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ABSTRACT
Collaborative scientific research is now increasingly conducted on-
line in web-based research platforms termed “science gateways”.
Most science gateways provide common capabilities including data
management and sharing, scientific code development, high perfor-
mance computing (HPC) integration, and scientific workflow exe-
cution of varying automation. Despite the availability of scientific
workflow frameworks such as Pegasus and workflow definition
languages such as the Common Workflow Language (CWL), in
practice typical workflows on science gateways still involve a mix
of non-reusable code, desktop tools, and intermediate data wran-
gling. With the growing emphasis on FAIR (Findable, Accessible,
Interoperable, Reusable) science, such mixed workflows present a
significant challenge to ensuring compliance to these principles.
These challenges are further compounded in the earth sciences
where researchers spend inordinate amounts of time manually ac-
quiring, wrangling, and processing earth observation data from
repositories managed by organizations such as NASA, USGS, etc.
Our extensible geospatial data framework, GeoEDF is designed to
address these challenges, making remote datasets directly usable in
computational code and facilitating earth science workflows that
execute entirely in a science gateway. In this paper we describe the
design of GeoEDF, current implementation status, and future work.
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1 INTRODUCTION
Researchers in the earth sciences and various other interdisciplinary
fields such as resource sustainability and agricultural economics
often have to utilize diverse data sets in their simulation and mod-
eling workflows. For instance, hydrologists utilize a combination of
streamflow, land use, and land cover data from USGS, and precipi-
tation and evapotranspiration data from NASA in flood modeling.
Agricultural economists utilize crop yield data from the Food and
Agriculture Organization of the United Nations (FAO), as well as
population density and environmental data from the IPUMS Terra
repository to predict the effects of climate change on food scarcity
around the world. Due to the inherent massive volume, high dimen-
sionality, heterogeneity of data formats, and variability in access
protocols across these various repositories, the process of filtering,
acquiring and transforming these data sources into datasets usable
in a simulation model is often tedious and time consuming. Further-
more, researchers often have to repeat this data wrangling process
several times if simulations need to be run for different spatial or
temporal ranges. While most researchers are technically adept at
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writing code to automate some of these processes, such software is
typically custom-built and designed for a specific execution envi-
ronment and/or research project and not immediately generalizable
or reusable.

Consider also, the recent emphasis on the FAIR (Findable, Ac-
cessible, Interoperable, Reusable) principles for scientific research
that are intended to enhance the discoverability and reusability of
scientific artifacts. Manual data wrangling processes often result in
some data artifacts relevant to a simulation result not being truly
accessible, or lacking sufficient metadata to enable discoverabil-
ity and research reproducibility. A natural and obvious solution is
to transition scientific workflows to execute entirely in a science
gateway, so that automated data annotation and publication can
accompany workflow execution; simplifying the pathway to FAIR
science.

Our GeoEDF framework is designed based on these considera-
tions of simplifying, generalizing, and fostering reusability of sci-
entific workflows while enabling FAIR science out-of-the-box. The
GeoEDF framework is composed of three core elements: reusable
data connectors that abstract away the specifics of acquiring data
from large remote repositories; reusable data processors that ab-
stract various domain-independent and domain-specific geospatial
data processing building blocks; and plug-and-play workflows that
can be declaratively composed of pre-existing data connectors and
processors. The GeoEDF workflow engine transforms this declar-
ative workflow for execution in a variety of target environments.
We describe each of these elements and the technical implementa-
tion details in section 3. The broader cyberinfrastructure features
enabling FAIR science are described in section 5. We conclude with
a description of the current implementation status, discussion of
broader impacts, and next steps.

2 BACKGROUND AND RELATEDWORK
While most science gateways provide data management and scien-
tific code development and execution capabilities, scientific work-
flows on such platforms are typically manual or fairly prescrip-
tive in nature – often resembling a sequence of high performance
computing jobs. By contrast, GeoEDF encourages researchers to
approach scientific workflows from a high-level, logical perspec-
tive as a sequence of generalizable data acquisition and processing
steps. Such generalization aids in effective reusability of common
elements across different scientific workflows. For instance, acquisi-
tion of data for a specific time range from a particular NASA-hosted
FTP server when viewed as a more general process of filtering and
downloading a set of a files from a FTP server can then be applied
to any FTP-based data repository. Similarly, the specific process-
ing task of aggregating evapotranspiration data from a HDF file
across the polygons in a watershed boundary dataset from an ESRI
Shapefile can be more generally conceived as a “masking” operator
applicable to any pair of files in the HDF and Shapefile formats. We
should note here that geographic information systems (GIS) such
as QGIS provide a large library of such domain-agnostic geospatial
processing operations. Our intent in GeoEDF is not to replicate this
entire library. In a high-level conception of geospatial scientific
workflows, some operations may naturally correspond to typical
processing operations supported by most GIS systems, however

