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Abstract—We present an analysis of factors contributing to 
the annual level of donation of sweet potatoes in 2010-2016 to a 
North Carolina food bank. Our approach follows that of Su et al., 
who used the Analytic Hierarchy Process (AHP) and Dempster-
Shafer theory (DST) to assess annual grain security in China for 
1997-2007. We first identified the indices (or factors or criteria) 
that influence the level of donation and their “directions:” 
positive (the more the better), negative, or non-directional 
(average is best). We divided the range of each index into degrees 
(intervals) then applied AHP to get weights for the indices. To 
apply DST, we defined a frame of discernment that would 
generate focal elements that could be assigned to degrees of the 
indices. Then, using the index weights, we defined a BPA (basic 
probability function) for each year. Since for each year we had 
multiple pieces of possibly conflicting evidence, we used 
Dempster’s rule to combine each BPA with itself several times. In 
the resulting BPA, the focal element with greatest mass was 
taken as the prediction for the donation level for that year. We 
partitioned the range of the donation data into degrees to 
compare observations with the focal elements in the BPA. 
Predicted donation degrees matched observed degrees 
reasonably well if degree boundaries are well chosen. Analysis of 
apparent anomalies suggested a more sophisticated approach 
and the need to involve other information sources.  This 
approach allows one to experiment in a principled way (and 
without assumptions about probability distributions) with the 
relative importance of the multiple factors that affect the 
predicted quantity and so to understand how these factors 
together contribute to that quantity. It is suggested for gaining 
preliminary insight, which may be exploited in the application of 
more rigid analytic techniques. 

Keywords—Analytic Hierarchical Process, Dempster-Shafer 
theory, Foodbanks 

1. INTRODUCTION 
Everyone would like to see a community free from food 

insecurity. Donating nutritious food to food banks can help 
achieve this goal. Federal food nutrition programs and food 
access do not reach everyone in need, but food banks help fill 
the gap. The U.S. Department of Agriculture (USDA) defines 
food insecurity as a lack of consistent access to enough food 
for an active, healthy life. Hunger is a physical discomfort, 
while food insecurity is a lack of available financial resources 
for food at the household level [1]. Food insecurity is a real 
problem throughout the United States, yet food is the number 
one item Americans throw away: each year, up to 40% of the 

food supply in the United States is never consumed, which is a 
$218 billion loss annually. The major place of such food waste 
in the US is the farmers’ fields, where the crops that do not 
meet the specified grade quality are left to rot or to be plowed 
under [2]. In 2018, it was estimated that 42% of vegetables 
grown in North Carolina were unharvested, and in 2015-2016, 
South Carolina experienced an estimated 641,916 tons of food 
waste [3]. Yet there are more than 2.6 million hungry 
individuals across the Carolinas [3]. For instance, North 
Carolina is ranked in the top ten hungriest States in the U. S. at 
13.9% of the population being food-insecure [3]. Several 
factors are responsible for food insecurity across the Carolinas 
and the United States in general, including unemployment, the 
market price of produce, and low household income. These 
reasons are complicated and often interconnected. 

This paper presents our analysis of factors contributing to 
the level of donation of sweet potatoes to a particular food 
bank in North Carolina for 2010-2016. North Carolina is the 
top state in the production of sweet potatoes, which are 
nutritious and generally store well. 

The research reported here seeks to understand the factors 
that allow us to predict sweet-potato donations by farms to 
foodbanks. Prediction of donations to foodbanks has been 
extensively studied by Davis's group at North Carolina A&T 
State University. Okore-Hanson et al. [4] used standard 
regression as well as stepwise regression analysis to identify 
key factors that can be used to predict the demand at branches 
of a foodbank. Nuamah et al. [5] developed a simulation model 
to determine the expected quantity of food donations received 
per month in a multi-warehouse distribution network. The 
simulation model was based on a state-space model for 
exponential smoothing. Brock and Davis [6] used an artificial 
neural network to evaluate and approximate the contributions 
from supermarkets in North Carolina to foodbanks. Davis et al. 
[7] found new insight into the predictive power of time series 
modeling to forecast and analyze supply uncertainty of food 
donations to organizations. Finally, Pugh and Davis [8] applied 
support vector regression to forecast donations to the 
foodbanks and analyze the estimation of these donations. Some 
of the work by Davis’s group (e.g., [4]) used economic 
indicators that include real GDP, unemployment rate, and 
consumer confidence, which impact conditions on the demand 
for food for those in need. They thus help predict future 
demand of food at foodbanks. 



The approach taken in the research reported here follows 
the work of Su et al. [9], who used the Analytic Hierarchy 
Process (AHP) and Dempster-Shafer theory (DST) to assess 
annual grain security in China for the years 1997 to 2007. It is 
our contention that their approach allows one to experiment in 
a principled way with the relative importance of the multiple 
factors that affect the predicted quantity and so to understand 
how these factors together contribute to that quantity. Their 
approach is also independent of any assumptions about the 
probability distributions of the contributing factors.  

