conjunction with the global water balance model (Vörösmarty et al.,
1653 1998). The global gridded implementation was performed at a coarser resolution (30 arc minute
1654 grids), and the economic demands for irrigation and the hydrological supplies (net of non-
1655 agricultural uses) were reconciled at the level of nearly 1,000 hydrological sub-basins. This
1656 enabled the authors to explore the implications of various adaptations to water scarcity, including
1657 inter-basin water transfers as well as increased integration of commodity markets.

1681
1682
1683
1684 Table 1: SIMPLE-G applications and brief description of each version

1685 1686 1687 1688 FEATURES	1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 SIMPLE-G IMPLEMENTATION		
	SIMPLE-G	US/ China/ Brazil	SIMPLE-G-H US
1701 1702 1703 1704 Application	1705 1706 1707 1708 Land use, irrigation, water scarcity	1709 1710 1711 1712 Local land-water stress from global demand, water pollution and sustainability, irrigation efficiency	1713 1714 1715 1716 Water pollution, wetlands, wildlife habitat conservation
1701 1702 1703 1704 Crop coverage	1705 1706 1707 1708 All-crops	1709 1710 1711 1712 Corn-soy All-crops	1713 1714 1715 1716 All-crops
1701 1702 1703 1704 Gridded scale	1705 1706 1707 1708 30 arc min: global	1709 1710 1711 1712 5 arc min: US/ China/ Brazil	1713 1714 1715 1716 750 meters: US
1701 1702 1703 1704 Sub-national disaggregation	1705 1706 1707 1708 NA.	1709 1710 1711 1712 US production regions	1713 1714 1715 1716 NA.
1701 1702 1703 1704 Market aggregates	1705 1706 1707 1708 15 market regions for production and global demand	1709 1710 1711 1712 16 market regions for production and global demand	1713 1714 1715 1716 One aggregate region for global demand
1701 1702 1703 1704 Land types	1705 1706 1707 1708 Irrigated and rainfed cropland	1709 1710 1711 1712 Irrigated and rainfed cropland	1713 1714 1715 1716 Irrigated and rainfed cropland, and wetlands
1701 1702 1703 1704 Production inputs	1705 1706 1707 1708 Land and nonland	1709 1710 1711 1712 Land, water, fertilizer, and other.	1713 1714 1715 1716 Land, water, fertilizer, and other.
1701 1702 1703 1704 Water	1705 1706 1707 1708 Irrigation extension	1709 1710 1711 1712 Ground water, surface water, and irrigation equipment	1713 1714 1715 1716 Irrigation extension

1717
1718 Another version of the model has been developed for questions regarding sustainability of
1719 water resources (Haqqi et al., 2018). In the agricultural production, it considers not only land use,
1720 but also water use, and nitrate fertilizer application. Similar to the model described in this paper,
1721 the production is modelled at 5 arc-min grid cells over the US. For the rest of the world, the
1722 production is modelled at the level of 16 market regions. In this version, there are two levels of
1723 aggregate demand. One aggregation is at sub-national production regions for the US. Then, the
1724 global demand is modelled at aggregated regional level. The water withdrawal module is similar
1725 to this paper with different functional forms for water supply.
1726
1727

1728 SIMPLE-G is also flexible in terms of crop coverage. While most versions have considered
1729 all-crops aggregate, another set of models have focused on corn-soy composite. One application
1730 is the analysis of water quality in the Corn Belt of the US (Liu et al., 2018). As a large portion of
1731
1732
1733
1734
1735
1736

1737
1738
1739
1740 the water pollution has been related to corn and soy cultivation, it makes sense to focus on the
1741 specific responses of these crops. For this application, a nitrate leaching module has been
1742 developed with crop-specific yield and nitrate leaching response. This module is parametrized with
1743 the outputs of Agro-IBIS agronomic model as described earlier.
1744
1745

1746 The most recent version of SIMPLE-G was developed for high resolution conservation
1747 studies. That version of the framework includes a module on potentially restorable wetlands on
1748 agricultural lands. The model is solved at a much finer resolution (750-meters) over the continental
1749 US. Parametrization of grid cells exploits satellite data as well as reported county level
1750 information. This includes a detailed wetland restoration and conservation (Loduca et al., 2020).
1751
1752

1753 These applications illustrate the flexibility of the SIMPLE-G framework. It is not just a single
1754 model. Rather, it is a flexible way of looking at the world. Indeed, there are two NSF-funded efforts
1755 underway that are building high resolution versions of SIMPLE-G focusing on China and Brazil.
1756
1757

1758 6 DISCUSSION AND CONCLUSIONS

1759

1760 SIMPLE-G is by no means the first attempt to undertake global economic analysis of
1761 sustainability challenges at the interface of agriculture and the environment using a grid-resolving
1762 approach. To our knowledge the first such model was MAgPIE (Lotze-Campen et al., 2008). This
1763 is a global optimization model, with the objective of minimizing the global cost of producing food
1764 to meet a pre-specified level of demand. It was developed at the Potsdam Institute for Climate
1765 (PIK) and is typically used in conjunction with a gridded dynamic vegetation model to look at
1766 issues related to land use change, climate impacts on agriculture, bioenergy and technology
1767 change, among other issues. MAgPIE differs fundamentally from the approach developed in this
1768 paper. SIMPLE-G is an economic equilibrium model, in which decentralized agents (e.g., irrigated
1769 crop producers in a given grid cell, food processors, or consumers in a particular regions of the
1770 world) interact through regional and global markets. In the presence of policy distortions and
1771 barriers to trade, the global equilibrium determined by SIMPLE-G will not minimize total costs.
1772 In this sense, it aims to be predictive, as opposed to normative. Indeed, the presence of market
1773 imperfections means that global optimization models such as MAgPIE, must often place artificial
1774 constraints on the model in order to allow it to replicate observed patterns of production,
1775 consumption and international trade.
1776
1777

1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
More recently, the GLOBIOM model has emerged on the global sustainability scene. It is maintained at the International Institute for Applied Systems Analysis (IIASA). Like MAgPIE, GLOBIOM is a recursive-dynamic optimization model. In addition to 18 major crops, it has a livestock module and, when linked to models of crop growth, bioenergy, forestry and fisheries, it has been used to deal with a wide range of sustainability issues including deforestation, water use and greenhouse gas emissions. There are also regional versions of the model focusing on the EU and Brazil, among others. Due to its large size and complexity, the model is not solved at the individual grid cell level, but rather it is solved for representative groupings of grid cells. In short, it is a very ambitious undertaking involving dozens of researchers and this work represents the cutting edge of global sustainability research with grid cell resolution.

