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Fig. 1. Summary of tasks: participants are far more efficient in searching for a target relation (left), discriminating proportions of 
relations (center), and estimating the average relational magnitude (right) when values are encoded as deltas (bottom row) than 
when encoded as individual values (top row). 

Abstract—The power of data visualization is not to convey absolute values of individual data points, but to allow the exploration of relations 
(increases or decreases in a data value) among them. One approach to highlighting these relations is to explicitly encode the numeric differences 
(deltas) between data values. Because this approach removes the context of the individual data values, it is important to measure how much of a 
performance improvement it actually offers, especially across differences in encodings and tasks, to ensure that it is worth adding to a visualization 
design. Across 3 different tasks, we measured the increase in visual processing efficiency for judging the relations between pairs of data values, 
from when only the values were shown, to when the deltas between the values were explicitly encoded, across position and length visual feature 
encodings (and slope encodings in Experiments 1 & 2). In Experiment 1, the participant’s task was to locate a pair of data values with a given 
relation (e.g., Find the ‘small bar to the left of a tall bar’ pair) among pairs of the opposite relation, and we measured processing efficiency from the 
increase in response times as the number of pairs increased. In Experiment 2, the task was to judge which of two relation types was more prevalent 
in a briefly presented display of 10 data pairs (e.g., Are there more ‘small bar to the left of a tall bar’ pairs or more ‘tall bar to the left of a small bar’ 
pairs?). In the final experiment, the task was to estimate the average delta within a briefly presented display of 6 data pairs (e.g., What is the 
average bar height difference across all ‘small bar to the left of a tall bar’ pairs?). Across all three experiments, visual processing of relations 
between data value pairs was significantly better when directly encoded as deltas rather than implicitly between individual data points, and varied 
substantially depending on the task (improvement ranged from 25% to 95%). Considering the ubiquity of bar charts and dot plots, relation 
perception for individual data values is highly inefficient, and confirms the need for alternative designs that provide not only absolute values, but 
also direct encoding of critical relationships between those values. 
Index Terms—Information visualization, marks, perception, attention, visual comparison, visual search, aggregation 

INTRODUCTION 
In their seminal work investigating graphical perception across 

various data encodings, Cleveland & McGill [3] stated that "the power 
of a graph is its ability to enable one to take in the quantitative 
information, organize it, and see patterns and structure not readily 
revealed by other means of studying the data.” Data visualization 
design must consider not only which encodings provide an accurate 
percept of individual values, but also which encodings allow the 
human visual system to efficiently perceive and explore the relations 
and patterns among those values. Consider a bar graph depicting 
student test scores before and after an intervention program (Figure 
2A). The absolute values of the test scores are not the critical 

information – it is the increase or decrease (i.e., relations) in scores 
that supports the efficacy of the program. Figure 2B illustrates the 
helpful design technique of explicitly encoding differences (deltas) 
between those data values. Here we quantify this advantage to 
understand how much value this approach provides, and assess that 
advantage across 3 different comparison tasks to understand when it 
is most advantageous. 

1 BACKGROUND AND RELATED WORK 
There is surprisingly little empirical work exploring the most efficient 
way to visually forage through relations (among data values). Existing 
work tends to focus on how precisely a provided pair of data values 
can be compared. Cleveland & McGill [3,4] evaluated the precision 
of comparisons (e.g., What is the ratio of value X1 as a percentage of 
value X2?) between two provided values, or two values highlighted 
among others, across several encoding types. Those experiments 
resulted in a ranking of encodings according to precision for that 
particular task, e.g., position and length encodings afford more 
precision for ratio extractions, compared to line slopes or figure areas. 
Mackinlay [18] hypothesized rankings of visual feature encodings for 
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relations across more diverse conditions (e.g., whether data are 
quantitative, ordinal, or nominal), though those rankings were not 
empirically evaluated. While past work focuses on tasks that measure 
precision between two provided values, we argue that it is at least 
equally important to test general perception of data patterns (i.e., how 
we perceive spatial relationships between objects in order to judge 
magnitude relations, such as increases and decreases between values), 
as well as use tasks that measure the efficiency with which an observer 
can forage through large sets of such comparisons, rather than only 
one comparison at a time [3]. 

Others have examined how different visual designs impact 
graphical perception while visually comparing data values [12, 13, 19, 
21]. For example, one study [21] examined how different bar chart 
designs (including stacked bar charts and simple bar charts) impact 
accuracy in comparing bar heights, including the negative effect of bar 
spacing. However, none of these studies address how visual designs 
impact foraging across large sets of data value comparisons. Such 
work would encourage the design and evaluation of alternative 
formats for efficient relation perception within data visualization. 

The data visualization design technique of directly encoding deltas 
(Figure 2B) is intended to improve the efficiency of viewing and 
understanding the relations between data values. According to 
Gleicher et al.’s [7] taxonomy for categorizing visual displays for 
visual comparison, this design technique is considered an explicit 
encoding. However, this design technique does not come without costs 
– it removes the context of the original individual data values, which 
can be important for a variety of visual decisions. While removing the 
context of the original data points is an advantage if one only cares 
about the differences, it is a disadvantage if one needs to connect 
deltas to the original values (e.g., ‘What is the average delta for only 
values past a certain threshold?’). Gleicher et al. additionally mention 
that insights tied to the individual data points, beyond the delta 
relationships, will not be visible and thus less likely to be discovered 
by the viewer. This design technique also takes up precious real estate, 
such as in data visualization dashboards – with each new data series 
added for potential comparison, there is a combinatorial explosion of 
the number of possible delta encodings among the possible pairings. 

If one is comparing data values to understand their relations, it 
seems expected that explicitly encoding these differences as deltas 
should improve relation perception. However, how much better is 
relation perception when using deltas versus individual data values? 
Is this improvement large enough given the costs of displaying only 
the deltas? For which tasks is this design technique most useful?  

A recent study [19] explored a similar idea, by showing participants 
displays that included grouped bar charts (several bar pairs), grouped 
bar charts with delta overlays encoded as dashes, and only deltas 
encoded as dashes. They found that the latter two chart types 
outperformed the grouped bar charts, for response time and accuracy, 
when participants identified which category has the largest absolute 
change, but were better than grouped bar charts (for response time 
only) when participants identified the absolute change for a particular 
category, suggesting the design technique’s benefit may vary by task. 
However, only 2 of the 6 visual comparison tasks required judging 
aspects of the differences between data value pairs, because the 
remaining 4 tasks required the participant to focus only one of the two 
data series (e.g., “Click on the month with the minimum value for 
2016”). We build on this work by testing delta value encodings across 
3 additional tasks, to further assess when this design technique is more 
useful. To preview our results, we find a wide range in improvement 
due to delta encodings (i.e., 25-95% better performance). 