The rest of this paper is structured as follows. Sections 2 
and 3 provide background on AHP and DST, respectively. 
Section 3 is a brief review of the literature related to the work 
of Su et al. and a summary of their work. The next section 
presents the application of our approach to the data we 
obtained from the Feeding the Carolinas foodbank. Section 6 
discusses our results, and Section 7 concludes. 

2. THE ANALYTIC HIERARCHY PROCESS 
The Analytic Hierarchy Process [10], or AHP for short, is 

for multi-criteria decision making involving possibly both 
subjective human judgments and objective evaluations. In a 
classical application, the AHP considers a set of evaluation 
criteria and a set of options among which the best (according to 
the criteria) is to be selected. Since the criteria may conflict, 
the best option need not optimize all the individual criteria; 
rather, the best option achieves the best trade-off among the 
criteria.  The AHP lets us translate the qualitative and 
quantitative evaluations of experts into multi-criteria rankings 
that are applied with simple arithmetic operations. 

In outline, the AHP establishes a weight for each criterion 
based on our pair-wise comparisons of the criteria. More 
important criteria get higher weights. Next, for each criterion, 
the AHP assigns a score to each option based on our pair-wise 
comparisons of the options per that criterion. Options 
performing better on that criterion get higher scores. Finally, 
the global score for a given option is the weighted sum of the 
scores it received per all the criteria, where the weight for a 
score per a criterion is the weight assigned that criterion. The 
global scores allow us to rank the options. AHP may be seen as 
a three-level hierarchy, with the overall goal of the problem at 
the top, multiple criteria that define alternatives in the middle, 
and decision alternatives at the bottom. In this work, we stop at 
finding weights for the criteria. 

To compute the weights for the criteria, we first create a 
pairwise comparison matrix A, an n×n real matrix, where n is 
the number of criteria. Entry ajk of A represents the importance 
of the jth criterion relative to the kth criterion. If ajk > 1, then the 
jth criterion is more important than the kth; if ajk < 1, the jth  

TABLE 1. RELATIVE SCORES 

Value of aij Interpretation  
1 j and k are equally important  
3 j is slightly more important than k  
5 j is more important than k  
7 j is strongly more important than k  
9 j is absolutely more important than k  

 

criterion is less important than the kth; and if the two criteria are 
equally important, then ajk is 1. Clearly, ajj = 1 for all j. We 
require akj ajk = 1 so that we need establish only the upper or 
lower triangle of A since A is a reciprocal matrix, that is, 
entries in one triangle are simply the reciprocals of those in the 
other triangle reflected across the diagonal. 

The relative importance between two criteria is measured 
according to a numerical scale from 1 to 9, as shown in Table 
1. To be definite, we there assume that the jth criterion is at 
least as important as the kth. Intermediate values (2, 4, 6, 8) can 
also be assigned, with the obvious intermediate interpretations.  
As mentioned, we require akj ajk = 1. More generally, a 
comparison matrix A is said to be consistent if 

 for all i, j, and k, which is a sort of 
transitivity principle. Such consistency, however, is generally 
not attained with pair-wise comparisons of criteria.  For 
example, if we have three criteria A, B, and C with A compared 
to B giving 2 and B compared to C giving 3, we do not require 
that A compare to C gives 6. 

The largest eigenvalue of a consistent comparison matrix, 
λmax, is equal to the size, n, of the matrix, λmax = n. As a prelude 
to defining a measure of inconsistency, we define the 
consistency index as deviation from consistency using the 
following formula 

                               
It can be shown that, for a reciprocal matrix, λmax  n, so CI is 
always positive and is 0.0 if (and only if) the comparison 
matrix is consistent. What is taken as the measure of 
inconsistency of an n  n comparison matrix A is the 
consistency ratio, CR, defined as CI / RI, where RI, the random 
consistency index, is the average value of CI for random n  n 
reciprocal matrices. According to Saaty, a matrix is sufficiently 
consistent if and only if CR < 0.1. RI values for n from 1 to 10 
are shown in Table 2. 

3. DEMPSTER SHAFER THEORY 
Arthur P. Dempster introduced Dempster Shafer theory 

(DST) in 1967 as the theory of evidence or belief functions 
[11]. In 1976, this theory was enhanced by Glenn Shafer as a 
new method for the representation of uncertainty [12]. DST 
provides powerful mechanisms for determining the confidence 
one may have in evidence combined from several sources. It is 
a justification-based way of providing a numerical measure of 
confidence and trust in our hypotheses. DST assumes a frame 
of discernment, , consisting of a set of mutually exclusive and 
exhaustive hypotheses. It distributes and combines evidence 
represented as masses assigned to subsets of , with the total 
mass summing to 1.0. A set with non-zero mass is a focal 
element. The function that maps focal elements to mass is 
called a mass function or basic probability assignment (BPA). 

