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Abstract
Sequencing task difficulty and variety can be a powerful
tool for increasing engagement in online citizen science
platforms. The abundance of available participant data
presents great promise for machine learning oriented ap-
proaches to making tasks more engaging for participants.
We present a web game for image matching called Tile-o-
Scope Grid, and explore using a Q-learning based algo-
rithm to generate a policy for sequencing level difficulties.
Recruiting players using Amazon Mechanical Turk, we gath-
ered data to train and evaluate approaches to sequenc-
ing level difficulties in Tile-o-Scope Grid. Comparisons of
our Q-learning based algorithm with uniform random and
greedy baselines suggest potential for using reinforcement
learning for citizen science image labeling.
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Introduction
While a plethora of crowdsourcing platforms for citizen sci-
ence image labeling have been proposed over the past two
decades, ranging from disaster response [17, 1, 13, 12,



24] to animal conservation efforts [19] and astronomy [15],
dealing with participant disengagement, where participants
quit contributing early in the process, remains a challenge
[18]. As the classification of data requires a large and di-
verse pool of participants, designing effective and engaging
interfaces is key to retaining participants for longer periods
of time. The recent success of designing games for citizen
science, along with the introduction of task variety, offers
a promising avenue for designs that leverage gaming ele-
ments to maintain high participant engagement [4, 16].

However, many citizen science platforms offer limited to no
elements of task variety, which have been shown to posi-
tively impact worker performance [8, 6]. When task variety
is present, in the form of interleaving differing tasks in type
or context, this is often achieved using a fixed sequencing
scheme, ignoring participant performance. Recent work in
using reinforcement learning (RL), a type of machine learn-
ing that uses training data to generate optimal policies for
selecting actions, in level ordering in games, revealed great
promise for the use of RL for sequence ordering design [11,
10].

Figure 1: Example of the game
interface, showing, from top to
bottom, the difficulties E (easy), M
(medium; Imagery ©2019 Google,
Map data ©2019 Google) and H
(hard; Images from U.S. Geological
Survey).

We were interested in exploring RL algorithms to serve task
difficulty sequences for players, i.e. the order in which a
player encounters task difficulties, using game levels on a
difficulty scale from easy to medium to hard. To this end,
we developed an image matching game called Tile-o-Scope
Grid, where images are placed on a grid and, similar to the
game Dots [14], players are tasked with collecting images
by drawing lines to connect images of the same category.
We identified three levels of significantly varying difficulty,
using three different datasets. We designed a difficulty se-
quencing approach based on the reinforcement learning
Q-learning algorithm, to generate sequences of level diffi-
culties for players. We then compared our Q-learning ap-

proach against both uniform random and greedy sequenc-
ing methods. Players were recruited by running Human
Intelligence Tasks (HITs) on Amazon Mechanical Turk, a
popular crowdsourcing marketplace, often used for recruit-
ing participants.

We found that using Q-learning to sequence varying diffi-
culties in Tile-o-Scope Grid may, in some cases, lead to not
only higher levels of engagement, but also higher contribu-
tion of meaningful labels. Tile-o-Scope Grid is able to com-
bine multiple datasets and generate difficulty sequences
based on existing user data, instead of relying on static se-
quences. Our findings offer encouraging insights for using
reinforcement learning to not only design more engaging
game level orderings, but also to increase participation and
performance in citizen science image labeling tasks.

Related Work
Collaborative image labeling games have long been used
for achieving high quality labels and identifying objects in
images [22, 23]. Notable examples of citizen science im-
age labeling interfaces include Cropland Capture [18] and
Snapshot Safari [19]. A tile-based game closely related
to Tile-o-Scope Grid is Befaced [20], which aims to cre-
ate a crowdsourced facial expression database. Players
are tasked with making facial expressions that match the
aligned tiles in order to successfully collect them. BeFaced
deploys a Dynamic Difficulty Adjustment [7] algorithm to
lower certain matching difficulties caused by certain facial
expressions, as a means of retaining player engagement.

Utilizing task variety to increase engagement is the focus
of a growing body of work. The impact of order in sequenc-
ing microtasks has been explored by Cai et al. [2], however,
the chosen domain was not in citizen science and the mi-
crotasks did not involve image labeling. Research on con-



textual interruptions suggests that switching between tasks
of different types may impact completion time [9]. The ef-
fects of task variety in a citizen science setting, specifically
in disaster response, have been explored by Spatharioti et
al. [16], where switching between tasks at specific intervals
would lead to increased engagement, when measured as
voluntary time. However, none of the above examined a re-
inforcement learning approach for generating automated
sequences of task difficulty.

