

Edge orbits and cyclic and r -pyramidal decompositions of complete uniform hypergraphs

Ryan C. Bunge^a, Saad I. El-Zanati^a, Joel Jeffries^b, Charles Vanden Eynden^a

^a Department of Mathematics, Illinois State University, Normal, IL 61790-4520, USA

^b Department of Mathematics, Iowa State University, Ames, IA 50011, USA

ARTICLE INFO

Article history:

Received 19 February 2018

Received in revised form 28 July 2018

Accepted 21 August 2018

Available online 15 September 2018

Keywords:

Edge orbits

k -uniform hypergraphs

Cyclic decompositions

r -pyramidal decompositions

ABSTRACT

Let \mathbb{Z}_n denote the group of integers modulo n and let $\mathcal{E}_n^{(k)}$ be the set of all k -element subsets of \mathbb{Z}_n where $1 \leq k < n$. If $E \in \mathcal{E}_n^{(k)}$, let $[E] = \{E + r : r \in \mathbb{Z}_n\}$. Then $[E]$ is the orbit of E where \mathbb{Z}_n acts on $\mathcal{E}_n^{(k)}$ via $(r, E) \mapsto E + r$. Furthermore, $\{[E] : E \in \mathcal{E}_n^{(k)}\}$ is a partition of $\mathcal{E}_n^{(k)}$ into \mathbb{Z}_n -orbits. In this article, we count the total number of \mathbb{Z}_n -orbits of $\mathcal{E}_n^{(k)}$, count the number of orbits of each size, determine the corresponding results when fixed points are introduced, and give an application to cyclic and r -pyramidal decompositions of complete uniform hypergraphs into isomorphic subgraphs.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

If (G, \oplus) is a group with identity 0, X is a set, and f is a function from $G \times X$ into X such that $f(0, x) = x$ for all $x \in X$ and $f(g_1 \oplus g_2, x) = f(g_1, f(g_2, x))$ for all $g_1, g_2 \in G$ and $x \in X$, then it is said that G acts on X . Furthermore, f partitions X into G -orbits, where two elements $x, y \in X$ are in the same orbit if and only if $x = f(g, y)$ for some $g \in G$. For $g \in G$, let $\text{Fix}(g) = \{x \in X : f(g, x) = x\}$. Thus $\text{Fix}(g)$ is the set of elements of X that are fixed by g . Burnside's lemma (see [10]) gives the number of G -orbits of X .

Lemma 1 (Burnside's Lemma). *Let a finite group G act on a set X . The number of orbits that G induces is given by:*

$$\frac{1}{|G|} \sum_{g \in G} |\text{Fix}(g)|.$$

Let \mathbb{Z}_n denote the group of integers modulo n and let $\mathcal{E}_n^{(k)}$ be the set of all k -element subsets of \mathbb{Z}_n where $1 < k < n$. If $E \in \mathcal{E}_n^{(k)}$ and $r \in \mathbb{Z}_n$, let $E + r$ be formed by replacing each element $x \in E$ with $x + r$; so $(r, E) \mapsto E + r$ maps $\mathbb{Z}_n \times \mathcal{E}_n^{(k)}$ into $\mathcal{E}_n^{(k)}$. It can be seen that the group \mathbb{Z}_n acts on the set $\mathcal{E}_n^{(k)}$ partitioning it into \mathbb{Z}_n -orbits, where $E_1, E_2 \in \mathcal{E}_n^{(k)}$ are in the same orbit if and only if $E_1 + r = E_2$ for some $r \in \mathbb{Z}_n$. We define $[E]$ to be $\{E + r : r \in \mathbb{Z}_n\}$, which we refer to as the \mathbb{Z}_n -orbit of E . If $S \subseteq \mathcal{E}_n^{(k)}$ and $r \in \mathbb{Z}_n$, let $S + r = \{E + r : E \in S\}$. By clicking S , we shall mean replacing S with $S + 1$.

1.1. Applications in hypergraphs

The set $\mathcal{E}_n^{(k)}$ can be thought of as being the edge set of the complete k -uniform hypergraph $K_n^{(k)}$ with vertex set \mathbb{Z}_n . The \mathbb{Z}_n -orbit of an edge E can be viewed as the set resulting from successively clicking E .

Let K and G be k -uniform hypergraphs with G a subgraph of K . A G -decomposition of K is a set $\Gamma = \{G_1, G_2, \dots, G_t\}$ of subgraphs of K each of which is isomorphic to G and such that each edge of K appears in exactly one G_i . In this case, we may refer to the elements of Γ as G -blocks. A G -decomposition of K is also known as a (K, G) -design. A $(K_m^{(k)}, K_n^{(k)})$ -design is known as a Steiner system $S(k, m, n)$. A summary of results on Steiner systems $S(k, m, n)$ can be found in [6].