TABLE 2. RANDOM CONSISTENCY INDEX (RI) VALUES 

n 1 2 3 4 5 6 7 8 9 10 

RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 



This approach is very different from the Bayesian one, where 
we assign probabilities to single events, that is, outcomes of the 
experiments. Unlike the Bayesian approach, BPAs do not 
require a set of prior probabilities. And belief in a hypothesis 
and its negation need not sum to 1.0 as mass can be assigned to 
 to indicate ignorance. Overall, DST is attractive because of 
its flexibility and ease of use. 

DST has functions for lower and upper bounds on a set’s 
likelihood, known as belief and plausibility functions, 
respectively. The value of the belief function for a subset  of 
, Bel(), is the sum of the masses of its subsets. Hence, 
Bel(∅) = 0, Bel(Θ) =1, and 0  Bel()  1.0 for all   . The 
value of the plausibility function for a subset  of , Plaus(), 
is the sum of masses of the sets that overlap with . Hence 
Bel()  Plaus()  1.0 for all    and, where  is the 
complement of , Plaus() = 1  Bel(), and Bel() = 1  
Plaus(). Furthermore, the true belief in hypothesis  lies in the 
interval [Bel(θ), Plaus(θ)], while the degree of uncertainty is 
represented by the difference Plaus(θ) − Bel(θ). 

DST provides a rule to combine two independent pieces of 
evidence in the form of combining the corresponding BPAs 
while still considering uncertainty. Dempster’s rule for 
combining BPAs divides the mass corresponding to conflict 
(i.e., non-overlapping focal elements) between the different 
BPAs evenly among the focal elements of the result to avoid 
assigning it to the null set, which must have no mass. 
Dempster’s rule calculates a measure of conflict 

 
for a pair of BPAs m1 and m2. This is the mass assigned to the 
null subset and represents contradictory evidence. The 
combined mass function according to Dempster’s rule is  

 
where k is defined above. The intersections represent areas 
where the BPAs  agree. Dividing by 1k normalizes the result. 

4. THE APPROACH OF SU ET AL.  
Su et al. [9] present a comprehensive early-warning model 

for evaluating the status of grain security in China for the years 
1997-2007 that is based on the AHP method and DST. They 
review the technical literature on agriculture early-warning in 
China and find that each of the methods reviewed “puts 
emphasis on just a single angle and cannot make a concise and 
quantitative total evaluation.” They found, however, that Men 
et al. [13] sought to rectify this deficiency with a 
comprehensive model using an enhancement of AHP. The 
enhancement applies Gray system theory [14] to form a factor 
analysis method called Gray Comprehensive Evaluation, used 
to analyze a system with a hierarchical structure. Su et al. point 
out that the model of Men et al. assumes that the composite 
index of grain security follows a normal distribution about the 
mean value. They note, however, that not every factor relating 
to grain security follows a normal distribution, and they 
develop a grain security warning system that can handle cases 
where distributions are non-normal. 

Su et al. divided risk assessment into four stages. In Stage 
1, they identified the indices (or factors or criteria) that 
contribute to the level of risk to grain security. They identified 
eleven, including (for example) grain production, disaster-
affected area, and growth rate of the Grain Price Index. 

Stage 2 is preprocessing the index data: determining the 
“directions” of the indices, determining the risk degrees of the 
grain security, and calculating the risk bounds (for each index, 
the values dividing the ranges of that index into the degrees). 
The direction of an index is positive if the more the better (it 
reduces the risk), negative (if less is better), or neither. For 
example, grain production is positive, disaster-affected area is 
negative, and growth rate of the grain price index is neither. 
Risk degree is divided into five grades: no alarm, light alarm, 
middle alarm, heavy alarm, and huge alarm. Corresponding to 
the five degrees, we need four risk bounds. For each index, 
they calculated the range  of the values of that index in the 
data: they found the maximum value, max, and the minimum 
value, min, then  = max – min. Then they let p = /8. The no-
alarm degree begins at min. Thereafter, the four bounds 
between the five degrees are at min + p, min + 3p, min + 5p, 
and min + 7p. The huge-alarm degree goes up to max. They 
numbered the boundaries 1, 2, 3, 4, from lowest to highest. 
Note that the final result provided a BPA for each year and that 
BPA assigned masses to representations of these five degrees. 
It turned out that, for each year, one of these degrees had 
significantly more than half the mass. The results matched the 
facts well. 

Stage 3 used the AHP to assign weights to the eleven 
indices. 

In Stage 4, they evaluated the risk of grain security using 
DST and determined the final risk degree for each year. They 
defined a BPA, my(), for each year, y  {1997, 1998,  …, 
2007}, based on the data for the indices. (They used the AHP 
results in computing m(f) for each focal element f for each year 
y; for this, they needed a frame of discernment on which they 
can defined some focal elements.) To describe the five risk 
degrees for DST, they need at least three elements in the frame 
of discernment , say,  = {a, b, c}. They adopted a linear 
way for focal elements to match with their risk degrees (so not 
all subsets of  are focal elements). The focal elements, then, 
are a (no alarm), ab (light alarm, actually, the subset {a, b} of 
), b (middle alarm), bc (heavy alarm), and c (huge alarm). 
They also have as a focal element abc for ignorance. 

