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ABSTRACT: With the aim of understanding heat transfer during
structural changes in breathing porous crystals upon gas loading, we
study the effect of pore expansion on the thermal conductivity of a
series of idealized materials containing adsorbed gas using molecular
dynamics simulations. We calculated the thermal conductivity in
three main axes of the crystal lattice starting from a tilt angle of 40°
to represent the closed form of the crystal up to a tilt angle of 90° to
represent the open form. With no gas present, the thermal
conductivity increases in the tilt direction with pore expansion
whereas thermal conductivity in other directions remains
unchanged. In the presence of adsorbed gas, porous crystals at all
states of expansion experience reduced thermal conductivity due to

phonon scattering introduced by gas—crystal interactions. Similarly, the thermal conductivity in the tilt direction increases as the
pore expands; however, the increase is less pronounced compared to the case with no gas present in the pores. We also show that the
diffusivity of gas increases during pore expansion, facilitating mass transport.

B INTRODUCTION

There is considerable recent interest in the use of so-called
“breathing” porous crystals for a wide range of gas adsorption
and separation applications, such as for improved natural gas
fuel tanks in cars.'”’ These crystals, exemplified by metal—
organic frameworks (MOFs), have pores that are flexible and
can undergo reversible phase transformations in response to
external stimuli such as host—guest interactions, temperature,
and pressure.* '° In particular, the pores can expand
considerably when loaded with gas molecules. Unlike rigid
porous crystals, flexible porous crystals show a step-shaped gas
uptake behavior that makes them inherently more practical for
pressure/temperature-swing adsorption/separations, working
with smaller pressure/temperature differences and much
higher working capacities.” Without considering transient
thermal effects, the mechanisms of phase transitions in
breathin§ crystals have been extensively investi-
gated." 71519 However, an often overlooked challenge in
using porous materials for gas storage is that the process of gas
adsorption (or desorption) generates (or consumes) significant
amounts of heat. For rapid loading, this leads to sharp
temperature spikes,'” which inhibits further adsorption of gas
and largely mitigates the benefits of using a porous adsorbent
in the first place. Similarly, for rapid unloading, the sharp
temperature drop exacerbates the stranded gas problem as the
gas molecules are more likely to condense onto the pore walls.
Efficient thermal transport can reduce this effect by facilitating
heat dissipation. In this regard, previous studies have
investigated thermal transport in rigid MOFs using atomistic
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and experiments. Whereas the thermal

modeling
effects of adsorption in rigid porous crystals are now somewhat
understood, the more complicated thermal behavior of flexible
porous crystals, which show even greater promise for many
applications, has not been studied at all.

In this paper, we study the thermal conductivity of idealized
breathing porous crystals. We perform molecular dynamics
(MD) simulations on a series of idealized model structures
representing porous crystals at different stages of pore
expansion and apply the Green—Kubo method to predict
their thermal conductivities with and without adsorbed gas.
We find that upon pore expansion, thermal conductivity
parallel to the direction of change increases while thermal
conductivity in the other directions remains unchanged. This
result is counterintuitive as typically a lower density crystal has
a correspondingly lower thermal conductivity. We also observe

o . 2122
that, similar to our previous studies,

the presence of
adsorbed gases reduce the thermal conductivity. However, the
reduction is less pronounced when the pores are in the fully

contracted state.
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Figure 1. (a) Cross-sectional view of the idealized simple cubic structure and the harmonic bonds and angles used in the potential. (b) Simulation
snapshot of the porous crystal structure (red) filled with adsorbate molecules (orange). (c) Tilt angle, @, is adjusted in 10° increments to switch
from the closed form to the open form. (d—f) Snapshots of the idealized structure tilted at different angles to generate different stages of transition

from contracted to expanded pores.

