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a b s t r a c t

Let Zn denote the group of integers modulo n and let E (k)
n be the set of all k-element subsets

of Zn where 1 ≤ k < n. If E ∈ E (k)
n , let [E] = {E + r : r ∈ Zn}. Then [E] is the orbit of

E where Zn acts on E (k)
n via (r, E) ↦→ E + r . Furthermore, {[E] : E ∈ E (k)

n } is a partition of
E (k)
n into Zn-orbits. In this article, we count the total number of Zn-orbits of E

(k)
n , count the

number of orbits of each size, determine the corresponding results when fixed points are
introduced, and give an application to cyclic and r-pyramidal decompositions of complete
uniform hypergraphs into isomorphic subgraphs.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

If (G, ⊕) is a group with identity 0, X is a set, and f is a function from G × X into X such that f (0, x) = x for all x ∈ X
and f (g1 ⊕ g2, x) = f (g1, f (g2, x)) for all g1, g2 ∈ G and x ∈ X , then it is said that G acts on X . Furthermore, f partitions X
into G-orbits, where two elements x, y ∈ X are in the same orbit if and only if x = f (g, y) for some g ∈ G. For g ∈ G, let
Fix(g) = {x ∈ X : f (g, x) = x}. Thus Fix(g) is the set of elements of X that are fixed by g . Burnside’s lemma (see [10]) gives
the number of G-orbits of X .

Lemma 1 (Burnside’s Lemma). Let a finite group G act on a set X. The number of orbits that G induces is given by:
1
|G|

∑
g∈G

|Fix(g)|.

Let Zn denote the group of integers modulo n and let E (k)
n be the set of all k-element subsets of Zn where 1 < k < n. If

E ∈ E (k)
n and r ∈ Zn, let E + r be formed by replacing each element x ∈ E with x + r; so (r, E) ↦→ E + r maps Zn × E (k)

n into
E (k)
n . It can be seen that the group Zn acts on the set E (k)

n partitioning it into Zn-orbits, where E1, E2 ∈ E (k)
n are in the same

orbit if and only if E1 + r = E2 for some r ∈ Zn. We define [E] to be {E + r : r ∈ Zn}, which we refer to as the Zn-orbit of E.
If S ⊆ E (k)

n and r ∈ Zn, let S + r = {E + r : E ∈ S}. By clicking S, we shall mean replacing S with S + 1.

1.1. Applications in hypergraphs

The set E (k)
n can be thought of as being the edge set of the complete k-uniform hypergraph K (k)

n with vertex set Zn. The
Zn-orbit of an edge E can be viewed as the set resulting from successively clicking E.
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Let K and G be k-uniform hypergraphs with G a subgraph of K . A G-decomposition of K is a set Γ = {G1,G2, . . . ,Gt} of
subgraphs of K each of which is isomorphic to G and such that each edge of K appears in exactly one Gi. In this case, we may
refer to the elements of Γ as G-blocks. A G-decomposition of K is also known as a (K ,G)-design. A (K (k)

m , K (k)
n )-design is known

as a Steiner system S(k,m, n). A summary of results on Steiner systems S(k,m, n) can be found in [6].
Let G be a subgraph of K (k)

n , where V (K (k)
n ) = Zn, and let Γ be a G-decomposition of K (k)

n . Then Γ is said to be
cyclic if Γ is closed under clicking. Thus if Gi ∈ Γ , then Gi + 1 ∈ Γ . If we partition E (k)

n into m distinct Zn-orbits
each of size n and if G a subgraph of K (k)

n consisting of one edge from each of the m distinct Zn-orbits, then Γ =

{G + i : i ∈ Zn} is a cyclic G-decomposition of K (k)
n . For example, if G is the subgraph of K (3)

8 with edge-set S ={
{0, 1, 2}, {0, 1, 3}, {0, 1, 4}, {0, 1, 5}, {0, 1, 6}, {0, 2, 4}, {0, 2, 5}

}
, then Γ = {G + i : i ∈ Z8} constitutes a cyclic G-

decomposition of K (3)
8 .

The requirement that the hypergraphG in the previous paragraphmust contain exactly one edge fromeachof the different
Zn-orbits of size n can be viewed as an extension of the notion of a ρ-labeling of G in the case k = 2 as introduced by Rosa
in [11]. Although stated differently in [11], a subgraph G of K (2)

2m+1 with m edges admits a ρ-labeling if each of the m edges
of G belongs to a different orbit under the action of Z2m+1. In [9], Meszka and Rosa extend this definition to 3-uniform
hypergraphs.