The high volume of data available makes games highly
suitable for deploying RL algorithms. Mandel et al. ex-
plore various comparisons of RL algorithms using engage-
ment in an educational game for evaluation of policy per-
formance [11]. RL approaches were further deployed to
combat player disengagement in Refraction, an educa-
tional game about fractions [10]. Q-learning algorithms
were utilized in Q-DeckRec, a recommendation system
for Collectible Card Games (CCGs) [3]. Q-DeckRec can
be used in CCGs such as Hearthstone to suggest opti-
mal deck builds that may lead, among other things, to in-
creased player engagement. As the state space in CCGs
is often too big for maintaining the lookup table required
for Q-learning, a Multi-Layer Perceptron (MLP) approach is
employed.

Study Setup
Game Setup
We developed a web game, called Tile-o-Scope Grid, which
is similar to Dots [14], using Unity. In Tile-o-Scope Grid,
tiles of images are placed on a 2D grid. The purpose of the
game is to connect tiles that contain images of the same
category by dragging a non-intersecting line connecting
neighboring images in order to collect them. Diagonal lines
are also allowed. Every level requires a specific amount
of tiles to be collected of each category. If a line is valid

and matches images of the same category (which can be
checked for some images, which have ground truth cate-
gories associated with them), then the move is considered
correct and the amount to be collected of the category is
reduced by the number of tiles in the match. If the line con-
tains images that do not belong to a unique category, then
the move is incorrect and players are penalized, by adding
items to their collection counts. Once the player has col-
lected (at least) the required amount for all categories, the
level is complete and the player can continue to the next.
Players can also shuffle the board, in the event that no
matches can be accomplished. Visual and audio feedback
is provided for both correct and incorrect moves, as well as
level completion. An example of the interface can be seen
in Figure 1.

In Tile-o-Scope Grid, levels can be customized by several
parameters: the dataset (which includes possible images
and categories), grid size, and number of tiles of each cate-
gory to collect. These parameters can be used to adjust the
difficulty of a level. The specific images used in any particu-
lar level are chosen at random from the dataset.

For the purposes of this work, we focused on identifying
3 distinct difficulties for levels. The citizen science related
datasets were chosen for their application to aerial imagery
analysis and identification of features of interest. The follow-
ing difficulties were chosen:

• Easy (E): Matching colors; this difficulty had no citi-
zen science task. Tiles contain images from a Colors
dataset, with two possible categories: Red and Blue.
The grid was 4 × 4, requiring collection of 4 tiles from
each category.

• Medium (M): Looking for tennis courts. Tiles contain
geo-located aerial images from near the campus area,
sourced using Google Maps. The two possible cate-



gories were: Tennis Court and No Tennis Court. The
grid was 5 × 5, requiring collection of 8 tiles from each
category.

• Hard (H): Looking for bridges. Tiles contain geo-located
aerial images sourced from a publicly available data set
of Civil Air Patrol’s aerial images of the 2013 Colorado
floods, provided by the U.S. Geological Survey’s Haz-
ards Data Distribution System [21]. The two possible
categories were: Bridge and No Bridge. The grid was
6× 6, requiring collection of 12 tiles from each category.

The 3 difficulties were designed to offer differing cognitive
and physical challenges to players [5]. The E difficulty uses
a dataset with the smallest cognitive challenge, in matching
colors, and physical challenge, in grid size and collection
requirements, as opposed to the H difficulty, whose dataset
poses the biggest cognitive challenge, along with increased
collection requirements and grid size.

Player Recruitment and Analysis

E M H

N 53 66 58

# Levels*** (E–M***, E–H***, M–H***)

median 24 12 2

# Tiles* (E–M*, E–H*)

median 264 237 90
mean 295 212 261

# Moves* (E–M*)

median 61 50 79

Time (s)*** (E–M**, E–H***, M–H**)

median 129 212 566

Avg Level Time (s)***
(E–M*, E–H***, M–H***)

median 6 21 151
***:p < 0.001; **:p < 0.01; *:p < 0.05

Table 1: Summary of performance
for players per condition for the
difficulty validation HIT. Bold
indicates p < 0.05 for omnibus and
post-hoc pairwise tests. (X–Y)
indicates comparison between X
and Y conditions.

To recruit players for data analysis, we ran three HITs on
Amazon Mechanical Turk, described in more detail below.
The first HIT was to validate our difficulty settings; the sec-
ond was to gather training data to build the Q-table; and
the third was to evaluate the Q-learning difficulty ordering.
For each HIT, the base rate was $0.10; a bonus of $0.01
for each tile required to complete a level collected was
awarded, up to a maximum bonus of $1.90, for a maximum
$2.00 payment.