Beyond using 3 new tasks, we also build on Srinivasan et al. [19] 
by exploring a different type of relational judgment. While Srinivasan 
et al. focused on the magnitude of individual deltas (i.e., What’s the 
largest difference? What’s the difference size for this data pair?), we 
add a task requiring judgment of relational direction across multiple 
data pairs (Exp. 1: Where is the only increase?; Exp. 2: Do more pairs 
increase or decrease?). This is an important task because identifying 
the relation direction is the first step to many tasks. For example, if 
one is trying to estimate the greatest increase magnitude difference, 
one must first identify which data pairs show an increase in value. We 
also extend Srinivasan et al.’s tasks by requiring the viewer to 
summarize across multiple deltas across multiple value pairs (Exp. 3: 
What’s the average delta?). Together, these are important patterns in 
datasets: an analyst might want to find a month with the biggest sales 
increase relative to last year (a task similar to that of Srinivasan et al. 
[19]), but also might want to identify which months dropped, whether 
there were months with a drop or increase, or what the average drop 
is across months, as our work tests. 

1.1 Visual Search 
One well-studied measure for processing efficiency is the visual 
search task, which operationalizes processing efficiency as the added 
time needed to find a target item among each additionally introduced 
distractor item (i.e., search rate) [11, 22, 24], assuming constant 
accuracy (which is typically required to be near ceiling). Finding 
targets that are unique in the typical data visualization encoding 
dimensions (e.g. red vs. blue color, long vs. short length), can produce 
search rates as efficient as 0 ms/item. But one of the robustly hardest 
visual search tasks is for relations. One study asked participants to 
search for a specific relation (e.g., dash above a plus) among 
distractors with the opposite relation (e.g., plus above a dash), and 
found that response times strongly increased with the number of 
relations within a display [17]. The size of this increase suggests that 
perceiving the relation between two items is a serial – or close to serial 
– process. Similarly, another study found that search for T’s among 
L’s (different spatial relationships of the same two line segments) 
yielded steep search rates [14]. In fact, across a number of visual 
search studies, search rates are far higher for spatial configurations of 
items than for simple items [23]. This serial processing may be due to 
the need to isolate each item within a relation individually with the 
attentional 'spotlight', in order to extract its location, independent of 
the other item [6]. Based on these results, one can imagine how poorly 
this process would scale to large data sets with complex patterns. 

Importantly, to our knowledge, all of these studies ask viewers to 
find relations between qualitative visual identities (object X and object 
Y), and no existing work has tested the efficiency of search for 

Fig. 2. (A-B) Two ways of encoding the same data set. How many 
students performed better on the second (red values) test? Is it easier 
to judge improvements when the data is encoded by bars depicting 
individual data points (2A) or differences (deltas) between data pairs 
(2B). (C) Encoding Types. Six encodings were used as the stimuli in 
Experiments 1, 2, and 3, though absolute values varied. Encodings on 
the left half graphically represents two data values (individual value 
encodings), while encodings on the right half represent the delta 
between those two values (delta value encodings). Each column shows 
values encoded by one of three visual feature encodings (position, 
length, or slope). Encodings on the bottom row (increasing relations) 
depict the opposite relation as that on the top row (decreasing 
relations). 



quantitative relations (a tall object left of a short object, among other 
objects that are mirror-reversals of that pattern). These two possible 
configurations differ in the shape of the envelope that surrounds them 
both (when you ‘squint’, small-large pairings create a triangle with a 
‘forward-slash’ diagonal line at the top; large-small pairings create the 
mirror-reversal of that shape). The visual system excels at using such 
global shape-perception heuristics to avoid relying on relations 
between segmented objects, which is a far more computationally 
intensive process [6, 15]. And a simpler version of this shape contrast 
– searching for a forward-slash among backslashes – produces 
perfectly efficient search [26].  

Given that visual search is highly efficient for simple visual feature 
encodings and inefficient for relations, it is likely that visual search 
for a specific data relation (e.g., Name a student whose test scores did 
not improve in Figure 2A) would be significantly more efficient when 
the differences among data value pairs are directly encoded with single 
visual feature encodings (Figure 2B) than when the same visual 
feature encoding is used to encode each individual data point (Figure 
2A). Yet there are also reasons to believe that it may not offer a strong 
advantage, and to our knowledge this advantage has never been 
formally empirically quantified.  

1.2 Ensemble Coding 
The task of detecting the presence of a single anomalous relation 
between value pairs is a relatively simplistic case study for evaluating 
processing efficiency for relations in real-world displays. More 
realistic tasks likely require the collection of information from broader 
sets of objects at once. Another well-studied measure for this type of 
processing efficiency is an ‘ensemble’ snapshot of the visual statistics, 
such as a mean of the locations, orientations, or luminances of a set of 
objects [9]. Such summary measures may subserve many common 
data visualization tasks, such as distributional information about 
encoded values, pattern and motif recognition, or segmentation of 
values according to their place in the distribution [20], positioning 
ensemble coding as a critical tool in understanding data. 

We might predict that any same processing bottleneck that we 
uncover in Experiment 1’s search task could also constrain our ability 
to extract such ‘ensemble’ statistics. Given that observers can extract 
the mean position of glyphs in a scatterplot [8], mean size of a set of 
circles [1], and the mean orientation of a set of angled line segments 
[5], Experiments 2 & 3 will quantify how strongly relation perception 
within similar ensemble tasks (e.g., Did students generally improve 
after the intervention in Figure 2A? What is the average 
improvement?) benefits when the differences among data value pairs 
are directly encoded with simple visual feature encodings (Figure 2B). 

1.3 The Current Study 
In summary, there is limited research investigating how we perceive 
relations across a large set of objects of the type typically used in a 
data visualization display, and no existing research investigating how 

we perceive relational direction in these displays, or aggregate over 
multiple deltas across many value pairs. The design technique of 
explicitly displaying deltas is a promising solution, but requires 
empirical testing to evaluate how strongly and when it is effective. The 
overall aim of this study is to investigate how we can best perceive 
relations from multiple data pairs (i.e., 2 data values – a ‘high’ value 
and a ‘low’ value). We evaluate whether data should be depicted as 
individual data values – leaving the visual system to extract relations 
between object pairs – or as single visual feature encodings 
representing deltas for efficient relation perception by examining the 
magnitude of improvement when using delta value encodings across 
multiple comparison tasks.  

We tested two formats for visually depicting simple magnitude 
relations (smaller/larger vs. larger/smaller) – either displaying 
individual data points or directly encoding the difference (delta) 
between pairs of data points – with three basic visual feature 
encodings (position, length, and slope). Participants searched for a 
particular relation in a display (e.g., Find a ‘tall bar to the right of a 
short bar’ among ‘short bar to the right of a tall bar’ pairs) in 
Experiment 1, discriminated proportions of relations (e.g., Which 
relation type was more prevalent, short bar to the left of a tall bar, or 
vice-versa?) in Experiment 2, and determined the average delta among 
relations within a display (e.g., What is the average bar-height 
difference across bar pairs?) in Experiment 3. 