1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
As its name indicates, the SIMPLE-G framework introduced in this paper has more modest aspirations. Rather than continually extending this model to handle new issues, this framework aims to be as simple as possible, while capturing the essence of a given sustainability challenge. If a different set of challenges emerges, the idea is to build a different version of SIMPLE-G, rather than extending the original model to add another feature. At the heart of this simplicity lies the fact that SIMPLE-G always has just one composite crop – albeit produced with different techniques and resource requirements – both within, and across grid cells. In the application presented here, the single crop was a composite of all crops and our analysis focused on the extensive margin of land and water use in agriculture. However, as noted in the preceding section, this crop could also be a single crop, such as maize, or a maize-soy composite such as in Liu et al. (2018). From an economic point of view, this means that, within the crop composite, it is assumed that prices move in tandem – a key economic condition for aggregation of products. This doesn't make sense in the short run, but over decades it is likely the case that substitution – both on the supply and the demand sides – will force crop prices to move together. In part due to this restriction, SIMPLE-G is not run on an annual, recursive basis, unlike the aforementioned models. Rather, it is treated as a 'one-shot', comparative static model, e.g., starting in 2010, one might simulate the global crop economy in 2050, as is done in the application above.

1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
While the restriction to a single (composite) crop and the one-shot comparative static approach may seem like a huge sacrifice, it has yielded one very significant benefit – namely facilitating model parameterization and validation. To date, all of the validation efforts have been conducted using the non-gridded version of SIMPLE which breaks the world into 15 aggregate

regions. And these have been quite informative. In the first such paper Baldos and Hertel (2013) found that SIMPLE was able to re-produce global changes in aggregate crop output, cropland area, yield and prices over the 1961-2006 period. This was a significant breakthrough in the global land use change literature and was used as a basis for understanding why many models were likely over-predicting long run land use change in the 21st century (U.L.C. Baldos & Hertel, 2013).

Historical simulation of the SIMPLE model has also revealed significant challenges. In particular, while the first version of SIMPLE closely followed global crop production, it failed to reproduce the regional pattern of production changes over this period. This led the authors to introduce market segmentation, whereby individual consumers and producers in each region have differential access to world markets. At the aggregate level, this results in a constant elasticity of substitution between domestic and international goods on the demand side and a constant elasticity of transformation between domestic and international goods on the supply side. The resulting segmented markets version of SIMPLE (now the default approach) performed much better at the regional level and also resulted in very different consequences for a number of key sustainability policies (Hertel and Baldos 2016). Future work with SIMPLE-G will focus on its ability to reproduce historical patterns of land use change and irrigation intensities at the level of subnational regions and individual grid cells. This will provide the necessary foundation for policy-relevant, multi-scale modelling of future sustainability challenges.

Acknowledgements: The authors acknowledge support from USDA-AFRI grant #2019-67023-29679: “Economic Foundations of Long Run Agricultural Sustainability” and NSF-INFEWS grant #1855937: “Identifying Sustainability Solutions through Global-Local-Global Analysis of a Coupled Water-Agriculture-Bioenergy System” and DOE grant #DE-SC0016162: “Office of Science, Biological and Environmental Research Program, Earth and Environmental Systems Modeling, MultiSector Dynamics”.

1905
1906
1907
1908
REFERENCES

1909 Aguiar, A., Chepelyev, M., Corong, E. L., McDougall, R., & Mensbrugghe, D. van der. (2019).
1910 The GTAP Data Base: Version 10. *Journal of Global Economic Analysis*, 4(1), 1–27.
1911 <https://doi.org/10.21642/JGEA.040101AF>

1912 Ahmed, S. A., Hertel, T. W., & Lubowski, R. (2008). Calibration of a land cover supply function
1913 using transition probabilities. *GTAP Research Memorandum*, 14.

1914 Armington, P. S. (1969). A theory of demand for products distinguished by place of production.
1915 *Staff Papers*, 16(1), 159–178.

1916 Bach, C. F., & Pearson, K. (1996). *Implementing Quotas in GTAP Using GEMPACK or How to*
1917 *Linearize an Inequality*.
1918 http://www.gtap.agecon.purdue.edu/resources/res_display.asp?RecordID=307

1919 Baldos, U.L.C., & Hertel, T. W. (2013). Looking back to move forward on model validation:
1920 Insights from a global model of agricultural land use. *Environmental Research Letters*, 8(3),
1921 034024. <https://doi.org/10.1088/1748-9326/8/3/034024>

1922 Baldos, Uris Lantz C., & Hertel, T. W. (2014). Global food security in 2050: The role of
1923 agricultural productivity and climate change. *Australian Journal of Agricultural and*
1924 *Resource Economics*, 58(4), 554–570.

1925 Befus, K. M., Jasechko, S., Luijendijk, E., Gleeson, T., & Cardenas, M. B. (2017). The rapid yet
1926 uneven turnover of Earth's groundwater. *Geophysical Research Letters*, 44(11), 5511–5520.

1927 Brown, J. F., & Pervez, M. S. (2014). Merging remote sensing data and national agricultural
1928 statistics to model change in irrigated agriculture. *Agricultural Systems*, 127, 28–40.