For HITs that compared different difficulty orderings, we
randomly assigned each player to a different difficulty or-
dering condition. We used a Kruskal-Wallis omnibus test
to compare numerical metrics. For metrics where the om-
nibus test came out significant, we then performed post-hoc
pairwise comparisons among all conditions, using pairwise
Wilcoxon rank sum tests with a Holm correction.

Difficulty Validation
In order to verify that the difficulties were significantly dif-
ferent and to gather information on easy, medium and hard
difficulties, we ran a difficulty validation HIT recruiting 150
workers, plus 27 who started but for various reasons did
not complete the HIT. Each worker was randomly assigned
to play levels of only one difficulty, as many times as they
wanted.

Metrics are presented in Table 1. N refers to number of
workers in each condition. The results of this HIT indicate
that the different difficulties used did, in fact, impact player
performance in the game. For example, players completed
the most levels of Easy difficulty, and the fewest of Hard
difficulty.

Q-learning Formulation and Training
To generate sequences of difficulties, we used a Q-learning
based algorithm, a model-free reinforcement learning al-
gorithm [25]. Q-learning is often used in machine learning
applications to generate optimal policies based on available
data. The algorithm is based on constructing and updating
a Q-table of Q(st, at) values of pairs of states st and ac-
tions at, iteratively updated from training examples using
the equation: Q(st, at) ← (1 − α) · Q(st, at) + α · (rt +
λ ·maxaQ(st+1, a)), where rt is the reward of taking action
at from state st, α is the learning rate and λ is the discount
factor. Once the Q-table is computed using the available
data, it is used to generate the optimal policy.

We represent state st as the history of (up to) the last three
difficulties encountered by the player in order (e.g. −, E,
EM , EMM , MMH , etc), with an additional terminal
state X that represents the player quitting. Possible actions
at ∈ {E,M,H} can be to serve one of the 3 available dif-
ficulties. Taking an action appends that action to the current
state, removing the first difficulty from the history if needed,



unless that next level was the last level played, in which
case the state becomes X (e.g., taking action H from state
EMH moves to either X or MHH , depending on whether
the player quit during the next level or not, respectively).
The reward rt = wat

Ct is the number of tiles collected in
the next level Ct, weighted by a per-difficulty weight wat .

Reward difficulty weights were set to wE = 0.0, wM = 1.0
and wH = 1.2. The E difficulty was given weight 0.0 as the
color dataset does not correspond to a meaningful image
labeling task; the weights for M and H were set to make
the H difficulty more valuable and determined based on the
ratio of mean average tiles collected in the difficulty valida-
tion HIT. Similarly, the parameters of the algorithm (learning
rate α = 0.001 and discount factor λ = 0.95, along with
the number of examples to use in training N = 3 × 105)
were set accordingly so that the rewards for the first action
would be proportional to the mean average number of tiles
collected in the difficulty validation HIT for that category.

To gather data on player performance to train the Q-table,
we ran a subsequent training HIT on Amazon Mechanical
Turk, recruiting again 150 workers, plus 20 who started but
did not complete the HIT. In this HIT, all workers were each
assigned their own (uniform) randomly generated sequence
of level difficulties, using the 3 available difficulties. We then
drew N examples from the data gathered during this HIT.
We picked one random trajectory and one random training
example at a time to update the Q-table. This approach let
us simulate having a larger dataset.

Q G R

N 55 65 53

# Levels*** (Q–G***, Q–R***, G–R***)

median 9 8 12

# Tiles
median 363 338 305

# Moves* (Q–R*, G–R*)

median 195 218 134

Time (s)* (Q–R, G–R)

median 992 1057 624

Avg Level Time (s)***
(Q–G*, Q–R***, G–R***)

median 115 176 62

Fitness* (Q–R*, G–R)

median 388 406 280
mean 376 344 267

Avg Move Length (# Tiles)***
(Q–G***, Q–R***, G–R***)

median 3.1 2.2 3.9
***:p < 0.001; **:p < 0.01; *:p < 0.05

Table 2: Summary of performance
for players per condition in the
ordering comparison HIT. The
fitness metric corresponds to the
sum of tiles collected of each
difficulty, multiplied by the
respective difficulty weight. Bold
indicates p < 0.05 and italics
indicates p < 0.1 for omnibus and
post-hoc pairwise tests. (X–Y)
indicates comparison between X
and Y conditions.