Let G be a subgraph of $K_n^{(k)}$, where $V(K_n^{(k)}) = \mathbb{Z}_n$, and let Γ be a G -decomposition of $K_n^{(k)}$. Then Γ is said to be *cyclic* if Γ is closed under clicking. Thus if $G_i \in \Gamma$, then $G_i + 1 \in \Gamma$. If we partition $\mathcal{E}_n^{(k)}$ into m distinct \mathbb{Z}_n -orbits each of size n and if G a subgraph of $K_n^{(k)}$ consisting of one edge from each of the m distinct \mathbb{Z}_n -orbits, then $\Gamma = \{G + i : i \in \mathbb{Z}_n\}$ is a cyclic G -decomposition of $K_n^{(k)}$. For example, if G is the subgraph of $K_8^{(3)}$ with edge-set $S = \{\{0, 1, 2\}, \{0, 1, 3\}, \{0, 1, 4\}, \{0, 1, 5\}, \{0, 1, 6\}, \{0, 2, 4\}, \{0, 2, 5\}\}$, then $\Gamma = \{G + i : i \in \mathbb{Z}_8\}$ constitutes a cyclic G -decomposition of $K_8^{(3)}$.

The requirement that the hypergraph G in the previous paragraph must contain exactly one edge from each of the different \mathbb{Z}_n -orbits of size n can be viewed as an extension of the notion of a ρ -labeling of G in the case $k = 2$ as introduced by Rosa in [11]. Although stated differently in [11], a subgraph G of $K_{2m+1}^{(2)}$ with m edges admits a ρ -labeling if each of the m edges of G belongs to a different orbit under the action of \mathbb{Z}_{2m+1} . In [9], Meszka and Rosa extend this definition to 3-uniform hypergraphs.

Most of the work on G -decompositions of $K_n^{(k)}$ focuses on the case $k = 2$ (see [1] for a summary of known results). In general, little is known when $k \geq 3$. Some of the focus has been on G -decompositions of $K_n^{(3)}$, where G is a graph with a relatively small number of edges (see for example, [4] and [5]). Perhaps the best known general result on decompositions of complete k -uniform hypergraphs is Baranyai's result [3] on the existence of 1-factorizations of $K_{mk}^{(k)}$ for all positive integers m . There are, however, several articles on decompositions of complete k -uniform hypergraphs (see [2] and [8]) and of k -uniform k -partite hypergraphs (see [7] and [12]) into variations on the concept of a Hamilton cycle.

In this article, we count the total number of \mathbb{Z}_n -orbits of $\mathcal{E}_n^{(k)}$, count the number of orbits of each size, determine the corresponding results when fixed points are introduced, and give an application to cyclic and r -pyramidal decompositions of complete uniform hypergraphs into isomorphic subgraphs.

2. Counting orbits

In this paper lowercase letters represent integers. If a and b are integers, we define $[a, b]$ to be $\{r \in \mathbb{Z} : a \leq r \leq b\}$. In sums of the form $\sum_{e \mid m} f(e)$ we assume e is restricted to positive divisors. Let $d = \gcd(n, k)$, with $n = dn_0$ and $k = dk_0$, so $\gcd(n_0, k_0) = 1$. By ϕ and μ we mean the Euler ϕ -function and the Möbius function.

Lemma 2. *If $r > 0$ and $\gcd(r, n) = e$, then $\text{Fix}(r) = \text{Fix}(e)$.*

Proof. There exists a positive integer s such that $r = se$. First suppose $E \in \text{Fix}(e)$, so $E + e = E$. Then $E + r = E + se = E + e + e + \dots + e = E$, and so $E \in \text{Fix}(r)$. Conversely, suppose $E \in \text{Fix}(r)$. Since $\gcd(r, n) = e$, we can find integers $x > 0$ and y such that $xr + yn = e$. Then, performing addition in \mathbb{Z}_n , we have $E + e = E + xr + yn = E + xr + 0 = E + r + r + \dots + r = E$, and so $E \in \text{Fix}(e)$. \square

Lemma 3. *Let n and k be positive integers and set $d = \gcd(n, k)$, $n = dn_0$, and $k = dk_0$. Suppose r is a positive integer such that $r \mid n$ and $n \mid kr$ (so $n_0 \mid r$). For any positive integer h , we have $h \mid r$ and $n \mid hk$ if and only if $h = en_0$, where $e \mid \frac{r}{n_0}$. Moreover, if $h \mid n$ then the number of integers r , $0 \leq r < n$, with $\gcd(n, r) = h$ is $\phi(n/h)$.*

Proof. First suppose $h \mid r$ and $n \mid hk$. Now $n_0 \mid hk_0$, so $n_0 \mid h$. Let $h = en_0$, and let $r = hh'$. Then $r/n_0 = hh'/n_0 = eh'$, so $e \mid r/n_0$.

Conversely, suppose $h = en_0$, where $e \mid r/n_0$. Then $h = en_0 \mid (r/n_0)n_0 = r$. Also $kh = ken_0 = (k/d)e(dn_0) = k_0en$, so $n \mid kh$.