Given the bounds calculated in Stage 2, how they mapped 
the data for the indices to focal elements depended on the 
direction of the indices. For a positive index, they went down, 
with a starting at max, then ab starting at boundary 4, b at 
boundary 3, bc at boundary 2, and c at boundary 1, down to 
min. For a negative index, they went up, with a starting at min, 
then ab at boundary 1, b at boundary 2, bc at boundary 3, and c 
at boundary 4, up to max. From this, they produced a table 
whose rows are the eleven years and whose columns are the 
eleven indices. From the data, they determined what focal 
element is in the cell for year y and index i given the 
boundaries in the data calculated for that index. Given this 
table, they then used the weights for the eleven indices from 
Stage 3 to construct a table that defined a BPA my() for each 



year y  {1997, 1998,  …, 2007}. The rows correspond to 
years, and there is a column for each focal element f  {a, ab, 
b, bc, c}. A cell at row y, column f contains the sum of the 
weights for all the indices with focal element f for year y (as 
given by the previous table); this is the value for my(f), and can 
be seen as a sort of average for the weights of the indices with 
focal element f for year y. Note that the sum of the values  in 
the row for a given year is 1.0. 

Note that, for each year, we have eleven pieces of evidence, 
some possibly conflicting. Murphy noted [15] that, with 
conflicting evidence, Dempster’s rule often produces 
unacceptable results, and the problem lies with how the masses 
of focal elements are normalized. She considers several 
alternatives to Dempster’s rule and concludes that averaging 
the masses of focal elements across the rules best solves the 
normalization problem. For convergence to an acceptable BPA, 
one should incorporate the averages into the combining rule. 
Thus, if there are n pieces of evidences, we use the classical 
Dempster’s rule to combine the weighted averages of the 
masses n1 times. (Su et al. also reference [16], which 
modifies Murphy’s averaging rule to reduce the contribution of 
a body of evidence that is highly conflicting with the other 
bodies of evidence. A measure of the distance between two 
bodies of evidence [17] is used to determine the weight of each 
body of evidence.) Su et al. used the average approach to 
combine these eleven pieces of evidence: the weighted average 
BPA for each year is combined with itself 11 – 1 = 10 times to 
obtain the final results. 

Combining BPAs with themselves ten times tended to 
concentrate the mass on the singletons, a, b, and c. For each 
year but one, exactly one of these singletons has over 80% of 
the mass; in the one exception, one singleton had 69% of the 
mass. The prediction for risk to grain security for a year was 
taken to be the dominant focal element (always a singleton) for 
that year. Now, risk to grain security is not a measured quantity 
but can be gauged from the responses of institutions and 
agencies. Su et al. maintained that the predicted risk degrees 
“coincide with the facts well.” They found agreement with the 
result of Men et al. [13] in all but one year, and for that year, 
their results matched the facts.  

5. CALCULATIONS TO PREDICT DONATIONS 
We followed the four stages of Su et al. outlined above. We 

here show the results of all calculations. 

TABLE 3. DATA FROM 2010 TO 2016, SHOWING INDEX NAMES 

Year Previous-yr. 
prod. In 
1000 lbs. 

(C1) 

Avg. 
price/cwt in 
$/cwt (C2) 

Percentage 
of total sales, 

in %, (C3) 

Unemployment 
rate, in %, (C4) 

2010 9720000 18 1.8 10.9 
2011 12800000 17.7 2 10.3 
2012 12400000 13 1.7 9.3 
2013 10600000 24.9 2.7 8.0 
2014 15840000 22 2.7 6.3 
2015 16340000 19.4 2.8 5.7 
2016 17100000 18.1 3.2 5.1 

 

5.1 Identification of Indices  

The personnel at Feeding the Carolinas identified the 
factors (or indices) that influence donations of sweet potatoes 
as the following, where our abbreviation for each index is in 
parenthesis after its description, and all values are for the state 
of North Carolina: the production of sweet potatoes in the 
previous year in thousands of pounds (C1), the average market 
price per hundred weight (cwt) of sweet potatoes for the year 
(C2), the percentage of total agricultural sales for the year 
contributed by sweet potatoes in % of value (C3), and the 
unemployment rate for the year in % (C4).  

Note that production is for the previous year since generally 
what is consumed in a given year was produced in the previous 
year. The data for these indices for the years 2010-2016 is 
shown in Table 3. 

5.2 Preprocessing the Index Data 

For Stage 2, we preprocess the index data in two steps: 
determine the direction of the indices and define the boundaries 
between the degrees of each index. 

