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Abstract—With edge computing, it is possible to offload com-
putationally intensive tasks to closer and more powerful servers, 
passing through an edge network. This practice aims to reduce 
both response time and energy consumption of data-intensive 
applications, crucial constraints in mobile and IoT devices. 
In challenged networked scenarios, such as those deployed by 
first responders after a natural or human-made disaster, it is 
particularly challenging to achieve high levels of throughput due 
to scarce network conditions.

In this paper, we present an algorithm for traffic management 
that takes advantage of a deep learning model to implement the 
forwarding mechanism during task offloading in these challeng-
ing scenarios. In particular, our work explores if and when it is 
worth using deep learning on a switch to route traffic generated 
by microservices and offloading requests. Our approach differs 
from classical ones in the design: we do not train centralized 
routing decisions. Instead, we let each router learn how to adapt 
to a lossy path without coordination, by merely using signals 
from standard performance-unaware protocols such as OSPF. 
Our results, obtained with a prototype and with simulations are 
encouraging, and uncover a few surprising results.

I. I NTRODUCTION

In recent years, an increasing number of IoT and mobile 
devices became available, producing a massive amount of data, 
and hence exacerbating network orchestration challenges, and 
creating research and business opportunities. The majority of 
these IoT devices do not have or cannot handle the computa-
tional requirements to process the data they capture. For this 
reason, solutions that require outsourcing the responsibility to 
perform all, or a part, of the computations to the edge cloud 
are gaining popularity [1]-[5]. The process of transferring 
or delegating computational tasks is called offloading [2] or 
onloading [6]. Offloading or onloading operations are crucial 
for mobile devices as they commence to lower response time, 
lower processing time, and smaller device energy consump-
tion.

Computation offloading is strictly necessary for critical 
scenarios, such as natural or human-made disasters [7], where 
the physical network infrastructure is scarce or likely to 
be temporarily unavailable. As latency requirements become 
stringent, network alternatives are scarce, and data needs fast 
delivery. In this or similar scenarios, responsive path man-
agement solutions to direct offloading requests, e.g., mobile-
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generated traffic steering, may become an essential application 
requirement.

Traffic engineering solutions used in production today (e.g., 
OSPF, ECMP), are performance-unaware, that is, they react 
only when losses or delay impact the cost assigned to a 
path; we argue that those are hence unsuitable for unstable 
or unreliable networks; moreover, in the presence of dynamic 
traffic and network conditions, these solutions are known to 
lead to sub-optimal performance [3], [5], [8]-[11]. To fill the 
performance-unaware gap of many (edge) network decision 
problems, the community has revived the decade old [12] 
idea of Data-driven networking [4], [13]-[15]. Despite the 
extensive use of machine learning to solve networking prob-
lems [16], e.g., traffic classification [17], latency predic-
tion [18] and video streaming bitrate optimization [19], most 
of these approaches follow into two categories: either a model 
is trained in a centralized fashion, as a Software-Defined Net-
work controller application [16], [20], or distributed machine 
learning is used to train learning models faster [21]. While 
traffic engineering solutions have been devised using deep 
learning, see for example a chapter of this recent survey [16], 
to the best of our knowledge, approaches that support deep 
learning at every switch, and that provide performance-aware 
forwarding decisions learning from performance-unaware pro-
tocols are still at their infancy. While it may be challenging 
to apply our approach to wide-area or data center networks, 
despite the recent advances in high-performance switches, we 
believe that our approach can be ideal for the task offloading 
problem during critical networked scenarios, such as those of 
a data collection for situation awareness in disaster scenarios. 
We test our algorithm for task offloading over MiniNeXT [22], 
a network emulation environment based on container, and we 
evaluate the performance tradeoff within several policies using 
different network conditions. As a result of our study, we find 
a few expected and a few surprising results. One surprising 
result is that deep learning-based traffic offloading policies 
may not always help improving network performance (when 
each router runs a separate supervised learning model), so the 
training overhead time may not be justified.

Another message from our study lies in the poorly [23] 
explored use of our performance-agnostic traffic engineering 
policies to generate performance-aware policies. We release 
the code of our prototype [24] to allow the community 
to exploit it and explore other (deep learning-based) traffic
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offloading policies.