To see the second statement note that $\gcd(r, n) = h$ if and only if $\gcd(r/h, n/h) = 1$, $0 \leq r/h < n/h$. \square

Theorem 4. *Let k and n be positive integers, $d = \gcd(n, k)$, and let \mathbb{Z}_n act on $\mathcal{E}_n^{(k)}$. Then the number t of \mathbb{Z}_n -orbits of $\mathcal{E}_n^{(k)}$ is given by*

$$t = \frac{1}{n} \sum_{e \mid d} \phi(e) \binom{n/e}{k/e}.$$

Proof. Suppose $\text{Fix}(q) \neq \emptyset$. Then by Lemma 2, $\text{Fix}(q) = \text{Fix}(h)$, where $h = \gcd(q, n)$. Suppose $E \in \text{Fix}(h)$. This implies that if $A \subseteq [0, h-1]$ and $A \subseteq E$, then $A + jh \subseteq E$ for $j \in [0, n/h-1]$. Hence E must have the form

$$A \cup (h + A) \cup (2h + A) \cup \dots \cup ((n/h-1)h + A).$$

Then $(n/h)|A| = |E| = k$, so $|A| = hk/n$ and $n \mid hk$. The number of ways of choosing $|A|$ elements from $\{0, 1, \dots, h-1\}$ is $\binom{h}{|A|} = \binom{h}{hk/n}$, and this is the same for all the $\phi(n/h)$ values of r such that $\gcd(r, n) = h$. Thus by Burnside's Lemma and the

first part of [Lemma 3](#) with $r = n$,

$$\begin{aligned} t &= \frac{1}{n} \sum_{\substack{h|n \\ n|hk}} \phi(n/h) \binom{h}{hk/n} = \frac{1}{n} \sum_{e|d} \phi\left(\frac{n}{en_0}\right) \binom{en_0}{en_0k/n} \\ &= \frac{1}{n} \sum_{e|d} \phi(d/e) \binom{n/(d/e)}{k/(d/e)}. \end{aligned}$$

Now if we notice that as e runs through the positive divisors of d , so does d/e , we get the formula of the theorem. \square

Example 1. When $n = 30$ and $k = 24$, we have $d = 6$, so

$$\begin{aligned} t &= \frac{1}{30} \sum_{e|6} \phi(e) \binom{30/e}{24/e} \\ &= \frac{1}{30} \left(\phi(1) \binom{30}{24} + \phi(2) \binom{15}{12} + \phi(3) \binom{10}{8} + \phi(6) \binom{5}{4} \right) \\ &= \frac{1}{30} (1 \cdot 593,775 + 1 \cdot 455 + 2 \cdot 45 + 2 \cdot 5) = 19,811. \end{aligned}$$

3. Difference vectors

If $E \in \mathcal{E}_n^{(k)}$, we can write E uniquely as $\{a_1, a_2, \dots, a_k\}$ where $0 \leq a_1 < a_2 < \dots < a_k < n$. By the *difference vector* of E , we mean the k -tuple $\Delta E = (a_2 - a_1, a_3 - a_2, \dots, a_k - a_{k-1}, n + a_1 - a_k)$. Note that the components of ΔE are positive and sum to n . Also, distinct elements of a \mathbb{Z}_n -orbit may yield distinct difference vectors. For example, if $E = \{0, 3, 4\} \in \mathcal{E}_5^{(3)}$, then $\Delta E = (3, 1, 1)$, while $\Delta(E + 2) = \Delta\{0, 1, 2\} = (1, 1, 3)$. However, it is easy to see that edges are in the same \mathbb{Z}_n -orbit if and only if they have difference vectors that are cyclic permutations of each other. By the *reduced difference vector* $\Delta'E$ of an edge E , we mean the difference vector among the cyclic permutations of ΔE that is lexicographically first. In our example, the cyclic permutations of ΔE are $(3, 1, 1), (1, 3, 1)$, and $(1, 1, 3)$, and thus $\Delta'E = (1, 1, 3) = \Delta'(E + 2)$.

Now let $\mathcal{D}_n^{(k)}$ be all ordered k -tuples of positive integers with sum n . Using standard counting techniques, it can be proved that the number of sequences of u positive integers with sum v is $\binom{v-1}{u-1}$. In particular, $|\mathcal{D}_n^{(k)}| = \binom{n-1}{k-1}$. If $D = (b_1, b_2, \dots, b_k)$ is a difference vector in $\mathcal{D}_n^{(k)}$ and $r \in \mathbb{Z}_k$, we define $D \oplus r$ to be $(b_{1+r}, b_{2+r}, \dots, b_{k+r})$, where the subscripts are taken modulo k . Then the group \mathbb{Z}_k acts on $\mathcal{D}_n^{(k)}$, and we will denote the \mathbb{Z}_k -orbit containing $D \in \mathcal{D}_n^{(k)}$ by $[D]$. There is a one-to-one correspondence between the \mathbb{Z}_k -orbits of $\mathcal{D}_n^{(k)}$ with respect to \oplus and the \mathbb{Z}_n -orbits of $\mathcal{E}_n^{(k)}$ with respect to $+$. In particular, if $E \in \mathcal{E}_n^{(k)}$, then the \mathbb{Z}_n -orbit $[E]$ contained in $\mathcal{E}_n^{(k)}$ corresponds to the \mathbb{Z}_k -orbit $[\Delta E]$ contained in $\mathcal{D}_n^{(k)}$.

We can count the \mathbb{Z}_k -orbits of $\mathcal{D}_n^{(k)}$ using Burnside's Lemma. This yields the formula

$$t = \frac{1}{k} \sum_{e|d} \phi(e) \binom{n/e - 1}{k/e - 1},$$

where as before $d = \gcd(n, k)$. This formula gives the same result as that of [Theorem 4](#).

