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Abstract

Synaptic vesicles fuse with the plasma membrane to release neurotransmitter following an action
potential, after which new vesicles must ‘dock’ to refill vacated release sites. To capture synaptic
vesicle exocytosis at cultured mouse hippocampal synapses, we induced single action potentials
by electrical field stimulation then subjected neurons to high-pressure freezing to examine their
morphology by electron microscopy. During synchronous release, multiple vesicles can fuse at a
single active zone. Fusions during synchronous release are distributed throughout the active
zone, whereas fusions during asynchronous release are biased toward the center of the active
zone. After stimulation, the total number of docked vesicles across all synapses decreases by
~40%. Within 14 ms, new vesicles are recruited and fully replenish the docked pool, but this
docking is transient and they either undock or fuse within 100 ms. These results demonstrate that

recruitment of synaptic vesicles to release sites is rapid and reversible.
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Synaptic vesicle fusion takes place at a specialized membrane domain: the active zone'. The
active zone is organized into one or more release sites, individual units at which a single synaptic
vesicle can fuse”. Ultrastructural studies demonstrate that some synaptic vesicles are in contact
with the plasma membrane in the active zone and define the ‘docked’ pool®*. Since both docking
and physiological readiness require engaged SNARE proteins*®, docked vesicles are thought to
represent fusion-competent vesicles. In fact, previous studies demonstrate that docked vesicles
are partially depleted following stimulation’ °. However, it is not clear how release sites are
refilled by vesicles to sustain neuronal activity.

Docking of vesicles to refill release sites must be rapid. A single action potential
consumes some docked vesicles, bursts of action potentials would be expected to deplete all
docked vesicles. Nevertheless, some central synapses can fire at a frequency of one kilohertz'.
Studies using electrophysiology and electron microscopy indicate that recovery of the docked

and readily-releasable vesicle pools is slow —about 3 seconds’*!!

. However, an emerging body
of work suggests that vesicle replenishment constitutes several kinetically and molecularly
distinct steps, some of which may occur on very fast timescales. In two notable recent examples,
modeling based on physiological data predicted that vesicles reversibly transition from
“replacement sites” to “docking sites” within milliseconds of an action potential'>"*, and
experiments with flash-and-freeze electron microscopy demonstrated that Synaptotagmin-1
mutants with docking defects can be reversed by binding calcium’. These fast vesicle docking
events have been proposed to correspond to calcium-induced changes between loose and tight
assembly of the SNARE complex, which may be both very fast and reversible'*. However, there

is currently no ultrastructural evidence for such fast and reversible docking steps at wild-type

synapses.
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To characterize the ultrastructure of vesicle docking and fusion at active zones, we
developed a method to trigger single action potentials by electrical stimulation followed by high-
pressure freezing at defined time points called ‘zap-and-freeze’. Using this approach, we first
characterized the spatial and temporal organization of fusion sites following a single action
potential. We observed that during synchronous release, multiple vesicles can fuse per action
potential within the same active zone, even in physiological extracellular [Ca*"]. Fusions during
synchronous release occur throughout the active zone, but during asynchronous release are
concentrated at the center of the active zone. We then followed the fate of docked vesicles.
Unexpectedly, ~40% of docked vesicles are lost immediately after stimulation, both due to
fusion and, potentially, undocking. These are then fully replaced by newly docked vesicles
within 14 ms, perhaps to counteract short-term depression. This transient docking requires
residual calcium in the terminals and only lasts for 100 ms or less (Extended Data Fig. 1). This
sequence of rapid redocking and subsequent slow undocking may underlie facilitation.

Results

Zap-and-freeze captures synaptic vesicle fusion

To capture exocytosis with millisecond precision under physiologically-relevant conditions, we
developed a system to electrically stimulate neurons before high-pressure freezing: a small,
portable field-stimulation device with a photoelectric control switch (Fig. 1a). This device can be
charged, then loaded into a high-pressure freezer and discharged with a flash of light to generate
a 1 ms 10 V/cm stimulus before freezing at defined time points (see Methods).

To test whether this device is functional, we performed FM 1-43 loading experiments in
mouse hippocampal neurons cultured on 6-mm sapphire disks. The lipophilic FM dye is taken up

by compensatory endocytosis after synaptic vesicle fusion'’. To prevent destaining by
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exocytosis, we applied Pitstop 2 (30 pM) 2 minutes prior to loading. Pitstop 2 is a nonspecific'®
but nonetheless potent inhibitor of clathrin-mediated vesicle formation'’. The dye is taken up
during clathrin-independent ultrafast endocytosis but will be trapped in synaptic endosomes
which are resolved by clathrin-mediated budding'®. Neurons were stimulated 10 times at 20 Hz,
each pulse lasting 1 ms, which induces a single action potential. Following stimulation and
fixation, presynaptic terminals were strongly labeled with FM 1-43 (Fig. 1b-c; 3-fold increase
relative to no-stim control, p = 0.003, see Extended Data Figure 2¢ for full fields of view from
micrographs), suggesting that the stimulation device triggers action potentials and synaptic
activity.

With the stimulation device validated, we next tested whether exocytic intermediates can
be captured by high-pressure freezing. Experiments were performed at 37 °C and 1.2 mM
external calcium, roughly the [Ca*"] of the interstitial fluid in the brain'’. We applied a single 1
ms pulse, which likely triggers a single action potential®’. Cells were frozen 5 ms after
stimulation (Fig. 1d-f), which is the earliest possible time point given the mechanics of the high-
pressure freezer (see Methods). At 5 ms we may miss many fusion events that have already
collapsed into the plasma membrane. However, previous reports indicate that full collapse of all
vesicles takes at least several milliseconds'”’. Thus, we reasoned that 5 ms may be early enough
to capture fusion. Samples were then prepared for electron microscopy, and images were
acquired and quantified blind (see Methods). We defined the active zone as the membrane
domain directly apposed to the postsynaptic density (Fig. 1e-f). We quantified any active zone
membrane deflections greater than 10 nm by visual inspection as fusion pits. Although vesicle
membranes may translocate by a few nanometers as they collapse, we consider the locations of

pits as the sites of fusion, since it has been reported previously that pits are only visible at release
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sites and are not accompanied by visible deflections throughout the plasma membrane'”’. If
similar deflections are found outside the active zone, they are measured but considered
endocytic’ or membrane ruffles and thereby not included in the data (see Extended Data Fig. 2a-
b for examples of features quantified as pits or not). We also counted the number of vesicles that
were 0 to 100 nm above the plasma membrane within the area of the active zone and classified
those that appeared to be in physical contact with the plasma membrane as docked (0 nm from
the plasma membrane). In stimulated samples 18% of the synaptic profiles exhibited exocytic
pits in the active zone (57/ 316), whereas in unstimulated cells only 2% of the synaptic profiles
exhibited pits (6/ 275), and in cells in which action potentials were blocked by tetrodotoxin only
1% of the profiles contained pits (2/256) (Fig. 1f). Thus, the device induces bona fide action
potentials and vesicle fusion, which can be reliably captured in electron micrographs. By analogy

to the previously-developed flash-and-freeze®, this technique is called ‘zap-and-freeze’.