Most of the work on G-decompositions of K (k)
n focuses on the case k = 2 (see [1] for a summary of known results). In

general, little is known when k ≥ 3. Some of the focus has been on G-decompositions of K (3)
n , where G is a graph with a

relatively small number of edges (see for example, [4] and [5]). Perhaps the best known general result on decompositions of
complete k-uniform hypergraphs is Baranyai’s result [3] on the existence of 1-factorizations of K (k)

mk for all positive integersm.
There are, however, several articles on decompositions of complete k-uniformhypergraphs (see [2] and [8]) and of k-uniform
k-partite hypergraphs (see [7] and [12]) into variations on the concept of a Hamilton cycle.

In this article, we count the total number of Zn-orbits of E (k)
n , count the number of orbits of each size, determine the

corresponding results when fixed points are introduced, and give an application to cyclic and r-pyramidal decompositions
of complete uniform hypergraphs into isomorphic subgraphs.

2. Counting orbits

In this paper lowercase letters represent integers. If a and b are integers, we define [a, b] to be {r ∈ Z : a ≤ r ≤ b}. In
sums of the form

∑
e|mf (e) we assume e is restricted to positive divisors. Let d = gcd(n, k), with n = dn0 and k = dk0, so

gcd(n0, k0) = 1. By φ and µ we mean the Euler φ-function and the Möbius function.

Lemma 2. If r > 0 and gcd(r, n) = e, then Fix(r) = Fix(e).

Proof. There exists a positive integer s such that r = se. First suppose E ∈ Fix(e), so E + e = E. Then E + r = E + se =

E + e+ e+· · ·+ e = E, and so E ∈ Fix(r). Conversely, suppose E ∈ Fix(r). Since gcd(r, n) = e, we can find integers x > 0 and
y such that xr +yn = e. Then, performing addition in Zn, we have E+e = E+xr +yn = E+xr +0 = E+ r + r +· · ·+ r = E,
and so E ∈ Fix(e). □

Lemma 3. Let n and k be positive integers and set d = gcd(n, k), n = dn0, and k = dk0. Suppose r is a positive integer such that
r | n and n | kr (so n0 | r). For any positive integer h, we have h | r and n | hk if and only if h = en0, where e |

r
n0
. Moreover, if

h | n then the number of integers r, 0 ≤ r < n, with gcd(n, r) = h is φ(n/h).

Proof. First suppose h | r and n | hk. Now n0 | hk0, so n0 | h. Let h = en0, and let r = hh′. Then r/n0 = hh′/n0 = eh′, so
e | r/n0.

Conversely, suppose h = en0, where e | r/n0. Then h = en0 | (r/n0)n0 = r . Also kh = ken0 = (k/d)e(dn0) = k0en, so
n | kh.

To see the second statement note that gcd(r, n) = h if and only if gcd(r/h, n/h) = 1, 0 ≤ r/h < n/h. □

Theorem 4. Let k and n be positive integers, d = gcd(n, k), and let Zn act on E (k)
n . Then the number t of Zn-orbits of E (k)

n is given
by

t =
1
n

∑
e|d

φ(e)
(
n/e
k/e

)
.

Proof. Suppose Fix(q) ̸= ∅. Then by Lemma 2, Fix(q) = Fix(h), where h = gcd(q, n). Suppose E ∈ Fix(h). This implies that if
A ⊆ [0, h − 1] and A ⊆ E, then A + jh ⊆ E for j ∈ [0, n/h − 1]. Hence E must have the form

A ∪ (h + A) ∪ (2h + A) ∪ · · · ∪
(
(n/h − 1)h + A

)
.

Then (n/h)|A| = |E| = k, so |A| = hk/n and n | hk. The number of ways of choosing |A| elements from {0, 1, . . . , h − 1} is( h
|A|

)
=
( h
hk/n

)
, and this is the same for all the φ(n/h) values of r such that gcd(r, n) = h. Thus by Burnside’s Lemma and the
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first part of Lemma 3 with r = n,

t =
1
n

∑
h|n
n|hk

φ(n/h)
(

h
hk/n

)
=

1
n

∑
e|d

φ
( n
en0

)( en0

en0k/n

)

=
1
n

∑
e|d

φ(d/e)
(
n/(d/e)
k/(d/e)

)
.