1929 Clements, K. W., & Chen, D. (1996). Fundamental similarities in consumer behaviour. *Applied*
1930 *Economics*, 28(6), 747–757. <https://doi.org/10.1080/000368496328498>

1931 Dixon, P. B. (1982). *ORANI, a multisectoral model of the Australian economy* (1st edition, edition).
1932 Sole distributors for the U.S.A. and Canada, Elsevier Science Pub. Co.

1933 FAO. (2014, September 25). FAOSTAT. <http://faostat.fao.org/>

1934 Fuglie, K. O. (2012). 16 Productivity Growth and Technology Capital in the Global Agricultural
1935 Economy. *Productivity Growth in Agriculture: An International Perspective*, 335.

1936 Gleeson, T., Befus, K. M., Jasechko, S., Luijendijk, E., & Cardenas, M. B. (2016). The global
1937 volume and distribution of modern groundwater. *Nature Geoscience*, 9(2), 161.

1938 Han, W., Yang, Z., Di, L., & Mueller, R. (2012). CropScape: A Web service based application for
1939 exploring and disseminating US conterminous geospatial cropland data products for
1940 decision support. *Computers and Electronics in Agriculture*, 84, 111–123.
1941 <https://doi.org/10.1016/j.compag.2012.03.005>

1942 Haqiqi, I., Bowling, L. C., Jame, S. A., Hertel, T. W., Baldos, U., & Liu, J. (2018). Global Drivers of
1943 Land and Water Sustainability Stresses at Mid-century. *Purdue Policy Research Institute*
1944 (*PPRI*) *Policy Briefs*, 4(1).

1945 Haqiqi, I., & Hertel, T. (2019). Estimating Water Withdrawal Response to Environmental
1946 Stresses. *2019 AAEA Annual Meeting*.

1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960

1961
1962
1963 Haqiqi, I., & Hertel, T. W. (2016). *Decomposing Irrigation Water Use Changes in Equilibrium Models*.
1964 Agricultural and Applied Economics Association.
1965 <https://ideas.repec.org/p/ags/aaea16/236185.html>
1966
1967 Haqiqi, I., Taheripour, F., Liu, J., & van der Mensbrugghe, D. (2016). Introducing irrigation
1968 water into GTAP data base version 9. *Journal of Global Economic Analysis*, 1(2), 116–155.
1969
1970 Harrison, W. J., Horridge, J. M., & Pearson, K. R. (2000). Decomposing Simulation Results with
1971 Respect to Exogenous Shocks. *Computational Economics*, 15(3), 227–249.
1972 Hertel, Thomas W., & Baldos, U. L. C. (2016). Attaining food and environmental security in an
1973 era of globalization. *Global Environmental Change*, 41, 195–205.
1974 <https://doi.org/10.1016/j.gloenvcha.2016.10.006>
1975
1976 Hertel, Thomas W., Ramankutty, N., & Baldos, U. L. C. (2014). Global market integration
1977 increases likelihood that a future African Green Revolution could increase crop land use
1978 and CO2 emissions. *Proceedings of the National Academy of Sciences*, 111(38), 13799–13804.
1979
1980 Hertel, T.W., & Baldos, U. L. C. (2016). *Global Change and the Challenges of Sustainably Feeding a
1981 Growing Planet*. Springer International Publishing.
1982 <http://link.springer.com/10.1007/978-3-319-22662-0>
1983 Horridge, J. M., Jerie, M., Mustakinov, D., & Schiffmann, F. (2018). GEMPACK manual.
1984 *GEMPACK Software*.
1985
1986 Jame, S. A., Bowling, L. C., Hertel, T., Jing, L., & Haqiqi, I. (2017). The influence of US water law
1987 on irrigation expansion. *20th Annual Conference on Global Economic Analysis*.
1988 Kabir, K., Hertel, T. W., & Baldos, U. L. C. (2019). *Food Security in Niger in 2050: What Role Does
1989 Climate Change, Agricultural Productivity, and Population Play?*
1990
1991 Lark, T. J., Hendricks, N. P., Pates, N., Smith, A., Spawn, S., Bougie, M., Booth, E., Kucharik, C.
1992 J., & Gibbs, H. K. (2020). Environmental outcomes from the U.S. Renewable Fuel
1993 Standard. *In Preparation*.
1994
1995 Lark, T. J., Salmon, J. M., & Gibbs, H. K. (2015). Cropland expansion outpaces agricultural and
1996 biofuel policies in the United States. *Environmental Research Letters*, 10(4), 044003.
1997 <https://doi.org/10.1088/1748-9326/10/4/044003>
1998 Liu, J., Hertel, T., Baldos, U., Jame, S., Kucharik, C. J., & Ramankutty, N. (2020). Evaluating
1999 Alternative Options for Managing Nitrogen Losses from Corn Production. *In Preparation*.
2000
2001 Liu, J., Hertel, T., Bowling, L., Jame, S., Kucharik, C., & Ramankutty, N. (2018). Evaluating
2002 Alternative Options for Managing Nitrogen Losses from Corn Production. *Purdue Policy
2003 Research Institute (PPRI) Policy Briefs*, 4(1).
2004 <https://docs.lib.psu.edu/gpripb/vol4/iss1/9>
2005 Liu, J., Hertel, T. W., Lammers, R. B., Prusevich, A., Baldos, U. L. C., Grogan, D. S., & Frolking,
2006 S. (2017). Achieving sustainable irrigation water withdrawals: Global impacts on food
2007 security and land use. *Environmental Research Letters*, 12(10), 104009.
2008
2009 Loduca, N., Haqiqi, I., Liu, J., & Reeling, C. (2020). *Water Quality Trading Feasibility and
2010 Additionality in the Chesapeake Bay Watershed: A Partial Equilibrium Model*. 2020 AAEA
2011 Annual Meeting, Kansas City, MO.
2012
2013
2014
2015
2016

2017
2018
2019
2020 Lotze-Campen, H., Müller, C., Bondeau, A., Rost, S., Popp, A., & Lucht, W. (2008). Global food demand, productivity growth, and the scarcity of land and water resources: A spatially explicit mathematical programming approach. *Agricultural Economics*, 39(3), 325–338. <https://doi.org/10.1111/j.1574-0862.2008.00336.x>

2021
2022
2023
2024 Maupin, M. A., Kenny, J. F., Hutson, S. S., Lovelace, J. K., Barber, N. L., & Linsey, K. S. (2014). *Estimated use of water in the United States in 2010*. US Geological Survey.