B METHODS

To obtain these results we use idealized structures with pores
tilted at various angles, as shown in Figure 1. We start with a
40° tilt angle to represent the closed form and go up in 10°
increments to a cubic pore with a 90° tilt angle to represent the
open form. This breathing model was adapted from our
idealized cubic structures described in prior work.”' The
simple cubic lattice structure is built using 7 atoms per unit
cell. We should note that the pore expansion studied in this
work is different from the effect of pore size studied in our
earlier work”™” as here the linker does not change in length. As
depicted in Figure la, we define two-body bonded and three-
body angular interactions between atoms, which are modeled
using harmonic potentials. To determine meaningful spring
constants for the potentials, we screened spring constants
between 1 and 10 kcal/mol for the 90° structure. We picked
the parameters that resulted in a thermal conductivity of ~1
W/m K and a simulation box volume that is within 5% of the
ideal volume (see Supporting Information for the force field
parameters used). For all angle bending potentials, we used an
equilibrium angle of 180° except for the angles containing
corner atoms, for which we use different equilibrium angles
(90°, 80°, 70°, 60°, 50°, and 40°).

To investigate the effect of adsorbed gas on thermal
transport, for all structures, a gas density of 5 molecules/nm*
was used. As the volume of the simulation box is changed with
angle, the initial number of molecules was adjusted
accordingly. For each angle different gas molecule config-
urations were generated; however, for the same angle the same
initial configuration was used for different simulations using a
different initial velocity distribution. The gas is methane, which
is modeled as a point particle with force field parameters
provided in the Supporting Information.

All thermal conductivity predictions were done using the
Green—Kubo approach® and equilibrium molecular dynamics
(MD) simulations. All simulations were carried out at a
temperature of 300 K and atmospheric pressure using a time
step of 1 fs. The partial enthalpy terms required to analyze
multicomponent systems were implemented as discussed in ref
30. The MD simulations were performed using a version of the
Large-Scale Atomic/Molecular Massively Parallel Simulator

(LAMMPS)*" software which has the correct implementation
of heat flux for many-body potentials.”” Periodic boundary
conditions were applied in all directions. To gain further
insight into the thermal conductivity predictions, we also
calculated the corrected diffusivity of gas molecules within the
porous crystals, which is associated with the gas mobility.**
The corrected diftusivity is based on a Green—Kubo relation
and is defined as the time integral of the center of mass velocity
autocorrelation function for the gas component. Details of the
Green—Kubo calculations for both thermal conductivity and
diftusivity are provided in the Supporting Information.

B RESULTS AND DISCUSSION

The thermal conductivities of the structures at different stages
of expansion were first predicted without any adsorbed gas. As
shown in Figure 2a, thermal conductivity in the y direction,
which is the only direction where the box length changes (see
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Figure 2. (a) Thermal conductivity vs tilt angle. (b) Thermal
conductivity in the y direction scaled with sin(a)™ vs tilt angle.
Shaded areas represent error bars.

https://dx.doi.org/10.1021/acs.jpcc.0c04353
J. Phys. Chem. C 2020, 124, 18604—18608


http://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.0c04353/suppl_file/jp0c04353_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.0c04353/suppl_file/jp0c04353_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.0c04353/suppl_file/jp0c04353_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c04353?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c04353?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c04353?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c04353?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c04353?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c04353?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c04353?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c04353?fig=fig2&ref=pdf
pubs.acs.org/JPCC?ref=pdf
https://dx.doi.org/10.1021/acs.jpcc.0c04353?ref=pdf

The Journal of Physical Chemistry C

pubs.acs.org/JPCC

Figure 1b), increases as the pore is expanded (tilt angle
increases to 90°). However, thermal conductivities in the x and
z directions remain unchanged. This trend is likely due to the
fact that bonds become less effective in transferring heat in the
y direction when tilted. In the absence of gas, these bonds are
the means of transporting heat through the atomic vibrations
(i.e, phonons) in a dielectric solid. Supporting this argument,
as shown in Figure 2b, thermal conductivity scaled by sin(a) ™
becomes nearly constant (« is the tilt angle).