they are by no means exhaustive. Modern earth science workflows
are composed of a diverse set of generalizable operations including
statistical analysis, machine learning-based modeling and predic-
tion, and calibration. We next provide a brief survey of prior work
that is most closely related to GeoEDF and representative of com-
mon approaches towards scientific data management and workflow
development thus far, illustrating some of the key gaps that GeoEDF
fills.

2.1 GABBs/HUBzero
The GeoEDF project builds on existing software building blocks
that enable researchers to manage geospatial data and conduct man-
ual end-to-end workflows in a science gateway. These Geospatial
Data Analysis Building Blocks (GABBs) [13] provide geospatial data
management, visualization toolkits, and geospatial processing tools
for science gateways built on the HUBzero [10] cyberinfrastructure
(CI) platform. In addition to a feature-rich content management
system (CMS), HUBzero provides a complete Linux execution en-
vironment that can be used to develop and deploy scientific tools
that run in containers on scalable execution infrastructure. The
HUBzero tool environment is also integrated with various campus
and national high-performance computing (HPC) resources such
as XSEDE and supports HPC job submission, monitoring, and data
transfer.

Seamless integration between the GABBs geospatial data man-
agement building block and the HUBzero tool environment fa-
cilitates manual end-to-end workflows where HUBzero tools can
be executed in sequence without requiring any intermediate data
transfers. However, scientists are still responsible for bringing data
from remote repositories to GABBs data management before it can
be used in these workflows. While GeoEDF has been designed to be
independent of any specific cyberinfrastructure framework, we use
the HUBzero-based science gateway MyGeoHub [8] as the primary
deployment and dissemination venue. GeoEDF will extend GABBs
to support automated end-to-end workflows that no longer require
manual data acquisition as a first step. We also leverage GABBs
data management and its seamless integration with the HUBzero
scientific tool environment to facilitate FAIR science compliance
for scientific workflows in MyGeoHub. Details of this integration
are described in section 5.

2.2 Cyberinfrastructures Supporting
Workflows

While GeoEDF can be seen to share similarities with scientific work-
flow software, it is a level of abstraction removed from them. The
GeoEDF workflow engine can and does leverage existing scientific
workflow systems (specifically Pegasus [4]) to instantiate and exe-
cute the logical GeoEDF workflow. It can be argued that workflow
systems such as Galaxy [5] and Kepler [3] do operate at the same
level of abstraction as GeoEDF. However, these systems only sup-
port certain specific data access protocols or repositories, requiring
the user to manually upload any other datasets to the workflow
executor. Systems such as Apache Taverna [7] and Airavata [9]
only support operations implemented as web-services with SOAP,
WSDL, or REST interfaces. Moreover, these systems require data to
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be transferred to the workflow execution servers via SSH or SCP
data transfers.

2.3 Data and Software Frameworks
In the Clowder data management cyberinfrastructure, an extensible
set of “extractors” can be used to process files either automatically
(via a message queue monitoring file upload events) or on-demand.
However, no straightforward approach exists for stringing extrac-
tors together into a pipeline. Cyverse’s [6] Discovery Environment
(DE) is the most closely related workflow system to GeoEDF. How-
ever, DE requires pipeline components to be Docker containers
with heavily specialized user interfaces. In terms of geospatial data
processing, recent systems such as GeoSPARK, Hadoop-GIS, and
SpatialHadoop focus primarily on supporting big spatial data pro-
cessing and only provide software for importing local files into
big spatial data structures that support geospatial operations and
transformations. The CyberGIS project [12] has developed several
web-based platforms, applications, and libraries supporting data-
intensive, scalable geospatial analytics capabilities. However, to the
best of our knowledge, CyberGIS does not support declarative end-
to-end workflows that can seamlessly access and process remote
datasets.