Multivesicular release is prominent in cultured hippocampal neurons

It has long been debated whether univesicular or multivesicular release predominates®’.
From single synaptic profiles, 2% (6/316 synaptic profiles) exhibited multiple pits. Although
rare, the presence of multiple pits in the same image indicates that more than one vesicle in an
active zone can fuse after a single action potential, an event known as multivesicular release?'.
However, the frequency of such events cannot be determined from single sections, but rather
requires reconstruction of whole active zones from serial sections (Fig. 2). To quantify synaptic
vesicle fusions per synapse, cultured hippocampal neurons were stimulated in 1.2 mM Ca*" at 37

°C and frozen 5 ms after stimulation. Over 60 active zones were reconstructed for each condition

and morphometry performed blind (Extended Data Fig. 3a for example micrographs). In
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unstimulated samples, 3% of the synapses contained a pit (2/62), whereas in stimulated samples
35% of the synapses exhibited at least one pit (24/68, Fig. 2a). Of those with at least 1 pit, 38%
of active zones (9/24) contained multiple pits. All pits ranged from the size of a synaptic vesicle
to expected sizes of vesicles at late stages of collapse into the plasma membrane (Fig. 2d; full
range of pit widths at base, 24-89 nm). These results suggest that multivesicular release is

prominent in cultured hippocampal neurons.

Multivesicular release is augmented by increasing extracellular calcium

To further assess the number of release sites per active zone, we enhanced release
probability by increasing the extracellular calcium concentration from 1.2 mM to 2 mM and 4
mM calcium. Fusion was assessed by the presence of pits in the reconstructed active zones.
Increasing the extracellular Ca®" concentration did not change the fraction of synapses with
visible fusions (Fig. 2a): at all calcium concentrations only ~35% of active zones exhibited
fusion pits (pits per active zone: 1.2 mM 35% 24/68; 2 mM 39% 26/66; 4 mM 34% 23/64; p =
0.87). However, increasing calcium did augment multivesicular release. In 1.2 mM Ca*" 38% of
active zones containing at least one fusion exhibited multivesicular release, in 2 mM Ca®" 58%
exhibited multivesicular release, and in 4 mM Ca*" 61% exhibited multivesicular release,
including one active zone with 11 pits (Extended Data Fig. 3). Thus, multivesicular release is
present at physiological calcium concentrations, and at elevated calcium concentrations is

responsible for the vast majority of vesicle fusion.
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Release events can be coupled

The presence of several pits within single active zones suggests that each synapse likely
has more than one release site. This is consistent with the localization pattern of many proteins
essential for neurotransmitter release, including calcium channels. These proteins are clustered,

2224
. To assess the

and several clusters seem to be distributed throughout the active zone
distribution of release sites within active zones at the ultrastructural level, we mapped the
locations of docked vesicles and exocytic pits (Extended Data Fig. 4a-b). At low calcium
concentrations, fusing vesicles were often found adjacent to each other (Extended Data Fig. 2, 3),
suggesting that neighboring vesicles fuse simultaneously (Fig. 2e). At 1.2 mM Ca*" pits were
often within ~100 nm of each other (median 106 nm, n = 11 pairs). With increasing calcium
concentrations, adjacent fusions were still observed but additional pits were dispersed across the
active zone (Fig. 2e; 2 mM Ca2+, median 171 nm, n = 47 pairs; 4 mM Ca®", median 265 nm, n =
160 pairs). At 4 mM Ca®’, the median distance between pits was roughly similar to the distance
between docked vesicles (Fig. 2f, docked = 229 nm; pits = 265 nm; p = 0.02). Thus, at high
calcium concentrations, release sites act independently; that is, there is neither obvious coupling
of release sites across an active zone, nor evidence of lateral inhibition®. By contrast, at low

calcium concentrations, adjacent vesicles tend to fuse together, possibly via a common calcium

microdomain.

Docking is not a stable state

Docked vesicles are often referred to as release-ready vesicles®. Indeed, numbers of
docked vesicles were profoundly decreased after stimulation (Fig. 2¢, ‘all synapses’). However,

the degree of docked vesicle depletion is much more severe than expected from the number of
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pits we observed. At 1.2 mM Ca®’, the median number of docked vesicles decreased from 10 to 6
following stimulation for all synapses (p < 0.001; see Extended Data Fig. 4c-d for number of
docked vesicles and pits per 10000 nm” of active zone membrane). Therefore, an average of ~4
pits should be observed in every active zone, but only 35% of synapses contained exocytic pits.
To match the loss of docked vesicles, among these 35% there would need to be an average of
~10 vesicles fusions per active zone. However, in the active zones that contained pits, the median
number of pits was just 1. Likewise, at 2 mM Ca®", docked vesicles decreased from 12 to 8 at 2
mM (p < 0.001), the median number of pits was 2 per pit-containing active zone. At4 mM Ca*"
docked vesicles decreased from 11 to 6 (p < 0.001), the median number of pits was 2 per pit-
containing active zone. Increasing the external calcium concentration did not augment the
percentage of active zones that respond to an action potential (~35 %). Thus, we either missed a
massive number of fusions (>80% to account for the loss of docked vesicles) or observed
activity-dependent undocking of synaptic vesicles'*.

Interestingly, synapses that did not have pits also exhibited a profound and roughly equal
depletion of docked vesicles (Fig. 2¢ ‘w/o pits’ vs ‘w/pits’). One could imagine that non-
responding synapses were just smaller and initially had fewer docked vesicles®®. However, the
active zone size was comparable between those with and without pits (Extended Data Fig. 4e).
The absence of pits in these synapses suggests that these synapses are inactive, and the loss of
docking at these synapses is not just the result of fusions that we failed to detect. These data
imply that docking is not a stable state and that vesicles can stay docked, fuse, or potentially

undock upon stimulation.

Fusing vesicles at 11 ms represent asynchronous release
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To determine if vesicles continue to fuse after the 5 ms time point and how these release
sites are reoccupied on a short time scale, we performed morphometry on synaptic profiles
frozen 5, 8, 11, and 14 ms after an action potential (Fig. 3a-f, Extended Data Fig. 5a-b; 1.2 mM
Ca®", 37 °C). Pits peaked at 5 and 8 ms then declined to baseline by 14 ms (Fig. 3g; pits per
profile: no stim 0.02, 5 ms 0.21, 8 ms 0.19, 11 ms 0.09, 14 ms 0.03; see Extended Data Fig. 5f
for sizes of active zone sizes and Extended Data Fig. 5g for number of pits per 100 nm of active
zone). The depth of pits at 5 ms was variable (Fig. 3h; median = 16.2 nm, interquartile range:
13.2 to 22.7 nm), suggesting that some pits have collapsed by this time. Unexpectedly, pits at 11
ms were slightly deeper than those at 5 ms (Fig. 3h; median at 5 ms 16.2 nm; at 11 ms 21.7 nm;
p =0.05). The presence of deep pits suggests that fusion of these vesicles may have initiated
later, and may therefore represent asynchronous release®’.

To specifically test for asynchronous fusion, we assayed exocytosis in the presence of the
slow calcium chelator EGTA-AM (25 uM). Intracellular EGTA has a minor effect on
synchronous release at most synapses> because the delay between calcium influx and vesicle
fusion is less than a millisecond”. By contrast, it abolishes slower, asynchronous release™’. In
controls treated with DMSO, pits were apparent in active zone profiles at 5 and 11 ms (Fig. 4a;
pits per synaptic profile: at 5 ms 0.16 pits; at 11 ms 0.14 pits; see Extended Data Fig. 6a for more
micrographs, 5c for active zone sizes, and Se for number of pits per 100 nm of active zone).
Treatment with 25 UM EGTA-AM had no effect at 5 ms, but eliminated fusion events at 11 ms
(Fig. 4b-c; pits per synaptic profile: 5 ms 0.18 pits; 11 ms 0.04, pits, p<0.001; see Extended
Data Fig. 6b for more micrographs). Thus, collapse of newly-fused vesicles must be rapid —

less than 11 ms; the speed of collapse is thus faster than our previously calculated time

10
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constant of 20 ms’. These data demonstrate that fusion events observed at 5 and 11 ms

represent synchronous and asynchronous release, respectively.