II. Of f l o a d i n g  Pa t h  Pr e d i c t i o n  v i a  De e p  L e a r n i n g

Low-latency is a crucial aspect of task offloading systems, 
especially when it comes to computationally expensive tasks. 
Several studies exist on characterization of the slow path 
in OpenFlow [25]; it was surprising to us, however, that 
a neglected aspect in the edge computing literature [2 ] is 
the latency minimization of the inter-process communication 
among offloading servers and devices, while passing through 
an edge network. To reduce such latency, we optimize the 
end-to-end path between the communicating parties by trying 
to predict not congested paths. In the rest of this section we 
explore the use of deep learning techniques to achieve this 
goal.

We exploit the congestion-agnostic limitation of traditional 
routing algorithms when applied in this context. These al-
gorithms do not consider how rapid network load changes 
may affect the data-intensive, latency-sensitive needs of edge 
computing applications. Relying on higher level TCP-based 
solutions for congestion and flow control, that by design are 
(mostly) end-to-end, is insufficient. The path computed by 
standard routing protocols is computed by taking into account 
parameters such as the nominal interface speed.

The intuition behind our proposed solution is that collab
orative traffic steering should be able to identify and avoid 
congestion situations, without using TCP or other active queue 
management approaches such as Explicit Congestion Notifi-
cation (ECN). By collaborative we mean requiring (a priori 
or on demand) the participation of multiple network elements 
in the routing decision process. The information used by our 
protoype is the number of incoming packets on any given edge 
switch or router (node). The idea is that the packet distribution 
on the nodes reflects the network conditions. For example, a 
high packet count on a router is an indicator of a big load that 
is probably going to lead to packet loss and retransmission. 
We also have to consider that the distribution of packets on 
the routers is influenced by the routing algorithm: nodes that 
appear in multiple paths will probably have a higher count 
than less traversed nodes because they forward packets for 
multiple source-destination pairs. I f  routers were able to see 
all possible outcomes of a routing protocol in a network and 
extract the consequent traffic patterns, they could try to choose 
the less busy path.

Of course checking all possible outcomes is not scalable; 
it is known, however, that deep learning models use pruning 
search space strategies. We compare performance of multiple 
deep learning models by emulating a small network with ten 
routers, and using input given by the widely deployed routing 
algorithm Open Shortest Path First (OSPF) for training the 
deep learning component. We vary the network configurations 
and record the traffic patterns. A  posteriori, we use the 
collected data and the routing choices taken by the routing 
protocol to build a model capable of predicting each hop of the 
path, from each source to each destination. With our approach, 
we are correlating traffic patterns and routing decisions; this

correlation allows our system to dynamically adapt to the 
network conditions, a behavior that would not occur with a 
traditional routing algorithm.

The following section describes that steps we followed to 
converge to the final deep learning model.

A. Data Generation Process

The majority of datasets available to the community refer to 
traffic captured in datacenters, non-edge networks, or do not 
contain details about the underlying topology or the logged 
routing strategies. For these reasons, we created our own 
novel dataset by means of a network emulation strategy that 
considers all the elements we require to train our deep learning 
system. This includes (i) the network topology, (ii) the routing 
information, and (iii) the packet count on each node. The 
final dataset consists of a collection of samples containing, 
at any given time, the packet count together with the routing 
decision that was made. During the data generation process, 
the network is torn down and rebuilt with new link speeds, 
so that the OSPF configurations are different. We generated a 
dataset of 17,696 samples; we then used 85% of these samples 
as a training set, and the remaining 15% was used as a test 
set.

R1 R2

routers. Each router runs a next-hop predictor based on LSTM.

B. Deep Learning Model

The deep learning model chosen for this work is a Long- 
Short Term Memory (LSTM) Recurrent Neural Network, a 
class of neural networks capable of using sequential informa-
tion and to exhibit a dynamic temporal behavior. We wanted 
our model to learn the correlation between changes in the 
packet distribution and routing decisions over time.