3 GEOEDF FRAMEWORK
The GeoEDF framework is designed to enable earth science re-
searchers to envision and formulate their scientific workflows as
a logical sequence of data acquisition and processing steps which
directly map onto GeoEDF connectors and processors respectively.
The syntax and semantics of connectors (to a great extent) and
processors (to a lesser extent) is designed with significant emphasis
on their generality and reusability. We describe each of the core
elements of the GeoEDF framework and the workflow engine that
validates, instantiates, and transforms a logical workflow composed
of connectors and processors for execution on compute resources.

3.1 Connectors
GeoEDF connectors abstract away the specifics of connecting to
and transferring data from a data source. For instance, the user of a
connector need not be aware of the implementation of a specific
protocol for data query, filtering, and transfer; the implementation
of authentication/authorization handshakes; and the setup and
execution of iterative loops for batch file transfers. The design,
syntax, and semantics of connectors is inspired by the concept of
Logstash [1] plugins. Each connector can be composed of three
different types of plugins: input, filter, and output. A connector is
then a combination of exactly one input plugin, zero or more filter
plugins, and at-most one output plugin. Before describing these
components, we first present a motivating example for this design
choice.

Consider theNASAMODIS Evapotranspiration dataset [2]which
can be used to calculate the water energy balance or soil water sta-
tus which are key to various hydrological simulations. This dataset
is available as 8-day composites at a publicly accessible website
with direct download URLs to individual data files such as those
shown in Figure 1. Hydrological simulations typically range over
different time periods or spatial regions (often involving one or

more watersheds). Thus, a key data preparation step is to download
all evapotranspiration data for the temporal and spatial region of
interest of the simulation. Any programmatic or scripted approach
to downloading the relevant data involves first determining the nec-
essary values for key parts of the direct download URL in Figure 1
that encode the year, day of year, and MODIS grid identifier. In the
case where a watershed represents the spatial region of interest,
the watershed boundary will need to be transformed into the set of
numeric identifiers of MODIS grids that intersect the watershed.

The straightforward approach to building a data accessor for
evapotranspiration data would be to write code that accepts a tem-
poral range (e.g. start and end dates) and a geospatial vector file
encoding the watershed boundary as inputs, determines the down-
load URL(s), and downloads the corresponding HDF files. However,
a more generalizable and modular approach would be to separately
develop code that downloads a file given its URL, and code that
constructs the various salient pieces of that URL. In this specific
case, these might include code that accepts a temporal range and
returns a set of date strings (in a desired format), and code that
accepts a vector file and returns a set of MODIS grid identifiers
for grids that intersect the vector dataset. It stands to reason that
this modular code can be reused out-of-the-box for a variety of
URL combinations that include a date string (with different for-
mats) and/or MODIS grid identifier at different locations in the
URL. Broadly speaking, an input plugin implements a specific data
access protocol (e.g. HTTP for acquiring files given a URL), while
a filter plugin provides a set of values for use in the arguments to
an input (or filter as we will show later) plugin. Output plugins are
the same as input plugins except the direction of data transfer is
reversed. Whereas filter plugins in Logstash filter individual data
records after they have been retrieved by an input plugin, here the
filter plugin is designed to filter a file repository’s contents before
any actual file transfer from the repository occurs.

3.1.1 Syntax and Semantics. GeoEDF input, filter, and output con-
nector plugins are designed as Python classes implementing a stan-
dardized interface for their plugin type. The standardized interface
enables the workflow engine to be agnostic to a plugin’s specifics
when executing it. Plugin classes can have an arbitrary set of in-
stance variables relevant to the purpose of that plugin, each of
which can either be required or optional. A connector is a composi-
tion of instances of plugin classes that satisfies certain syntactic and
semantic rules. YAML syntax is used to encode this composition
with YAML nodes representing plugin class instances and an asso-
ciative key-value pair mapping under each node representing bind-
ings for the class instance variables. Figure 2 illustrates one such
connector definition consisting of an instance of the NASAInput
plugin, and three filter plugins: DateTimeFilter, StringFilter,
and MODISFilter.