Asynchronous fusion is concentrated at the center of the active zone

Vesicle fusions occurring during synchronous release were found throughout the active
zone, with a slight depletion at the center, in 3D reconstructions of synapses (Fig. 2b). Docked
vesicles were generally found throughout the active zone without bias toward the center or edge
(Supplementary Table 1 for details; Fig. 2b). Following stimulation, the distribution of docked
vesicles within the active zone was unchanged (Fig. 2b; p > 0.1 for each). However, pits were
slightly less abundant at the center at all calcium concentrations (Fig. 2b), suggesting that
vesicles at the center are initially less fusion-competent.

In single profiles, a lack of bias was also observed during synchronous release; pits and
docked vesicles at 5 and 8 ms were not biased toward the center or edge of the active zone (Fig.
31, 4d, and Extended Data Fig. 5¢; 5 ms and 8 ms, p > 0.4 in all cases). By contrast, pits at 11 ms
and 14 ms were found near the center of the active zone more frequently, and these distributions
were significantly different from those at 5 and 8 ms (Fig. 31, p = 0.004 and Fig. 4d, p < 0.001).
Together, these data argue that vesicles fuse throughout the active zone during synchronous

release, whereas asynchronous release is concentrated near the center of the active zone.

Vesicles transiently dock after synchronous release

As synaptic vesicles are consumed during synchronous and asynchronous release, new
vesicles must be recruited to the active zone. During synchronous fusion, docked vesicles

across all synaptic profiles were reduced by ~40% (Fig. 5a-b; docked vesicles per profile: no

11
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stim 1.6 vesicles; 5 ms 0.9 vesicles; 8 ms 1.0 vesicles; p < 0.001; see Fig. 2¢ for 3D analysis
at 5 ms; see Extended Data Fig. Sh for number of docked vesicles per 100 nm of active zone).
During this time, the number of vesicles close to the membrane but not docked (between 6-10
nm) increased slightly (Fig. Sc, Extended Data Fig. 6d), possibly reflecting vesicles undocked
from the active zone (Fig. 2¢) or recruited from the cytoplasm. During asynchronous fusion,
docked vesicles were not further depleted despite ongoing fusion, implying that synaptic
vesicles are recruited during this process (Fig. 5a, 11 ms time point; 1.0 docked vesicles per
synaptic profile; p > 0.9 vs 5 ms and 8 ms; p <0.001 vs no stim). Strikingly, at 14 ms docked
vesicles were fully restored to pre-stimulus levels (Fig. 5a; 1.4 docked vesicles per profile, p
> 0.9 vs no stim).

Replacement of many forms of release-ready vesicles is known to depend on

. 123132
calcium =7

. We tested whether this ultrafast docking was sensitive to intracellular calcium
chelation. Cells were treated with EGTA-AM for 30 min, stimulated and then frozen. EGTA
treatment had no effect on the number of docked vesicles in unstimulated samples. Nor did
EGTA alter the number of vesicles docked at 5 ms or 11 ms compared to the control (Fig. 5b,
no-stim control 2.0; 5 ms time point 1.2; 11 ms time point 1.1 docked vesicles per synaptic
profile; p > 0.2 vs DMSO control for each; see Extended Data Fig. 6f for number of docked
vesicles per 100 nm of active zone). However, at 14 ms docked vesicles no longer recovered
to baseline (Fig. 5b, 14 ms time point 1.1 docked vesicles per synaptic profile; p > 0.9 vs 5 ms
and 11 ms; p <0.001 vs no stim; p <0.001 vs DMSO 14 ms). These data indicate that the fast
recovery of docked vesicles occurring during vesicle fusion is calcium-dependent.

We previously observed that docked vesicle replenishment was slow: docked vesicles

were depleted by 50 ms and returned to the baseline by 10 s with a time constant of 3.8 s’.

12
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Similarly, using zap-and-freeze, docked vesicles were reduced by 30% at ~100 ms (Fig. 5d;
docked vesicles per synaptic profile: no stim 1.8 vesicles; 105 ms 1.2 docked vesicles; p <
0.001). Docked vesicle levels were still 25% lower than unstimulated samples 1 s after
stimulation; docking was fully recovered by 10 s (Fig. 5e; docked vesicles per synaptic
profile: no stim 1.71; 100 ms 1.0; 1 s 1.37; 10 s 1.66; p < 0.001 between no stim and 105 ms.
p = 0.002 between no stim and 1 s, p > 0.9 between no stim and 10 s). Therefore, the fast,
calcium-dependent replenishment of docked vesicles observed at 14 ms is temporary and
appears to be lost within 100 ms; transient docking is followed by slower docking process that
requires 3-10 s. Transient docking’ could provide fusion-competent vesicles for asynchronous

release’” and counteract synaptic depression during trains of stimuli’.

Discussion
We characterized docking and exocytosis of synaptic vesicles at hippocampal synapses in
ultrastructural detail. The findings here have implications for multivesicular release, the spatial

organization of release sites, and their refilling during short-term plasticity.

The presence of multiple vesicles docked at a synapse alone does not imply that multiple
vesicles can fuse at an active zone. In fact, it was long thought that only one vesicle could fuse
in response to an action potential’'~*. These studies argued that responses at synapses are mostly,
or even exclusively, uniquantal. For proponents of univesicular release, examples of recordings
of multivesicular events were dismissed as being caused by multiple active zones impinging on
the cell. Proponents of multiquantal release at single active zones argued that observations of

uniquantal events were due to saturation of the postsynaptic receptor field, and multiquantal

13
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release could be observed under circumstances in which saturation could be avoided **>°. By
reconstructing synapses from serial sections immediately after a single action potential, we were
able to capture multiple vesicles fusing in a single active zone. At4 mM calcium, we observed
up to 11 vesicles fusing in a single active zone. The probability of fusion at a release site appears
to be low even in elevated calcium, but because active zones have ~10 docking sites, multiple
vesicles can be consumed by a single action potential.

Importantly, fusing vesicles tended to be close (<100 nm) to one another at low calcium
concentrations, and were in fact often adjacent. Adjacent fusions can also observed during
spontaneous activity: in a previous study, 20% of synaptic profiles exhibiting spontaneous
fusions comprised adjacent fusions, suggesting that fusing vesicles are coupled even in the
absence of stimulation®’. It is likely that coupled fusion is being driven by an active calcium
channel or calcium microdomain that acts on locally docked vesicles®~*°.

In contrast to the microdomains that drive synchronous release, the residual calcium that

triggers asynchronous release is more broadly distributed and longer-lasting”*°

. This implies
that there would be no spatial specificity for asynchronous fusion. However, we found that
asynchronous release occurs preferentially near the center of the active zone. Several molecules,
including VAMP4*'| Synaptotagmin-7**, SNAP23* and Doc2*, have been implicated in
asynchronous release, and these molecules could target vesicles to release sites near the center of
an active zone. Alternatively, the locations of voltage-gated calcium channel clusters within an
active zone may account for this spatial arrangement. In both Caenorhabditis elegans® and
Drosophila melanogaster*® neuromuscular junctions, different isoforms of Unc13 position

vesicles at different distances from the dense projection, where calcium channels reside’’. These

clusters were proposed to form independent release sites for fast and slow phases of

14
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neurotransmission. In conclusion, while the molecular mechanism remains uncertain,
synchronous and asynchronous release are concentrated in different regions of the active zone.