Given the computational complexity of standard routing 
algorithms, training a single model to route all traffic becomes 
quickly infeasible as the network between mobile user and 
offloading server grows in size. To this aim, we trained a 
separate deep learning model for every source-destination pair, 
resulting in multiple simpler i.e., smaller, models. Assuming 
that each router only has a single outgoing interface, training 
an edge network with N  routers w ill result in N (N  -  1) deep 
learning models. Each model can be trained independently, 
making the training phase easy to parallelize.
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1) Modeling Input and Output of the RNN: Supervised 
learning involves a sample space X  and a label space Y , with 
the neural network responsible for learning a mapping function 
from values in X  to labels in Y , for each (xi ,yf) G X  x  Y . 
Our input/output modeling follows an approach similar to the 
one described in [26]. Given a set of outer routers O, and the 
set of all the routers in the edge network R, for each source- 
destination pair (s,d) G R x  O, the deep learning system 
learns the next hop for destination d.

The easiest way to model the input is an N -dimensional 
array, with N  being the number of routers in the network. 
Such an array is indexed by the router identifier, so the i-th 
element of the array is the number of incoming packets on 
router i. The output is modeled as a one-hot encoded 1 router 
indexed array, with a 1 in the position indexed by the predicted 
next hop; the size of the output is again equal to the number 
of routers in the network.

2) Choosing the Right Neural Network Architecture: In the 
cross-validation phase, we have tested several configuration 
by trying different combinations of hyperparameters such as 
the number of hidden layers and the number of neurons. As a 
result of this analysis, the model achieves the best performance 
when composed of: one input layer (10 neurons), two hidden 
layers (128 neurons ea., hyperbolic tangent activation 2), one 
output layer (10 neurons, sigmoid activation).

After choosing the correct LSTM architecture, we also apply 
proper input normalization and regularization techniques to 
improve the training performance in terms of both accuracy 
and loss.

III. Ev a l u a t i o n  Re s u l t s

In this section we evaluate our architecture prototype. A ll 
our code is available at [24]. Our evaluation focus is the core 
of our novel LSTM based algorithm to predict least congested 
offloading paths. First, we detail the technologies used in 
our evaluation testbed, then we discuss how our system can 
emulate OSPF by analyzing the results of the model training; 
finally we discuss the performance of the path prediction 
model as a substitute to more traditional routing algorithms. 
For a more complete analysis, we also implement the same 
Deep Neural Network (DNN) described in [26], a traditional 
neural network with four hidden layers and sixteen neurons in 
each layer. We use this network to compare the performance 
between DNNs and LSTM for the same task and understand 
i f  our hypothesis about RNNs is correct.

A. Evaluation Testbed

Our prototype has been implemented using the following 
technologies: we employ Ryu [28] as an SDN controller and 
Google Protocol Buffers [29] as serialization/deserialization 
abstract syntax notation. To emulate the edge network we used 
MiniNExT [22], a Mininet [30] extension layer that supports

1In machine learning, one-hot is a group of bits among which the legal 
combinations of values are only those with a single high bit and all the others 
low.

2The activation function defines the output of a node given an input [27].

Connectivity rate Validation accuracy
30% 99.1%
35% 98.5%
40% 84.6%
45% 88.8%
50% 86.7%

TABLE I: Impact of the network density on the average 
validation accuracy of the deep learning model (randomly 
connected physical networks).

routing engines and process identifier namespaces. Finally, we 
used Quagga [31] as a routing software suite and Keras [32] 
as a machine learning library.

B. Overwriting OSPF Routing Decisions

To evaluate its performance when overwriting OSPF rules, 
we observe the behavior of the path prediction system in a 
functioning network. In particular, we use the same topology 
(Figure 1) and traffic simulator adopted in the dataset gen-
eration phase; to ease the analysis process, all links are set 
to the same rate. Afterwards, we select a source router and 
a destination address and examine the difference in behavior 
between OSPF and our system.

In general, our emulated edge network shows a dynamic 
behavior, and our prototype predicted several paths for the 
same destination under different traffic conditions. In partic-
ular, we run four traffic simulations, each of them for fifteen 
minutes, varying the loss rate on the link chosen by OSPF 
to connect source and destination; at the same time, the path 
prediction component computes a new path every five seconds. 
Considering Figure 1, the selected target is (R1, R3), with the 
default path being R1, R2, R3 and the loss being varied on the 
link between R1 and R2. Being performance unaware, OSPF 
always chooses the same path, even when the link has (some) 
losses. To adapt the threshold, a human needs to manually 
reconfigure each router. Our system, on the contrary, shows 
the ability to behave dynamically by proposing four alternative 
paths.