5.2.1 Directions to the Indices 

We determined the directions of the indices in consulting 
with our collaborators at Feeding the Carolinas. The previous 
year’s production of sweet potatoes, C1, is positive as the more 
there are, the less impact giving a certain amount of sweet 
potato will have on the overall status of the farm that gives it. 
The price per cwt, C2, is negative since, when the price goes 
up, a donating farmer is giving up more wealth in giving a 
fixed amount of sweet potato. The percentage of total sales, C3, 
is non-directional. If the amount of sweet potato sold is fixed, 
sales of other products generally have no influence on donation 
of sweet potatoes unless those sales are particularly large or 
small; see the discussion below. Finally, the unemployment 
rate, C4, is positive since, the higher the unemployment rate, 
the greater the perceived need. Table 4 summarizes the 
directions of the indices, with ‘+’ indicating positive, ‘-’ 
negative, and ‘0’ non-directional. 

5.2.2 Index Degrees and Boundaries of Degrees 

As with Su et al., we categorize the values of each index 
into five degrees, but what we call the degrees will depend on 
the direction of the index—see Subsection 5.4.1 below. How 
the four bounds separating the five degrees are found is shown 
in Table 5. For a given index, we find the maximum, max, and 
minimum, min of its values and calculate the range  as max  
min. Then (following Su et al.) we calculate a step s as /8 and 
set the bounds at min + s, min + 3s, min + 5s, and min + 7s. 

5.3 Use of the AHP to Assign Weights to Indices 

For the comparison matrix in Stage 3, our collaborators at 
Feeding the Carolinas judged as follows. 

TABLE 4. DIRECTIONS OF INDEX 

Index C1 C2 C3 C4 

Directional + - 0 + 

 



TABLE 5. DEGREE BOUNDS 

 Bound C1 C2 C3 C4 

Max  17100 24.9 3.2 10.9 
Min  9720 13 1.7 5.1 

Range  7380 11.9 1.5 5.8 
S  922.5 1.49 0.19 0.73 

min+s Bound 1 10642.5 14.49 1.89 5.83 
min+3s Bound 2 12487.5 17.47 2.27 7.29 
min+5s Bound 3 14332.5 20.45 2.65 8.75 
min+7s Bound 4 16177.5 23.43 3.03 10.21 
 

 C2 is very slightly more important than C1 but slightly 
less important than both C3 and C4.  

 C1 is slightly less important than both C3 and C4.  

 C4 is very slightly more important than C3.  

The result is the matrix  

 
The eig() function in the linalg (linear algebra) package of 

NumPy, passed a matrix, returns a two-tuple whose first 
element is a one-dimensional array of eigenvalues and whose 
second element is a two-dimensional array whose columns are 
the eigenvectors, corresponding by position to the eigenvalues 
in the one-dimensional array. The first element in the array of 
eigenvalues is the largest, max = 4.159, so the first eigenvector 
is the principal eigenvector, generally not normalized by linalg. 
Normalizing (dividing each element by the sum of the 
elements) gives a vector of weights w = [0.150, 0.106, 0.310, 
0.435], shown in Table 6. 

For the consistency ratio (see Section 2), CR, we first 
calculate the consistency index, CI, as follows, where n = 4 is 
the dimension of array A. 

 
From Table 2, we find the random consistency index, RI, as 

0.90, so 

 
Thus, CR for our comparison matrix A is significantly less than 
0.1, and so A is considered sufficiently consistent.  

5.4 Evaluating the Predicted Donation Degrees 

For Stage 4, evaluating the predicted donation degrees, we 
define the focal elements (Subsection 5.4.1) as subsets of a 
frame of discernment on a linear scale divided by the bounds 
calculated earlier; this results in a table with the focal elements 
for each index for each year. From this table, we construct a 

TABLE 6. INDEX WEIGHTS 

Index C1 C2 C3 C4 

Weight 0.150 0.106 0.310 0.435 
 

BPA for each year (Subsection 5.4.2). Finally, for each year, 
we combine the BPA with itself three times using Dempster’s 
rule (Subsection 5.4.3). 

5.4.1 Defining the Focal Elements 

Following Su et al., we use three elements for our frame of 
discernment,  = {a, b, c}, and we adopt a linear way to match 
focal elements to our prediction degrees (so not all subsets of  
can be focal elements), and so we have as focal elements a, ab 
(actually subset {a, b} of ), b, bc, and c. We  do not have 
focal element abc (that is, ) for ignorance. Referring to Fig. 1, 
for an index with positive direction, focal element a indicates 
very low, ab indicates low, b indicates medium, bc indicates 
high, and c indicates very high. For an index with negative 
direction, things are reversed: a indicates very high, ab 
indicates high, b medium, bc low, and c very low. The reason 
for the reversal (and that our order is the reverse of that of Su et 
al) is that we want a to be the least conduce level of the index 
and c to be the most conduce, and the English words "low" and 
"high" are neutral regarding such issues. For the non-
directional index C3, the percentage of sales contributed by 
sweet potatoes, a indicates very low or very high, that is, very 
extreme, b indicates low or high, that is, extreme, and c 
indicates medium; we do not use focal element ab or bc for this 
index. The rationale behind these symmetric associations is 
that, with a fixed amount of sweet potato sold, if there is a lot 
of other agricultural produce sold that year, there is a wide 
option of things other than sweet potatoes that could be 
donated, and if there is not much other agricultural produce 
that year, farmers will tend to hold on to their sweet potatoes. 