A profound decrease in docking was observed after stimulation. The fusions we
observed can only account for ~30% of the decrease in docking. Moreover, docking is also
reduced in synapses with no visible fusions. The loss of docked vesicles is accompanied by a
slight increase in vesicles 6-10 nm from plasma membrane, suggesting that these vesicles may
still be tethered to the membrane by a loosely assembled SNARE complex, synaptotagmin, or
Munc13*. However, it is equally possible that more vesicles are recruited to this region from the
cytoplasm. Furthermore, the increase in vesicles 6-10 nm from the plasma membrane also cannot
fully account for the massive loss of docked vesicles, leaving their fate uncertain. Therefore, we
conclude that either ~40% of docked vesicles across all synapses fuse after a single action
potential, vesicles become undocked after a single action potential, or some combination of the
two.

At 14 ms after the stimulation, docking levels are fully restored to pre-stimulus levels.
But then by 100 ms after stimulation, docking is again reduced to the levels observed
immediately after stimulation— thus the docking that occurs 10-14 ms after the action potential is
transient. We did not observe transient docking in our previous ‘flash-and-freeze’ experiments’,
likely because the generation and timing of action potentials using channelrhodopsin is
unreliable. However, the more prolonged reduction in docked vesicles observed here at 100 ms
and 1 s is consistent with our previous results’. Full and stable restoration of docking was not
finished until 3-10 s” after stimulation, consistent with the slow phase of recovery of the
physiological readily-releasable pool''. Thus, there is a rapid docking of vesicles after

stimulation, but this docking is only transient.
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What purpose could fast, but ephemeral, vesicle recruitment serve? Quite likely it is to
maintain robust synaptic transmission during trains of stimuli. Recent electrophysiological
studies of a cerebellar ‘simple synapse’ comprised of a single active zone indicate that an

1213 possibly corresponding to

undocked population of vesicles may occupy a ‘replacement site
our 10 nm pool. Based on modeling, vesicles in this pool are rapidly mobilized to dock at a
release site. However, these docked vesicles become undocked and return to the replacement site
in the 100 ms following the action potential. Transient docking is likely mediated, at least in part,
by the calcium sensor Synaptotagmin-1°. When Synaptotagmin-1’s membrane-binding residues
were mutated, vesicle docking was reduced by 30-50%. Docking was restored by an action
potential, but had declined after 100 ms, consistent with the time course of docking that we
observed. Our data demonstrate that transient docking is not just a quirk of Synaptotagmin-1
mutants. Moreover, vesicles may undock before transiently redocking.

In summary, we have characterized the ultrastructure of a synapse during the first 14 ms
after an action potential using zap-and-freeze electron microscopy (Extended Data Fig. 1). An
action potential drives fusion of one or more vesicles, likely via a shared calcium microdomain.
It is presumed that such vesicles are docked to the membrane in a “tight-state” as recently
proposed'*. Stimulation is accompanied by a massive reduction of the docked pool, perhaps
even in synapses that do not exhibit fusion. One possibility is that calcium drives docked vesicles
into an undocked state, most likely by binding to a protein such as Munc13 or Synaptotagmin-1,
or possibly to a lipid such as PIP2. Alternatively, vesicles could be in a dynamic equilibrium
between fusion-competent (docked) and -incompetent states (undocked) at steady state near the

active zone membrane, and only those that are tightly docked coincident with calcium influx

would fuse. These undocked vesicles would still be associated with release sites but are tethered
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~10 nm from the membrane. Such vesicles are proposed to exist in a “loose-state” with
SNARES, Synaptotagmin-1, and Munc13 still engaged*. Between 8 and 14 ms, vesicles dock to
the membrane in a calcium-dependent manner, perhaps driven by Synaptotagmin-1° or the
calcium sensor for facilitation, Synaptotagmin-7*. Docking is occurring at the same time as
vesicles are undergoing asynchronous fusion and may represent vesicles undergoing ‘2-step’
release'®. Docking levels are fully restored 14 ms after stimulation; however, this docking is not
stable, and declines along with falling calcium levels. This time course is similar to that of
paired-pulse facilitation of synaptic transmission’’. Thus, synaptic vesicles at the active zone
exhibit surprisingly lively dynamics between docked and undocked states within milliseconds
after an action potential.
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Figure Legends

Figure 1. Zap-and-freeze captures synaptic vesicle fusion. a, Schematic and photograph of the
zap-and-freeze stimulation device. b, Epifluorescence micrographs of cultured mouse
hippocampal neurons pre-incubated in 30 uM Pitstop 2 in physiological saline (1 mM Ca*") for
2 min, then either not stimulated or subjected to 10x 1 ms pulses at 20 Hz, at 37 °C in FM 1-
43FX, followed by washing and fixation. Arrows indicate putative presynaptic terminals,
identified by their increased FM labeling relative to the rest of the axon, shape, and size. Scale
bar: 2 um. ¢, Quantification of the experiment described in b; n = 7 fields of view with 20 total
putative boutons quantified per image; p = 0.003, two-sided Welch’s t-test. N = 1 experiment.
Note that the images shown in b are crops of a small portion of the full field of view for each
image. Error bars indicate mean and 95% confidence interval. d, Experimental design for
stimulation and freezing, showing a diagrammatic excitatory postsynaptic current for reference
(based on **) . A 1-ms square pulse is applied to trigger a single action potential, then neurons are
frozen 5 ms after the beginning of the pulse (this is the earliest possible freezing time on the
high-pressure freezer, see Methods). e-f, Transmission electron micrographs of synapses from
neurons high-pressure frozen in 1.2 mM Ca”" either e without or f with tetrodotoxin (TTX),
which prevents action potential firing. Samples were frozen either with no stimulation (“no
stim”) or 5 ms after stimulation, which presumably initiates an action potential (“5 ms after
AP”). The arrow indicates a pit in the active zone, which is presumed to be a synaptic vesicle
fusing with the plasma membrane. The active zone is defined as the presynaptic plasma

membrane opposite the post-synaptic density (PSD). Scale bar: 100 nm. Electron micrographs
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are from experiments described in Figure 3 (from two experiments from separate cultures frozen
on different days, except for the data from TTX treatment without stimulation, which are from a
single experiment, and data from 5 and 8 ms, which are from three experiments). See

Supplementary Table 1 for full pairwise comparisons and summary statistics.

Figure 2. Multiple fusion events at single active zones after a single action potential.

a, Frequency distributions of number of fusion events 5 ms after an action potential (green) or
without stimulation (grey) in solutions of 1.2, 2, or 4 mM Ca** (1.2 mM, no stim, n =62; 1.2
mM, stim, n = 68; 2 mM, no stim, n = 64; 2 mM, stim, n = 66; 4 mM, no stim, n = 65; 4 mM,
stim, n = 64 reconstructed active zones). Insets show the proportion, out of the active zones that
contained at least 1 fusion event, that contained 1 fusion event (UVR, univesicular release) or
more than 1 fusion event (MVR, multivesicular release). Fusion events are defined as “pits” in
the active zone. Including all active zones from stimulated samples, number of pits was not
significantly different in different Ca®" concentrations (p = 0.88); including only synapses with at
least 1 fusion event, the number of pits was significantly greater at 4 mM than at 1.2 mM (p =
0.042). The proportion of synapses that contained at least 1 pit was not different between
samples stimulated in different Ca*" concentrations (chi-square = 0.2771, df =2, p = 0.87).