To further shed light on the effect of pore contraction on
thermal transport, thermal conductivity was decomposed into
the contributions from different interatomic potentials (bond
and angle). The decomposition was made possible by the
Green—Kubo method, where forces and energies from any
potential can be separately treated in the equation. Figure 3
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Figure 3. Thermal conductivity contribution from bond and angle
potentials in the (a) x, (b) y, and (c) z directions.

shows the contributions from bond and angle potentials on the
overall thermal conductivity. It is observed that overall, the
angle contribution is much smaller than the bond contribution.
Interestingly, the decrease of the overall thermal conductivity
for smaller angles is due to the decrease of the bond
contribution. This further confirms the reason mentioned
earlier, that is, the thermal conductivity in any direction
depends on how bonds are aligned in that direction. For the
structure with 90°, the thermal conductivity is the highest
because the bonded atoms are parallel to the y axis, while for
smaller angles bonds are tilted from the y axis.

We then predicted the thermal conductivity of the porous
materials loaded with gas at a density of § molecules/nm®. The
results are plotted in Figure 4. Like the case without gas,
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Figure 4. (a) Thermal conductivity of gas-loaded structures vs the
angle which resembles the stage of expansion. (b) y-Direction thermal
conductivity of the gas-loaded structure scaled by sin(@) > vs angle.

thermal conductivity in the y direction decreases as the pores
contract. However, the decrease in thermal conductivity is not
as significant. With gas present in the pores, the thermal
conductivity for the structure with a 40° tilt angle is
approximately one-half of its value at a 90° tilt angle. However,
for the structures without gas, the thermal conductivity of the
structure with a 40° tilt angle is almost 20% of its value for the
structure with a 90° tilt angle.

Next, we address the relative effect of adsorbed gas on the
thermal conductivity of porous crystals at various stages of
contraction. As shown in Figure S5a, the overall thermal
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Figure 5. (a) Ratio of thermal conductivity for gas-loaded and empty
crystals at different stages of pore expansion. (b) Corrected gas
diftusivity for gas-loaded crystals at different stages of pore expansion.
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conductivity is significantly decreased upon loading structures
with gas, a phenomenon previously observed in our
studies.”"**** Except for the fully contracted pores (i.e., 40°
tilt angle), the thermal conductivity of the gas-loaded
structures is 25% of that of the structures without gas. At
the fully contracted state (40°), the thermal conductivity of the
gas-loaded structure is 50% of that without gas. The observed
weaker effects from gas—crystal collisions on the thermal
transport in the contracted system compared to other systems
is likely due to the already shorter intrinsic lifetimes of
phonons.

The other important parameter that could affect the rate of
gas adsorption in the pores during expansion is the gas
diffusion through pores. To better understand the gas molecule
dynamics inside the pores, we calculated corrected gas
diffusivities, which are plotted in Figure Sb. The diffusivities
in the x and y directions are nearly constant. However, in the z
direction, the only direction where the pore cross-sectional
area changes with changing angle, the diffusivity increases with
pore expansion. This is due to the pore expansion which allows
higher gas mobility in the z direction. It shows that during gas
adsorption, upon pore expansion, the diffusion of gas
molecules into pores would be facilitated.

B CONCLUSIONS

With the purpose of understanding heat transfer in breathing
porous crystals, we studied a series of idealized model systems
using molecular dynamics simulations. We investigated the
effect of pore expansion on the thermal conductivity with and
without adsorbed gases. We showed that, in the direction that
the pore changes, the thermal conductivity of empty porous
crystals increases with expansion. In contrast, the thermal
conductivity in other directions does not change with pore
expansion. Our study also reveals that the presence of gases
decreases the thermal conductivity in all states of the pores,
with the lowest effect on the fully contracted pores. Lastly, we
show that the gas diffusion increases during pore expansion,
leading to easier transport of gas.

The use of breathing porous crystals for adsorption
applications, particularly when gases are adsorbed and
desorbed rapidly, must carefully take into account thermal
transport. The simulation results from this study may help in
the future design of these novel adsorbents. Finally, it is worth
noting that, at the time of writing, no measurements of single-
crystal thermal conductivities of breathing porous crystals exist
in the literature.
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