These three tasks provide a cross section of common visual 
comparisons – we include 2 tasks where only relation direction is 
relevant (Exp. 1 and Exp. 2), rather than absolute values (Exp. 3), and 
one task where the goal is to single out one particular data pair (Exp. 
1) rather than summarize the entire set (Exp. 2 and Exp. 3). All three 
experiments revealed a powerful improvement in relational 
processing efficiency for direct encodings of the difference between 
data pairs. This delta advantage is most pronounced in our task 
involving locating a single particular relation (Exp. 1), and less 
pronounced in our tasks that involve ensemble coding (Exp. 2 and 3). 

 
Contributions: This study contributes design guidelines built on 

empirical findings, new tasks that simulate realistic data visualization 
comparison tasks, and perceptual-psychology-inspired experimental 
methods to quantify performance differences. While, in all cases, we 
expect direct encoding of deltas to perform better compared to 
relational processing of absolute values, when we ask ‘How do we 
know that?’ (what empirical data actually underlie that gut response? 
[16]), the existing literature relies on importantly different stimuli and 
tasks.  

Findings: Our results demonstrate that in most cases, it is 
staggeringly inefficient to perceive relations among data value pairs, 
but highly dependent on the viewer’s task: the delta encoding 
advantage ranged widely from 25% (as in Exp. 3) to 95% (as in Exp. 
1). We were also surprised to see that orientation encodings showed 
only moderate advantages (20-50% improvement) for direct delta 
encodings, due perhaps to surprisingly poor performance overall.  

Tasks: This study demonstrates 3 distinct visual comparison tasks. 
These tasks expand upon the ratio comparison task typically used [3, 
4], and the two ensemble coding tasks (Exp. 2 and 3) provide an 
approach for assessing how viewers perceive large sets of data points. 

Methods: We provide perceptual psychology methods 
(psychophysics) that will allow researchers to assess the quantitative 
effect of a visual design and measure the advantage. Critically, this 
approach enables researchers to compare data visualization design 
techniques across different tasks and dependent measures. For 
example, the delta value encoding advantage in this study clearly 
depends on the viewer’s task, which highlights a need for assessing a 
new chart type or visual feature encoding across a variety of visual 
tasks. 

2 ENCODING TYPES 
Experiments 1 and 2 tested visual processing efficiency of relations 
across 6 encodings (see Figure 2C), while Experiment 3 used only 4 

Table 1. Stimuli Relation Values. The 6 encodings depicted values from 
sets A-C in Experiments 1 and 2. Encodings representing individual data 
values depicted one low value and one high value within a value set, 
while encodings representing deltas depicted the difference between 
low and high values. Position and length encodings (left half) were 
scaled to fit the display monitor prior to being converted to pixels. While 
these absolute values are arbitrary given that the stimuli did not include 
axes, they are provided here for reproducibility. 



encodings (position and length encodings). All experiments used the 
encodings to depict a ‘high’ value and a ‘low’ value of a data pair, 
though absolute values varied.  

Individual Value Encodings: The position (i.e., distance) from 
baseline (individual dashes), the bar length (i.e., height) (individual 
bars), and slope (i.e., orientation in degrees, tilting upward from a 
horizontal angle (0 degrees)) (individual slopes) represent each value 
in the data pair. With the individual slopes encoding, all data values 
are scaled to be less than 90 so that lines are always positively sloped 
between 0 and 90 degrees.  

Delta Value Encodings: The position (i.e., distance) from baseline 
(delta dash), the bar length (i.e., height) (delta bar), and slope (i.e., 
orientation in degrees) (delta slope) represent the difference value of 
the data pair. The delta dash and delta bar are above or below the 
baseline when representing an increasing relation (positive delta) or 
decreasing relation (negative delta), respectively. The delta slope tilts 
upward or downward from a horizontal angle (0 degrees) when 
representing an increasing relation (positive delta) or decreasing 
relation (negative delta), respectively. All data values (prior to 
calculating delta value) are scaled to be less than 90 for the delta slope 
encoding so that lines are always positively sloped when representing 
positive delta values and negatively sloped when representing 
negative delta values. 

All stimuli were intended to simulate typical graph types: dot plots 
(horizontal dashes), bar charts, and slope graphs, respectively. Some 
of these encodings differ slightly from real world use cases (e.g., Does 
the individual slopes encoding truly simulate a slope graph when the 
lines are arranged horizontally rather than superimposed?), but this 
difference was intentional, in order to explore a more controlled space 
of visual feature encodings. For example, comparing the efficiency of 
individual slopes to individual bars reveals how the visual system 
extracts relational information from the visual feature encodings of 
slope versus length. Likewise, comparing the efficiency of individual 
dashes to individual bars allows exploration of the importance of the 
‘tops’ of the bar values, compared to the area represented underneath.  

Note that we refer to individual bars and delta bars encodings as 
visual representations in which values are encoded by length (height 
of the bars) for simplicity, but that length, position (distance from 
baseline to opposite end of the bar), and area (the filled region of the 
rectangle) all redundantly encode each value.  

3 GENERAL METHODS FOR EXPERIMENTS 1-3 
Thirty-nine university students participated in this study (13 
participants per experiment, a typical sample size in perceptual 

psychology studies) in exchange for course credit or payment. All 
experiments lasted a total of 30-45 minutes, including the informed 
consent process, understanding experiment instructions, doing 
practice trials, and post-experiment debriefing. 

Conducting this study in a lab environment allows a study facilitator 
to monitor participant attentiveness during the testing session to 
ensure high data quality (e.g., that participants are not multitasking 
while completing an experiment that measures split-second response 
times). Our set of experiments is a long duration within-subject design 
requiring participants to remain attentive for the full duration of the 
testing session, making speeded judgments in Experiment 1, and 
viewing rapidly-disappearing single-glance displays in Experiments 2 
and 3. 

Experiment 1-3’s trials followed the same general procedure, 
summarized in Figure 3 (see Supplemental Material for more details). 
Because the stimuli in all three experiments do not display axes or data 
group labels, participants must rely on the shapes of the data 
encodings alone to provide their responses. That is, in Experiment 1 
participants indicate which rectangle contains the opposite relation 
instead of the data group label associated with that pair of data points, 
in Experiment 2 participants indicate which relation (increasing or 
decreasing) they see more of instead of whether one data group is 
overall doing better or worse than the other data group, and in 
Experiment 3 participants adjust the height of a rectangle or dash to 
indicate the average delta value rather than stating this value 
numerically. Providing axes and data group labels could introduce a 
new source of error (e.g., participants not locating a data group label 
quickly enough, mixing up the two data group labels, or the degree to 
which one can translate visual shapes to numeric values), which would 
obfuscate the effects of our experimental manipulations alone. The 
goal of this study is to understand how our perception of data values 
is impacted by different encoding types, which is the first step before 
finding the corresponding numeric value or data group label. 