Example 2. If $n = 30$ and $k = 24$ so $d = 6$, we have

$$\begin{aligned} t &= \frac{1}{24} \sum_{e|6} \phi(e) \binom{30/e - 1}{24/e - 1} \\ &= \frac{1}{24} \left(\phi(1) \binom{29}{23} + \phi(2) \binom{14}{11} + \phi(3) \binom{9}{7} + \phi(6) \binom{4}{3} \right) \\ &= \frac{1}{24} (1 \cdot 475,020 + 1 \cdot 364 + 2 \cdot 36 + 2 \cdot 4) = 19,811. \end{aligned}$$

4. Orbits of a given size

If $\gcd(n, k) = 1$ the sum in [Theorem 4](#) has a single term, and the number of \mathbb{Z}_n -orbits of $\mathcal{E}_n^{(k)}$ is $\frac{1}{n} \binom{n}{k}$. Since $|\mathcal{E}_n^{(k)}| = \binom{n}{k}$, every orbit in this case has size n . If $\gcd(n, k) > 1$ however, there will be orbits of various sizes. In this section we count the number of orbits of each size.

We consider the \mathbb{Z}_n -orbits of $\mathcal{E}_n^{(k)}$. Let $N(h)$ be the number \mathbb{Z}_n -orbits in $\mathcal{E}_n^{(k)}$ with exactly h elements. By the *order* of $E \in \mathcal{E}_n^{(k)}$ we mean the least positive integer h such that $E + h = E$. Since $E + h = E + \gcd(h, n)$, this means $h \mid n$. Clearly the order of E is $|[E]|$. Recall that $\text{Fix}(h) = \{E \in \mathcal{E}_n^{(k)} : E + h = E\}$.

Lemma 5. Let s be a positive divisor of n . Then $E \in \text{Fix}(s)$ if and only if E has order h , where $h \mid s$ and $n \mid hk$.

Proof. Let $E \in \text{Fix}(s)$ have order h , and let $s = q'h + r'$, where $0 \leq r' < h$. Then $E = E + s = (E + h + h + \cdots + h) + r' = E + r'$, and so by the definition of order we must have $r' = 0$. Thus $h \mid s$. Since $\text{Fix}(h) \neq \emptyset$ we have $n \mid hk$ as in the proof of [Theorem 4](#).

Now assume the order of E is h , where $h \mid s$ and $n \mid hk$. Say $s = qh$. Then $E + s = E + h + h + \cdots + h = E$, so $E \in \text{Fix}(s)$. \square

Since $\text{Fix}(n) = \mathcal{E}_n^{(k)}$, by taking $s = n$ in the previous lemma we see that $m(h) > 0$ if and only if $h \mid n$ and $n \mid hk$, and by [Lemma 3](#) with $r = n$ this happens if and only if $h = en_0$, where $e \mid n/n_0 = d$. This is the first conclusion of the following theorem.

Theorem 6. Let n and k be positive integers, and consider $\mathcal{E}_n^{(k)}$. Set $d = \gcd(n, k)$, $n = dn_0$, $k = dk_0$. The values of s such that $N(s) > 0$ are exactly the integers $s = en_0$, where e runs through the positive divisors of d . In this case

$$N(s) = \frac{1}{s} \sum_{f \mid s_0} \mu(s_0/f) \binom{n_0 f}{k_0 f},$$

where $s_0 = s/n_0$.

Proof. Let s be a positive divisor of n such that $\text{Fix}(s) \neq \emptyset$. Then as in the proof of [Theorem 4](#) we have $n \mid sk$. Since if E has order h , then $|\text{Fix}(E)| = h$, the total number of edges of order h is $hN(h)$. By [Lemma 5](#) we have

$$|\text{Fix}(s)| = \sum_{\substack{h \mid s \\ n \mid hk}} hN(h) = \sum_{e \mid s_0} en_0 N(en_0),$$

where in the second sum we have applied the first part of [Lemma 3](#) and set $s_0 = s/n_0$. In the proof of [Theorem 4](#) we found that $|\text{Fix}(s)| = \binom{s}{sk/n}$, so we have

$$\sum_{e \mid s_0} en_0 N(en_0) = \binom{s}{sk/n} = \binom{n_0 s_0}{k_0 s_0}.$$

The last equation has the form $G(s_0) = \sum_{f \mid s_0} g(f)$, where $G(s_0) = \binom{n_0 s_0}{k_0 s_0}$, and $g(f) = fn_0 N(f n_0)$. By the Möbius inversion formula we have

$$g(s_0) = \sum_{f \mid s_0} \mu(s_0/f) G(f) \quad \text{or} \quad s_0 n_0 N(s_0 n_0) = s N(s) = \sum_{f \mid s_0} \mu(s_0/f) \binom{n_0 f}{k_0 f},$$

so

$$N(s) = \frac{1}{s} \sum_{f \mid s_0} \mu(s_0/f) \binom{n_0 f}{k_0 f}. \quad \square$$