By studying the system behavior in the presence of losses, 
it is possible to understand if  our model is able to detect 
and overcome these problems. We test loss rates of 0%, 
5%,10%, 15% and count the number of predictions different 
from OSPF (table II). With the loss set to 0%, 43% of the 
time the predicted path is different from OSPF; if  the loss 
is increased to 5%, the ratio of paths different from OSPF 
slightly rises to 45%, indicating that the system is able to 
detect the change. The same happens for a loss of 10%, with 
a much more noticeable improvement in the system behavior; 
63.5% of the proposed paths are in fact, different from the 
one chosen by OSPF. For the successive loss rate, equal to 
15%, the performance goes down a little with only a 59.5% 
different path ratio; the reasons for this loss in performance are 
discussed in section IV. The ideal behavior would be for the 
system to detect the link loss and consequently stop predicting 
paths going through the damaged link. In our analysis this 
happens only with a limited loss rate.

Table III compares the resulting retransmission rate of our
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Fig. 2: Routing policies retransmission comparison. Our 
proposed LSTM policy has the highest throughput by 
minimizing retransmissions in challenged scenarios.

Fig. 3: Comparison of the number of (severely) lossy 
links traversed by OSPF and LSTM.

Link loss Different path rate Same OSPF path rate
0% 43% 57%
5% 45% 55%
10% 63.5% 36.5%
15% 59.5% 40.5%

TABLE II: Path predictions different and equal to OSPF.
Routing Strategy

Link loss rate OSPF ECMP DNN LSTM
0% 0% 0% 0% 0%
5% 5% 2.50% 2.70% 2.75%
10% 10% 5% 7.70% 3.65%
15% 15% 7.50% 9% 6.07%

TABLE III: Routing strategies retransmission rate comparison.

system, OSPF, and Equal Cost Multi Path (ECMP) routing 
algorithms. The retransmission rate is computed by taking 
into account how many times traffic would pass through the 
leaky link, considering two equal-cost paths for ECMP and the 
ratios in table III for our system. Overall, the LSTM policy 
that we propose has a lower retransmission rate than the other 
policies, therefore reaching a higher throughput. In Figure 2 
we compare these three policies (LSTM, ECMP and OSPF), 
showing the overhead needed to transmit the same amount of 
data. When there is no link loss, the three policies behave 
very similarly; however, as soon as a loss rate is introduced, 
the performance gap of our proposed LSTM policy increases 
with the loss rate.

C. Evaluation in Challenged Scenarios

We compared several routing policies in critical scenarios, 
where network connectivity is scarce. We decide to simulate 
a network in which statistically, half of the links are affected 
by a loss rate; we use the same loss rates of the previous 
experiments (5%, 10%, 15%), running each experiment ten 
times, and generating traffic between five different targets. The 
purpose of this experiment is to understand if  our approach 
is used with our LSTM policy, has higher resiliency than 
OSPF when up to half of the edge network are unavailable. 
To compare the performance of the two routing policies, we 
counted the number of times the lossy links were selected 
(Figure 3). The chart compares the total number of defective 
links traversed in all runs for each link loss rate. In this case, 
the LSTM policy does not introduce any significant advantage 
under critical circumstances; overall, the performance of the 
two policies are similar, with OSPF performing even better

when the link loss rate is set to 10% and 15%. The reasons 
for the poor performance of the LSTM policy are due to our 
training approach; our LSTM policy predicts alternative paths 
based on the network conditions, proposing alternative paths. 
Given that half of the links in the network are affected by loss, 
the majority of the proposed alternative paths pass through 
these links, resulting in poor performance. In Section IV we 
give a few hints on how to overcome such limitations of these 
and other deep learning policies.

IV. Di s c u s s i o n  a n d  Co n c l u s i o n

In this work, we presented an approach for task and path 
offloading. Our main goal has been to provide a testing 
platform for task offloading and routing policies, in support 
of offloading tasks traversing challenged edge networks. Our 
virtual network testbed prototype based on MiniNExT found 
interesting results and was released to allow the community 
to compare novel or existing routing policies in different edge 
computing scenarios [24].