4 EXPERIMENT 1: VISUAL SEARCH FOR RELATIONS 
The goal of this experiment was to evaluate to what degree using 
simple visual feature encodings representing deltas (as opposed to 
encodings representing individual data values) can lead to efficient 
visual processing of the relations between the data values when an 
observer searches for a single known relation. A realistic example of 
this is identifying which states experienced an increase in healthcare 
enrollment. 

We measured visual processing efficiency from the increase in 
response times as the number of pairs increased in the display for each 

Fig. 3. Experiments 1, 2, and 3’s designs. Stimuli shown here are not drawn to scale. Participants viewed a preview screen containing a target 
relation(s) to search for (Experiment 1) or judge (Experiments 2 and 3), followed by a blank screen, and then a test display. The test display 
remained until participants indicated which rectangle contained the target relation in Experiment 1, followed by an incorrect screen if they 
responded incorrectly. In Experiments 2 and 3, the test display was presented briefly, followed by a mask screen to prevent an after-image. In the 
final response screen, participants indicated which relation was more prevalent (Experiment 2) or moved the mouse to show the perceived 
average delta (Experiment 3). All trials concluded with a blank screen. Relations were located randomly, but always aligned to a bottom baseline. 



encoding. Response times that are slower with larger set sizes indicate 
more serial processing, and this metric can reflect relative processing 
efficiency across the six tested encodings. 

4.1 Methods and Procedure 
Stimuli 

The stimuli in this experiment were 4 sets of data pairs (see Sets A, 
B, C, and Preview in Table 1; each data pair contains one low value 
and one high value). Data pair values were depicted by each of the 6 
encodings (see Encoding Types) by either converting values to pixels 
(position and length values; left half of Table 1) or degrees (slope 
values; right half of Table 1) to create image files (see Supplemental 
Material for more details). 

Half of the encoding types depicted individual data points (i.e., 
displayed both the low and high value within each data pair; left half 
in Figure 2C), while the other half depicted delta values (i.e., the 
difference between each data pair’s values; right half in Figure 2C). 
Three of these data pair sets (Set A, Set B, and Set C) were used in the 
test displays, while the fourth set (Preview) was only used in the 
preview displays. There were 2 possible relations for each data pair 
(bottom row in Figure 2C depicts the increasing relation, while the top 
row depicts the decreasing relation), yielding a total of 48 unique 
stimuli. All image files were then scaled down by a factor of 0.62 to 
fit within the display, with each encoding spanning 1.05-2.39 visual 
degrees wide and 0.27-4.24 visual degrees tall.  

There were two primary screen types: 
Preview Screens: These screens featured the target relation for the 

given trial. 
Test Screens: In the test displays, data pairs were arranged within 

two side-by-side black rectangle outlines arranged horizontally across 
a white screen (Figure 3). The rectangles contained 1, 2, 4, or 5 data 
pairs each (always the same number of data pairs per rectangle for any 
given trial), for a total set size of 2, 4, 8 or 10 data pairs. Each display 
contained one data pair of a target relation (e.g., small bar to the left 
of a tall bar), and the remaining (distractor) data pairs were of the 
opposite relation (e.g., tall bar to the left of a small bar). The target 
relation (assigned to a specific rectangle for each trial) and distractor 
relations locations were randomized within each rectangle along 5 
evenly-spaced possible positions within each rectangle. Each data 
pair’s absolute values were randomly selected from the three possible 
sets (Sets A, B, and C in Table 1).  
Procedure 

Task: Participants were asked to quickly indicate which rectangle 
contained the target relation. 

Trial Procedure: The general procedure is described in Section 3 
above. The test display remained on the screen until the participant 
quickly pressed the left or right rectangle key (the ‘b’ or ‘n’ key, 
respectively, each covered with a sticker showing a small rectangle to 
represent the corresponding screen rectangle – e.g., the left rectangle 
(‘b’) key represented the left rectangle on the screen) to indicate their 
response.  

Design: Factors in the full factorial design included: 2 data 
depictions (individual value encodings, delta value encodings) x 3 
visual feature encodings (position, length, slope) x 4 set sizes (2, 4, 

8 or 10 data pairs in the search display) x 2 target relations 
(increasing (Figure 2C, bottom row), decreasing (Figure 2C, top row)) 
x 2 target locations (the target relation appears in the left or right 
rectangle) x 4 repetitions – yielding a total of 384 test trials. While 
participants were provided with feedback via an Incorrect Screen 
when responding incorrect, they were given only one attempt per trial. 

 Trial Order: Participants first completed 10 practice trials. Trials 
were randomly ordered within each of 4 test blocks, one block for each 
repetition.  

4.2 Results and Discussion 
Median response times to correct trials were calculated after grouping 
response times across trial repetitions. We ran a factorial, repeated 
measures ANOVA on the factors data depiction, visual feature 
encoding, set size, target relation, and target location on median 
response times. Degrees of freedom were Greenhouse-Geisser 
corrected for sphericity violations. Significant effects were followed 
up by two-tailed paired t-tests. Participants maintained a high number 
of trials (88% or greater) after incorrect and slow trial removal. 

Search rates were also calculated to quantify visual processing 
efficiency, which indicates how much time is spent during visual 
search with each addition of another data pair. Highly efficient visual 
processing should not be affected too much by an increase in set size. 
Therefore, the greater the search rate, the worse the impact of 
increasing the set size, and the worse the visual processing efficiency. 
The search rate calculation allows for predictions of how performance 
differences should scale for data displays containing fewer or more 
relations. The median response times to the smallest set size (2) were 
subtracted from median response times to the largest set size (10), and 
divided by the difference in set sizes (8) to obtain search rates. 
Because search rates are much more indicative of visual processing 
efficiency, we ran a factorial, repeated measures ANOVA on the 
factors data depiction, visual feature encoding, target relation, and 
target location on search rates. Table 2 and Figure 4 (left) shows 
search rate results for Experiment 1. 

Only the results for our primary experimental factors are listed here 
(see Supplemental Material for other analyses, including analyses on 
response times, and an analysis confirming no speed/accuracy trade-
off). 

Data Depiction: If the visual depiction of representing individual 
data values or their deltas impacts visual processing efficiency, then 
search rates for each encoding should be different depending on the 
data depiction. Indeed, search rates were impacted by data depiction, 
F(1,12) = 72.98, p < 0.001, ηp2 = 0.86. That is, search rates were 
significantly slower for individual value encoding trials than for 
delta value encoding trials. This means that response times get slower 
with the addition of each data pair when encoded by individual values 
in a data display, and at a much slower rate than when encoded by 
delta values.  