b, Cumulative relative frequency distributions of locations of docked vesicles (with and without
stimulation) and pits (after stimulation) within the active zone (n = 34, 54, 70 pits; 384, 768, 778
docked vesicles without stimulation; 384, 579, 423 docked vesicles with stimulation, ordered by
increasing Ca>" concentration). Locations are normalized to the size of the active zone and to the
expected density of objects within a circular area by taking the square of the distance of a pit or

vesicle to the center of the active zone divided by the half-length of the active zone: 0.25 would

25



571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

indicate a vesicle or pit halfway between the center and edge. Docked vesicles were not biased
toward the center or edge except for samples frozen in 4 mM Ca®*, which were biased toward the
center, and samples frozen after stimulation in 2 mM Ca®", which was biased toward the edge
(1.2 mM no stim, p = 0.26; 1.2 mM stim, p = 0.14; 2 mM no stim, p = 0.142; 2 mM no stim, 2
mM Ca®* stim, p =0.02; 4 mM Ca®" no stim, p < 0.001; 4 mM stim, p < 0.001). Vesicles fusions
not biased toward the center or the edge (p > 0.9 for 1.2 mM 2 mM, p = 0.05 for 4 mM). For
each calcium concentration, the median location of pits and docked vesicles in the active zone
after stimulation were similar to those of docked vesicles from no-stim controls (p > 0.9 for
each). ¢, number of docked vesicles in each active zone reconstruction 5 ms after an action
potential (green) or without stimulation (grey); same n as in a. The number of docked vesicles
was not significantly different between synapses with and without pits for each calcium
concentration (p > 0.1 for each comparison; Kruskal-Wallis test with post-hoc Dunn’s multiple
comparisons). Vesicles that appeared to be in contact with the plasma membrane were
considered docked. Error bars indicate median and interquartile range. d, Width at base of pits in
the active zone. Error bars indicate median and interquartile range. n = 34, 54, 70 pits, ordered by
increasing Ca>" concentration. e, Cumulative relative frequency distributions of distances from
center to center of pits within the same active zone, sorted by external calcium concentration.
Inset: same data, shown as dot plots. Although the median distance increases with increasing
calcium, the most tightly coupled pits are still present. Error bars indicate median and
interquartile range. f, Cumulative relative frequency distributions of distances from center to
center of pits and docked vesicles within the same active zone (n = 218 pairs of pits, 5438 pairs
of docked vesicles; see Methods for description of distance calculation). Pit-to-pit distances were

slightly greater than docked vesicle-to-docked vesicle distances (pits median: 224 nm, docked
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median: 265 nm; p = 0.02). Pairs of pits were from stimulated samples in 4 mM Ca”"; pairs of
docked vesicles were from the no-stim 4 mM Ca®" experiment. Scale bar: 100 nm. PSD: post-
synaptic density. AP: action potential. Error bars in ¢ indicate median and interquartile range. All
data are from two experiments from separate cultures frozen on different days.; experiments in
1.2 mM Ca®" were performed on separate days from a separate culture from the experiments in 2
mM and 4 mM Ca®". Number of pits and docked vesicles per active zone (a-b) was compared
using Kruskal-Wallis tests with post-hoc Dunn’s multiple comparisons test. For pits, full
pairwise comparisons were performed; for docked vesicles, only numbers of vesicles before and
after stimulation at each Ca®" concentration were compared. Proportions of active zone
reconstructions that contain at least one pit were compared using a chi-squared test. Bias of pit
locations toward the center or edge of the active zone was tested by comparing each group to a
theoretical median of 0.5, the expected median for a random distribution, using two-tailed one-
sample Wilcoxon signed-rank tests. Locations of pits, docked vesicles after stimulation, and
docked vesicles without stimulation were compared using a Kruskal-Wallis test followed by
post-hoc Dunn’s test between pits and no-stim docked vesicles and stim docked vesicles and no-
stim docked vesicles for each calcium concentration. P-values from all these pairwise and one-
sample comparisons were adjusted with Bonferroni correction accounting for the total number of
tests. The distances between pits in different calcium concentrations were compared using a
Kruskal-Wallis test followed by post-hoc Dunn’s test. The distributions of distances between pits
in the same active zone and docked vesicles within the same active zone were compared using a
two-sided Wilcoxon rank-sum test. See Supplementary Table 1 for full pairwise comparisons
and summary statistics. See Supplementary Table 2 for summary statistics of docked vesicle and

pit counts for each experimental replicate.
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Figure 3. Vesicle fusion during the first 14 ms after an action potential. a, Experimental
design for stimulation and freezing, showing a diagrammatic excitatory postsynaptic current for
reference (based on **). A 1-ms square pulse is applied to trigger a single action potential, then
neurons are frozen at the indicated time points after the beginning of the pulse. b-f, Example
transmission electron micrographs of synapses from neurons frozen either b without stimulation,
c¢S5ms,d 8 ms,e 1l ms,orfl14 ms after stimulation. Arrows indicate pits in the active zone,
which are presumed to synaptic vesicles fusing with the plasma membrane. g, Number of pits in
the active zone per synaptic profile (part of the synapse captured in a 2-D section) in the above
conditions, and without stimulation or 5 ms after stimulation in 1 uM tetrodotoxin (TTX,
purple); (no stim, n =274; 5 ms,n=315; 8 ms, n=343; 11 ms,n=192; 14 ms,n=211; TTX,
no stim, n = 121; and TTX, 5 ms, n = 255 synaptic profiles). Numbers of pits with and without
stimulation in TTX were not significantly different (p > 0.9). Numbers of pits at 14 ms and
without stimulation were not significantly different (p > 0.9). h, Depth of pits within the active
zone 5 ms (n = 65 pits), 8 ms (n = 66 pits), 11 ms (n = 17 pits), and 14 ms (n = 7 pits) after
stimulation. The depth of pits at different time points were all similar (5 ms vs 8 ms, p > 0.9; 5
ms vs 11 ms, p=0.05; 5ms vs 14 ms, p=0.14; 8 vs 11 ms, p=0.22; 8 vs 14 ms, p = 0.05),
except for 11 ms and 14 ms, which were significantly different from each other (p = 0.002).
Error bars indicate median and interquartile range. i, Location within the active zone of the same
pits described in h. The pits at 11 ms were biased toward the center of the active zone (p =
0.004), while those at 5 ms and 8 ms were not biased toward the center or the edge (p > 0.9 in
both cases). Scale bar: 100 nm. PSD: post-synaptic density. AP: action potential. Error bars in g
indicate standard error of the mean; error bars in h and i indicate median and interquartile range.

All data are from two experiments from separate cultures frozen on different days, except for the
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data from TTX treatment without stimulation, which are from a single experiment, and data from
5 and 8 ms, which are from three experiments. Numbers of pits in g, locations of pits in h, and
heights of pits in i were compared using Kruskal-Wallis tests with full pairwise comparisons by
post-hoc Dunn’s multiple comparisons tests. Bias of pit locations toward the center or edge of
the active zone was tested by comparing each group to a theoretical median of 0.5 using one-
sample two-tailed Wilcoxon signed-rank tests; Bonferroni correction was applied to all p-values
from multiple-sample and one-sample tests to account for these extra comparisons. See
Supplementary Table 1 for full pairwise comparisons and summary statistics. See Supplementary

Table 2 for summary statistics of pit counts for each experimental replicate.