2025
2026
2027 Muhammad, A., Seale Jr., J. L., Meade, B., & Regmi, A. (2011). *International Evidence on Food Consumption Patterns: An Update Using 2005 International Comparison Program Data* (Technical Bulletin TB-1929; p. 59). Economic Research Service, US Department of Agriculture. <http://www.ers.usda.gov/Publications/TB1929/>

2028
2029
2030
2031 Neiken, L. (2003). *FAO methodology for estimating the prevalence of undernourishment* [Proceedings: Measurement and Assessment of Food Deprivation and Undernutrition]. FAO.

2032
2033
2034 Obersteiner, M., Walsh, B., Frank, S., Havlík, P., Cantele, M., Liu, J., Palazzo, A., Herrero, M., Lu, Y., Mosnier, A., Valin, H., Riahi, K., Kraxner, F., Fritz, S., & Vuuren, D. van. (2016). Assessing the land resource–food price nexus of the Sustainable Development Goals. *Science Advances*, 2(9), e1501499. <https://doi.org/10.1126/sciadv.1501499>

2035
2036
2037
2038 O'Neill, B. C., Kriegler, E., Riahi, K., Ebi, K. L., Hallegatte, S., Carter, T. R., Mathur, R., & van Vuuren, D. P. (2014). A new scenario framework for climate change research: The concept of shared socioeconomic pathways. *Climatic Change*, 122(3), 387–400.

2039 Pearson, K. R. (1991). *Solving Nonlinear Economic Models accurately via a linear representation*, "University of Melbourne Impact Project. working paper IP-55.

2040
2041
2042
2043 Reilly, J., Melillo, J., Cai, Y., Kicklighter, D., Gurgel, A., Paltsev, S., Cronin, T., Sokolov, A., & Schlosser, A. (2012). Using Land To Mitigate Climate Change: Hitting the Target, Recognizing the Trade-offs. *Environmental Science & Technology*, 46(11), 5672–5679. <https://doi.org/10.1021/es2034729>

2044
2045
2046
2047
2048 Reitz, M., Sanford, W. E., Senay, G., & Cazenas, J. (2017). Annual estimates of recharge, quick-flow runoff, and ET for the contiguous U.S. using empirical regression equations. *Journal of the American Water Resources Association*, 53(4), 961983. <https://doi.org/10.1111/1752-1688.12546>

2049 Schiffmann, F., & Jerie, M. (2019). Improving the Performance of sparse LU Decomposition in GEMPACK. *Presented at the 2019 22nd Annual Conference on Global Economic Analysis, Warsaw, Poland* www.Gtap.Agecon.Purdue.Edu/Resources/Download/9277.Pdf.

2050
2051
2052
2053 Schlenker, W., & Roberts, M. J. (2009). Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. *Proceedings of the National Academy of Sciences*, 106(37), 15594–15598. <https://doi.org/10.1073/pnas.0906865106>

2054 Siebert, S., & Döll, P. (n.d.). *The Global Crop Water Model (GCWM): Documentation and first results for irrigated crops*. 42.

2055
2056
2057
2058 Springmann, M., Clark, M., Mason-D'Croz, D., Wiebe, K., Bodirsky, B. L., Lassaletta, L., Vries, W. de, Vermeulen, S. J., Herrero, M., Carlson, K. M., Jonell, M., Troell, M., DeClerck, F., Gordon, L. J., Zurayk, R., Scarborough, P., Rayner, M., Loken, B., Fanzo, J., ... Willett, W. (2018). Options for keeping the food system within environmental limits. *Nature*, 562(7728), 519. <https://doi.org/10.1038/s41586-018-0594-0>

2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072

2073
2074
2075 Steffen, W., Richardson, K., Rockström, J., Cornell, S. E., Fetzer, I., Bennett, E. M., Biggs, R.,
2076 Carpenter, S. R., Vries, W. de, Wit, C. A. de, Folke, C., Gerten, D., Heinke, J., Mace, G.
2077 M., Persson, L. M., Ramanathan, V., Reyers, B., & Sörlin, S. (2015). Planetary boundaries:
2078 Guiding human development on a changing planet. *Science*, 347(6223), 1259855.
2079 <https://doi.org/10.1126/science.1259855>
2080
2081 United Nations. (2019). *Global Sustainable Development Report 2019: The Future is Now – Science for*
2082 *Achieving Sustainable Development*. <https://sdghub.com/project/global-sustainable-development-report-2019-the-future-is-now-science-for-achieving-sustainable-development/>
2083
2084
2085
2086 USDA-NASS. (2019). *Value of crop sold per acre*. National Agricultural Statistics Service, Quick
2087 Stats. <https://data.nal.usda.gov/dataset/nass-quick-stats>
2088 Valin, H., Havlík, P., Forsell, N., Frank, S., Mosnier, A., Peters, D., Hamelinck, C., Spöttle, M., &
2089 van den Berg, M. (2013). *Description of the GLOBIOM (IIASA) model and comparison with*
2090 *the MIRAGE-BioF (IFPRI) model* (ENER/C1/428-2012; p. 39). IIASA, Ecofys and E4tech.
2091 http://globiom-iluc.eu/wp-content/uploads/2014/02/Describing-GLOBIOM-and-comparison-with-MIRAGE-BioF_October-2013.pdf
2092
2093
2094 Villoria, N. B., & Liu, J. (2018). Using continental grids to improve understanding of global land
2095 supply responses: Implications for policy-driven land use changes in the Americas. *Land*
2096 *Use Policy*, 75, 411–419. <https://doi.org/10.1016/j.landusepol.2018.04.010>
2097
2098 Vörösmarty, C. J., Federer, C. A., & Schloss, A. (1998). Potential evaporation functions compared
2099 on U.S. watersheds: Implications for global-scale water balance and terrestrial ecosystem
2100 modeling. *Journal of Hydrology*, 207(147–69).
2101 West, P. C., Gibbs, H. K., Monfreda, C., Wagner, J., Barford, C. C., Carpenter, S. R., & Foley, J. A.
2102 (2010). Trading carbon for food: Global comparison of carbon stocks vs. crop yields on
2103 agricultural land. *Proceedings of the National Academy of Sciences*.
2104 <https://doi.org/10.1073/pnas.1011078107>
2105
2106 Wolock, D. M. (2003). *Base-flow index grid for the conterminous United States*.
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128