In our prototype evaluation, we focused on a specific traffic 
offloading policy tradeoff. In particular, we compared deep 
learning based routing policies with ECMP and OSPF. Our 
policy tradeoff analysis exposed advantages and challenges 
of using deep learning as alternative to traditional routing 
algorithms, when deployed on a single node and not as 
centralized (SDN) controller application.

Despite the limited size of our dataset, our initial policy 
tradeoff analysis results have shown how a cooperative routing 
policy may lead to better performance than traditional routing 
methods at the edge, especially with unstable network con-
ditions such as those that arise within an IoT network trying 
to operate at the network edge during a natural or man-made 
disaster.

A c k n o w l e d g m e n t

This work has been supported by the National Science 
Foundation awards CNS-1647084 and CNS-1836906.

Re f e r e n c e s

[1] M. Sharifi, S. Kafaie, and O. Kashefi, “A survey and taxonomy of cyber 
foraging of mobile devices,” IEEE Communications Surveys Tutorials, 
vol. 14, no. 4, pp. 1232-1243, Fourth 2012.

[2] J. Wang, J. Pan, F. Esposito, P. Calyam, Z. Yang, and P. Mohapatra, 
“Edge cloud offloading algorithms: Issues, methods and perspectives,” 
Oct 2018.

Authorized licensed use limited to: Saint Louis University. Downloaded on October 05,2020 at 19:44:54 UTC from IEEE Xplore.  Restrictions apply. 



15th International Conference on Network and Service Management (CNSM 2019)

[3] G. Castellano, F. Esposito, and F. Risso, “A distributed orchestration 
algorithm for edge computing resources with guarantees,” in IEEE In
ternational Conference on Computer Communications, ser. INFOCOM, 
2019.

[4] A. Crutcher, C. Koch, K. Coleman, J. Patman, F. Esposito, and 
P. Calyam, “Hyperprofile-based computation offloading for mobile edge 
networks,” in The 14th International Conf, on Mobile Ad-hoc and Sensor 
Systems (IEEE MASS 2017), Orlando, USA, Oct. 2017.

[5] A. Ventrella, F. Esposito, and A. Grieco, “Load profiling and migration 
for effective cyber foraging in disaster scenarios with formica,” in IEEE 
4th Conf. on Network Softwarization (NetSoft 2018), June 2018.

[6] F. Esposito, A. Cvetkovski, T. Dargahi, and J. Pan, “Complete edge 
function onloading for effective backend-driven cyber foraging,” in 2017 
IEEE 13th International Conference on Wireless and Mobile Computing, 
Networking and Communications (WiMob 2017), Rome, Italy, Oct. 2017.

[7] J. Franz, T. Nagasuri, A. Wartman, A. Ventrella, and F. Esposito, “Re-
unifying families after a disaster via serverless computing and raspberry 
pis (demo),” in IEEE Inter. Symposium on Local and Metropolitan Area 
Networks (LANMAN 2018), Washington, DC, June 2018.

[8] M. Chiesa, G. Retvari, and M. Schapira, “Lying your way to better 
traffic engineering,” ser. CoNEXT, 2016.

[9] D. Chemodanov, P. Calyam, and F. Esposito, “A near optimal reli-
able composition approach for geo-distributed latency-sensitive service 
chains,” in IEEE International Conference on Computer Communica
tions, ser. INFOCOM, 2019.

[10] F. Esposito, J. Wang, C. Contoli, G. Davoli, W. Cerroni, and F. Callegati, 
“A behavior-driven approach to intent specification for software-defined 
infrastructure management,” in IEEE Conference on Network Function 
Virtualization and Software Defined Networks, ser. NFV-SDN, 2018.

[11] B. Eriksson, R. Durairajan, and P. Barford, “Riskroute: A framework 
for mitigating network outage threats,” in Proceedings of the Ninth ACM 
Conference on Emerging Networking Experiments and Technologies, ser. 
CoNEXT ’13. ACM, 2013, pp. 405-416.

[12] D. D. Clark, C. Partridge, J. C. Ramming, and J. T. Wroclawski, “A 
knowledge plane for the internet,” in Proceedings of the 2003 conference 
on Applications, technologies, architectures, and protocols fo r computer 
communications. ACM, 2003, pp. 3-10.

