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lllusion of Causality in Visualized Data

Cindy Xiong, Joel Shapiro, Jessica Hullman, and Steven Franconeri

When students eat breakfast very
often (more than 4 times a week), their
GPA is around 3.5; while when
students eat breakfast not very often
(less than 4 times a week), their GPA
is around 3.0.
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Fig. 1. The same data showing the relation between eating breakfast and GPA presented via text, bar graph, line graph or scatter
plot. Which depiction makes eating breakfast causing higher GPA seem more plausible to you?

Abstract—Students who eat breakfast more frequently tend to have a higher grade point average. From this data, many people
might confidently state that a before-school breakfast program would lead to higher grades. This is a reasoning error, because
correlation does not necessarily indicate causation — X and Y can be correlated without one directly causing the other. While this
error is pervasive, its prevalence might be amplified or mitigated by the way that the data is presented to a viewer. Across three
crowdsourced experiments, we examined whether the presentation method of simple data relations would mitigate this reasoning
error. The first experiment tested examples similar to the breakfast-GPA relation, varying in the plausibility of the causal link. We
asked participants to rate their level of agreement that the relation was correlated, which they rated appropriately as high. However,
participants also agreed highly with the causal interpretation of data. Levels of support for the causal interpretation were not equally
strong across visualization types: causality ratings were highest for text descriptions and bar graphs, but weaker for scatter plots. But
is this effect driven by bar graphs aggregating data into two groups or by their rectangular visual encoding type? We isolated data
aggregation versus visual encoding type and examined their individual effect on perceived causality. Overall, different visualization
designs afford different cognitive reasoning affordances across the same data. High levels of data aggregation by graphs tend to
be associated with higher perceived causality in data. Participants perceived line and dot visual encodings as more causal than bar
encodings. Some visualization designs trigger stronger causal links and choosing others might mitigate this illusion of causality.

Index Terms—Information Visualization, Correlation and Causation, Visualization Design, Reasoning Affordance
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1 INTRODUCTION

Visualization designs affect decisions. Imagine coming across a piece
of BBC news, as shown in Figure 2, showing that the number of crimes
in London rises with temperature. It can be easy for viewers to con-
clude that warmer temperature causes violent crimes [32, 30, 22].

Concluding causality from the visualized data alone is misguided.
We can only establish a correlation - the tendency of two variables
changing together - between temperature and crime rate because it is
possible that other factors not shown on the graph caused the differ-
ence in the number of violent crimes. For example, when the temper-
ature gets warmer, more people go outside, more crimes may happen
overall, and thus more violent crimes. If the amount of people outside
is kept constant, decreasing temperature would not likely lower crime
rates. While the variables illustrated are linked, they are not necessar-
ily causally linked. Yet, people routinely see causal relationships in
data.

Confusing correlation with causation is a ubiquitous decision-
making error. Just because two factors are correlated (i.e., they tend to
co-occur together), it does not mean that one is causing the other. A

o Cindy Xiong, Jessica Hullman and Steven Franconeri are with
Northwestern University. E-mail: cxiong @u.northwestern.edu,
Jjessica.hullman @ gmail.com, franconeri@northwestern.edu.

o Joel Shapiro is with Northwestern University Kellogg School of
Management. E-mail: jshapiro @kellogg.northwestern.edu.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of
Publication xx xxx. 201x; date of current version xx xxx. 201x.

For information on obtaining reprints of this article, please send
e-mail to: reprints@ieee.org.

Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx/

large portion of work in economics, education, epidemiology, psychol-
ogy and public health involves analyzing correlations in observed data,
which cannot definitively establish causation [40]. Researchers and
journalists can sometimes exaggerate causal implications from these
results, making it even more difficult for people to decide what kind
of conclusions are sound [46, 49]. This can pave way for misunder-
standing of correlation and causation [15, 45, 28], potentially having
detrimental impact. When researchers or journalists misinterpret or
misrepresent correlation for causation, for example, the general public
may be misled into thinking correlated factors, such as time of getting
vaccinated and time of autism diagnosis, or national debt and GDP
growth, are also causally related [10, 38].

It is difficult to distinguish causation from correlation [41]. Even
for people who learned ’correlation is not causation’ with classroom
examples, it could still be challenging to apply their learning to new
contexts [47, 39]. Because establishing causal inference is complex,
even trained scientists can sometimes struggle with correlation and
causation [15]. We are interested in whether a simple change in the
visualization design can reduce unwarranted conclusions of causality.

Although many have looked at the effect of visualization designs
on perceptual analytic tasks such as determining anomalies or esti-
mating data trends [42, 6, 7, 11, 16, 48, 5, 24], researchers have only
begun to explore the effect of visualization design on cognitive reason-
ing tasks, such as understanding uncertainty [19, 23], persuading atti-
tude or belief change [26, 35] or eliciting empathy [2]. Previous work
has demonstrated visualization designs could influence data interpre-
tation. For example, people conclude “on average, Dutch are taller
than Americans” from a bar graph visualizing the height of Americans
and Dutch, but when the same information is visualized with a line
graph, people tend to conclude “people get taller as they become more
Dutch.”[51]. We suspect visualization designs can also afford different
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Fig. 2. Recreation of BBC news article figure, "Heatwave: Is there more
crime in hot weather?"[32]

cognitive reasoning routines in data, triggering perceived causal links
more or less strongly in data.

Contribution: We contribute three empirical studies to examine how
visualization design can afford different interpretations of correlation
and causation in data. Experiment 1 finds that higher proportion of
people draw causal conclusions from bar graphs and plain text com-
pared to scatter plots and line graphs. Experiment 2 and 3 found
this effect to be driven by data aggregation as well as visual encod-
ing marks. Less aggregation (binning data into more groups) and dot
encoding marks (instead of rectangular bars and lines) reduced the
strength of perceived causal links in data. This work provides a first
step towards design guidelines that facilitate better interpretations of
correlation and causation in data.

2 RELATED WORK

Visualization design can influence the type of information extracted
and the inferences made from data. In perceptual analytic tasks, choos-
ing the appropriate visualization designs can improve the accuracy and
efficiency of information extraction. Spatially upward trends are con-
ventionally associated with increasing values, even when the axes are
reverse labelled [34]. Bar graphs facilitate finding clusters, line graphs
facilitate finding correlations and scatter plots facilitate finding outliers
[42, 51]. Visual marks, such as rectangular bars, lines or dots, can sup-
port different inferences about data relations based on their geometric
properties. For example, lines indicate connection, arrows indicate dy-
namic (or causal) information [17], and scattered dots each represents
a value of an individual subject or collection [12].