Visual Feature Encoding: The particular visual feature encoding 
for the data pairs, regardless of depiction type (i.e., encoding 
individual values or delta values) impacted search rates, F(1.20,14.36) 
= 23.78, p < 0.001, ηp2 = 0.66. Search rates were significantly 
slower for slope encodings than both length encodings and position 

Table 2. Search Rates for Experiment 1. Descriptive statistics, ANOVA 
results, and follow-up t-test results shown for significant (p < 0.05) 
comparisons. Search rates represent visual processing efficiency, in 
that they summarize how response times improve or degrade with an 
increase in set size; the greater the search rate, the worse the impact 
of increasing the set size, and therefore the worse the visual 
processing efficiency. 

Fig. 4. Summary of Expriments 1-3 Results. Delta value encodings 
lead to faster search rates (left) when searching for an opposing 
relation, higher accuracies (center) for distinguishing which relation 
there is more of, and lower error (right) when perceiving the average 
delta value in the ensemble task. Error bars indicate within-subject 
standard error of the mean. 



encodings. Search rates for length trials and position trials were not 
statistically different. This result is mostly consistent with the visual 
feature encoding ranking proposed by [3], which outlines that the 
visual precision for comparing two values is better when those values 
are encoded by position (dots in a dot plot) and by length (unaligned 
subsets within a stacked bar graph), than when encoded by slope 
(angled line segments in a line chart). However, this work also shows 
that values encoded by position is better than values encoded by 
length, which we failed to find here.  

These results indicate that while response times are overall 
moderately worse for length trials than position trials, performance 
degrades similarly with the addition of data value pairs. On the other 
hand, performance is the worst for slope encodings. 

Set Size: As expected, response times were slower as set size 
increased, F(3,33) = 82.80, p < 0.001, ηp2 = 0.88.  

In sum, the data encoding greatly impacted the visual processing 
efficiency of relations between data values: relations between data 
pairs are much more efficient to visually extract when directly 
represented as deltas rather than individual data points. Consistent 
with prior work [3], the particular visual feature encodings of the 
values impact relation processing as well. What is most striking about 
the present results is that plotting individual data values is 
staggeringly inefficient – two to sixteen times worse than delta 
value encodings (each additional data pair adds 164-266 ms when 
represented as individual values, but only 8-135 ms when represented 
as delta values, resulting in a massive 49-95% improvement) – 
despite that these are perhaps the most ubiquitous encodings for data 
values. 

5 EXPERIMENT 2: ENSEMBLE CODING OF PROPORTIONS 
Experiment 1 revealed that the choice of data depiction led to 

enormous differences in processing efficiency for relations between 
values for the visual search of a known target – participants were 
significantly faster to search for a particular relation when its delta was 
encoded rather than its individual values. Experiment 2 explored 
whether this result generalizes to other tasks that require a viewer to 
compute visual relational information across a broader set of value 
pairs. The goal of this experiment was to emulate situations where an 
observer judges the proportions of relations. A realistic example of 
this is judging which gender is earning a higher salary the most often 
across a range of job titles.  

We manipulated difficulty by adjusting the ratio of relations – it 
should be easier to perceive proportions of relations the more lopsided 
the ratio (i.e., 1:9), while it should be more difficult the more even the 
ratio (i.e., 4:6). If visual processing is more efficient when relations 
are represented by delta value encodings than by individual data value 
encodings, then performance on trials with individual data value 
encodings will drop as ratio difficulty increases (e.g., accuracy is 
worse with a display containing a 4:6 relations ratio than a 1:9 
relations ratio), or at least more so than with delta value encodings. It 
is also possible that accuracy for individual data value encodings may 
instead (or additionally) be overall worse than accuracy for delta value 
encodings. 

5.1 Materials and Procedure 
Stimuli 

The stimuli in this experiment used the same 6 encodings (see 
Encoding Types) depicting the same data pair values as Experiment 1. 
As before, data pair values were either converted to pixels (length and 
position values; left half of Table 1) or degrees (orientation values; 
right half of Table 1) to create image files. All image files were then 
scaled down by a factor of 0.5 to fit within display; this resulted in 
length/position values that were the exact same numerically as the 
orientation values, though they were the same relative values as in 
Experiment 1. 

There were 3 primary screen types: 
Preview Screens: These screens featured the two possible relations 

for the given trial, one above and one below the screen’s center, 
showing the type of relation participants were to judge in the test 
display.  

Test Screens: Each test display always contained 10 data pairs, 
comprised of both possible relations (e.g., 3 positively sloped lines 
and 7 negatively sloped lines) of a single encoding (see Figure 3). The 
specific amount of each relation was one of three possible difficulty 
ratios (1:9 (easiest ratio), 3:7 (medium difficulty), or 4:6 (most 
difficult ratio). All data pairs were randomized across 10 evenly-
spaced positions, all aligned vertically to a bottom baseline at the 
center of a white screen. 

Response Screens: These screens were identical to preview screens, 
except “OR” was written in the center of the screen between the two 
possible answers. 
Procedure 

Task: Participants were asked to quickly indicate which of two 
relation types was more prevalent in the test display. 

Trial Procedure: The general procedure is described in Section 3 
above. The response screen remained until the participant responded 
with the answer by pressing the ‘T’ for the top relation, ‘G’ for the 
bottom relation (keyboard keys were covered with stickers showing a 
“/\” and “\/”, respectively).  

Design: Factors in the full factorial design included: 2 data 
depictions (individual value encodings, delta value encodings) x 3 
visual feature encodings (position, length, slope) x 3 difficulty ratio 
(1:9, 3:7, 4:6) x 2 target relations (relation composing the majority 
of the test display’s relations (i.e., the correct answer): increasing, 
decreasing) x 8 repetitions  – yielding a total of 288 test trials. 

Trial Order: Participants first completed 10 practice trials. Trials 
were randomly ordered within each of 8 test blocks, one block for each 
repetition.  

5.2 Results and Discussion 
Accuracies (percent correct) were calculated after grouping 

correct/incorrect responses across trial repetitions. We ran a factorial, 
repeated measures ANOVA on the factors data depiction, visual 
feature encoding, difficulty ratio, and target relation on the accuracies. 
Significant effects were followed up by two-tailed paired t-tests. 
Figure 4 (center) and Table 3 show accuracy results for Experiment 2. 
Only the results for our primary experimental factors are listed here 
(see Supplemental Material for other analyses). 

Table 3. Accuracies for Experiment 2. Descriptive statistics, ANOVA 
results, and follow-up t-test results shown for significant (p < 0.05) 
comparisons for accuracies, except where otherwse noted (i.e., data 
depiction differences). Data depiction differences were calculated to 
further expolore how accurcies for each visual feature encoding and 
each target relation interacted with the two data depictions. The larger 
the data depiction difference, the greater the advantage offered by 
delta value encodings. 