Figure 4. Fusions captured at 5 and 11 ms after an action potential represent synchronous
and asynchronous release. a-b, Example transmission electron micrographs of synapses from
neurons pre-treated with a 0.25% DMSO or b 25 uM EGTA-AM and frozen either without
stimulation, 5 ms after stimulation, 11 ms after stimulation, or 14 ms after stimulation. Arrows
indicate pits in the active zone, which are presumed to be synaptic vesicles fusing with the
plasma membrane. ¢, Number of pits in the active zone per synaptic profile (part of the synapse
captured in a 2-D section) in the above conditions. p-values are from comparisons between
EGTA- (no stim, n =430; 5 ms, n =421; 11 ms, n = 365; 14 ms, n = 236 synaptic profiles) and
DMSO-treated (no stim, n = 405; 5 ms, n =465; 11 ms, n =318; 14 ms, n = 235 synaptic
profiles) samples frozen at the same time point. Numbers of pits at 11 ms and without
stimulation in EGTA-AM-treated samples were not significantly different (p > 0.9). d, Locations
of pits within the active zone 5 ms (n = 87 pits) and 11 ms (n = 51 pits) after stimulation from

neurons pre-treated with 0.25% DMSO. Pits at 11 ms were significantly biased toward the center
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of the active zone (p < 0.001), while those at 5 ms were not biased toward the center or the edge
(p > 0.9). Scale bar: 100 nm. PSD: post-synaptic density. AP: action potential. Error bars in ¢
indicate standard error of the mean. All data from the experiments described in Figure 4 are from
4 experiments for no stim and 5 ms time points, 3 experiments for 11 ms, and 2 experiments for
14 ms, from separate cultures frozen on different days (See Supplementary Table 2 for count
data from each experiment).Numbers of pits in ¢ were compared using a Kruskal-Wallis test with
full pairwise comparisons by post-hoc Dunn’s multiple comparisons test (only comparisons
between the same time point with and without EGTA-AM are shown). Locations of pits in d
were compared using a two-sided Wilcoxon rank-sum test. Bias of pit locations toward the
center or edge of the active zone was tested by comparing each group to a theoretical median of
0.5 using one-sample two-tailed Wilcoxon signed-rank tests; Bonferroni correction was applied
to all p-values from two-sample and one-sample tests to account for these extra comparisons. See
Supplementary Table 1 for full pairwise comparisons summary statistics. See Supplementary

Table 2 for summary statistics of pit counts for each experimental replicate.

Figure 5. Transient docking refills the docked vesicle pool within milliseconds. a, Number of
docked vesicles per synaptic profile (part of the synapse captured in a 2D section) from the same
experiments and synaptic profiles as in Figure 3. Number of docked vesicles at 14 ms was not
significantly different from the no-stimulation control (p > 0.9). b, Same as a, except from the
experiments in Figure 4. Number of docked vesicles at 14 ms in the DMSO control was not
significantly different from the no-stimulation control (p > 0.9), but was significantly different
with EGTA-AM treatment (p < 0.001). ¢, Distances of synaptic vesicles from the plasma

membrane at the active zone, including both vesicles that were annotated as docked and not
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docked (inset: zoom-in of the 6-10 nm bin). Distances are binned in 5-nm increments, except for
“0”, which indicates vesicles ~0 nm from the active zone membrane (“5” indicates vesicles 0.1-5
nm from the membrane, “10” indicates 6-10 nm, etc.). The number of vesicles at 0 (docked) was
significantly greater in the no-stim control than at all other time points but 14 ms. (see p-values
listed for a). The only other multiplicity-corrected p-values less than 0.05 at any distance were
for 11 ms (p = 0.014) and 14 ms (p = 0.048) at 6-10 nm (shown in zoomed inset). d, Number of
docked vesicles without stimulation or 105 ms after an action potential (no stim, n = 209; 105
ms, n = 218 synaptic profiles). e, Number of docked vesicles without stimulation or 105 ms, 1 s,
or 10 s after an action potential with 4 mM extracellular [Ca?*] (no stim, n = 205; 105 ms, n =
328; 1s,n=313; 10 s, n =212). Vesicles that appeared to be in contact with the plasma
membrane were considered docked. Error bars indicate standard error of the mean. Numbers of
docked vesicles in a and b were compared using a Kruskal-Wallis test with full pairwise
comparisons by post-hoc Dunn’s multiple comparisons test; Distances of synaptic vesicles from
the active zone in the first 5 bins of data shown in ¢ (0-25 nm from active zone) were compared
to the no-stim control using a one-way ANOVA with post-hoc Games-Howell’s test, with all
pairwise comparisons further multiplicity corrected using the method of Bonferroni to account
for the 5 ANOVAs. The number of docked vesicles in d were compared using a two-sided
Wilcoxon rank-sum test. The number of docked vesicles in e were compared using a Kruskal-
Wallis test with post-hoc Dunn’s test. Error bars represent standard error of the mean. See
Supplementary Table 1 for full pairwise comparisons and summary statistics. See

Supplementary Table 2 for summary statistics for each experimental replicate.
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Methods

All animal care was performed according to the National Institutes of Health guidelines
for animal research with approval from the Animal Care and Use Committee at the Johns
Hopkins University School of Medicine.

Neuronal cell culture

Cell cultures were prepared on 6-mm sapphire disks (Technotrade), mostly as previously
described”'®. Newborn or embryonic day 18 C57/BL6J mice of both sexes were decapitated,
followed by dissection of and transfer of brains to ice-cold HBSS. In the case of embryonic mice,
heads were stored in HBSS on ice prior to dissection. For high-pressure freezing, neurons were
cultured on a feeder layer of astrocytes. For FM dye experiments, astrocytes were grown on 22-
mm coverslips for 1 week and placed on top of neurons cultured on sapphire disks with
astrocytes facing neurons’', with Paraffin dots used as spacers. Astrocyte cultures were
established from cortices trypsinized for 20 min at 37 °C with shaking, followed by trituration
and seeding on T-75 flasks. Astrocytes were grown in DMEM supplemented with 10% FBS and
0.1% penicillin-streptomycin for 2 weeks, then plated on PDL-coated 6mm sapphire disks atop
glass coverslips in 12-well plates at a density of 50,000/well to create a feeder layer. After six
days, FUDR was added to stop cell division. The following morning, culture medium was
replaced with Neurobasal-A supplemented with 2% B27 and 0.1% penicillin-streptomycin (NB-
A full medium, Invitrogen) prior to plating hippocampal neurons. Hippocampi were dissected
and incubated in papain with shaking at 37 °C for 30-60 min, then triturated and plated on

astrocytes at 50,000 or 75,000 cells/well. Before use, sapphire disks were carbon-coated with
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a “4” to indicate the side that cells are cultured on. Health of the cells, as indicated by de-
adhered processes, floating dead cells, and excessive clumping of cell bodies, was assessed
regularly, as well as immediately before experiments. All experiments were performed
between 13 and 17 days in vitro.

Electrical field stimulation

The electrical stimulator is manufactured by Leica to be compatible with the Leica ICE
high pressure freezer. The middle plate was designed as a circuit board trimmed to the
dimensions of a standard Leica ICE high-pressure freezer middle plate. In the middle plate, there
is a central 6 mm hole holding the sample sandwiched between two sapphire disks. This central
hole was plated with two gold contact surfaces that are used to apply field stimulation to the
sample. The standard spacer ring between the sapphire disks are conductive, and is replaced with
nonconductive mylar rings of the same dimensions. The voltage to be applied to the sample is
provided by a capacitor bank attached to the middle plate. The capacitors are charged just before
the sample is loaded into the chamber. The current from the capacitors to the sample is
controlled by a phototransistor. In the absence of light, there is no current passed from the
capacitors to the sample contacts. In this way, the field stimulation can be activated within the
chamber using the standard light stimulation function of the EM ICE.