In higher-level decision tasks, visualization design also influences
data interpretation and decision making [9, 4]. People interpret climate
data differently depending on whether the visualization presented per-
centile information versus showing the range [8]. In bar graphs de-
picting average values, people judge data values that fall within the
bar as being more likely to be part of the data set than points outside
the bar, despite being equidistant from the mean [31, 6]. People can
be more easily persuaded by tabular designs of data when they hold
strong attitudes against the depicted topic, but more easily persuaded
by bar graphs when they have no strong attitudes [35]. People also
rely on visual salience of attributes to interpret data [21]. These ex-
amples support that different visualization designs of the same data
could afford different interpretation of data at a higher-level, which
may extend to causal or correlational interpretations.

2.1 Hypothesis Development

To generate stimuli for this experiment, we turn to conventional exam-
ples in science and media. Bar graphs, line graphs and scatter plots
are common ways to depict correlated data in media [32, 14], along-
side text, as shown in Figure 2 and Figure 3. We investigate how bar
graphs, line graphs, scatter plots and text influence causal reasoning of
data.

Perceptions of causality can also be context-dependent, in addition
to being visualization design-dependent. When the evidence presented
aligns with people’s prior experience, emotional response or beliefs,
they become more likely to judge the evidence as sound [44]. People

often perceive high causality when they judge the evidence as sound
and stop thinking through other possible explanations [22]. Prior work
suggests that persuasiveness of visualized data depends on both con-
text (does the topic align with the viewers’ prior beliefs?) and visu-
alization designs (tabular design or bar graphs) [25, 26, 35]. Thus
we also examine the effect of context. Taking inspiration from the
anecdotes of a set of local instructors of research methods and data
analytics, we generated 19 potential variable pairs, from those with
plausible causal relations to those with implausible causal relations.
We generated a correlation and a causation statement describing the
relationship between each variable-pair. The full list of tested state-
ments can be found in the supplementary materials. We conducted
a pilot experiment to test the perceived correlation and causation of
these variable pairs, and identified pairs within a range from low to
high perceived correlation and causation for use in Experiment 1.

The task people perform when viewing the visualizations may also
influence the conclusions they draw. We consider two common tasks
people perform when interacting with data. The first is a judgment task
in which they decide whether they agree or disagree with the presented
information. For example, media often present people with visualiza-
tions alongside text describing a correlational or a causal relation be-
tween depicted variables [3]. In this scenario, information consumers
have to decide how much they agree with the description based on the
visualized data. Judgment tasks can be evaluated by comparing par-
ticipant ratings of how much they agree with statement describing a
correlation or a causation. The second is a generative task where peo-
ple have to independently interpret a visualization to draw their own
conclusions. One example is when a data analyst working to make
sense of their data hoping to deliver a research report on the newest
scientific findings. In this scenario, the data analyst has to actively
interpret some visualizations and generate a conclusion. Generative
tasks may shed more insights on how participants interpreted data and
arrived at possible correlational/causal conclusions, but because they
are open-ended, they tend to be more difficult to formally evaluate. In
the pilot experiment, we asked participants to generate interpretations
of data. Based on the interpretations, we developed a taxonomy to
facilitate analysis of generative tasks in Experiment 1.

3 PILOT EXPERIMENT

We surveyed 21 participants for their perceived plausibility of corre-
lational and causal relations of the 19 variable pairs through Qualtrics
on Amazon’s Mechanical Turk (MTurk) [36]. Participants viewed the
19 correlation and causation statement sets in random orders. For each
pair, they first interpreted its message and justified their reasoning in
a text box. This is the generative task. Then, on a separate page,
they read a correlation statement and a causation statement, as shown
in Table 1. The correlation statement accurately describes the rela-
tion between the depicted data variables, while the causation statement
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Fig. 3. Left: recreation of NPR article "Money Buys Happiness," show-
ing a correlation between GDP and life satisfaction [37]. Right: recre-
ation of the Washington Post news article figure, "Researchers have
debunked one of our most basic assumptions about how the world
works," showing a correlation, but not causation, between income and
SAT scores[14].



Table 1. Correlation and causation plausibility ratings for the four selected statement sets from the pilot experiment.

Variables Statement Type Plausibility Rating
spending and fitness People who spend more on admission to sporting events tend to be more physically fit. correlation 65.91

If people were to spend more on admission to sporting events, they would be more fit. causation 52.52
smoking and cancer People who smoke more have a higher risk of getting lung cancer. correlation 88.14

If people smoke more, they would have higher risk of getting lung cancer. causation 91.19
breakfast and GPA Students who more often eat breakfast tend to have higher GPA. correlation 83.86

If students were to eat breakfast more often, they would have higher GPA. causation 78.43
internet and homicide =~ When there are more people using Internet Explorer, the homicide rates in the United States  correlation 35.57

tend to be higher.

If more people used Internet Explorer, there would be more homicide in the United States. causation 28.38

falsely attributes causal relations to the depicted data variables. They
gave a plausibility rating for each (0 = extremely implausible, 100
= extremely plausible). This task reflects the judgment tasks people
would perform in real life.

3.1 Picking Statements

The participants rated their perceived plausibility of both the corre-
lation and causation statements. Table 1 shows the four contexts we
picked with varying plausibility. These four context differed signif-
icantly on their perceived correlation and causation ratings, based on
an analysis of variances, as shown in Figure 4. We visualized informa-
tion using these four contexts in Experiment 1 to investigate the effect
of visualization design on perceived causality.
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Fig. 4. Pilot results. Grey numbers indicate the index of the 19 state-
ments. The line positions represent mean correlation and causation
plausibility ratings. Red lines are the correlation and causation plausibil-
ity ratings for selected contexts, intended to cover a range of plausibility.

3.2 AQualitative Coding: Interpretation Taxonomy

We analyzed the freeform written response from the generative task,
in which participants drew conclusions from the information and jus-
tified their correlation and causation ratings, to create a taxonomy to
characterize these conclusions in the experiment. We identified six di-
mensions that could help us characterize and evaluate the conclusions
participants generated — whether the participant concluded correla-
tion, causation, mentioned third variables, grouped variables together,
made direct observations or explicitly stated the data to be inconclu-
sive. Each response is coded independently on these six dimensions,
which means the same response could fit into multiple categories.