A key syntactic rule for plugin composition has been outlined
before: exactly one input plugin, zero or more filter plugins, and at-
most one output plugin. The remaining syntactic and semantic rules
primarily concern the use of filter plugins. Recall that a filter plugin
provides a set of values for use in the arguments of other plugins.
Syntactically in the YAML, this relationship is represented using a
variable in a plugin’s bindings and creating a separate YAML node
for this variable, whose content is an instance of a filter plugin that
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http://files.ntsg.umt.edu/data/.../Y2001/D001/MOD16A2.A2000001.h00v08.105.2013121200130.hdf

Figure 1: Direct download URL for a NASAMODIS Evapotranspiration HDF file for 01/01/2001. Note that the URL encodes the
year, Y2001, day of year, D001, and MODIS grid number, h00v08 that the data in this HDF file corresponds to.

provides the variable’s values. In the case of Figure 2, the variable
year is bound by the DateTimeFilter, and the variable file is
bound by the StringFilter. The DateTimeFilter generates date
strings given a date format string and start and end date. Filter
plugins can themselves have dynamic bindings via the use of other
filter plugins. For instance, the variable grid here is being bound by
the third MODISFilter plugin. The MODISFilter generates MODIS
grid identifiers in the h##v## format (horizontal and vertical grid
indices) given a region of interest in the form of an ESRI Shapefile.
The use of filter plugins for dynamic binding is key to the generality
and reusability of GeoEDF connectors. Rules governing the use of
variables and filters include: requiring a variable to be bound to ex-
actly one filter, disallowing circular dependencies, and disallowing
variables to use the same name as the connector’s plugins’ instance
variables.

3.2 Processors
GeoEDF processors resemble the standard computational unit in
typical scientificworkflows. They encapsulate some domain-independent
(such as geospatial processing or data format conversion), or domain-
specific processing operation (e.g. applying a flood model, down-
sampling to a different grid resolution). GeoEDF processors are
again designed as Python classes. This does not restrict the gen-
erality of processors; Python’s support for subprocess execution
ensures that processors can encapsulate existing scientific code
written in a variety of other programming languages. However,
by this design choice, we promote the conceptualization of proces-
sors as generalized, reusable pieces of computation. For instance, a
monolithic script that obtains elevation data from USGS as separate
tiles, mosaics them together, determines a region of interest from
a watershed Shapefile, and then clips the raster to this region of
interest may make various assumptions about the datasets. These
might include the geospatial map projection that has been used in
the Shapefile and elevation data, the location where intermediate
results have been saved, or the number of tiles that are usually
returned. Separating out each of these operations as its own pro-
cessor ensures both code reusability and adaptability to various
execution environments. Just like connectors, using a processor
involves defining an instance of a processor class in YAML syntax
as illustrated in Figure 3. The primary validation in the case of a
processor is to ensure all required instance variables have been
bound and that no filter variables are used.

3.3 Plug-and-play Workflows
GeoEDF connectors and processors can be chained together into
workflows where connectors acquire the necessary data which is
then transformed and processed by various processors. The YAML
syntax for workflows builds on the syntax for connectors and pro-
cessors with numeric indices used to identify workflow stages and

input-output dependencies between the various stages. One such
workflow combining the connector and processor examples from
before is illustrated in Figure 4. Each workflow stage has a numeric
identifier (e.g. $1, $2) and the input-output dependency between
the connector’s data output and a subsequent processor is encoded
by using the connector’s identifier $1 as a variable binding in the
processor. During execution, the $1 argument to the processor will
be replaced with each file acquired by the connector.

3.3.1 Usage and Development. As part of the GeoEDF project, an
initial set of connector plugin and processor classes are being de-
veloped for a few key science drivers. The connector plugins will
include support for key data access protocols such as HTTP, FTP,
and OpenDAP, and to access repositories hosted by organizations
such as NASA, USGS, USDA, etc. Organizational repositories of-
ten require custom input plugins since they typically involve an
authentication handshake before allowing data access. Processors
will include certain common, domain-independent geospatial oper-
ations, file format converters, and domain-specific simulation and
analysis code from the science use cases. GeoEDF is an open-source,
community-driven project; contributors will be able to contribute
connector and processor classes to a central repository so other
users can utilize them in their scientific workflows. Our design for
facilitating this open-source, community-driven approach will be
presented in Section 4.

3.4 Workflow Engine
We are currently developing the GeoEDFworkflow engine that is re-
sponsible for transforming a “logical” GeoEDF workflow expressed
in YAML syntax into a concrete workflow that can be executed in
different environments. After evaluating various scientific work-
flow systems, we have decided to utilize the Pegasus workflow
management system [4] due to its support for dynamic workflows,
diverse execution environments (through site configurations), and
automated data staging and transfer optimizations. GeoEDF work-
flows are necessarily dynamic; connectors can retrieve an arbitrary
number of files and efficiency dictates that each of these files are
then processed in parallel by processors down the line. Thus, a
GeoEDF workflow can only be concretized one workflow stage at a
time. Pegasus supports dynamic workflows by allowing workflow
jobs to dynamically generate “sub-workflows” which can then be
executed after the job generating them has run.