Data Depiction: If the visual depiction of representing individual 
data values or their deltas impacts visual processing efficiency, then 
participants’ accuracies should be higher or lower depending on the 
type of data depiction. Indeed, accuracies were impacted by data 
depiction, F(1,12) = 116.82, p < 0.001, ηp2 = 0.91, such that 
accuracies for delta value encoding trials were significantly higher 
than those for individual value encoding trials. 

Visual Feature Encoding: The particular visual feature encoding 
of the data value pairs impacted accuracies, F(2,24) = 28.09, p < 
0.001, ηp2 = 0.70. Accuracies were significantly lower for slope 
encodings (i.e., individual slopes and delta slope encodings 
combined) than both length encodings (i.e., individual bars and delta 
bar encodings combined) and position encodings (i.e., individual 
dashes and delta dash encodings combined). Participants’ accuracies 
for length and position trials were not statistically different. 
Considering the latter result was approaching significance, these 
results are roughly consistent with the visual feature encoding ranking 
proposed by Cleveland & McGill [3], as in Experiment 1. 

Accuracies for each visual feature encoding also interacted with 
data depiction, F(2,24) = 17.38, p < 0.001, ηp2 = 0.59. To investigate 
this effect, data depiction differences (delta value encoding accuracy 
- individual value encoding accuracy) were calculated for each visual 
feature encoding for each participant. The larger the data depiction 
difference, the greater the advantage offered by delta value encodings. 
The data depiction differences for position trials were significantly 
larger than for both length trials and slope trials, suggesting that 
the greatest delta value encoding advantage can be found when 
using position encodings. Data depiction differences for length trials 
were marginally significantly larger than for slope trials. This pattern 
of results is also consistent with the Cleveland & McGill [3] visual 
feature encoding ranking. The worse the visual feature encoding, the 
lower the accuracies are to chance performance (50% accuracy), and 
the less possible difference there can be between trials of both data 
depictions for that visual feature encoding. 

In sum, the data encoding greatly impacted the visual processing 
efficiency of relations between data values in the same manner as in 
Experiment 1: relations between data pairs are much more 
efficient to visually extract when directly represented as deltas 
rather than individual data points. Plotting individual data values is 
again incredibly inefficient – accuracy improves by 30% when data 
values are plotted as delta values instead. This, however, is a very 
conservative calculation, given that purely guessing yields an 
accuracy of 50% (our results indicate a delta advantage of 143% if 
examining accuracy beyond 50%). The effectiveness of the particular 
visual feature encodings of the values impact processing as well, and 
in such a way that is mostly consistent with prior work [3]. 

Participants’ low performance on slope trials in both Experiments 
1 and 2 was surprising – while slope is a lower-ranked visual feature 
encoding [3], it is still a basic visual feature encoding that tends to be 
easy to parse in visual search (though this depends on the particular 
slope angles in the display, [25]) and ensemble coding [5] tasks. We 
believe this discrepancy stems from the difference in display 
arrangements, given that encodings are arranged in a row in our tasks, 
instead of scattered across the screen as in other studies. Randomly-
arranged slopes tend to form an overall texture that can be efficiently 
segmented [10]. Slopes arranged in a row across the screen tend to be 
grouped as /\ and \/ shapes, which could make it harder to view the 
encodings as individual slopes to accomplish the tasks. 

6 EXPERIMENT 3: ENSEMBLE CODING OF MAGNITUDES 
Experiment 2 revealed that participants were significantly more 

accurate when discriminating proportions of value pairs when they 
were encoded as deltas rather than as individual values. While 
participants attended to the relation direction, they ignored the degree 
to which values differed within a value pair. Experiment 3 explored 
whether this result extends to cases when one is assessing the 
magnitude of difference between two values, across a set of data pairs. 
The goal of this experiment was to emulate situations where an 

observer computes the average difference between two values across 
multiples instances. A realistic example of this is judging the average 
difference in employment across multiple population segments before 
and after an important policy change. 

We measured error while participants indicated the average data 
value difference (delta) across 6 data pairs. Deltas needed to be 
extracted from individual value encodings prior to averaging, but were 
simply averaged if delta value encodings were presented. If visual 
processing is more efficient when relations are represented by delta 
value encodings than by individual value encodings, then error should 
be lower on trials with delta value encodings than with individual 
value encodings. 

Participants responded with the average delta (e.g., What’s the 
average difference?) instead of average relation ratio (e.g., Here is the 
average low value – please draw the average high value relative to this 
average low value) because the latter would only apply to individual 
value encodings. That is, if participants were to respond with the 
average relation ratio among 6 individual value encodings, 
participants could be shown one value (e.g., a bar representing a high 
value) and be asked to indicate the appropriate other value (e.g., a bar 
representing a low value) such that both values are proportional to the 
average low and average high value of the set. There is no equivalent 
scenario for delta value encoding trials because participants are 
providing only one value. 

6.1 Materials and Procedure 
Stimuli 

We suspected this task would require more effort and be more time 
consuming than Experiments 1 and 2 since there is a much wider range 
of responses, so we decided to use only the two best performing visual 
feature encodings (length and position; see Encoding Types). These 
two visual feature encodings are also much more commonly used than 
slope in visualization. 

Randomly selecting a set of values from Table 1 on each trial would 
have resulted in the same correct response for each trial, on average 
across trials. Therefore, unlike Experiments 1 and 2, data pair values 
were generated for each experiment to provide a range of responses 
across trials. As before, data pair values were converted to pixels. 
Encodings were all drawn (via Matlab) on the screen rather than 
presented as image files (as in Experiments 1 and 2), since image 
values were created at the start of each participant’s testing session 
using our stimulus value algorithm (see Supplemental Material). 

The dashes (in position trials) and bars (in length trials) were always 
each 0.63 visual degrees wide, while the thicknesses of the dashes 
were always 0.13 visual degrees. Individual value encoding trials 
contained 0.47 visual degrees of empty space between the bar/dash 
pairs which represented each data pair. The data pair shown in the 
preview displays for individual value encoding trials represented the 
lowest possible value (19; 0.50 visual degrees) and 38 (1.01 visual 
degrees) as the higher value, while delta value encoding trial depicted 
a delta of 19, so that both types of preview displays depicted the exact 
same delta (19). 

A set of 6 data pairs were generated for each ensemble trial 
according to an algorithm described in the Supplemental Material. 
This process was repeated for each visual feature encoding (length, 
position), each relation (increasing, decreasing), each of 3 delta 
distributions (from which each trial’s deltas were selected), and 
repeated 4 times for a sufficient amount of trials. The same values 
were used for both individual value encoding trials and delta value 
encodings trials so that performance could be correlated. The same 
algorithm was used to create control trials, except only one data pair 
was created for each trial. This process was repeated for each visual 
feature encoding (length, position), each relation (increasing, 
decreasing), each of 3 delta distributions, and repeated 2 times for a 
sufficient amount of trials. The same values were used for both 
individual value encoding trials and delta value encodings trials so 
that performance could be correlated.  