Distinguishing Correlation from Causation: Referencing past
work outlining a taxonomy of causal arguments [33], we looked for
causal inference patterns in the verbal responses in the generative task,
to distinguish a causal interpretation from a correlational one. Specif-
ically, words such as "causes", "leads to" and "results in" depending
on the context, suggests causal interpretations, while phrases such as
"as X increases, Y tend to increase" were classified as correlational
interpretations.

Mentioning Third Variables: If participants discussed variables
not depicted in the visualization as influencing the relations between

the two depicted variables, we additionally labelled the response as
"considered third variables."

Grouping Variables: Participants could also group the levels of a
variable together when justifying their reasoning. For example, one
could say "when X is high, Y is high, but when X is low, Y is low,"
which arbitrarily divides the x—variable into two dimensions. Anec-
dotal evidence from data analytics instructor at Northwestern Kellogg
suggests that the grouping of variables could be associated with misat-
tributed causal relations. Thus we examine variable-grouping as part
of our taxonomy.

Direct Observations: We also anticipated that not all participants
would provide high-level reasoning. Some could make direct observa-
tions, stating the values depicted in a visualization verbatim. "When
X is 2, Y is 3" and "there is a vertical line starting at 15000" are both
instances of direct observations.

Inconclusive Responses: Participants could also deem the amount
of data present inconclusive without drawing any correlational or
causal conclusions.

4 EXPERIMENT 1 CAUSALITY IN CONTEXT

Experiment 1 investigates whether visualization design influences how
people interpret correlation and causation in data using the four vari-
able pairs selected from the pilot experiment through both judgment
and generative tasks, in which participants rate how much they agree
with a correlation or causation statement, and verbally interpret the in-
formation and justify their judgment task reasoning, as shown in Fig-
ure 5.

What do you conclude from this information? Provide several sentences explaining what you conclude from this and why.

Based on the graph, students who more often eat breakfast tend to have higher GPA.

Disagree Somewhat disagree Neither Somewhat agree Agree

Based on the graph, if students were to eat breakfast more often, they would have higher GPA.

Disagree Somewhat disagree Neither Somewhat agree Agree

Fig. 5. Example of generative task (top) and judgment task (middle and
bottom) in Experiment 1. The three questions were shown on separate
pages in Qualtrics in the order from top to bottom.

4.1 Participants

Participants were recruited through the Human Intelligence Task (HIT)
postings on MTurk. We excluded workers who are not based in the
United States, have an approval rate below 95%, failed the attention
checks, entered nonsensical answers for the free response questions or
failed the graph reading comprehension checks (details of these checks
are included in the supplementary materials). An omnibus power anal-
ysis based on pilot effect sizes suggested a target sample of 136 partici-
pants would give us 95% power to detect an overall difference between
visualization designs at alpha level of 0.05. We iteratively surveyed
and excluded participants until we reached this sample size.



4.2 Design

This experiment had a 4 x 4 Graeco Latin Square design. As shown
in Figure 6, each participant saw four sets of data in the four variable
pairing chosen from the pilot experiment, presented using four visu-
alization designs. We will refer to the variable pairing as ‘context.’
We replicated each condition 34 times with different participants to
increase the reliability in our measures. We chose three simple visual-
ization designs commonly seen in media and education [32, 14, 50, 27]
— bar graphs, line graphs and scatter plots as well as a plain text, as
shown in Figure 1. The plain text was written to parallel the bar graph,
including identical information in which one variable (X) was arbi-
trarily divided into two groups and the corresponding average value
for the other variable (Y) at those two groups were specified.
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Fig. 6. Graeco-Latin Square design showing the four conditions for Ex-
periment 1. Each row represents a condition. Each column represents
the order in which the participants saw the stimuli, with the left-most
seen first and the right-most seen last.
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Our independent variables are the visualization design and context
plausibility. Visualization design is a categorical variable indicating
the design we presented the information to the participants, which
could be bar graphs, line graphs, scatter plots or plain text. Context
plausibility is the correlation and causation statement plausibility col-
lected from the pilot experiment, which is a continuous variable from
0, extremely implausible, to 100, extremely plausible. We recorded the
order in which the participants viewed the visualizations. We also col-
lected demographic information such as participant age, gender, polit-
ical orientation and level of education.

There were two dependent variables. Four researchers blind to both
the study design and the condition manipulations coded the response
in the generative task based on the interpretive taxonomy, and the
participant count in each category (e.g., direct observation) was one
dependent variable. The other dependent variable was participants’
ratings on how much they agreed with the correlation and causation
statements listed in Table 1 in the judgment task.

4.3 Materials

We used MATLAB to randomly generate 100 pairs of data points from
anormal distribution with a correlation of 0.6 to avoid ceiling and floor
effect of rating the underlying correlation as too high or too low. We
visualized this dataset into a bar graph, line graph and scatter plot, as
shown in Figure 1. To ensure all participants viewed the same visual-
ized data across all conditions, we relabeled the axis to fit the context
without changing the underlying dataset. For example, Figure 7 shows
the bar graph depicted in the four contexts.

4.4 Procedure

Upon accepting the HIT, participants clicked on a Qualtrics link to ac-
cess the experiment. Participants completed the four task trials and fin-
ished with demographic questions. On each trial, participants viewed
a visualization (bar, line, scatter or text) and answered two graph read-
ing comprehension check questions. They then completed the gener-
ative task in which they wrote several sentences explaining what they
concluded from the visualization and why. This was followed by the
judgment task in which participants read a correlation and a causation
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Fig. 7. The bar graph stimulus in the four contexts.

statement (presented separately on two pages), and rated how much
they agree with each on a scale from 0 (disagree) to 100 (agree), as
shown in Figure 5.