[13] J. Jiang, V. Sekar, I. Stoica, and H. Zhang, “Unleashing the potential of 
data-driven networking,” in International Conference on Communication 
Systems and Networks. Springer, 2017, pp. 110-126.

[14] A. Mestres, A. Rodriguez-Natal, J. Carner, P. Barlet-Ros, E. Alarcon, 
M. Sole, V. Muntes-Mulero, D. Meyer, S. Barkai, M. J. Hibbett 
et al., “Knowledge-defined networking,” ACM SIGCOMM Computer

[21] R. Mayer and H. Jacobsen, “Scalable deep learning on distributed infras-
tructures: Challenges, techniques and tools,” CoRR, vol. abs/1903.11314, 
2019. [Online]. Available: http://arxiv.org/abs/1903.11314

Communication Review, vol. 47, no. 3, pp. 2-10, 2017.
[15] D. Chemodanov, F. Esposito, A. Sukhov, P. Calyam, H. Trinh, and 

Z. Oraibi, “Agra: Ai-augmented geographic routing approach for iot- 
based incident-supporting applications,” Future Generation Computer 
Systems, 2017.

[16] R. Boutaba, M. A. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar, 
F. Estrada-Solano, and O. M. Caicedo, “A comprehensive survey on 
machine learning for networking: evolution, applications and research 
opportunities,” Journal of Internet Services and Applications, Jun 2018.

[17] T. T. Nguyen and G. Armitage, “A survey of techniques for internet 
traffic classification using machine learning,” IEEE Communications 
Surveys & Tutorials, vol. 10, no. 4, pp. 56-76, 2008.

[18] V. Bui, W. Zhu, A. Pescape, and A. Botta, “Long horizon end-to-end 
delay forecasts: A multi-step-ahead hybrid approach,” in 2007 12th IEEE 
Symposium on Computers and Communications, July 2007.

[19] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video stream-
ing with pensieve,” in Proceedings of the Conference of the ACM Special 
Interest Group on Data Communication. ACM, 2017, pp. 197-210.

[20] A. Scalingi, F. Esposito, W. Muhammad, and A. Pescape, “Scalable 
provisioning of virtual network functions via supervised learning,” in 
2019 IEEE Conference on Network Softwarization (NetSoft) (NetSoft 
2019), Paris, France, Jun. 2019.

[22] “MinineXt,” http://mininext.uscnsl.net/.
[23] B. Schlinker, H. Kim, T. Cui, E. Katz-Bassett, H. V. Madhyastha, 

I. Cunha, J. Quinn, S. Hasan, P. Lapukhov, and H. Zeng, “Engineering 
egress with edge fabric: Steering oceans of content to the world,” in 
Proc. of the Conference of the ACM Special Interest Group on Data 
Communication, ser. SIGCOMM ’17, 2017, pp. 418-431.

[24] A. Gaballo and F. Esposito. ADELE code github.com/alegaballo/adele.
[25] R. Sanger, B. Cowie, M. Luckie, and R. Nelson, “Characterising the 

limits of the openflow slow-path,” in IEEE NFV-SDN, Nov 2018.
[26] N. Kato, Z. M. Fadlullah, B. Mao, F. Tang, O. Akashi, T. Inoue, and 

K. Mizutani, “The deep learning vision for heterogeneous network traffic 
control: Proposal, challenges, and future perspective,” IEEE Wireless 
Communications, vol. 24, no. 3, pp. 146-153, 2017.

[27] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, 2016.
[28] “Ryu,” https://osrg.github.io/ryu/.
[29] “Google protocol buffers,” developers.google.com/protocol-buffers/.
[30] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid 

prototyping for software-defined networks,” in Proceedings of the 9th 
ACM SIGCOMM Workshop on Hot Topics in Networks. ACM, 2010.

[31] “Quagga,” http://www.nongnu.org/quagga/.
[32] “Keras the python deep learning library,”  https://keras.io/.

Authorized licensed use limited to: Saint Louis University. Downloaded on October 05,2020 at 19:44:54 UTC from IEEE Xplore.  Restrictions apply. 