There were 3 primary screen types: 



Preview Screens: These displays featured the general type of data 
pair for the given trial (i.e., the particular combination of data 
depiction, visual feature encoding, and relation – regardless of 
whether it is an ensemble or control trial; e.g., a single bar above the 
baseline during a length delta value encoding trial featuring increasing 
relations) that the participant was to judge in the subsequent test 
display. Each data pair present in the preview (as well as the test) 
displays depicted each data value during individual value encoding 
trials, but only their deltas during delta value encoding trials. 

Test Screens: During ensemble trials, each test display always 
contained 6 data pairs comprised of the same relation within each trial 
(e.g., 6 pairs of a small bar to the left of a taller bar) of a single 
encoding (see Figure 3). All data pairs were centered across 6 evenly-
spaced positions (4.20 visual degrees apart), all aligned vertically to a 
bottom baseline at the center of a white screen. During control trials, 
each test display contained 1 data pair located in the 2nd data pair 
position from the left (i.e., 6.29 visual degrees left of the screen’s 
center). The data value pair always appeared in this position during 
control trials so that its location was consistent, because the ensemble 
trials containing 6 data value pairs at always the same 6 locations. 

Response Screens: These displays featured a single bar (during 
length trials) or single dash (during position trials) arranged above or 
below the baseline depending on whether it was an increasing or 
decreasing relation trial, respectively. The data value represented by 
the bar or dash in these screens (i.e., the height of the bar, and the 
distance between the baseline and the top of the dash) was randomly 
selected from the range of possible delta values (19 to 126) so that any 
bias from the bar/dash’s starting position would average out across 
trials. The height of the bar (the top of the bar if it was above the 
baseline (increasing relation trials) or the bottom of the bar if it was 
below the baseline (decreasing relation trials)) or position of the dash 
adjusted as the participant moved the computer mouse up or down, but 
was restricted to the range of possible delta values. 
Procedure 

Task: Participants were asked to determine the average delta across 
the 6 data pairs (i.e., the average difference between low and high 
values during individual value encoding trials, and simply the average 
value during delta value encoding trials) during ensemble trials, and 
to replicate the delta of the single data pair (i.e., replicate the 
difference between the low and high value during individual value 
encoding trials, and replicate the value displayed during delta value 
encoding trials) during control trials, depending on whether the test 
display contained 6 data pairs or only 1. Participants otherwise did not 
know prior to the test display whether they were about to view an 
ensemble or control trial since those trials’ preview screens were 
identical for any given combination of data depiction, visual feature 
encoding, and relation. 

Trial Procedure: The general procedure is described in Section 3 
above. The response screen remained until the participant responded 
with the answer by moving the mouse up and down to adjust the 
bar/dash height, and then left-clicked to submit their response.  

Design: Factors in the full factorial design included: 2 tasks 
(ensemble, control) x 2 data depictions (individual value encoding, 
delta value encoding) x 2 visual feature encodings (length, position) 
x 2 display relations (increasing, decreasing) x 3 delta distributions 
(distributions from which each trial’s deltas were selected; means: 

45.75, 72.50, 99.25) x 4 or 2 repetitions (ensemble trials and control 
trials had 4 and 2 repetitions, respectively)  – yielding a total of 144 
test trials (96 ensemble trials and 48 control trials). 

Trial Order: Participants first completed 16 ‘slow’ practice trials 
during which the test display remained on screen for twice as long 
(1000 ms) because this task is challenging and we suspected 
participants would need some extra time to fully understand the task. 
This was followed by 16 practice trials during which the test display 
remained on screen for the experiment trial duration (500 ms). Each 
block of practice trials contained trials for every combination of task, 
data depiction, and visual feature encoding; delta difference 
distribution was randomly selected for each practice trials. Trials were 
randomly ordered within each block (slow practice, practice, test 
trials). 

6.2 Results and Discussion 
Mean absolute errors (pixels between participant’s response and the 
true mean delta) were calculated after grouping absolute errors across 
trial repetitions. We ran a factorial, repeated measures ANOVA on the 
factors task, data depiction, visual feature encoding, display relation, 
and delta distribution on the mean absolute errors. Significant effects 
were followed up by two-tailed paired t-tests. Figure 4 (right) and 
Table 4 show error results for Experiment 3. Only the results for our 
primary experimental factors are listed here (see Supplemental 
Material for other analyses). 

Task: A control task (i.e., replicate the delta from the single value 
pair displayed) was included to assess any error that may stem from 
simply replicating a delta with this experiment’s response procedure. 
We expected error to be greater from ensemble trials than control trials 
because ensemble trials require the additional step of extracting the 
mean delta from all 6 value pairs (i.e., the process of ensemble 
coding). Indeed, task impacted errors, F(1,12) = 64.59, p < 0.001, ηp2 
= 0.84, such that errors from ensemble trials were greater than 
those from control trials.  

Identical deltas were displayed between individual value encoding 
and delta value encoding trials for each type of visual feature 
encoding. Participants’ errors to individual value encodings and delta 
value encodings (for each visual feature encoding) may correlate to 
reveal whether there is a common mechanism between the two types 
of visual processes: a high correlation resulting from performance 
fluctuating as one replicates (control trials) and averages (ensemble 
trials) delta(s) within the test display suggests a common underlying 
process to perceiving deltas from pairs of values and perceiving 
directly drawn single deltas, while a low correlation suggests error 
unique to each data depiction type. Errors were correlated between 
individual value encoding and delta value encoding trials for each 
visual feature encoding within each task and averaged across all 
participants. Correlation values were overall quite low, though a little 
higher for control trials (length trials: M = 0.32, SE = 0.36; position 
trials: M = 0.20, SE = 0.34) than ensemble trials (length trials: M = 
0.18, SE = 0.30; position trials: M = 0.08, SE = 0.26), suggesting either 
little commonality between the underlying mechanisms, or significant 
additional error resulting from the additional step of extracting a delta 
from a value pair prior to replicating (control trials) or averaging 
(ensemble trials) the delta(s).  

Data Depiction: Critically, if the visual depiction of representing 
individual data values or their deltas impacts visual processing 
efficiency, then participants’ errors should be higher or lower 
depending on the type of data depiction. Indeed, errors were impacted 
by data depiction, F(1,12) = 46.73, p < 0.001, ηp2 = 0.80, such that 
errors for delta value encoding trials were significantly lower than 
those for individual value encoding trials. 

Task x Data Depiction: Surprisingly, the pattern of errors for each 
data depiction (lower errors for delta value encodings than for 
individual value encodings) did not vary by task – there was no 
interaction between task and data depiction, F(1,12) = 0.73, p = 0.41, 
ηp2 = 0.057. 