4.5 Causation Judgment Results

We used a mixed-effect linear model to fit the causation ratings [1],
which was how much each participant agreed with the causation state-
ments, under the four visualization designs (bar, line, scatter and text).
For fixed effects, we used visualization design, causation statement
plausibility, trial order and demographic information (age, gender, ed-
ucation and political orientation) as predictors. Because perceived
causality could be both visualization design dependent and context de-
pendent [35], we also considered an interaction between visualization
design and causation statement plausibility. We used a random inter-
cept term accounting for individual differences as random effects.
The regression model indicated a large effect of causation statement
plausibility (context), x*=162.70, n7,,..,,=0.274,p<0.001, a small ef-

fect of visualization design (x2=11.65,ngarlial=0.026,p<0.01), and
negligible interaction effect between causation statement plausibility
(context) and visualization design (x*=0.97,1>,,,,,/=0.002,p=0.81).
Referencing Figure 8, participants rated bar graphs to be the most
causal (M=76.59, Clys9,=[71.51, 81.76]) and text the second most
causal (M=71.26, Clys9,=[65.30, 77.23]). This largely agreed with the
results from the generative tasks where participants also made causal
interpretations and the most group-wise comparisons in bar graphs and
text. Given the similarity between bar graphs and text, which was
written to contain identical information as the bar graph (grouping the
data into two groups), we suspected that perceived causality differed
between visualization designs because information was organized and
presented differently among them.

Line graphs and scatter plots, unlike bar graphs and text, did not
group variables together. Participants rated line graphs (M=68.43,
Clys9,=[62.52, 74.35]) and scatter plots (M=67.29, Clys9,=[61.52,
73.07]) the least causal, which were the two designs with the most
correlation interpretation in the generative task. This suggests that the
effect of visualization design on perceived causality could be driven
by data aggregation and visual encoding marks.

There is negligible effect of the order the visualizations were pre-
sented (2=0.11 ,ngamﬂl=0.002, p=0.74), which means perceived cau-
sation does not depend on what was presented to them previously
nor was there a learning effect. For individual differences, there
was negligible effect of age (x2=0.49,n§ar,,.a,=0.002, p=0.48) and po-

litical orientation (x>=0.73,1>,,,,=0.001, p=0.39), but a small ef-
fect of gender (X2=4_23,ngartia]=0.007,p=0.040), such that male par-

ticipants gave higher causation ratings, and education (}2=0.4.53,
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Fig. 8. Quantitative results from all three experiments showing participants’ correlation and causation agreement ratings.

n]% riar=0-011,p=0.033), such that participants with higher levels of
educating gave lower causation ratings.

4.6 Correlation Judgment Results

We used a similar mixed-effect linear model to predict how much each
participant agreed with the correlation statements. We kept all predic-
tors the same with the exception of swapping the causation statement
plausibility with the correlation statement plausibility. Only correla-
tion statement }Z)Iausibility had a sizable effect predicting perceived
correlations (y =71.02,n§ur[ia1=0. 141,p<0.001), there was negligi-

ble effect of visualization design (}(2=1.98,nlz,a,,m1=0.005,l7=0-58), a
small interaction between the two (952:6.15,1]50”1-01:0.012,P=0-10),

a tiny effect of education (x2=2.99,n]2mrti =0-007,p=0.08), such that
participants with higher levels of education gave lower correlation rat-
ings. There was negligible effect of order, age and gender (details
included in the supplementary materials). We can see this from the
similar correlation confidence intervals in Figure 8. This suggests vi-
sualization design does not significantly influence people’s judgment
of correlation from data, at least when participants were given a con-
crete context.

4.7 Qualitative Results from Generative Task

Each of generative task responses was coded as "yes" or "no" on each
of the six categories, as shown in the top row of Figure 9.

Correlation Conclusions: Many participants appropriately in-
ferred correlation between depicted variables, using words and phrases
such as "tend to" and "the more X the more Y." A chi-square test of in-
dependence with Bonferroni adjustment suggests that varying propor-
tion of participants drew correlation conclusions from different visu-
alization designs (y2=27.84, p<0.001). On average, 75.7% of the par-
ticipants drew correlation conclusion from line graphs (Clys9,=[68.7,
82.9]), 69.1% of the participants from scatter graphs (Clgs9,=[61.4,
76.9]), 52.9% of the participants from bar graphs (Clys¢,=[44.6, 61.3]),
and 50.0% of the participants from text (Clys¢,=[41.6, 58.4]). Figure
9 shows one example of a correlation interpretation.

Causal Conclusions Among the participants who generated causal
conclusions from the data, some used causation suggestive words such
as “leads to” or “causes”, some seemed to have assumed causation
without using causation suggestive words. Some of these participants
dismissed the visualized information as illogical because the causal
relation they interpreted went against their belief or intuition. As a
result, some did not reach a conclusion from the visualization, not
because they were aware that correlation is not causation, but because

they thought the visualization was depicting a causal relation that did
not make sense to them.

For example, in response to the "spending and fitness" visualization,
one participant suggested that the visualization did not make sense be-
cause "there is no correlation between the two," mistaking correlation
for causation. In this case, the participant seemed to understand the
notion that correlation is not causation, but assumed that the visual
results implied more than just correlation nonetheless. We coded the
response as both "causation" and "no conclusion."

There were also two participants who mentioned "experiments" in
their responses with bar graphs, even though we specifically noted that
the visualizations are generated from survey data. It is possible that
some people associate bar graphs with controlled experiments, from
which causal conclusions can be validly drawn.

We found several common characteristics among participants who
did not assume causal relations. They questioned the directionality
and predispositions, or mentioned third variables at play. For example,
in the "breakfast and GPA" context, participants who did not assume
causation questioned whether it is people who ate breakfast more were
more likely to get good grades, or that people who were more likely to
get good grades were more organized, and thus more likely to get up
early and eat breakfast.

A chi-square test of independence revealed an overall effect of
visualization design on whether people drew causal conclusions
(x%=21.77, p<0.0001). As shown in the causation column in Fig-
ure 9, 39.0% of the participants drew causal conclusion from text
(Clys9,=[30.8, 47.2]), 33.8% of the participants from bar graphs
(Clys9,=[25.9, 41.8]), 20.6% of the participants from scatter plots
(Clysg,=[13.8, 27.4]), and 18.4% of the participants from line graphs
(Cly59,=[11.9, 24.9]).

Third Variables Visualization designs might influence whether
people think of third variables when drawing conclusions from visual-
izations. We observed participants justifying both correlation and cau-
sation by connecting a third variable to the two visualized. For exam-
ple, in the "internet and homicide" context, one participant speculated
that "using Internet Explorer causes homicide rates to rise because us-
ing Internet Explore[r] creates anger, and anger leads to homicides."
Anger is not visualized on the graph, therefore it is a third variable.