2129
2130
2131
2132 **7 APPENDIX**

2133 At each grid cell, the SIMPLE-G explains the changes in crop production, land use, water use,
2134 nitrogen fertilizer application, and other production inputs. These changes are linked to the earth
2135 and environmental systems via several other modules. Section 7.1.1 summarizes the variables in
2136 the gridded production module. The variables are introduced in different categories comprising:
2137 value variables, quantity variables, price variables, efficiency (productivity) variables, policy or
2138 shock variables, and reporting variables.
2139
2140
2141
2142

2143
2144 **7.1 Major variables of the model**

2145 Value	2146
2148 VCROP _{gl}	2149 Value of crops produced by grid cell and land type
2149 VLAND _{gl}	2150 Value of land input in crop production by grid cell and land type
2150 VNLAND _{gl}	2151 Value of the non-land input in crop production by grid cell and land type
2151 VWATER _{gl}	2152 Value of water input in crop production by grid cell and land type
2152 VNITRO _{gl}	2153 Value of nitrogen fertilizer input in crop production by grid cell and land type
2154 Quantity	2155
2155 QCROP _{gl}	2156 Quantity of crops produced by grid cell and land type
2156 QLAND _{gl}	2157 Quantity of land input in crop production by grid cell and land type
2157 QNLAND _{gl}	2158 Quantity of the non-land input in crop production by grid cell and land type
2158 QWATER _{gl}	2159 Quantity of water input in crop production by grid cell and land type
2159 QNITRO _{gl}	2160 Quantity of nitrogen fertilizer in crop production by grid cell and land type
2161 Price	2162
2162 PCROP _{gl}	2163 Price index of crops produced by grid cell and land type
2163 PLAND _{gl}	2164 Price index of land input in crop production by grid cell and land type
2164 PNLAND _{gl}	2165 Price index of the non-land input in crop production by grid cell and land type
2165 PWATER _{gl}	2166 Price index of water input in crop production by grid cell and land type
2166 PNITRO _{gl}	2167 Price index of nitrogen fertilizer in crop production by grid cell and land type
2168 Efficiency	2169
2169 AOCROP _{gl}	2170 Efficiency index of crops produced by grid cell and land type
2170 AFLAND _{gl}	2171 Efficiency index of land input in crop production by grid cell and land type
2171 AFNLAND _{gl}	2172 Efficiency index of the non-land in crop production by grid cell and land type
2172 AFWATER _{gl}	2173 Efficiency index of water input in crop production by grid cell and land type
2173 AFNITRO _{gl}	2174 Efficiency index of N fertilizer in crop production by grid cell and land type
2175 Policy and shock	2176
2176 s_QWATER _{gl}	2177 Policy variable for water quantity for crop production by grid cell
2177 s_QNITRO _{gl}	2178 Policy variable for N fertilizer in crop production by grid cell and land type
2178 s_QLAND _{gl}	2179 Policy variable for cropland extension by grid cell
2179 t_PCROP _{gl}	2180 Policy variable for crop price by grid cell and land type
2180 t_PNITRO _{gl}	2181 Policy variable for N fertilizer price in crop production by grid cell and land type

Reports

YIELDgl	Crop yield by grid cell and land type
WinCROPgl	Water withdrawal per ton of crop produced
WperAREAgI	Water withdrawal per ha of cropland

7.2 Gridded Crop Production Module

Crop production is defined as a function of input uses. All the production inputs are summarized in four major categories including land, nitrogen fertilizer, water, and non-land. Here, water refers to all the inputs related to irrigation. Also, non-land input consists of all other inputs including pesticides, herbicides, other fertilizers, labor, seeds, capital, etc. Depending on the biophysical characteristics of each grid cell and the choice of crop production technology, each location may have a unique composition of these inputs.

We assume a nested CES (constant elasticity of substitution) function allowing for the changes in the composition of the production inputs. This is a widely used functional form in the economics literature and has been proved an appropriate approach to model production. The substitution elasticity is a technical term and refers to a parameter that illustrates the changes in the relative ratio of inputs in response to changes in relative prices of inputs.

Here, we summarize the main equations of the gridded production module for all grid cells and all land types. The grid cells are indexed by g , and the land-types are indexed by l . Here, the land type refers to production technologies with different input use or production technologies, like irrigated and non-irrigated, or naturally pollinated and artificially pollinated, or organic and non-organic. However, the output of all the practices are similar. For each grid cell and land-type, the revenue from crop sale is assumed to be divided among the inputs according to their contribution. The change in gridded production is determined by:

$$\begin{aligned} p_{QCROPgl_{g,l}} - p_{AOCROP_{g,l}} \\ = SHR_LANDgl_{g,l} * [p_{QLANDgl_{g,l}} + p_{AFLAND_{g,l}}] \\ + SHR_NITROgl_{g,l} * [p_{QNITROgl_{g,l}} + p_{AFNITRO_{g,l}}] \\ + SHR_NLANDgl_{g,l} * [p_{QNLANDgl_{g,l}} + p_{AFNLAND_{g,l}}] \\ + SHR_WATERgl_{g,l} * [p_{QWATSGl_{g,l}} + p_{AFWATER_{g,l}}] \end{aligned} \quad \text{Eq-A-1}$$