3.4.1 Pegasus Workflow Generation. The GeoEDF workflow en-
gine will parse a GeoEDF YAML workflow and create and execute
the necessary Pegasus workflow jobs. As part of this transformation
process, an administrative job is inserted at the beginning of each
workflow to create a staging directory to store intermediate files
during the workflow’s execution. Each GeoEDF workflow stage
(corresponding to a connector or processor) will be converted into
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Input:
NASAInput:

url: http://files.ntsg.umt.edu/data/.../Y%{year}/D001/%{file}
username: john

Filter:
year:

DateTimeFilter:
start: 01-01-2001
end: 01-01-2005
pattern: yyyy

file:
StringFilter:

pattern: MOD16A2.A2000001.%{grid}.105.2013121200130.hdf
grid:

MODISFilter:
shapefile: watershed.shp

Figure 2: YAML definition of a connector that can be used to download MODIS evapotranspiration data from a NASA data
repository

HDFShapefileMask:
hdffile: MOD16.hdf
shapefile: watershed.shp

Figure 3: YAML definition of a processor that “masks” a HDF file with a Shapefile, generating a new Shapefile that contains
weighted averages of HDF file data for each of the polygons in the input Shapefile

a Pegasus sub-workflow. When transforming a connector into a
Pegasus sub-workflow, the variable-filter dependency chain is uti-
lized to set up a sequence of jobs that execute each filter plugin as
soon as it is fully bound, before the input plugin and finally the
output plugin is executed. When transforming a processor, parallel
jobs will be created based on the set of possible bindings for any
workflow stages referenced by their index (e.g. $1). If a connec-
tor’s plugins reference prior workflow stages, the corresponding
sub-workflow will contain parallel sequences of jobs.

In the case of the GeoEDFworkflow in Figure 4, the sub-workflow
for the connector would contain parallel jobs for the MODISFilter
and DateTimeFilter, followed by a job for the StringFilter. The
job for the NASAInput plugin would be executed last by having it
depend on completion of the DateTimeFilter and StringFilter
jobs. For the HDFShapefileMask processor, as many parallel jobs
would be created as there are files returned by the NASAInput
connector after execution. In order to determine the number of
parallel jobs to be created for a particular workflow stage, each
sub-workflow will include a “merge” job that collects and merges
the names of each of the files generated by the jobs run in that sub-
workflow. This merge job outputs a text file with this merged list
of files which is then used by the job generating the sub-workflow
for the next stage. Since workflow stages can reference zero or
more prior stages, the results of the merge jobs from each of the

referenced prior stages will be used to construct the appropriate
combinatorial set of bindings (and corresponding parallel jobs) for
the current stage. The Pegasus workflow that will be produced after
the transformation of the GeoEDF workflow in Figure 4, is depicted
in Figure 5.

3.4.2 Pegasus Workflow Execution. Since both connectors and pro-
cessors can conceivably produce a significant number of large files,
we will seek to avoid any unnecessary data transfers back and forth
between the workflow submission host and the execution environ-
ment. The administrative job at the beginning of the workflow will
create a data directory on the execution site to hold the data files
from each stage so subsequent workflow stages can access them.
Since the generation of sub-workflows and their “submission” as a
job needs to occur on the submission host, the outputs of the merge
jobs are the only intermediate files that will be transferred back.
Jobs executing filters will return the set of values generated by the
filter as output.

Since processor classes can include arbitrary software dependen-
cies or code that may have been developed in other programming
languages, we will containerize them as Singularity containers to
enable portability and ease of execution in diverse HPC environ-
ments. Since we anticipate connector plugins to be purely-Pythonic,
we will use a single Singularity container but separate Conda envi-
ronments to manage the dependencies for each plugin class. Bind
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$1:
Input:

NASAInput:
url: http://files.ntsg.umt.edu/data/.../Y%{year}/D001/%{file}
username: john

Filter:
year:

DateTimeFilter:
start: 01-01-2001
end: 01-01-2005
pattern: yyyy

file:
StringFilter:
pattern: MOD16A2.A2000001.%{grid}.105.2013121200130.hdf

grid:
MODISFilter:
shapefile: watershed.shp

$2:
HDFShapefileMask:

hdffile: $1
shapefile: watershed.shp

Figure 4: YAML definition of a workflow that combines the connector and processor from Figures 2 and 3

mounts will be used to make the job data directory available in
these containers during execution.