A chi-square test of independence suggested that there was no
relation between visualization design and mentioning of third vari-
ables (x2=2.03, p=0.57), suggesting no particular visualization design
makes people more or less likely to think of third variables, as shown
in the 3" variable column in Figure 9. On average, 30.9% of the
participants mentioned third variables in scatter plots (Clgsg,=[23.1,
38.7]), 30.9% of the participants in text (Clgsq,=[23.1, 38.7]), 30.2%
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third variable) for a certain visualization design.

of the participants in line graphs (Clysq,=[22.4, 37.9]), and 24.3% of
the participants in bar graphs (Clgsg,=[17.1, 31.5]).

Grouping in Response We observed an overall effect of visu-
alization design on the number of group-wise comparisons made
(x*=15.57, p<0.001). Researchers coded responses as group-wise
comparisons when the participant described the visualized data in two
groups by one dimension and compared the two grouped values in the
other dimension. For example,

"The students who ate less than four breakfasts a week had a lower
GPA than those who ate more than four breakfasts a week."

27.9% of the participants made group-wise comparisons of vari-
ables in bar graphs (Clysg,=[20.4, 35.5]), 16.2% of the participants in
text (Clysg,=[9.99, 22.4]), 16.2% of the participants in scatter plots
(Clys9,=[9.99, 22.4]), and 9.6% of the participants in line graphs
(Clos9,=[4.6, 14.5]).

Direct Observations While no visualization elicited more direct
observations than others ¥%=5.09, p=0.17), we observed several di-
rect, number-specific comparisons instead of global pattern or trend
observations across all designs. For example, when viewing a bar vi-
sualization on "breakfast and GPA," one participant concluded —

"On average, students who eat less than 4 breakfasts per week has
average GPA around 3.0."

As shown in Figure 9, 11.0% of the participants made direct ob-
servations in bar graphs (Clgsq,=[5.8, 16.3]), 6.6% of the partici-
pants in scatter plots (Clgsg,=[2.4, 10.8]), 5.9% of the participants in
text (Closg,=[1.9, 9.8]), and 4.4% of the participants in line graphs
(Clo59,=[0.96, 7.9]).

No Conclusions All visualizations elicited the same proportion of
non conclusions (32=2.57, p=0.46). 11.0% of the participants drew
no conclusion in text (Clysg,=[5.8, 16.3]), 8.1% of the participants
in bar graphs (Clysg,=[3.5, 12.7]), 7.4% of the participants in line
graphs (Clys¢,=[3.0, 11.7]), and 5.9% of the participants in scatter
plots (Clos,=[1.9, 9.8]).

We observed two types of no conclusion responses, one in which
participants inferred causality from the visualization but decided to
draw no conclusion because it went against their intuition, and the
other in which participants made a conscious decision not to. This
could be a result of them choosing to be skeptical about the complete-
ness of the information or being aware of "correlation is not causa-
tion." For example, in response to the "internet and homicide" context,
one participant wrote
"I am not sure I can conclude anything —the use of Internet Explorer
may have declined at the same time the murder rate declined with no
connection except coincidence.”

In general, many people drew from their personal experience or
knowledge to make sense of the visualized information. Congruent
with prior research, most participants’ first intuition is to justify a po-
tential relation between the variables visualized, despite the plausibil-
ity of the causal link [20, 22]. Few stopped and thought of "counter
examples," questioned the validity of the data, or showed clear signs
of understanding that correlation is not causation.

Some participants used "template” words or phrases, such as "cor-
relation is not causation” or "Y tend to increase with varying levels of
X" to frame their conclusions. For example, one participant made the

following conclusion in the "internet and homicide" scenario.

"The graph shows that in cities with more people using Internet Ex-
plorer, there tend to be many more homicides. While the results are
pretty clear, I think "correlation is not causation" should be applied
here. I'm not a scientist, but I don’t think the two variables are really
related in any meaningful way."

It is also apparent when a participant only memorized the phrase
"correlation is not causation" without truly understanding the concept.
They read correlation from the data, and assumed the data to be telling
a causal story as they confuse correlation for causation. But, because
they were superficially aware that "correlation is not causation," they
dismissed the correlation in data despite the observable correlation
in data. For example, this participant was clearly aware of the phrase
"correlation is not causation," but instead of critically thinking through
third variables or other possibilities, quickly dismissed the data and the
apparent correlation.

"With only this information I can’t conclude anything since I do not see
any correlation. In my opinion these two variables are uncorrelated..."

Furthermore, all participants interpreted the visualization assuming
the X -> Y directionality, such as "as X increases Y increases." For
people who made causal conclusions, all of them described the x-axis
variable as the cause and the y-axis variable as the effect. This suggests
that there may exist a conventional interpretation of causality in data
for the x-axis variable to be seen as the cause and the y-axis variable
to be seen as the causee.

4.8 Discussion

In general, the quantitative and qualitative results told similar stories of
how, with concrete context, people perceived the more causality in bar
graphs and less from scatter graphs. Context also had a large effect on
perceived causality, but the effect of visualization design on perceived
causality was not context dependent. We took away the concrete con-
text in subsequent experiments to further examine how visualization
designs influence perceived causality.

5 EXPERIMENT 2 AGGREGATION LEVELS

Experiment 1 found that people perceived high causality from bar
graphs and low causality from scatter plots. But is this driven by the
visual encoding marks (e.g., rectangular bars versus circular points
versus lines), or by the amount of aggregation in data? For example,
the bar graph we showed aggregated the data into 2 groups while the
scatter plot did not aggregate any data, showing each data point indi-
vidually. While we suspect both factors to influence perceived causal-
ity, we need to empirically test them. Experiment 2 tested the effect of
the amount of aggregation in data on perceived causality, and whether
the visual encoding marks interact with this effect by comparing bar
graphs, line graphs and scatter plots.

5.1

Because visualization context did not influence the effect of visual-
ization design on perceived causality, we stripped context away from
the visualizations in this experiment. Instead of presenting the data
in four scenarios with varying plausibility, we stripped the variable
names (e.g., "GPA") and replaced with abstract variable labels (e.g.,

Design
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Fig. 10. Three aggregation levels tested in Experiment 3 for bar, line
and dot type encoding marks.

line

"X","Y"). We operationalized the amount of aggregation as the num-
ber of bins the data is sorted in. The bar graph used in Experiment 1
aggregated the data into two bins. For Experiment 2, we additionally
created bar graphs that aggregated the data into eight bins and 16 bins.
Although binning scattered dots and lines is rarely done, we created
dot plots and line graphs using the same binned data in the bar graphs,
but replacing the rectangular bars with circles and lines, as shown in
Figure 10. Here, bar graphs depict comparisons of data between two,
eight or 16 groups, which fit regular conventions of graphic commu-
nication using bar graphs[51]. However, conventional scatter plots il-
lustrate each dot as an individual data value [43] and conventional line
graphs illustrate trends generated by consolidating all data points [29],
different from the line graphs and dot plots shown in this experiment,
which depicts binned data aggregated into two, eight or 16 groups.