Using the bounds given in Table 5 and the focal elements 
thus bounded for each index as in Fig. 1, we can repeat Table 3 
(the data for each index across years 2010-2016) and replace 
the numbers in the cells with focal elements, giving Table 7. 
Fig. 1. Index degree to focal element 

 

TABLE 7. DATA FROM 2010-2016, SHOWING THE FOCAL ELEMENTS FOR EACH 
INDEX FOR EACH YEAR 

Year C1 C2 C3 C4 

2010 a b a c 
2011 a b ab c 
2012 b c a bc 
2013 ab a bc b 
2014 b ab bc ab 
2015 c b bc a 
2016 c b c a 



5.4.2 Creating a BPA for Each Year 

From Tables 6 and 7, we construct a BPA my() for each 
year y, as shown in Table 8. For a given focal element f, the 
value for my(f) is the sum of the weights (given in Table 6) for 
all the indices with focal element f for year y (as given in Table 
7).  

 For example, letting the name of the index stand for its 
value, for y = 2010, m2010(a) = C1 + C3 = 0.150 + 0.310 = 
0.460, m2010(b) = C2 = 0.106, m2010(c) = C4 = 0.435, m2010(ab) = 
m2010(bc) = 0. 

5.4.3 Determining the Final Results 

 Following Su et al., we use the average approach and use 
the classical Dempster's rule to combine the four pieces of 
evidence (the indices): the weighted average BPD for each year 
is combined with itself n  1 = 4  1 = 3 times to obtain the 
final result, shown in Table 9. 

We take the prediction of donations for the year to be the 
name of the focal element with the greatest weight. Table 10 
shows for each year, the predicted level of donation next to the 
actual donations. 

6. DISCUSSION 
Table 10 shows that the predictions increase essentially 

monotonically across time, from very low to medium to very 
high. This is broadly in line with reality as conditions did 
broadly improve during the period under study. In detail, 

TABLE 8. THE BPA FOR EACH YEAR, 2010-2016 

Year a b c ab bc ac 
2010 0.46 0.106 0.435 0 0 0 
2011 0.15 0.106 0.435 0.31 0 0 
2012 0.31 0.15 0.106 0 0.435 0 
2013 0.106 0.585 0 0 0.31 0 
2014 0 0 0 0.691 0.31 0 
2015 0.435 0.106 0.15 0 0.31 0 
2016 0.435 0.106 0.46 0 0 0 

TABLE 9. FINAL BPAS, 2010-2016 

Year a b c ab bc ac 
2010 0.983 0.007 0.010 0.001 0 0 
2011 0.469 0.197 0.313 0.021 0 0 
2012 0.004 0.626 0.305 0 0.065 0 
2013 0 1.000 0 0 0 0 
2014 0 0.948 0 0.052 0 0 
2015 0.313 0.197 0.469 0 0.021 0 
2016 0.389 0 0.611 0 0 0 

TABLE 10. PREDICTED DEGREE VS. OBSERVED DONATIONS 

Year Highest Focal 
Elements 

Prediction Donations for the 
Year 

2010 a Very Low 177035 
2011 a Very Low 448600 
2012 b Medium 368735 
2013 b Medium 978495 
2014 b Medium 368735 
2015 c Very High 647543 
2016 c Very High 967254 

however, the predicted degree of donation appears often to 
miss the mark.  

To see how to align the donation data with the predicted 
degree, we partition the donation data into three degrees to 
represent very low, medium, and very high. The minimum (in 
2010), min, is 177,035, and the maximum (in 2013), max, is 
978,495. The range is  = min  max, which we divide into 
three equal-length steps with s = /3 = 267,153. Thus, 
boundary 1 is at min + s = 444,188, and boundary 2 is at min + 
2s = 711341. We use y1  y2 to indicate that the donation for 
year y1 was less than that for year y2 and y1  y2 to indicate that 
the donations for the two years were equal. We then order the 
years as follows, using double vertical bars for degree 
boundaries: 

2010  2012  2014 || 2011  2015 || 2016  2013 

The following is how our predictions partition the set of years 
into degrees. (We assume no order within the same degree.) 

{2010, 2011} || {2012, 2013, 2014} || {2015, 2016} 

Table 11 is a version of Table 10 sorted by the donation, 
omitting the focal-element column, adding a column for actual 
classification per the three equal-length degrees. The years in 
bold are those years where the prediction does not agree with 
the actual classification with three equal-length degrees.  