where $p_{QCROPgl}$ is the percentage change in the production of crops, and p_{AOCROP} is the percentage change in overall productivity index in crop production. This equation involves four share parameters: SHR_LANDgl is the share of land input in crop production, $SHR_NITROgl$ is the share of nitrogen fertilizer input in crop production, $SHR_NLANDgl$ is the share of the non-land inputs in the crop production, $SHR_WATERgl$ is the share of water in crop production. Also, changes in inputs are considered with possibly different rate of productivity change: $p_{QLANDgl}$ is the percentage change in land input, p_{AFLAND} is the change in land productivity index (land-augmented technical change), $p_{QNITROgl}$ is the percentage change in nitrogen fertilizer input, $p_{AFNITRO}$ is the change in nitrogen fertilizer productivity index (nitrogen-augmented technical

2241
 2242
 2243 change), $p_{QNLANDgl}$ is the percentage change in the non-land inputs, $p_{AFNLAND}$ is the
 2244 change in the non-land inputs productivity, $p_{PWATERgl}$ is the percentage change in water input,
 2245 and $p_{AFWATER}$ is the percentage change in water productivity.

2246 This equation implies that any increase in the quantity of inputs of production can lead to an
 2247 increase in crop outputs. Also, it is possible to increase the crop production via improvement in
 2248 the overall productivity. However, an improvement in productivity of one input alone may have a
 2249 smaller impact on the overall crop production as it goes through the related share parameter.

2250 Note that the changes in inputs of production are determined endogenously in the model. For each
 2251 input, the drivers of the change can be summarized in the scale effect and the substitution effect.
 2252 The scale effect is related to the scale of production. If production increases by $\alpha\%$, in the absence
 2253 of any substitution effect and technological progress, all the inputs will grow by $\alpha\%$ (in economics
 2254 terms, the production function is homogenous of degree one). However, if the relative prices
 2255 change, the ratio of inputs will change. We call this the change in production technology. The
 2256 substitution effect usually involves a relative reduction in one input and a relative increase in
 2257 another input or a composite input bundle. For example, a shock may increase the application of
 2258 nitrogen fertilizer but declines the water-land bundle for producing the same level of crop outputs.
 2259 Here, we describe the main input bundles in the model. We have two major bundles in the model:
 2260 land-water bundle shown by $LANDWATER$ and land-water-non-land bundle shown by
 2261 $AUGLAND$. We will refer to the latter as the augmented land. The augmented land includes all the
 2262 inputs except nitrogen fertilizer. The price index of the land-water composite is defined as:
 2263
 2264 $p_{PLANDWTRgl_{g,l}}$

$$2265 = SHR_{LinLWgl_{g,l}} * [p_{PLANDgl_{g,l}} - p_{AFLAND_{g,l}}] \\ 2266 + SHR_{WinLWgl_{g,l}} * [p_{PWATERgl_{g,l}} - p_{AFWATER_{g,l}}] \quad \text{Eq-A-2}$$

2267 where $p_{PLANDWATER}$ is the percentage change in the land-water bundle, $SHR_{LinLWgl}$ is the
 2268 share of land in the land-water bundle, and $SHR_{WinLWgl}$ is the share of water in the land-water
 2269 bundle. Also, $p_{PLANDgl}$ and $p_{PWATERgl}$ show the percentage change in the price of land and
 2270 water respectively. The price index for the augmented land bundle is defined as:

2271 $p_{PAUGLANDgl_{g,l}}$

$$2272 = SHR_{OinAUGgl_{g,l}} * [p_{PNLANDgl_{g,l}} - p_{AFNLAND_{g,l}}] \\ 2273 + SHR_{LinAUGgl_{g,l}} * [p_{PLANDgl_{g,l}} - p_{AFLAND_{g,l}}] \\ 2274 + SHR_{WinAUGgl_{g,l}} * [p_{PWATERgl_{g,l}} - p_{AFWATER_{g,l}}] \quad \text{Eq-A-3}$$

2275 where $p_{AUGLANDgl}$ refers to the percentage change in the price index of augmented land
 2276 bundle. Respectively, $SHR_{OinAUGgl}$, $SHR_{LinAUGgl}$, and $SHR_{WinAUGgl}$ are the share of
 2277 the non-land, land, and water in the augmented land bundle. Also, $p_{PNLANDgl}$ is the percentage
 2278 change in the price of the non-land input, and $p_{AFNLAND}$ is the productivity index related to the
 2279 non-land input.

2280 In this framework, SIMPLE-G calculates the changes in individual input use as well as these
 2281 aggregate bundles. It includes water use, land use, nitrogen fertilizer use, non-land use, land-water
 2282 bundle, and augmented land bundle. Each equation is obtained by solving the economic
 2283 optimization problem. Then we linearized all the equations. One of the production inputs that is
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296

2297
 2298
 2299 explicitly considered in the model is nitrogen fertilizer. The demand for nitrogen fertilizer depends
 2300 on production scale, $QCROPgl$, and price of nitrogen fertilizer, $PNITROgl$, relative to crop prices,
 2301 $PCROPgl$, as well as productivity parameters. In the percentage change format, the demand for
 2302 nitrogen fertilizer application is defines as:
 2303

$$p_QNITROgl_{g,l} + p_AFNITRO_{g,l} = p_QCROPgl_{g,l} - p_AOCROP_{g,l} \\ - ECROPgl_{g,l} * [p_PNITROgl_{g,l} - p_AFNITRO_{g,l} - p_PCROPgl_{g,l} - p_AOCROP_{g,l}] \quad \text{Eq-A-4}$$