We explicitly told the participants that the visualized data were gen-
erated by summarizing and binning data as they viewed the visualiza-
tions, as shown in the left figure in Figure 11. To ensure the par-
ticipants understood the plotted data, we created an instruction with
examples for participants to read through (see supplementary for the
example). We asked each participant six graph comprehension ques-
tions on the specific visualizations we examined for the experiment,
to confirm that participants understood the visualizations, as shown in
Figure 11. Similar to Experiment 1, participants who failed the com-
prehension checks were excluded from analysis as they did not appear
to have understood the data. The full experiment and data are in the
supplementary materials. They completed the judgment task by rating
how much they agreed with correlation and causation statements, sim-
ilar to Experiment 1, but we excluded the generative task here because
the variables were abstract variables.

Exp 2

| I
8

Exp3

The following graph gives you information regarding factors B and G, based on
a survey from 100 participants.

Each of the 2 bars in the graph summarizes the data about factors B and G
from approximately ¥ of the participants.
Comprehension Check:

True or False: Based on the graph, on average, when B is between 0 and
80, G has an average value of around 16.

Here is data regarding variable B and G surveyed from 16 people.

Each of the bars in the graph shows the data for a single participant.
The vertically aligned bar pairs represent data of the same person.

.
|||||||||||I||||
||I||||I|

Fig. 11. Snapshots from Experiment 2 (left) and Experiment 3 (right).

Comprehension Check:

True of False: Based on the graph, on average, the participant with the
smallest B value has a G value of about 1.

The independent variables in this experiment are visual encoding
marks, which can be rectangular bars, lines or dots, and aggregation
level, which can be two, eight or 16. The dependent variables are cor-

relation ratings and causation ratings, similar to Experiment 1. We
used a 3 x 3 Graeco Latin Square design crossing visualization design
and aggregation groups, similar to that in Experiment 1, which crossed
visualization design and context. Each participant saw three visualiza-
tions — bar graph, line graph and dot plot, one of which aggregated
into two groups, one into eight groups and other into 16 groups. 129
participants were recruited in this experiment using the same method
and exclusion criteria.

causation correlation

0 25 50 75 100 0 25 50 75 100
Agreement Ratings Agreement Ratings

Fig. 12. Main effect of aggregation levels (top) and visual encoding
types (bottom) on correlation and causation ratings in Experiment 2.

5.2 Causation Judgment Results

We used a similar mixed-effect linear model from Experiment 1 to
fit the causation ratings with fixed effects of visual encoding marks,
aggregation level, an interaction between encoding marks and aggre-
gation level, trial order and demographic information (age, gender,
education and political orientation), and a random intercept term ac-
counting for individual differences as random effects.

The regression model indicated a small main effect of visual encod-
ing marks (*=5.97, 1,,,;y=0.020,p=0.050), such that aggregated
dot plots had the highest causality ratings (M=79.38, Clys4,=[75.67,
83.09]), followed by line encodings (M=77.78, Clys¢,=[73.29, 82.26]),
and rectangular bar encodings had the lowest causality ratings
(M=74.32, Cly59,=[69.73, 78.90]), as shown in Figure 12 (top).

There is large main effect of aggregation level, such that visu-
alizations with the more data aggregation were perceived as more
causal (x*=117.05,17,,,;,=0-29,p<0.001). Visualizations with ag-
gregation level two, the most aggregation which binned data into
two groups, had the highest average causality ratings (M=84.76,
Clys59,=[81.00, 88.55]), followed by visualizations with aggregation
level eight (M=82.95, Clg54,=[79.16, 86.75], and visualization with
the least aggregation, which binned data into sixteen groups, had the
lowest average causality ratings (M=63.74, Clysg,=[59.46, 68.03]), as
shown in Figure 12 (bottom).

There is a medium interaction effect between visual encoding
marks and aggregation level (12=28.1O,nga,.tiul=0.089,p<0.01) on
perceived causality, as shown in Figure 8. For dot encodings,
perceived causality did not differ significantly between aggregation
level two (M=87.19, Cly59,=82.54, 91.84]), aggregation level eight
(M=74.53, Cly59,=[66.51,82.56]) and aggregation level 16 (M=76.42,
Cly5¢,=[70.42,82.41]). For line encodings, perceived causality sig-
nificantly decreased as the number bins increased, such that ag-
gregation level two (M=94.37, Clys9,=[91.76,96.98]) was perceived
the most causal, followed by aggregation level eight (M=84.91,
Clos9,=[78.55,91.26]), and aggregation level 16 was perceived the
least causal (M=54.05, Cly54,=[46.43,61.67]). For bar encodings, ag-
gregation level eight was the perceived the most causal (M=89.42,
Clys9,=[84.85,93.98]), followed by aggregation level two (M=72.77,
Clys9,=[63.62, 81.92]), and aggregation level 16 the least causal
(M=60.77, Clys59,=[53.33, 68.20]).

There is negligible effect of the order the visualizations were pre-
sented (x*=0.14,n7,,,,,=0.002, p=0.71). For individual differences,
there is negligible effect of age, political orientation, gender and edu-
cation.

5.3 Comparing Exp 1 Bars with Exp 2 Bars

Experiment 1 seemed to indicate that bar graphs conveyed a greater
impression of causation than other representations, Experiment 2 sug-
gests that this impression is due to an interaction between the visual



encoding marks and aggregation level. Comparing the causation rat-
ings of bar graphs in Experiment 2 with that in Experiment 1, as shown
marked in red in Figure 8, we see that although participants gave lower
causation ratings for bar encodings overall, if we only compare the ag-
gregation level two bar condition from Experiment 2 with the bar con-
dition in Experiment 1 (which is an aggregation level two bar graph
with context), the two results match (p = 0.47). This suggests that
bar graphs with two bars may be an interesting case study. Examin-
ing participant quotes for the Experiment 1 bar graph in Section 4.7
(Causal Conclusions), one explanation may be that many participants
associate aggregation level 2 bar graphs with controlled experiments,
which could be a valid way to establish causal relationships.