In Table 11, five of the seven predictions are anomalous, 
but none are off by more than one degree. Our partition was 
arbitrary, so we consider moving boundaries up or down to get 
better agreement. Let don(y) be the donation for year y. We 
begin by considering the location of boundary 1. The fraction 
of  up to don(2012) (=  don(2014)) is (368,735 - min) /  = 
0.239. We would have to move boundary 1 down to just below 
368,735 (= don(2012) = don(2014)) to get 2012 and 2014 into 
medium, but don(2011) = 448,600, whose prediction was 
classified as very low, is greater than don(2012) (= don(2014)) 
and so would remain misclassified, as very low. As a fraction 
of , this is (448600 - 368735) /  = 0.010, not very much. 
Next, don(2015) (= 647,543) is below boundary 2 (= 711,341) 
and should be medium instead of very high. As a fraction of , 
the distance it is below is (711341 - 647543) /  = 0.080. 
Boundary 2 would have to be moved down to just below 
647,543 to include 2015 in very high. This is quite feasible as 
it would not change the status of any other year. Table 12 is an 
updated version of Table 11 where boundary 1 has been moved 
to just below 368,735, and boundary 2 has been moved to just 
below 647,543. The two years where the predicted 
classification and the classification per the current degree  

TABLE 11. YEARLY PREDICTIONS, ACTUAL DONATIONS, AND CLASSIFICATION 
OF THE LATTER SORTED ON DONATIONS. ANOMALOUS YEARS IN BOLD. 

Year Prediction Donations for the 
Year 

Should be 

2010 Very Low 177,035 Very Low 
2012 Medium 368,735 Very Low 
2014 Medium 368,735 Very Low 
2011 Very Low 448,600 Medium 
2015 Very High 647,543 Medium 
2016 Very High 967,254 Very High 
2013 Medium 978,495 Very High 



boundaries disagree are again in bold. 

Table 12 shows two anomalous years, 2011 and 2013. For 
2011, the values for the focal elements are a (0.469), b (0.197), 
c (0.313), ab (0.021), bc (0). The largest value is for a, so we 
categorized this as very low whereas it should be medium. 
Note, however, that the value of the dominant focal element, a, 
is less than a half and that c is 2/3 as large as a. This would 
suggest a compromise between very low and very high, thus 
medium (as desired). By the way, 2015 was misclassified until 
we moved boundary 2 down. Its focal-element values are a 
(0.313), b (0.197), c (0.469), ab (0), bc (0.021). The dominant 
element is c, so we categorized this as very high. Again, the 
value of the dominant element, now c, is less than a half and 
that a is 2/3 as large as c. This would suggest a compromise 
between very low and very high, thus medium (as desired with 
the original degree boundaries).  

Note that 2011 and 2015 are the only years where none of 
the focal elements has a value greater than a half, so 
categorizing these years according to their dominant elements 
is questionable to begin with. 

The most glaring anomaly is 2013, for which there was the 
highest amount of donation but which our prediction was 
medium; in fact, all mass in the final result was for b, medium. 
One index in particular drove the prediction low, and that is 
index C2, price per cwt. This has a negative direction and 
reached its highest value in 2013; it was represented by focal 
element a. A lesser factor was the previous year's production, 
index C1, which has a positive direction and experienced a 
generally increasing trend but had a dip in 2013. (The other 
indices show nothing remarkable in 2013: unemployment 
maintained a steady decline, and the percent of sales 
represented by sweet potatoes was about average.) Evidently, 
the value of what is donated is not always an effective 
deterrent. Our model has only four indices (or factors or 
criteria) and so ignores a great deal of possibly useful 
information. It is also linear and so does not account for the 
interaction of indices. 2013 was the peak of a boom in U.S, 

TABLE 12. YEARLY PREDICATIONS, ACTUAL DONATIONS, AND 
CLASSIFICATION-WITH ADJUSTED BOUNDARIES-OF THE LATTER SORTED ON 

DONATIONS. ANOMALOUS YEARS IN BOLD. 

Year Highest 
Focal 

Elements 

Prediction Donations for 
the Year 

Should be 

2010 a Very Low 177,035 Very Low 
2012 b Medium 368,735 Medium 
2014 b Medium 368,735 Medium 
2011 a Very Low 448,600 Medium 
2015 c Very High 647,543 Very High 
2016 c Very High 967,254 Very High 
2013 b Medium 978,495 Very High 

 

agriculture 1 . This may have influenced the generosity of 
farmers and may have motivated donations for tax credits. 

                                                           
1 “U.S. agriculture has been booming in recent years with 

record farm incomes and double-digit percentage increases in 
cropland prices. However, farm income projections suggest a 
flattening, if not a reversal, of these trends.” Quotation from 

Also, although unemployment was decreasing, it was still high 
and coming off levels not seen in 75 years; this may have 
motivated farmers’ altruism. 

7. CONCLUSION 
This paper presents our analysis of factors contributing to 

the annual level of donation of sweet potatoes to the foodbank 
Feeding the Carolinas for the years 2010 to 2016. The 
approach taken here follows the work of Su et al. [9], who used 
the Analytic Hierarchy Process (AHP) and Dempster-Shafer 
theory (DST) to assess annual grain security in China for the 
years 1997 to 2007.  