2304
 2305 where $p_QNITROgl$ is the percentage change in demand for nitrogen fertilizer, $p_AFNITRO$ is the
 2306 percentage change in nitrogen fertilizer productivity index, $p_QCROPgl$ is the percentage change
 2307 in the scale of crop production, p_AOCROP is the percentage change in the overall crop
 2308 productivity index, and $p_PNITROgl$ is the percentage change in the price of nitrogen fertilizer.
 2309 Here, $ECROPgl$ is the grid-cell specific elasticity of substitution between nitrogen fertilizer and
 2310 the augmented land bundle. In other words, this parameter governs the ratio of nitrogen fertilizer
 2311 application over all other inputs (For the SIMPLE-G-US-CS, this parameter is calibrated based on
 2312 agronomic characteristics of AgroIBIS model). The demand for all other inputs is summarized in
 2313 the augmented land equation:
 2314

$$p_QAUGLANDgl_{g,l} \\ = p_QCROPgl_{g,l} - p_AOCROP_{g,l} \\ - ECROPgl_{g,l} * [p_PAUGLANDgl_{g,l} - p_PCROPgl_{g,l} - p_AOCROP_{g,l}] \quad \text{Eq-A-5}$$

2315
 2316 where $p_QAUGLANDgl$ is the percentage change in the augmented land input bundle, and
 2317 $p_PAUGLANDgl$ is the percentage change in the price index of the augmented land input bundle
 2318 as defined in Eq-5. The augmented land consists of two other components: the land-water bundle
 2319 and the non-land component, an aggregate index of chemicals, labor, capital, seeds, etc. In
 2320 linearized form, the demand for the non-land input is defined as:
 2321

$$p_QNLANDgl_{g,l} \\ = p_QAUGLANDgl_{g,l} - p_AFNLAND_{g,l} \\ - EAUGLANDgl_{g,l} * [p_PNLANDgl_{g,l} - p_AFNLAND_{g,l} - p_PAUGLANDgl_{g,l}] \quad \text{Eq-A-6}$$

2322
 2323 where $p_QNLANDgl$ is the percentage change in the non-land input, $p_PNLANDgl$ is the
 2324 percentage change in the price index on the non-land input, and $p_AFNLANDgl$ is the percentage
 2325 change in the productivity index on the non-land input. Note that $EAUGLANDgl$ is the substitution
 2326 elasticity between the non-land input and the land-water bundle. The demand for land-water
 2327 bundle is expressed similarly as:
 2328

$$p_QLANDWTRgl_{g,l} \\ = p_QAUGLANDgl_{g,l} \\ - EAUGLANDgl_{g,l} * [p_PLANDWTRgl_{g,l} - p_PAUGLANDgl_{g,l}] \quad \text{Eq-A-7}$$

2353
 2354
 2355 where $p_{QLANDWATERgl}$ is the percentage change in the land-water bundle,
 2356 $p_{PLANDWATERgl}$ is the price index of the land-water bundle as defined in the Eq-xx. Here,
 2357 $EAUGLANDgl$ parameter governs the substitution between the land-water and non-land input. For
 2358 example, it shows the increase in the non-land input (capital, seed, chemicals, etc.) when facing a
 2359 relatively more expensive land-water bundle.
 2360

2361 An important decision in crop production is the combination of water and land. The land use
 2362 decision is not separated from water use decision. Considering the relative costs of land and water
 2363 as well as their benefits, certain combination of land-water is economically optimum. The demand
 2364 for land is derived considering these production possibilities. The linearized for of land demand in
 2365 crop production is:

$$2366 \begin{aligned} p_{QLANDgl_{g,l}} \\ 2367 &= p_{QLANDWTRgl_{g,l}} - p_{AFLAND_{g,l}} \\ 2368 &- EIRRIGgl_{g,l} * [p_{PLANDgl_{g,l}} - p_{AFLAND_{g,l}} - p_{PLANDWTRgl_{g,l}}] \end{aligned} \quad \text{Eq-A-8}$$

2369 where $p_{QLANDgl}$ shows the percentage change in the land use, p_{AFLAND} is the percentage
 2370 change in the productivity index of land, and $EIRRIGgl$ is the substitution elasticity between water
 2371 and land. We already introduced $QLANDWATER$ and $PLANDWATER$ which are composite
 2372 indices of water and land for crop production. Finally, the decision about water applied per area
 2373 depends on the price of water relative to the price of land. Thus, the demand for water for crop
 2374 production is determined by:

$$2375 \begin{aligned} p_{QWATERgl_{g,l}} \\ 2376 &= p_{QLANDWTRgl_{g,l}} - p_{AFWATER_{g,l}} \\ 2377 &- EIRRIGgl_{g,l} * [p_{PWATERgl_{g,l}} - p_{AFWATER_{g,l}} - p_{PLANDWTRgl_{g,l}}] \end{aligned} \quad \text{Eq-A-9}$$

2378 where $p_{QWATERgl}$ is the percentage change in overall irrigation demand, $p_{QLANDWATERgl}$
 2379 is the percentage change in the water-land composite, $EIRRIGgl$ is the substitution elasticity
 2380 between water and land, and $p_{PLANDWATER}$ is the percentage change in the price index of
 2381 composite land-water.