5.4 Correlation Judgment Results

We used the same mixed-effect linear model to fit the correlation
ratings. The model indicated a small main effect of visual encod-
ing marks (%*=9.93,1,,,,,=0.03,p<0.01), such that aggregated dot
plots had the highest correlation ratings (M=87.67, Clys9,=[85.23,
90.11]), followed by line encodings (M=84.69, Clys54,=[81.06, 88.32]),
and rectangular bar encodings had the lowest ratings (M=82.10,
Clys9,=[78.17, 86.03]), as shown in 12.

There is large main effect of aggregation level, such that visualiza-
tions with the more data aggregation were perceived as more corre-
lational (x*=212.31,12,,,,,=0-40,p<0.001). Visualizations with ag-
gregation level two, the most aggregation which binned data into
two groups, had the highest average correlation ratings (M=92.32,
Clys59,=[89.85, 94.79]), followed by visualizations with aggregation
level eight (M=92.31, Clys5¢,=[90.39, 94.25], and visualization with
the least aggregation, which binned data into 16 groups, had the low-
est average ratings (M=69.82, Clys4,=[65.96, 73.68]), as shown in 12.

There is a medium interaction effect between visual encoding
marks and aggregation level (752=30.32,n§artial=0.088,p<0.001) on
perceived correlation, as shown in Figure 8. For dot encodings, per-
ceived correlation did not differ significantly between aggregation
level two (M=91.77, Clys59,=87.88, 95.66]), aggregation level eight
(M=88.28, Clys9,=[83.49,93.06]) and aggregation level 16 (M=82.95,
Clys59,=[79.12,86.79]). For line encodings, perceived correlations sig-
nificantly decreased as the number bins increased, such that aggre-
gation level two (M=96.42, Cly5¢,=94.49,98.35]) was perceived the
most correlational, followed by aggregation level eight (M=93.37,
Clys59,=[91.03,95.72]), and aggregation level 16 was perceived the
least correlational (M=64.28, Clg59,=[56.88,71.68]). For bar encod-
ings, aggregation level eight was the perceived the most correlational
(M=95.30, Clg59,=[93.18,97.43]), followed by aggregation level two
(M=88.77, Clys59,=[82.74, 94.80]), and aggregation level 16 the least
correlational (M=62.23, Cly59,=[55.39, 69.07]).

There is a small effect of the order the visualizations were pre-
sented (x*=10.65,n7,,,,,=0.022, p=0.001), indicating a learning ef-
fect, which is reasonable given the novelty of the visualization designs.
For individual differences, there is negligible effect of age and gen-
der, but a small effect of political orientation ( 752:1.85,17[% artiar=0-013,
p=0.17), such that more liberal ;ZJarticipants gave higher correlation
ratings overall, and education (¥ =3.5,n§ama1=0.019, p=0.84), such
that participants with higher levels of education gave higher correla-
tion ratings.

5.5 Discussion

Bar visual encoding marks were rated the least causal, followed by
line, and dot encodings were rated the most causal. These ratings could
be further increased or decreased by the amount of data aggregation,
such that decreased aggregation (increasing the number of bins) de-
creased perceived causality and increased aggregation increased per-
ceived causality in data. However, the visualizations in this experi-
ment all aggregated data, even at the smallest aggregation level (with
16 bins). In order to really isolate the effect of visualization encoding,
we further test how visual encoding marks influence perceived causal-
ity when no data is aggregated.

6 EXPERIMENT 3 EFFECT OF ENCODING

The bar graphs and line graphs examined so far always aggregated
data. Experiment 1 showed aggregated bars binned into two groups
and a continuous line, which essentially aggregated across all levels.
Experiment 2 used aggregated dot plots and line graphs which are not
commonly seen, because scatter plots and line graphs don’t typically
depict binned data, as least as often as bar charts do. Scatter plots,
for example, usually show non-aggregated raw data. One familiar in-
stance where data is naturally dis-aggregated is a nominal list, which
usually shows ranking data, such as [13].

6.1 Design and Procedure

We created modified bar graphs, line graphs and scatter plots to present
data in a non-aggregated way for this experiment, as shown in Figure
13. This modification aims to parallel the non-aggregated way that
scatter plots presents data. For each graph, the x-axis shows the in-
dex of each data point. This is a nominal dimension in which order
does not really matter, such as names of people or universities. Each
of the two graphs shows the value of one variable associated with the
index, and the vertically aligned bar pairs represent the variable val-
ues associated with the same index. One of the variables was sorted
in increasing value to mimic the x-axis and the other is left unsorted
mimicking the y-axis in a scatter plot. We made the same modification
to line graphs and scatter plots, as shown in Figure 13.

Fig. 13. Non-aggregated data visualized with bars, lines and dots.

Similar to Experiment 2, the visualizations created for this experi-
ment are not intuitive to read (although we see them in the real world,
as shown in the left column of Figure 3). To ensure the participants in
this experiment understood the plotted data, we created an instruction
with examples for participants to read through (see supplementary for
example details). We applied the same exclusion criteria as those in
Experiment 2.

In this within-subject design, every participant viewed all three vi-
sualization designs in different order, counterbalanced with different
axis values labels. An omnibus power analysis, based on pilot effect
sizes, suggested a target sample of 62 would yield enough power to de-
tect an overall difference between visualization designs. We collected
data following the same data collection and exclusion method as the
previous experiments.

6.2 Visual Mark Encoding Types

As shown in Figure 8, mixed-model linear regression model predict-
ing perceived causality using visual encoding type, trial order and de-
mographic information as fixed effects and individual participants as
random effects showed a medium effect size of visual encoding types
(752=15,44,n12mma,=0.10,p<0.01), such that dot encodings were per-
ceived to be the most causal (M=55.49, Clys5¢,=[49.62, 61.36]), closely
followed by line encodings (M=52.02, Clys¢,=[46.19, 57.84]) and bar
encodings the least causal (M=43.21, Clys¢,=[37.35, 49.07]). There is
a small effect of order ()(2=2.58,n[2mnm1=0.019) suggesting that par-
ticipants showed small learning effects towards this unfamiliar type
of non-aggregated visualization, age ()(2=3.43,1]50',”“[:0.014), such
that older participants rated causation less on average, and education
(X*=4.84,12 ,1;y=0-035), such that participants with higher levels of
education gave higher causation ratings, and negligible effects of gen-
der and political orientation.