Figure 5: Pegasus workflow corresponding to Figure 4

4 CYBERINFRASTRUCTURE INTEGRATION
We will utilize the MyGeoHub science gateway [8] to develop, test,
and deploy GeoEDF. The GeoEDF workflow engine will be installed
in MyGeoHub’s tool environment to enable users to develop and
execute workflows from inside scientific tools and Jupyter note-
books. Local files from the tool environment that are referenced
in the workflow will be automatically transferred to the execution
environment using Pegasus’ data staging capabilities. Due to the
seamless integration between GABBs data management and the
HUBzero tool environment, any data files managed by GABBs can
be used directly in GeoEDF workflows. A small Condor pool will
be set up in commercial cloud for testing purposes, while campus
clusters at Purdue University and the XSEDE community clusters
will be used to allow users to utilize their own cluster allocations to
execute their workflows. By default, the final results of executing a
workflow will be transferred back to the tool environment. Users
can then use the seamless integration between GABBs data manage-
ment and HUBzero tools to create data publications or share results
with other users of MyGeoHub. Connectors will also be developed
to utilize the GABBs data service APIs to transfer data from and
to MyGeoHub’s GABBs-managed data storage to automate this
sharing process.

A Singularity registry will be created to host the Singularity con-
tainers for the connectors and processors developed for GeoEDF’s
driving science use cases. Standard open-source contribution pipelines
on GitHub will be used to manage connector and processor contri-
butions. A continuous integration/continuous deployment (CI/CD)
pipeline will be established using GitHub actions to automatically
create and deploy Singularity containers to this registry as connec-
tors and processors are updated or contributed. A standard GitHub
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repository template will be provided for connectors and processors
so that useful metadata and documentation on their usage can be
recorded and processed automatically to produce GitHub pages.
These pages will form the primary resource for users to discover
and identify existing connectors or processors that can be used for
their own workflows. The integration of GeoEDF with MyGeoHub
is illustrated in Figure 6.

5 SUPPORTING FAIR SCIENCE
GeoEDF will facilitate FAIR (Findable, Accessible, Interoperable,
Reusable) science by automatically associating sufficient annota-
tion with workflow results and by leveraging existing GABBs and
HUBzero metadata capabilities. Both the GABBs data management
building blocks and the HUBzero data publication process have
developed certain key capabilities in metadata management, discov-
erability, and persistent identification. HUBzero provides a straight-
forward path from GABBs-managed data storage to persistent data
publication with associated digital object identifiers (DOIs). GABBs
data management enhances this publication process by automati-
cally transferring any metadata from files in the active data storage
to the corresponding data publication. All GABBs-managed meta-
data uses the Dublin Core Metadata Initiative (DCMI) standard and
is indexed to HUBzero’s Apache Solr index to aid data discoverabil-
ity.

The GABBs data management building block automatically pro-
cesses geospatial files on creation to extract metadata. Most stan-
dard geospatial file formats allow for metadata to be encoded along
with the file’s contents. Such metadata can include the geospatial
bounds of the file, projection information, data description, au-
thorship, and creation history. This metadata is extracted and then
marshalled into the DCMI format and indexed to the Solr server.
Programmatic retrieval and update of this metadata for GABBs-
managed files is also supported by the GABBs data service APIs.

In GeoEDF, we will expand on these prior capabilities by de-
veloping a similar data service API for HUBzero publications to
support publication discoverability and metadata retrieval. In ad-
dition, workflows results that are transferred to GABBs-managed
storage via a connector will be automatically annotated with prove-
nance details of the workflow through the GABBs data service APIs.
This metadata will then be transferred over on data publication.

6 DISCUSSION
GeoEDF is driven by use cases from scientific domains that heavily
utilize earth science data. We briefly describe how research work-
flows in these domains with significantly benefit from the use of
GeoEDF.