Example 3. If $n = 30$ and $k = 24$ so that $d = 6$, we have $n_0 = 5$ and $k_0 = 4$. The divisors of d are 1, 2, 3, and 6, the corresponding values of s are 5, 10, 15, and 30, and of s_0 are 1, 2, 3, and 6. Then

$$N(5) = \frac{1}{5} \sum_{f \mid 1} \mu(1/f) \binom{5f}{4f} = \frac{1}{5} (1) \binom{5}{4} = 1,$$

$$N(10) = \frac{1}{10} \sum_{f \mid 2} \mu(2/f) \binom{5f}{4f} = \frac{1}{10} \left((-1) \binom{5}{4} + (1) \binom{10}{8} \right) = 4,$$

$$N(15) = \frac{1}{15} \sum_{f \mid 3} \mu(3/f) \binom{5f}{4f} = \frac{1}{15} \left((-1) \binom{5}{4} + (1) \binom{15}{12} \right) = 30,$$

$$\begin{aligned} N(30) &= \frac{1}{30} \sum_{f \mid 6} \mu(6/f) \binom{5f}{4f} \\ &= \frac{1}{30} \left((1) \binom{5}{4} + (-1) \binom{10}{8} + (-1) \binom{15}{12} + (1) \binom{30}{24} \right) \\ &= 19,776. \end{aligned}$$

Note that $1 + 4 + 30 + 19,776 = 19,811$, which agrees with the results in [Examples 1](#) and [2](#).

If $E \in \mathcal{E}_n^{(k)}$ and $D \in \mathcal{D}_n^{(k)}$ are in corresponding orbits, then $|(D)| = (k/n)|[E]|$. Thus if we define $M(h)$ to be the number of orbits of $\mathcal{D}_n^{(k)}$ of size h , then $M(h) = N(nh/k)$. For example $\mathcal{D}_{30}^{(24)}$ has 1 orbit of size 4, 4 orbits of size 8, 30 orbits of size 12, and 19,776 orbits of size 24.

5. Orbits under r -Pyramidal Actions

Let n, k , and r be integers with $0 \leq r < k < n$ and let $I_r = \{\infty_1, \infty_2, \dots, \infty_r\}$. Also, let $\mathcal{E}_{n,r}^{(k)}$ be the set of all k -element subsets of $\mathbb{Z}_{n-r} \cup I_r$. Then the set $\mathcal{E}_{n,r}^{(k)}$ can be thought of as being the edge set of the complete k -uniform hypergraph $K_n^{(k)}$ with vertex set $\mathbb{Z}_{n-r} \cup I_r$. If $\infty_i \in I_r$ and $s \in \mathbb{Z}_{n-r}$, we define $\infty_i + s$ to be ∞_i . Furthermore if $E \in \mathcal{E}_{n,r}^{(k)}$, we let $E + s = \{x + s : x \in E\}$.

It is easy to see that the group \mathbb{Z}_{n-r} acts on $\mathcal{E}_{n,r}^{(k)}$ via $(s, E) \rightarrow E + s$, and so $\mathcal{E}_{n,r}^{(k)}$ is partitioned into \mathbb{Z}_{n-r} -orbits under this r -pyramidal action. As before if $s \in \mathbb{Z}_{n-r}$, we let $\text{Fix}(s) = \{E \in \mathcal{E}_{n,r}^{(k)} : E + s = E\}$. Clearly if E and E' are in the same orbit, then $E \cap I_r = E' \cap I_r$. Suppose $E \in \mathcal{E}_{n,r}^{(k)}$ and $E \cap I_r = J$, where $|J| = j$. Let $E^* = E \setminus I_r$, so $|E^*| = k - j$. Then $E + s = E$ exactly when $E^* + s = E^*$.

Let $\mathcal{E}_J = \{E \in \mathcal{E}_{n,r}^{(k)} : E \cap I_r = J\}$. Then \mathbb{Z}_{n-r} acts on \mathcal{E}_J , and by [Theorem 4](#) the number of \mathbb{Z}_{n-r} -orbits in \mathcal{E}_J is

$$\frac{1}{n-r} \sum_{e|\gcd(n-r, k-j)} \phi(e) \binom{(n-r)/e}{(k-j)/e}.$$

Let $\mathcal{E}_j = \{E \in \mathcal{E}_{n,r}^{(k)} : |E \cap I_r| = j\}$. Since there are $\binom{r}{j}$ subsets of I_r with j elements, the number of \mathbb{Z}_{n-r} -orbits in \mathcal{E}_j is

$$\binom{r}{j} \frac{1}{n-r} \sum_{e|\gcd(n-r, k-j)} \phi(e) \binom{(n-r)/e}{(k-j)/e}.$$

Noting that j can vary from 0 to r gives the following.

Theorem 7. Let n, k , and r be integers with $0 \leq r < k < n$ and consider the complete k -uniform hypergraph $K_n^{(k)}$ with vertex set $\mathbb{Z}_{n-r} \cup I_r$. Let \mathbb{Z}_{n-r} act on the set of edges $\mathcal{E}_{n,r}^{(k)}$ as described above. Then the number of \mathbb{Z}_{n-r} -orbits is

$$\frac{1}{n-r} \sum_{j=0}^r \left(\binom{r}{j} \sum_{e|\gcd(n-r, k-j)} \phi(e) \binom{(n-r)/e}{(k-j)/e} \right).$$