Visual Feature Encoding: The particular visual feature encoding 
of the data value pairs impacted errors, F(1,12) = 7.75, p = 0.017, ηp2 

Table 4. Errors for Experiment 3. Descriptive statistics, ANOVA 
results, and follow-up t-test results shown for significant (p < 0.05) 
comparisons for absolute errors (pixels between participant's response 
and the true mean delta). 



= 0.39. Errors were significantly lower for length encodings than 
for position encodings. While this result runs contrary to Experiment 
1 and Experiment 2’s visual feature encoding ranking, the encodings’ 
means differ only minimally. 

Error Direction: Participants tended to systematically 
underestimate their responses in more than half the conditions, notably 
in almost all length conditions and in almost all delta value encoding 
conditions (see Supplemental Material for analyses). 

In sum, the data encoding significantly impacted the precision of 
the visual processing of relations between data values in the same 
manner as in Experiments 1 and 2: relations between data pairs are 
visually extracted and averaged much more precisely when 
directly represented as deltas rather than individual data points. 
Plotting individual data values is inefficient again – error decreases 
by 25% when data values are plotted as delta values instead 
during ensemble trials. However, directly-represented deltas tended 
to bias responses to underestimate, rather than under- and over-
estimate. 

Given that this experiment’s task was particularly complex, we 
were surprised by the degree to which delta value encodings improved 
accuracy, and were expecting a massive result similar to Experiment 
1. We suspect this is likely due to a perceptual heuristic which 
participants employed, and the fact that all test screens always 
contained value pairs with the same relation direction (i.e., all 
increasing relations). Since participants did not need to selectively 
‘filter’ for a particular relation, it is possible that (in the individual 
value encoding trials) they averaged only the ‘thin’, top portion of 
each bar pair in the length trials, or averaged only the distance between 
the higher dash and its neighbouring lower dash. Neither of these 
approaches would work alone if the task was to estimate the average 
delta for only one of two types of relations in a display. Indeed, a more 
likely scenario would include value pairs of the opposite relation 
which need to be filtered out. Can we accurately filter out irrelevant 
relations to average the specific relations of interest? Given that 
opposing relations are significantly harder to distinguish when 
encoded by individual value encodings rather than delta value 
encodings (i.e., Experiment 2’s results), it is likely that performance 
in this type of scenario would be far worse than it already is when 
values are represented individually. 

One limitation is that participants responded by adjusting the height 
of a single bar or dash, which is most similar to the delta encoding 
itself. It is possible that method could bias responses in favour of delta 
value encodings. If so, this would be important to examine further 
given that it would provide a task-specific instance in which delta 
value encodings provide less (or even no) benefit. 

7 EXPERIMENTS 1-3: RESULTS SUMMARY 
The primary results are summarized in Figure 4. The key take-

aways across the three experiments are as follows: 
A) Delta value encodings consistently yield better relation 

perception than individual encodings. Participants searched faster 
for the opposite relation (Exp. 1), were more accurate in perceiving 
which relation there was more of (Exp. 2), and had lower error rates 
when perceiving the average delta (Exp. 3) when deltas were explicitly 
encoded, than when individual data points were encoded. While [19] 
showed delta encoding response time benefits, the present data add 
that responses times continue to slow down with the addition of each 
individually encoded data pair. Experiment 2 uniquely shows the 
benefit of delta encodings in perceiving proportions of relations. 
Lastly, we show that delta encodings improve perception of the 
average delta, adding to the finding of Srinivasan et al. [19] that 
accuracy for measuring a specific, single delta was comparable across 
chart types. 

B) Further, delta value encodings were far more efficient than 
individual value encodings for processing, but highly depended on 
the task-- delta encodings accelerated search rates by 49-95% in Exp. 
1, improved accuracy by 30% in Exp. 2, and lowered error rates by 
25% in Exp. 3. While it may be tempting to generalize a guideline 

across these tasks, testing delta encodings further across a larger swath 
of tasks is necessary in order to conclude which types of visual 
decisions benefit most from delta encodings, beyond our three specific 
tasks. The fact that we find great variability in the delta advantage 
points to the need for this exact type of additional testing. 

C) Lastly, delta value encodings tend to bias people to 
underestimate the average delta (Exp. 3). While this pattern is 
intriguing, its perceptual root is unclear. 

8 GUIDELINES 
Show deltas, but only when necessary: Across our three tasks, 

delta encodings consistently yielded the best performance over 
individually depicted data values: a 25-95% improvement depending 
on the task. Unfortunately, depicting deltas requires more space in 
webpages, slides, or dashboards, and they typically cannot simply 
replace the visualization of the base values, which provide the context 
for those differences, so they should be used judiciously. If perceiving 
data value pair differences is central to the task (e.g., identifying 
whether an intervention improved the majority of test scores in Figure 
1A, unlike identifying which student had the single highest test score), 
encoding differences should offer far better performance, even more 
so when the viewer is identifying data pairs with a particular relation 
(like in Experiment 1). The difference overlay technique tested by [19] 
presents a potentially powerful way to show both absolute values as 
well as deltas between pairs of values, in a way that adds visual 
processing power, with little evidence of drawbacks.  

Use position and length encoding: Consistent with prior work [3], 
position (e.g., dot plots) and length (e.g. bar charts) encodings led to 
far better performance compared to slope encodings, at least for the 
present displays and tasks. 

Require less relational extraction: Extracting relations (i.e., 
perceiving both the difference between a data value pair and the 
direction of that difference – whether it is an increase or a decrease) 
is a slow process, and continues to slow down with the addition of 
each data value pair (Exp. 1 – response times increase as set size 
increases). Therefore, when it is not possible to explicitly show delta 
(e.g., for data triplets instead of pairs), one might consider decreasing 
the resolution of included categories, to decrease the amount of  
relational processing demanded of the viewer. 

9 LIMITATIONS AND FUTURE WORK 
Loss of context: As already stated, naturally much context is lost 

with the loss of the original individual data values by displaying only 
deltas. In light of this, our results highlight the need for 
visualizations that both display original data values and showcase 
relational differences. In fact, grouped bar charts with deltas values 
explicitly overlaid were preferred by viewers [19]. Further, this 
approach is highly valuable in situations of data exploration, in which 
the viewer does not know ahead of time which aspects are important 
or relevant to compare. 

How do these results scale? The present experiments tested 
relations between two data values as a starting point. How do these 
results scale when the number of data points, and thus relations, 
increases (e.g., a bar chart containing multiple bars per data group)? 
Relatedly, our displays always contained multiple relations, but our 
participants never made comparisons between any relations (i.e., 
relations between relations). 

Number of objects, or density? Density is confounded with 
increased set size in Experiments 1, though equally so across 
encodings. Because both can sometimes lead to response time 
increases [24], future work should measure their relative contributions 
to search inefficiency, which may lead to new concrete guidelines 
(e.g., more data may not slow viewers down as much, as long as it is 
well-spaced). 
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