6.1 Hydrology
In hydrology, researchers often utilize a wide variety of earth sci-
ence data from different resource providers. Flood simulations
require evapotranspiration and vegetation (leaf cover) data from
NASA, peak streamflow and land elevation data from USGS, and
SWAT (Soil Water Assessment Tool) models from other cyberin-
frastructure (CI) platforms such as Hydroshare [11]. In addition to
ensuring that all these datasets are in a common geospatial pro-
jection and resolution, various filtering, clipping, and aggregation

operations need to be performed before using these datasets in the
simulation models. This whole process will need to be repeated for
simulations over different time periods or regions of interest. So far,
hydrologists typically utilize desktop tools such as QGIS for some
of these data preparation steps, and then move to a cyberinfrastruc-
ture platform to run the simulations using HPC resources. GeoEDF
will completely automate such workflows using the connectors
and processors that we have described previously and by providing
additional connectors to access resources published by CI platforms
such as Hydroshare, avoiding the need for any intermediate manual
data transfers.

6.2 Global Resource Sustainability
In agricultural economics, the study of global resource sustainabil-
ity involves combining data from diverse domains. Global crop
yield data published by the U. N. FAO is combined with global
administrative boundary data; population and income data from
the World Bank; and land cover, land use data from IPUMS TERRA
in a general equilibrium model. Since these datasets originate from
different domains and organizations with their own data standards
and access methods, a significant amount of pre-processing is re-
quired before the model can be applied. These pre-processing steps
include operations such as downsampling data to a desired grid
resolution, aggregating over administrative boundaries, and trans-
forming the results into custom data formats that are required by
the equilibrium model. Researchers currently utilize custom code
written in various programming languages (Python, R) to perform
each of these steps, some of which are carried out in Windows
desktops due to the availability of certain data format conversion
tools. GeoEDF will completely automate such workflows through
the use of connectors to acquire data from the various data sources
and processors for geospatial operations such as downsampling and
aggregation, data format conversions, and wrapping the custom R
code.

6.3 Crop Health Assessment
Recent advances in low-cost handheld devices are providing novel
means of assessing crop health so various disease and nutritional
deficiency issues can be immediately discovered and mitigated, thus
improving crop yields. Hyperspectral imaging sensors attached to a
mobile device are now used to image leaves from corn and soybean
plants to determine parameters such as nitrogen and water con-
tent at high resolution levels. By making these devices available to
farmers in the field, point sensor data can be collected from various
assessment locations in a field and streamed to a central storage
database. These data points will need to be collated, processed, and
analyzed to uncover and visualize spatial trends at different scales
(farm, county, state, etc.). A key use of these data points is in the
development of a predictive machine learning (ML) model that can
utilize such crop parameters to predict disease markers. However,
before the data points can be used in a ML model, they need to
be standardized to account for the effect of various environmental
factors on the measurements. Cloud cover, temperature, and time
of day can all affect the imaging results; thus, it is necessary to stan-
dardize the measurements to a fixed time of day and year. GeoEDF
will help with both access of various subsets of the collected data
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Figure 6: Integration of GeoEDF with the MyGeoHub cyberinfrastructure platform

for different temporal and spatial ranges, as well as with automat-
ing the calibration workflow that utilizes both the collected and
environmental data to first standardize measurements and then run
ML models.

6.4 Water Quality Asssessment
Water quality data is often crowd-sourced from various field sen-
sors deployed in streams and assessment stations. Due to the wide
variety of sensors deployed, some of them may stream data directly
to a data repository, others may need manual data collection at
periodic intervals and conversion into tabular forms, and yet others
might require the use of proprietary data access APIs to pull data
on-demand from the sensors. The EPA water quality portal (WQP)
provides a repository of water quality monitoring data collected
from contributors all across the country. Contributors use theWater
Quality Exchange (WQX) to submit data to WQP. Since sensors can
provide data in various custom formats, various preprocessing and
data format conversion steps need to be performed before the col-
lected data can be contributed through the WQX. GeoEDF can help
in filtering and accessing data from the various data stores contain-
ing data from these sensors and converting them into the format
required for WQX through appropriate connectors and processors,
aiding in the timely transfer of data to WQP.

7 CURRENT STATUS AND NEXT STEPS
We have completed the design of the YAML syntax for GeoEDF
workflows and developed an initial set of connectors and processors
for the science use cases described in Section 6. We have also evalu-
ated the creation and execution of dynamic workflows through the
Pegasus Python API. We are currently working on the set up of a
Singularity registry and the CI/CD pipeline for automatically build-
ing Singularity containers for connectors and processors. We are
also developing the GeoEDF workflow engine to convert GeoEDF
YAML workflows into Pegasus workflows. We anticipate releasing
a beta version of the workflow engine in May 2020 as open-source
on GitHub.
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