In our case, we identify four indices (or factors or criteria) 
that influence the level of donation. They are sweet potato 
production the previous year (C1), average price per cwt of 
sweet potatoes for the year (C2), the percentage for the year of 
agricultural sales contributed by sweet potatoes (C3), and the 
average unemployment for the year (C4). C1 and C4 have 
positive directions (the more the better) while C2 has a negative 
direction (increase in it leads to decrease in donation) and C3 is 
non-directional (normal amounts are conducive to donation, 
extremes hinder). We found the range of each index and 
partitioned it into five degrees (intervals). 

We then applied AHP to get weights for the indices. 
Judging how much more important one index is than another, 
we formed a pairwise comparison matrix, A. The principle 
eigenvector of A provides the weights for the indices, and from 
the largest eigenvalue we computed a consistency ratio for A 
that showed that A could be considered sufficiently consistent. 

To apply DST, we needed five focal elements 
corresponding to the five degrees of each index. We get five 
focal elements with a frame of discernment with three 
elements,  = {a, b, c}, and use a linear way for focal elements 
to match with degrees, having focal elements a, ab (actually, 
subset {a, b} of ), b, bc, and c. How we assign focal elements 
to degrees of an index depends on the direction of the index; in 
all cases, a is the least conducive and c is the most conducive 
to the amount of donation. We then define a table whose rows 
are years and columns are indices; a cell at row y and column i 
contains the focal element for index i for year y. From this, we 
define the basic probability assignment (BPA, or mass 
function), my(), for each year y: for each focal element f, we 
add the weights of the indices that have f for year y, giving 
my(f). For each year, we have four pieces of possibly 
conflicting evidence. Su et al. (who reference work on 
combining possibly conflicting evidence using averaging) 
maintain that, if there are n pieces of evidences, one can use the 
classical Dempster’s rule to combine the weighted averages of 
the masses n1 times to converge to an acceptable BPA. For 
us, n = 4, so we used Dempster’s rule to combine the BPA for 
each year with itself 4  1 = 3 times. This tended to concentrate 
the mass on the elements of the frame of discernment, a, b, and 

                                                                                                     
Gary S. Corner, “Agriculture Boom Continued 2013,” Federal 
Reserve Bank of St. Louis, online at  

https://www.stlouisfed.org/publications/central-banker/winter-
2013/agriculture-boom-continued-2013 

https://www.stlouisfed.org/publications/central-banker/winter-2013/agriculture-boom-continued-2013
https://www.stlouisfed.org/publications/central-banker/winter-2013/agriculture-boom-continued-2013


c. The focal element with greatest mass, the dominant focal 
element, was interpreted in its positive direction as the 
prediction or the level of donation of sweet potatoes for the 
year, resulting in predicted levels of very low, medium, and 
very high. 

The results showed a clear trend of increasing donations, as 
in fact occurred. To judge our results, we partitioned the range 
of donations into three degrees (intervals) of equal length and 
used the same labels as for the predicted degrees: “very low,”  
“medium,” and “very high.” With these arbitrary boundaries, 
there were only two of the seven years where the predicted 
degree was the same as observed degree although nowhere 
were they off by more than one degree. It was possible, 
however, to move the boundaries so that there were 
mismatches for only two years; no further reduction was 
possible because the donation data imposed a strict order on 
the years although in one case the difference in the donations 
was only 1% of the range of donation values. 

Of the two remaining anomalous years, the dominant focal 
element of one (very low) had less than half the mass, and 
another focal element for that year (very high) had 2/3 of the 
mass of the dominant one. The observed degree, medium, is 
the compromise. This indicates that we need another way to 
assign predicted degrees when there is no clearly dominant 
focal element. The other anomalous year presented graver 
difficulties: all the mass is on medium, but the data shows that 
it was the year with the highest donation level. Suggested 
possible explanations include missing factors/indices, such as 
the general state of the agricultural economy and altruism 
triggers, and interaction among indices (which cannot be 
handled by this linear approach). 

The value of the approach followed here is that it allows 
one to experiment in a principled way, and without any 
assumptions about probability distributions, with the relative 
importance of the multiple factors that affect the predicted 
quantity and so to understand how these factors together 
contribute to that quantity. The calculations are straightforward 
(implemented by us with simple Python code) and are easily 
modified. This paper has illustrated some of easily 
implemented choices: selecting and comparing indices 
(criteria) and defining degrees of real-valued indices and 
degrees of predicted quantities. Exploratory work with this 
approach can provide insight for more rigid approaches in data 
science, including statistical and machine-learning methods. 

There are some obvious enhancements to be made in the 
near future. We need some examples of qualitative indices. An 
advantage of both AHP and DST is that they handle both 
quantitative and qualitative data. From the discussion above, it 
is clear that we need principled ways of handling cases where 
there is no clearly dominant index in the final result. While our 
approach is essentially linear, we would like a principle way to 
progress to something with similar exploratory power that can 
handle the interaction of indices (another point that came out in 
the discussion above). Finally, this is quite broad in scope and 

could be beneficially extended to data gathering, helping to 
determine what data might provide more insight. 
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