Example 4. If $n = 30$, $k = 24$, and $r = 3$, the number of \mathbb{Z}_{27} -orbits of $\mathcal{E}_{30,3}^{(24)}$ is

$$\begin{aligned} & \frac{1}{27} \sum_{j=0}^3 \left(\binom{3}{j} \sum_{e|\gcd(27, 24-j)} \phi(e) \binom{27/e}{(24-j)/e} \right) \\ &= \frac{1}{27} \left(\binom{3}{0} \sum_{e|3} \phi(e) \binom{27/e}{24/e} + \binom{3}{1} \sum_{e|1} \phi(e) \binom{27/e}{23/e} \right. \\ & \quad \left. + \binom{3}{2} \sum_{e|1} \phi(e) \binom{27/e}{22/e} + \binom{3}{3} \sum_{e|3} \phi(e) \binom{27/e}{21/e} \right) \\ &= \frac{1}{27} \left(\left(\binom{27}{24} + 2\binom{9}{8} \right) + 3\binom{27}{23} + 3\binom{27}{22} + \left(\binom{27}{21} + 2\binom{9}{7} \right) \right) \\ &= \frac{1}{27} (2943 + 52,650 + 242,190 + 296,082) = 21,995. \end{aligned}$$

Now we consider the number of orbits of a given size. With general n, k , and r as before the example consider a fixed set $J \subseteq I_r$ with $|J| = j$. The action of \mathbb{Z}_{n-r} on $\mathcal{E}_J = \{E \in \mathcal{E}_{n,r}^{(k)} : E \cap I_r = J\}$ amounts to the action of \mathbb{Z}_{n-r} on $\mathcal{E}_{n-r}^{(k-j)}$. Set $n' = n - r$, $k' = k - j$, $d' = \gcd(n', k')$, $n' = d'n'_0$, $k' = d'k'_0$. By [Theorem 6](#) the orbit sizes are exactly the integers $s = en'_0$, where e runs through the positive divisors of d' . Then for such an integer e the number of \mathbb{Z}_{n-r} -orbits of \mathcal{E}_J of size en'_0 is

$$\frac{1}{s} \sum_{f|s_0} \mu(s_0/f) \binom{n'_0 f}{k'_0 f},$$

where $s_0 = s/n'_0$. Letting J run through the $\binom{r}{j}$ subsets of I_r of size j gives the following.

Theorem 8. Let n, k, r , and j be integers with $n > k$, $0 \leq r < k$, and $0 \leq j \leq r$, and consider the complete k -uniform hypergraph $K_n^{(k)}$ with vertex set $\mathbb{Z}_{n-r} \cup I_r$. Set $n' = n - r$, $k' = k - j$, $d' = \gcd(n', k')$, $n'_0 = dn'_0$, and $k'_0 = d'k'_0$. The achievable sizes of orbits of $\mathcal{E}_{n,r}^{(k)}$ with exactly j elements in I_r are the integers $s = en'_0$, where e is a positive divisor of d' , and the number $N_j(s)$ of such orbits is

$$N_j(s) = \binom{r}{j} \frac{1}{s} \sum_{f|s_0} \mu(s_0/f) \binom{n'_0 f}{k'_0 f},$$

where $s_0 = s/n'_0$.

Example 5. Consider $n = 30$, $k = 24$, $r = 3$. If $j = 0$, we have $n' = 27$, $k' = 24$, $d' = 3$, $n'_0 = 9$, $k'_0 = 8$, and $s = 9e$, where $e \mid 3$. Thus s is 9 or 27, and

$$N_0(9) = \binom{3}{0} \frac{1}{9} \sum_{f|1} \mu(1/f) \binom{9f}{8f} = 1,$$

$$N_0(27) = \binom{3}{0} \frac{1}{27} \sum_{f|3} \mu(3/f) \binom{9f}{8f} = \frac{1}{27} \left((-1) \binom{9}{8} + \binom{27}{24} \right) = 108.$$

Note that n' does not change with j . If $j = 1$, we have $k' = 23$, $d' = 1$, $n'_0 = 27$, $k'_0 = 23$, and $s = 27e$, where $e \mid 1$. Thus $s = 27$, and

$$N_1(27) = \binom{3}{1} \frac{1}{27} \sum_{f|1} \mu(1/f) \binom{27f}{23f} = 1950.$$

Likewise if $j = 2$, then $n' = 27$, $k' = 22$, $d' = 1$, $n'_0 = 27$, $k'_0 = 22$, and $s = 27e$, where $e \mid 1$. Thus $s = 27$, and

$$N_2(27) = \binom{3}{2} \frac{1}{27} \sum_{f|1} \mu(1/f) \binom{27f}{22f} = \frac{1}{9} \binom{27}{22} = 8970.$$

Finally if $j = 3$, then $n' = 27$, $k' = 21$, $d' = 3$, $n'_0 = 9$, $k'_0 = 7$, and $s = 9e$, where $e \mid 3$. Thus s is 9 or 27, and

$$N_3(9) = \binom{3}{3} \frac{1}{9} \sum_{f|1} \mu(1/f) \binom{9f}{7f} = \frac{1}{9} \binom{9}{7} = 4,$$

$$N_3(27) = \binom{3}{3} \frac{1}{27} \sum_{f|3} \mu(3/f) \binom{9f}{7f} = \frac{1}{27} \left((-1) \binom{9}{7} + \binom{27}{21} \right) = 10,962.$$

Notice that there are $1 + 4 = 5$ orbits of size 9 and $108 + 1950 + 8970 + 10,962 = 21,990$ of size 27, for a total of 21,995 orbits, just as we computed in [Example 4](#) using [Theorem 7](#). These include $5 \cdot 9 + 21,990 \cdot 27 = 593,775$ edges, which is $\binom{30}{24}$.