2382 The water module includes three main decisions at the grid cell level about 1) the level of water
 2383 withdrawal, 2) water conservation technology, and 3) water applied per area. These decisions are
 2384 made in markets based on demand and supply forces and prices. The benchmark value of water is
 2385 implied following Haqiqi et al. (2016).
 2386

2409
 2410
 2411 The changes in the price of water applied is modeled by considering changes in the costs of water
 2412 withdrawal and the changes in the price of water conservation technology, mainly capital
 2413 equipment. Here capital equipment is considered as a substitute to water and thus helping to
 2414 conserve water (for example, a decline in equipment prices may lead to lower water applied per
 2415 area). Percentage change in water price is:
 2416
 2417

$$2418 \begin{aligned} p_PWATERgl_{g,l} \\ 2419 &= SHR_WWinWgl_{g,l} * [p_PWATSGgl_{g,l} - p_AFWATSG_{g,l}] \\ 2420 &+ SHR_WKinWgl_{g,l} * [p_PWEQPTgl_{g,l} - p_AFWEQPT_{g,l}] \end{aligned} \quad \text{Eq-A-10}$$

2421 where $p_PWATERgl$ is the percentage change in local price of water, $SHR_WWinWgl$ is share of
 2422 water withdrawal in irrigation costs, $SHR_WKinWgl$ is the share of water conservation technology
 2423 in irrigation costs, $p_PWATSGgl$ is the percentage change in aggregate water (groundwater and
 2424 surface water) price, $p_AFWATSG$ is the efficiency index of aggregate water, $p_PWEQPTgl$ shows
 2425 the change in the price of water conservation technology, and $p_AFWEQPT$ is the efficiency index
 2426 for water conservation technology.
 2427
 2428

2429 Changes in local water price and local water withdrawal is determined according to demand and
 2430 supply forces. The water supply schedule reperesents the costs of water withdrawal. The linearized
 2431 version of the water supply to each grid cell is:
 2432
 2433

$$2434 p_QWATSGgl_{g,l} = EWATSGgl_{g,l} * p_PWATSGgl_{g,l} + s_QWATERg_g \quad \text{Eq-A-11}$$

2435 where $p_QWATSGgl$ is the percentage change in total water withdrawal (surface water and
 2436 groundwater), $EWATSGgl$ is the supply elasticity of water, $p_PWATSGgl$ is the percentage change
 2437 in the price of water, and $s_QWATERg$ is the slack variable for policy or shocks. Similarly, the
 2438 supply of water conservation technology is determined by:
 2439
 2440

$$2441 p_QWEQPTgl_{g,l} = EWATKLr_g * p_PWEQPTgl_{g,l} + s_QWEQPTg_g \quad \text{Eq-A-12}$$

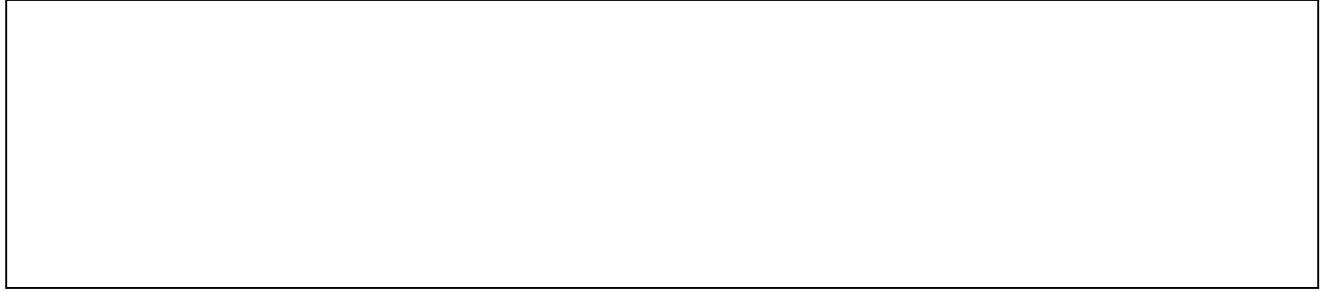
2442 where $p_QWEQPTgl$ is the percentage change in water conservation technology equipment,
 2443 $EWATKLgl$ is the supply elasticity of water conservation technology equipment, $p_PWEQPTgl$ is
 2444 the percentage change in the price of water conservation technology, and $s_QWEQPTg$ is the slack
 2445 variable for policy or shocks.
 2446
 2447

2448 The decision about water withdrawal depends on water withdrawal cost (price) relative to the costs
 2449 of water conserving technology and the benefits of irrigation. The linearized version of the demand
 2450 for water withdrawal is:
 2451
 2452

$$\begin{aligned}
p_QWATSGgl_{g,l} &= p_QWATERgl_{g,l} - p_AFWATSG_{g,l} \\
&- ESUB_WKgl_{g,l} * [p_PWATSGgl_{g,l} - p_AFWATSG_{g,l} - p_PWATERgl_{g,l}] \quad \text{Eq-A-13}
\end{aligned}$$

where $p_QWATSGgl$ is the percentage change in total water withdrawal (surface water and groundwater), $p_QWATERgl$ is the overall irrigation demand, $ESUB_WKgl$ is the substitution elasticity between water withdrawal and conservation technology, $p_PWATSGgl$ is the percentage change in the price (cost) of water withdrawal, $p_AFWATSG$ is the efficiency index of aggregate water, and $p_PWATERgl$ is the aggregate irrigation water cost (including conservation technology).

Similarly, the decision about water conservation depends on water withdrawal cost (price) relative to the costs of water conserving technology and the benefits of irrigation. The linearized version of the demand for water withdrawal is:


$$\begin{aligned}
p_QWEQPTgl_{g,l} &= p_QWATERgl_{g,l} - p_AFWEQPT_{g,l} \\
&- ESUB_WKgl_{g,l} * [p_PWEQPTgl_{g,l} - p_AFWEQPT_{g,l} - p_PWATERgl_{g,l}] \quad \text{Eq-A-14}
\end{aligned}$$

where $p_QWEQPTgl$ is the percentage change in water conserving technology, $p_QWATERgl$ is the overall irrigation demand $ESUB_WKgl$ is the substitution elasticity between water withdrawal and conservation technology, $p_PWEQPTgl$ is the percentage change in the price (cost) of water conserving technology, $p_AFWEQPT$ is the efficiency index of aggregate water, and $p_PWATERgl$ is the aggregate irrigation water cost (including conservation technology).

Declaration of interests

The authors, *U. L. C. Baldos, I. Haqiqi, T. Hertel, M. Horridge, & J. Liu*, declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

A large, empty rectangular box with a thin black border, occupying the lower half of the page. It is intended for authors to declare any potential competing interests.