Evaluation
While the Q-learning algorithm generates an optimal policy
by picking the highest valued action for the current state
based on the Q-table (i.e. argmaxat

Q(st, at)), our ap-
proach performed a weighted random selection, where

each action weight is set as Q(st, at)
2 (i.e the squared

value of the action). This allows a small level of exploration,
while retaining a strong preference for higher valued ac-
tions.

To evaluate our algorithm, we ran an evaluation HIT on
Amazon Mechanical Turk, recruiting 150 workers, plus 23
who did not complete the HIT, using the same base rates
and bonuses as the previous HITs. Workers were randomly
assigned to one of the following conditions:

• Q-learn (Q): Sequences generated using the Q-learning
based algorithm.

• Greedy (G): Sequences that contain only the highest
valued difficulty (H) based on the weight values.

• Random (R): Sequences generated by selecting a diffi-
culty uniform randomly, using the 3 available difficulties.
The difference between Random and Q-learn ordering
is in the weights for randomly selecting a difficulty.

A summary of results can be found in Table 2. The fitness
metric corresponds to the sum of tiles collected from all cat-
egories, multiplied by the relevant weight of that category.
For example, if a player collected 10, 20 and 30 tiles from
E, M and H categories respectively, the fitness value would
be 10 × 0.0 + 20 × 1.0 + 30 × 1.2 = 56. This metric is
an indicator of meaningful labels provided, as it takes into
consideration the importance of the level’s difficulty.

Our post-hoc pairwise comparison analysis revealed that
the Q-learn condition outperformed the Random condition
both in terms of weighted tiles collected, as observed in the
fitness metric, as well as the number of moves and total
time spent playing the game. While players in the Random
condition completed the most levels, that can likely be at-
tributed to the presence of more E levels than in the other
conditions.



When comparing Q-learn to the Greedy approach, which
serves only levels of the highest value, i.e H difficulty, we
found that players completed significantly fewer levels,
spent significantly more time per level and attempted moves
of significantly smaller length in the Greedy condition.

Future Work
Our implementation consid-
ers only past data for the
generation of the Q-table,
but can easily be adapted to
perform in an online fashion,
by considering both past
and current data. Similarly,
our current approach is not
adaptive to individual player
performance; however, such
information could be incorpo-
rated into our formulation.
Using a maximum state his-
tory size of 3 enabled the
direct construction of the
Q-table of the Q-learning
algorithm, which may not be
feasible when larger state
spaces are required. This
limitation may be tackled by
using approximation tech-
niques for the mappings,
similar to Chen et al. [3].
This work focused on one
game and on specific ele-
ments of difficulty as factors
for user engagement. Ex-
panding the variety of games
tested and the range of fac-
tors, along with allowing
users to rank their game
experience may offer even
more insights into the use of
this approach in the future.

The fitness of the Q-learn to the Greedy approaches were
not found to be significantly different. However, we note
that Q-learn had the highest mean fitness, and higher early
fitness in the retention curve (discussed below), which may
indicate directions for further exploration of this approach.

Additionally, of the 3 conditions, Greedy offers the least
amount of variety, as it essentially repeats the same cate-
gory. As a result, players in this condition only encounter
and contribute to one dataset, providing the least diverse
label output. On the other hand, the Random and Q-learn
conditions are able to leverage the game design to combine
multiple datasets, which means that players are exposed to
different types of labeling tasks and end up contributing to
more datasets.

However, the Q-learn condition is able to leverage existing
data to generate more engaging experiences, as show-
cased by statistics like time and number of moves, with a
higher contribution, as showcased by the significant differ-
ence in the fitness metric, when compared to Random.

The retention rate of players for fitness across all conditions
can be found in Figure 2. Both the Random and Greedy
conditions experience an earlier drop-off in the percent of
players above a given fitness, although Greedy recovers
later. Players in the Random condition end up contribut-
ing significantly less, while the behavior of players in the
Greedy condition is in line with findings in the literature that
indicate that most participants quit early on, with a smaller
subset ending up contributing bulk of the work. In contrast,
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Figure 2: Retention rate of players over fitness.

the Q-learn condition is, visually, able to provide a smoother
drop-off of participants, suggesting a potentially better ap-
proach for retaining engagement in the task.

Conclusion
We presented a web game for image labelling called Tile-
o-Scope Grid, which combines gamification elements with
reinforcement learning, by providing automated difficulty se-
quence generation using an approach based on Q-learning.
Our preliminary results indicate potential towards the use
of algorithms such as Q-learning for designing engaging
citizen science games and web interfaces for image label-
ing, that are able to seamlessly combine different datasets
in an optimal fashion. Tile-o-Scope Grid is part of a re-
search project called Cartoscope, which can be found at
http://cartosco.pe.
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