FM dye uptake imaging and quantification

For the FM 1-43FX (Invitrogen) uptake assay, we used a modified version of a
previously published protocol®*. Neurons on sapphire disks were first incubated with 30 pM
Pitstop 2 (Sigma) in physiological saline (1 mM Ca®") for 2 min. This treatment blocks
regeneration of synaptic vesicles from synaptic endosomes'®, so as to prevent FM dyes from

being released during the washing procedure. Following addition of FM dye (5 pg/ml), a
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sapphire disk was mounted on a middle plate, while another sapphire disk in the same well
was left in the solution to ensure that both sapphire disks were incubated in FM dye for the
same period of time. After charging the middle plate, 10 pulses of light (1 ms each) were
applied at 20 Hz to discharge the capacitor and induce 10 action potentials. Immediately after
stimulation, both stimulated and unstimulated specimens were transferred to an 18-mm petri
dish containing physiological saline solution (1 mM Ca*"). FM dyes bound to the plasma
membrane were washed off by passing current across the specimen using a transfer pipet for 1
min. Both samples were then transferred into warm (37 °C) PBS containing 4%
paraformaldehyde and fixed for 30 min. After fixation, samples were washed 3x with PBS
and immediately imaged on an Olympus [X81 epifluorescence microscope equipped with a
Hamamatsu C9100-02 EMCCD camera run on SlideBook 6 with mercury lamp illumination
through a CFP/YFP filter set (Semrock) and a 60x, NA 1.4 Olympus UIS2 oil-immersion
objective. For each condition, seven images were acquired and 20 putative presynaptic
terminals quantified, identified by their increased FM labeling relative to the rest of the axon,
shape, and size, by manual segmentation in ImagelJ, and their total fluorescence intensity
measured. Intensity values were then background corrected. All micrographs shown were
acquired with the same settings on the microscope and later adjusted in brightness and
contrast to the same degree in ImagelJ, then rotated and cropped in Adobe Photoshop.

High-pressure freezing

Cells cultured on sapphire disks were frozen using an EM ICE high-pressure freezer
(Leica Microsystems). The freezing apparatus was assembled on a table heated to 37 °C in a
climate control box, with all solutions pre-warmed (37 °C). Sapphire disks with neurons were

carefully transferred from culture medium to a small culture dish containing physiological
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saline solution (140 mM NaCl, 2.4 mM KCI, 10 mM HEPES, 10 mM glucose; pH adjusted to
7.3 with NaOH, 300 mOsm). NBQX (3 uM; Tocris) and bicuculline (30 uM; Tocris) were
added to the physiological saline solution to block recurrent synaptic activity. CaCl, and
MgCl, concentrations were 1.2 mM and 3.8 mM, respectively, except where indicated, in
which case the MgCl, concentration was adjusted accordingly (3 mM MgCl, with 2 mM
CaCl,, 1 mM MgCl, with 4 mM CacCl,). Cells were then fitted into the photoelectric middle
plate. Filter paper was placed underneath the middle plate to remove all excess liquid. A
mylar spacer ring was then placed atop the sapphire disk. To create a “sandwich” of the
solution described above, the underside of another sapphire disk was dipped in the solution so
that some was held on by surface tension, then placed atop the spacer ring so that excess
liquid again dispersed onto the filter paper. For voltage to be applied across the sample, it is
essential for all components outside of the sandwich to be dry, so the top of the sapphire and
all other components of the setup were gently dried with another piece of filter paper. Finally,
a rubber ring was added to hold everything in place. This entire assembly process takes 3-5
min. The assembled middle plate was enclosed in two half cylinders then loaded into the
freezing chamber, where the cells were stimulated for 1 ms before freezing at the desired time
point, ranging from 5 ms to 105 ms. With this protocol, 10 V/cm is applied for 1 ms across a
6-mm space between the electrodes into which the sapphire disk fits, as confirmed by
measurements from Leica. This field stimulation regimen in hippocampal cultures induces a
single action potential and only negligibly depolarizes boutons directly®’. Although action
potentials could not be measured directly in this study, two pieces of data suggest that this device
activates synapses uniformly. First, synapses across the field seem to take up FM dyes (Fig. 1).

Second, roughly 35% of synapses responded to the stimulus, as determined by the presence of
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fusion pits after stimulation (Fig. 2). This fraction is consistent with the fraction of synapses that

333433 and optical methods®®

respond to an action potential, determined using electrophysiology
However, further study is necessary to assess the extent of action potential failure in neurons
when this device is used.

For EGTA experiments, first half of the media in which cells were grown was removed
and set aside. EGTA-AM (Fisher) or DMSO was then added to media to a final concentration
of 25 uM and 0.25% DMSO for 15 min to load the cells with EGTA. Cells were washed three
times and left in the media that had been set aside for 15 min before freezing in the
physiological saline solution described above (treatment protocol adapted from **). For TTX
experiments, TTX was added to the freezing solution to a final concentration of 1 UM, such
that cells were in TTX for 3-5 min before freezing.

Cooling rates during freezing were between 16,000-18,000 K/sec. Membrane traffic
stops at 0 °C, so the point at which the sample reaches this temperature can be considered the
true time of freezing. On the EM ICE, we set the stimulation program to produce a 1-ms
pulse, followed by a resting period (ranging from 0 ms to 10 s). By default, during the freeze
process, the temperature sensor placed just outside the specimen chamber reaches 0 °C,
precisely when the resting period of the stimulation program is complete. This causes an extra
5-ms delay in samples reaching 0 °C. Specifically, an additional ~4 ms is needed for the
chamber to freeze (~3 ms faster than the HPM100) and another 1 ms for neurons to freeze’.
Thus, a total of 5 ms delay is expected. This 5-ms delay was confirmed by direct
measurements made by Leica Microsystems. Previous experiments indicated that this number
may be off by = 1 ms due to the mechanics of the EM ICE>’. Therefore, specimens were

frozen, on average, 5 ms later than the time point programmed into the EM ICE, with
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relatively little variability. For example, to freeze at 5 or 8 ms, the delay period on the
machine was set to “0 ms” or “3 ms” . Thus, the time points indicated (5, 8, 11, 14, and 105
ms) are calculated based on this estimated 5 ms delay from the onset of stimulation.

Freeze-substitution

After freezing, samples were transferred under liquid nitrogen to an EM AFS2 freeze
substitution system at -90 °C (Leica Microsystems). Using pre-cooled tweezers, samples were
quickly transferred to anhydrous acetone at -90 °C. After disassembling the freezing
apparatus, sapphire disks with cells were quickly moved to cryovials containing 1%
glutaraldehyde, 1% osmium tetroxide, and 1% water in anhydrous acetone, which had been
stored under liquid nitrogen then moved to the AFS2 immediately before use. The freeze
substitution program was as follows: =90 °C for 6-10 hr (adjusted so substitution would finish

in the morning), 5 °C h™'to —20°C, 12 h at-20 °C, and 10°C h™' to 20 °C.