6. Forcing same-sized orbits

In order to decompose a complete uniform hypergraph $K_n^{(k)}$ into isomorphic subgraphs, it is convenient to use a group action that yields same-sized orbits. As mentioned in the beginning of [Section 4](#), if $\gcd(n, k) = 1$ the action described in [Section 1](#) achieves same-sized orbits. If $\gcd(n, k) > 1$, it may be possible to find an r -pyramidal action that yields same-sized orbits. We call $K_n^{(k)}$ *balancing* if there exists an integer $r \in [0, k - 1]$, such that $\mathcal{E}_{n,r}^{(k)}$ has all orbits of size $n - r$.

Theorem 9. The hypergraph $K_n^{(k)}$ is balancing if and only if $\gcd(n - r, k - j) = 1$ whenever $0 \leq j \leq r$.

Proof. Suppose $\gcd(n - r, k - j) = 1$ whenever $0 \leq j \leq r$. For a fixed such j by [Theorem 8](#), the achievable sizes of orbits of edges containing exactly j elements of I_r are the integers $s = en'_0$, where e is a positive divisor of $d' = \gcd(n - r, k - j) = 1$. Thus the only possible orbit size is $n'_0 = n'/d' = n - r$. Since this number does not depend on j , all orbits must be the same size.

Conversely, assume that for some j , $0 \leq j \leq r$, we have $\gcd(n - r, k - j) = d' > 1$. Achievable orbit sizes for orbits containing exactly j elements of I_r include n'_0 and $d'n'_0$ by [Theorem 8](#). Thus there are orbits of at least two different sizes. \square

If $\gcd(n, k) = 1$, then there exists a graph G with $\binom{n}{k}/n$ edges such that $K_n^{(k)}$ admits a cyclic G -decomposition. Let G be a subgraph of $K_n^{(k)}$, where $V(K_n^{(k)}) = \mathbb{Z}_{n-r} \cup I_r$ and let Γ be a G -decomposition of $K_n^{(k)}$. Then Γ is said to be *r-pyramidal* if Γ is closed under clicking. Thus among decompositions, 0-pyramidal is equivalent to cyclic. If we partition $\mathcal{E}_{n,r}^{(k)}$ into m distinct \mathbb{Z}_{n-r} -orbits each of size $n - r$ and if G with $E(G) \subseteq \mathcal{E}_{n,r}^{(k)}$ is a subgraph of $K_n^{(k)}$ with edge-set containing exactly one edge from each of the m distinct \mathbb{Z}_{n-r} -orbits, then $\Gamma = \{G + i : i \in \mathbb{Z}_{n-r}\}$ is an r -pyramidal G -decomposition of $K_n^{(k)}$. For example, if G is the subgraph of $K_9^{(3)}$, with $E(K_9^{(3)}) = \mathcal{E}_{9,2}^{(3)}$, such that $E(G) =$

$\{\{0, 1, 2\}, \{0, 1, 3\}, \{0, 1, 4\}, \{0, 1, 5\}, \{0, 2, 4\}, \{0, 1, \infty_1\}, \{0, 2, \infty_1\}, \{0, 3, \infty_1\}, \{0, 1, \infty_2\}, \{0, 2, \infty_2\}, \{0, 3, \infty_2\}, \{0, \infty_1, \infty_2\}\}$, then $\Gamma = \{G + i : i \in \mathbb{Z}_7\}$ constitutes a 2-pyramidal G -decomposition of $K_9^{(3)}$.

The requirement that the graph G in the previous paragraph contains exactly one edge from each of the m different \mathbb{Z}_{n-r} -orbits of size $n-r$ can again be viewed as an extension of the notion of a ρ -labeling of G . Suppose $K_n^{(k)}$ is balancing for some $r \in [0, k-1]$. Let $K_n^{(k)}$ have edge set $\mathcal{E}_{n,r}^{(k)}$. Then a subgraph G of $K_n^{(k)}$ with $m = \binom{n}{k}/(n-r)$ edges is said to admit an r -pyramidal ρ -labeling if each of the m edges of G belongs to a different orbit under the action of \mathbb{Z}_{n-r} .

We call the integer $k > 1$ completely balancing if $K_n^{(k)}$ is balancing for all $n > k$.

Theorem 10. Let $k \geq 2$. If k is completely balancing, then for every integer $n > k$ there exists r with $0 \leq r \leq k-1$ and a graph G with $\binom{n}{k}/(n-r)$ edges such that $K_n^{(k)}$ admits an r -pyramidal G -decomposition.

The following lemma allows us to decide whether k is completely balancing by checking a finite number of cases.

Lemma 11. Let π_k denote the product of the primes that are at most k . If $K_n^{(k)}$ is balancing for all $n \in [k+1, k+\pi_k]$, then k is completely balancing.