Mixed-model linear regression model predicting perceived correla-
tion using the same fixed effects and random effects showed a medium
effect size of visual encoding types (x2=15.17,n[2mmal=0.10,p<0.01),
such that dot encodings were perceived to be the most correlational
(M=60.10, Clys9,=[53.86, 66.33]), closely followed by line encodings
(M=56.27, Clg54,=[50.48, 62.06]) and bar encodings the least corre-
lational (M=47.86, Clys9,=[41.71, 54.00]). There is a small effect of
order (x2=7.68,n§mml=0.055) suggesting a small learning effect, and
negligible effects of age, gender, political orientation and education.

6.3 Aggregated and Non-Aggregated Data

We did a between-subject comparison using a mixed-effect linear
model comparing the non-aggregated visual causal ratings in Experi-
ment 3 to the ratings of the aggregation level 16 in Experiment 2, since
both conditions showed 16 data values (16 pairs of values in Experi-
ment 3), differing only in data manipulation — whether the data was
explicitly stated to be aggregated or not. We found a large effect of
data manipulation (x>=93.38,n7,,,,,=0.17,p<0.001) such that visual-
izations that aggregated data (Experiment 3, M=50.24, Clg59,=[46.84,
53.64]) were perceived more causal than visualizations that did not
(Experiment 2, M=77.16, Clys9,=[74.70, 79.62]).

7 DISCUSSION AND CONCLUSION

Overall, both the choices of visual encoding marks and the amount of
data aggregation likely contribute to perceived causality in data. Al-
though results of Experiment 1 suggest that bar visualizations were
perceived to be the most causal, once the amount of data aggregation
was controlled for in Experiment 2 and Experiment 3, the resutls sug-
gested that the level of aggregation was the driving factor of higher
perceived causality in bar graphs. We also found an effect of visual
encoding marks such that bars were perceived to be less causal than
line and dot encodings. However, as discussed in section 5.3, two-bar
bar graphs seemed to be a special case where participants consistently
perceived the relationship it depicted to be highly causal.

8 LIMITATIONS AND FUTURE DIRECTIONS

As an initial investigation of how causality associated with data visu-
alization designs, we feel that it is too early to provide concrete design
guidelines to mitigate unwarranted perception of causality in visual-
ized data. We discuss several limitation of the present study and sug-
gest a path forward for future experiments to further understand how
visualization design impact causality interpretations.

Special Case of Two-Bar Bar Graphs: We suspect there to be
something special about two-bar bar graphs that particularly invite
causal interpretations, but the present experiments do not confirm the
underlying reasons why. Some participant responses suggested that
two-bar bar graphs could be associated with controlled experiments.
Future research could confirm whether some inferences are associated
with certain visualization types, such as bar graphs with controlled
experiments or line graphs with functional relationship between two
variables (e.g., y = f(x)).

Aggregation in Context: We found no significant effect of context
in Experiment 1, and no significant difference between causation rat-
ings of the two-bar bar graph from Experiment 1 (with context) with
that from Experiment 2 (no context). Since Experiment 2 and 3 tested
abstract variable pairings (e.g., ’G and B’), future work can systemat-
ically test how aggregation level might elicit different causal interpre-
tations within the types of concrete context used in Experiment 1.

Complex Visualizations: The present study relied on simple and
common data displays, but future work could test more complex dis-
plays dashboards with multiple displays. Some of the present stud-
ies also relied on displays that were free of context (abstract variable
names), and future work should confirm that the results extrapolate to
visualizations embedded in context or with explanatory text.

Visual Encoding Marks: We suspect that line encodings were
perceived the most causal because line encodings are more likely as-
sociated with continuous trends in data, which could have made the
line encoding marks appear more correlational, and thus were more

causally interpreted. Dot encoding types, although conventionally as-
sociated with non-aggregated raw data, still depict apparent trends in
data as participants could mentally draw lines connecting each points.
Bar encodings, in contrast, are visually vertically asymmetrical, with
the area below the mean filled and the area above unfilled. In light
of previous work on bar graphs showing that this vertical asymmetry
invites perceptual and cognitive biases [6, 31], we speculate the verti-
cal asymmetry made the trends in bar encoding visuals more difficult
to see than trends in line and dot visuals, thus appearing less correla-
tional, and therefore less causally perceived. Future research should
empirically test our hypothesis to further understand why bar encod-
ings were perceived less causal than line and dot encodings.

Other Data Sets: We used the same data set to create the visu-
alization designs in these experiments, which means the correlation
depicted was always an upward trend. We purposefully chose this pos-
itive trend to avoid common reasoning errors such as misinterpreting
negative correlations to be smaller correlations [18]. While the goal of
this experiment is to investigate whether visualization design can elicit
varying degrees of perceived causality in data, further research should
investigate the impact of the strength and direction of the correlation.

Improving Taxonomy for Generative Task Evaluation: Our
qualitative characterization of verbal responses could be improved. We
encountered several instances of ambiguous language, such as "there
is some sort of relationship between A and B," which made it difficult
for researchers to decide whether the participants meant a correlation
or a causal relation. Some participants used template phrases such as
"correlation is not causation" and "A is correlated with B" to describe
relations in data, but we lacked ways of evaluating whether they actu-
ally read a causal relation from the data or not.

Statement Choices: The present experiment only presented one
type of correlation and causation statements for participants to rate
their level of agreement. We purposefully avoided directly using
words like ‘correlation” and ‘causation’ to better evaluate participants’
interpretation of the visualized data instead triggering knee-jerk reac-
tions to the words ‘correlation’ and ‘causation.” Future iterations of
the experiment should test how participants would react differently to
other types of statements, such as direct causal statements and non-
counter-factual statements. We also did not randomize the question
order such that participants always responded to the generative task
first, and then the judgment task rating correlation statements followed
by causation statements. Participants could be using the correlation
statements as a ‘baseline’ to their causation statement ratings. Future
research can also investigate whether changing question order would
influence correlation and causation ratings.

Alternative Ways to Prevent Causal Interpretations:  The
present work took an initial step showing visualizations could be de-
signed to mitigate misinterpretation of correlation and causation. Fu-
ture experiments could investigate how other techniques, such as ver-
bal annotation on the visualization, could reinforce better interpreta-
tion of correlation and causation in addition to visualization designs,
potentially contributing to data journalism and education.
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