Embedding, sectioning, and transmission electron microscopy

Samples in fixatives were washed three times, 10 min each, with anhydrous acetone,
then stained en bloc with 1% uranyl acetate for 1 hr with shaking. After three washes, samples
were left in 30% epon araldite in anhydrous acetone for 3 hr, then 70% epon araldite for 2 hr,
both with shaking. Samples were then transferred to caps of polyethylene BEEM capsules
(EMS) and left in 90% epon araldite overnight at 4 °C. The next morning, samples were
transferred to 100% epon araldite (epon, 6.2 g; araldite, 4.4 g; DDSA, 12.2 g; and BDMA, 0.8
ml) for 1 hr, then again to 100% for 1 hr, and finally transferred to 100% epon araldite and

baked at 60 °C for 48 hr.
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For single-section imaging, 40-nm sections were cut, while 10-15 serial sections were
cut for serial-section 3D reconstructions, 50 nm thick in the first replicate and 40 nm in the
second. Sections on single-slot grids coated with 0.7% pioloform were stained with 2.5%
uranyl acetate then imaged at 80 kV on the 93,000x setting on a Phillips CM 120 transmission
electron microscope equipped with an AMT XR80 camera run on AMT Capture v6. In some
cases, including all serial-section imaging, the microscopist was blind to the different
conditions, while in other cases they were not. To limit bias, synapses were found by
bidirectional raster scanning along the section at 93,000x, which makes it difficult to “pick”
certain synapses, as a synapse usually takes up most of this field of view. Synapses were
identified by a vesicle-filled presynaptic bouton and a postsynaptic density. Postsynaptic
densities are often subtle in our samples, but synaptic clefts were also identifiable by 1) their
characteristic width, 2) the apposed membranes following each other closely, and 3) vesicles
near the presynaptic active zone. Only synapses with prominent post-synaptic densities were
imaged for serial-sectioning reconstructions. 125-150 micrographs per sample of anything
that appeared to be a synapse were taken without close examination. For serial sectioning, at

least 30 synapses per sample were imaged.

Electron microscopy image analysis

Images were annotated blind but not randomized in the initial time course experiments
(first replicate of data shown in Figure 3) and the first replicate of the serial-sectioning data in
Figure 2. For all other data, all the images from a single experiment were randomized for
analysis as a single pool using a custom R (R Development Team) script. Only after this

randomization were images excluded from analysis, either because they appeared to not
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contain a bona fide synapse or the morphology was too poor for reliable annotation. This
usually meant ~100 synapses per sample were analyzed for single sections. In some cases,
membranes had low contrast against the cytoplasm, due mostly to good preservation of
proteins in these tissues. These images are annotated after adjusting the contrast in ImageJ.
The plasma membrane, active zone, docked synaptic vesicles, synaptic vesicles close to the
active zone, and pits (putative fusion events) were annotated in ImagelJ using a custom plugin.
The active zone was identified as the region of the presynaptic plasma membrane with the
features described above for identifying a synapse. Docked vesicles were identified by their
membrane appearing to be in contact with the plasma membrane at the active zone (0 nm from
the plasma membrane), that is, there are no lighter pixels between the membranes. When
comparing data, note that ‘docking’ is more narrowly defined in these data than in Imig et al*. (0-
2 nm) and Chang et al.’ (<5nm), and is the definition of docking that we have used in previous
publications™"*. Vesicles that were not manually annotated as docked, but were 0 nm away
from the active zone plasma membrane, were automatically counted as docked when
segmentation was quantitated (see below) for data sets counting the number of docked
vesicles. Vesicles annotated as docked were automatically placed in the 0 nm bin of vesicle
distances from the plasma membrane. Pits were identified as smooth curvature (not mirrored
by the postsynaptic membrane) in an otherwise straight membrane. These pits are considered
exocytic, as endocytic pits do not normally appear until 50 ms after an action potential’, fluid
phase markers are not internalized until ~100 ms’, and ferritin-positive vesicles are not found
near the active zone membrane until ~10 s after stimulation'®. Pits lateral to the active zone
are considered endocytic or membrane ruffles, since this is the primary site for ultrafast

.7 . . . . .
endocytosis’. Under these criteria, we could miss or over-annotate vesicles and pits. To
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minimize the bias and maintain consistency, all image segmentation, still in the form of
randomized files, was thoroughly checked by a second member of the lab. For serial-section
data, active zones with multiple pits were re-evaluated post hoc after unblinding to make sure
they are not halves of the same structure. However, no corrections were made for synaptic
vesicles since vesicles are much more abundant and the same criteria were used to annotate
them in all conditions. A similar amount of overestimate is expected in this case. Features
were then quantitated using custom MATLAB (MathWorks) scripts.

Location of pits and docked vesicles within the active zone from single sections was
calculated from the distance from the center of the pit to the center and the edge of the active
zone in 2D. Distance from the center was normalized by dividing the distance to the edge by
the half-width of the active zone. For 3D data, the distance to the center of the active zone
was calculated from serial sections. First, the location in 2D was calculated as above. Then,
the 3D distance was calculated to the center of the active zone in the middle section of the
series using the Pythagorean theorem with assumption that each section is the same thickness
and the center of the active zone aligns in each image. Locations in 3D data were further
corrected to be the density of vesicles/pits at each distance from the center of the active zone.
This is because the total area for objects to be located in increases with increasing distance
from the center of a roughly circular object (for example, randomly distributed objects within
a circular active zone would have a median distance from the center of 0.66, giving the
impression that they are biased toward the edge: after calculating the density, this value would
be 0.5). To calculate density of vesicles/pits from the center to the edge in 3D reconstructions,
the radial position of each vesicle/pit was converted to the fractional area of a circle bounded

by that radius. In the case of a unit circle (distance from center to edge is by definition 1 data
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normalized to the size of the active zone), this is simply the square of the original normalized
distance to the center. Distance between pits and docked vesicles in different sections was
approximated in a similar manner, where the edges of the hypothetical triangle are 1) the
difference of the distances between each pit to the center of the active zone in each section
and 2) the distance between the sections, again assuming a thickness of 50 nm.

Example micrographs shown were adjusted in brightness and contrast to different
degrees (depending on the varying brightness and contrast of the raw images), rotated, and

cropped in Adobe Photoshop.

Statistical analysis

All data shown are pooled from multiple experiments; see Supplemental Table 2 for
summary data for each replicate. All data were initially examined on a per-experiment basis
(with all freezing done on the same day and all segmentation done in a single randomized batch);
none of the pooled data show any result that was not found in each replicate individually. We did
not predetermine sample sizes using power analysis, but based them (N = 2-4 independent
cultures, n > 200 images) on our prior experience with flash-and-freeze data”*'®. An alpha of
0.05 was used for statistical hypothesis testing. All data were tested for normality by
D’ Agostino-Pearson omnibus test to determine whether parametric or nonparametric methods
should be used. Comparisons between two groups were performed using a two-tailed Welch
two-sample t-test or Wilcoxon rank-sum test. Comparisons between multiple groups followed
by full pairwise comparisons were performed using one-way analysis of variance (ANOVA)
followed by Tukey’s HSD test or Kruskal-Wallis test followed by Dunn’s multiple

comparisons test. Differences in the number of active zones containing at least one pit from
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active zone reconstructions in Figure 2a were assessed using a chi-square test. For testing
whether locations of pits were biased toward the center or edge of the active zone, a two-
tailed one-sample t-test or Wilcoxon rank-sum test with a theoretical median of 0.5 was used
(each of these p-values, as well as that of the comparisons between pit locations in different
samples, were accordingly corrected for multiplicity using Bonferroni’s method). All

statistical analyses were performed and all graphs created in Graphpad Prism 6, 7, and 8.

Life Sciences Reporting Summary

More details on experimental procedures, materials, and statistics are available in the Life

Sciences Reporting Summary.

Data and code availability.

Full data tables underlying the figures are available at

https://figshare.com/authors/Shigeki Watanabe/910686 and in the Source Data. Raw images

and image analysis files are available upon request. Custom R, MATLAB, and Fiji scripts are

available upon request, and are the subject of a manuscript currently in preparation.
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Figure 1, Kusick et al.
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Figure 2, Kusick et al.
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Figure

3, Kusick et al.
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Figure 4, Kusick et al.
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