Proof. Suppose $K_n^{(k)}$ is balancing for all $n \in [k+1, k+\pi_k]$. Now let $n > k$. Then there exists $n' \in [k+1, k+\pi_k]$ such that $n' \equiv n \pmod{\pi_k}$. That is, $n = s\pi_k + n'$ for some $s \geq 0$. By the assumption and Theorem 9, there exists $r \in [0, k-1]$, such that $\gcd(n'-r, k-j) = 1$ for $0 \leq j \leq r$. That is, any prime that divides $k-j$ does not divide $n'-r$. Since any prime dividing $k-j$ also divides π_k , we have $\gcd(n-r, k-j) = \gcd(s\pi_k + n'-r, k-j) = \gcd(n'-r, k-j) = 1$ for $0 \leq j \leq r$. \square

One can easily verify that every k with $2 \leq k \leq 6$ is completely balancing. For example, $k = 2$ is completely balancing with $r = 0$ when n is odd and with $r = 1$ when n is even. Similarly, $k = 3$ is completely balancing with $r = 0$ when $n \equiv 1$ or $2 \pmod{3}$, and with $r = 1$ when $n \equiv 0 \pmod{6}$ and $r = 2$ when $n \equiv 3 \pmod{6}$.

Using Theorem 9 and Lemma 11 and a computer, one can easily verify that every $k \leq 14$ is completely balancing. Thus we have the following.

Theorem 12. For each k with $2 \leq k \leq 14$ and each $n > k$, there exists an r with $0 \leq r \leq k-1$ and a graph G with $\binom{n}{k}/(n-r)$ edges such that $K_n^{(k)}$ admits an r -pyramidal G -decomposition.

It is simple to verify that $K_n^{(15)}$ is balancing for all $n < 2199$. To show that $K_{2199}^{(15)}$ is not balancing, it suffices to note that for $r \in \{0, 3, 4, 6, 9, 12, 14\}$, we have $\gcd(2199-r, 15) > 1$; for $r \in \{1, 5, 7, 8, 11, 13\}$, we have $\gcd(2199-r, 14) > 1$; for $r = 2$, we have $\gcd(2199-r, 13) > 1$; and for $r = 10$, we have $\gcd(2199-r, 11) > 1$. In fact, we have verified that $K_n^{(15)}$ is balancing if and only if $n \not\equiv b \pmod{30030}$ where $b \in \{2199, 2200, 5765, 5766, 9125, 9126, 9455, 9456, 9459, 9460, 13,355, 13,356, 20,585, 20,586, 20,589, 20,590, 20,919, 20,920, 27,845, 27,846\}$. We have also verified that no $k \in [15, 50]$ is completely balancing and conjecture that no $k > 14$ is completely balancing.

Acknowledgments

This research is supported in part by grant number A1659815 from the Division of Mathematical Sciences at the National Science Foundation. Part of this work was completed while the third author participated in *REU Site: Mathematics Research Experience for Pre-service and for In-service Teachers* at Illinois State University.

References

- [1] P. Adams, D. Bryant, M. Buchanan, A survey on the existence of G -designs, *J. Combin. Des.* 16 (2008) 373–410.
- [2] R.F. Bailey, B. Stevens, Hamilton decompositions of complete k -uniform hypergraphs, *Discrete Math.* 310 (2010) 3088–3095.
- [3] Zs. Baranyai, On the factorization of the complete uniform hypergraph, in: *Infinite and Finite Sets*, in: *Colloq. Math. Soc. János Bolyai*, vol. 10, North-Holland, Amsterdam, 1975, pp. 91–108.
- [4] J.-C. Bermond, A. Germa, D. Sotteau, Hypergraph-designs, *Ars Combin.* 3 (1977) 47–66.
- [5] D. Bryant, S. Herke, B. Maenhaut, W. Wannasit, Decompositions of complete 3-uniform hypergraphs into small 3-uniform hypergraphs, *Australas. J. Combin.* 60 (2014) 227–254.
- [6] C.J. Colbourn, R. Mathon, Steiner systems, in: C.J. Colbourn, J.H. Dinitz (Eds.), *The CRC Handbook of Combinatorial Designs*, second ed., CRC Press, Boca Raton, 2007, pp. 102–110.
- [7] J. Kuhl, M.W. Schroeder, Hamilton cycle decompositions of k -uniform k -partite hypergraphs, *Australas. J. Combin.* 56 (2013) 23–37.
- [8] M. Meszka, A. Rosa, Decomposing complete 3-uniform hypergraphs into hamiltonian cycles, *Australas. J. Combin.* 45 (2009) 291–302.
- [9] M. Meszka, A. Rosa, A possible analogue of ρ -labelings for 3-uniform hypergraphs, in: *Ninth International Workshop on Graph Labelings (IWOGL 2016)*, in: *Electron. Notes Discrete Math.*, vol. 60, Elsevier Sci. B. V., Amsterdam, 2017, pp. 33–37.
- [10] F.S. Roberts, B. Tesman, *Applied Combinatorics*, second ed., CRC Press, Boca Raton, FL, 2009.
- [11] A. Rosa, On certain valuations of the vertices of a graph, in: *Théorie des graphes, journées internationales d'études*, Rome 1966, Dunod, Paris, 1967, pp. 349–355.
- [12] M.W. Schroeder, On hamilton cycle decompositions of r -uniform r -partite hypergraphs, *Discrete Math.* 315 (2014) 1–8.