Now if we notice that as e runs through the positive divisors of d, so does d/e, we get the formula of the theorem. □

Example 1. When n = 30 and k = 24, we have d = 6, so

t =
1
30

∑
e|6

φ(e)
(
30/e
24/e

)

=
1
30

(
φ(1)

(
30
24

)
+ φ(2)

(
15
12

)
+ φ(3)

(
10
8

)
+ φ(6)

(
5
4

))
=

1
30

(1 · 593,775 + 1 · 455 + 2 · 45 + 2 · 5) = 19,811.

3. Difference vectors

If E ∈ E (k)
n , we can write E uniquely as {a1, a2, . . . , ak} where 0 ≤ a1 < a2 < · · · < ak < n. By the difference vector of E,

we mean the k-tuple ∆E = (a2 − a1, a3 − a2, . . . , ak − ak−1, n + a1 − ak). Note that the components of ∆E are positive and
sum to n. Also, distinct elements of a Zn-orbit may yield distinct difference vectors. For example, if E = {0, 3, 4} ∈ E (3)

5 , then
∆E = (3, 1, 1), while ∆(E + 2) = ∆{0, 1, 2} = (1, 1, 3). However, it is easy to see that edges are in the same Zn-orbit if and
only if they have difference vectors that are cyclic permutations of each other. By the reduced difference vector ∆′E of an
edge E, we mean the difference vector among the cyclic permutations of ∆E that is lexicographically first. In our example,
the cyclic permutations of ∆E are (3, 1, 1), (1, 3, 1), and (1, 1, 3), and thus ∆′E = (1, 1, 3) = ∆′(E + 2).

Now letD(k)
n be all ordered k-tuples of positive integers with sum n. Using standard counting techniques, it can be proved

that the number of sequences of u positive integers with sum v is
(
v−1
u−1

)
. In particular,

⏐⏐D(k)
n
⏐⏐ =

(n−1
k−1

)
. If D = (b1, b2, . . . , bk)

is a difference vector in D(k)
n and r ∈ Zk, we define D ⊕ r to be (b1+r , b2+r , . . . , bk+r ), where the subscripts are taken

modulo k. Then the group Zk acts on D(k)
n , and we will denote the Zk-orbit containing D ∈ D(k)

n by [D]. There is a one-to-one
correspondence between the Zk-orbits of D

(k)
n with respect to ⊕ and the Zn-orbits of E

(k)
n with respect to +. In particular, if

E ∈ E (k)
n , then the Zn-orbit [E] contained in E (k)

n corresponds to the Zk-orbit [∆E] contained in D(k)
n .

We can count the Zk-orbits of D
(k)
n using Burnside’s Lemma. This yields the formula

t =
1
k

∑
e|d

φ(e)
(
n/e − 1
k/e − 1

)
,

where as before d = gcd(n, k). This formula gives the same result as that of Theorem 4.

Example 2. If n = 30 and k = 24 so d = 6, we have

t =
1
24

∑
e|6

φ(e)
(
30/e − 1
24/e − 1

)

=
1
24

(
φ(1)

(
29
23

)
+ φ(2)

(
14
11

)
+ φ(3)

(
9
7

)
+ φ(6)

(
4
3

))
=

1
24

(1 · 475,020 + 1 · 364 + 2 · 36 + 2 · 4) = 19,811.

4. Orbits of a given size

If gcd(n, k) = 1 the sum in Theorem 4 has a single term, and the number of Zn-orbits of E
(k)
n is 1

n

(n
k

)
. Since

⏐⏐E (k)
n
⏐⏐ =

(n
k

)
,

every orbit in this case has size n. If gcd(n, k) > 1 however, there will be orbits of various sizes. In this section we count the
number of orbits of each size.

We consider the Zn-orbits of E
(k)
n . LetN(h) be the number Zn-orbits in E (k)

n with exactly h elements. By the order of E ∈ E (k)
n

we mean the least positive integer h such that E + h = E. Since E + h = E + gcd(h, n), this means h | n. Clearly the order of
E is

⏐⏐[E]
⏐⏐. Recall that Fix(h) = {E ∈ E (k)

n : E + h = E}.
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Lemma 5. Let s be a positive divisor of n. Then E ∈ Fix(s) if and only if E has order h, where h | s and n | hk.

Proof. Let E ∈ Fix(s) have order h, and let s = q′h+ r ′, where 0 ≤ r ′ < h. Then E = E+s = (E+h+h+· · ·+h)+ r ′
= E+ r ′,

and so by the definition of orderwemust have r ′
= 0. Thus h | s. Since Fix(h) ̸= ∅wehave n | hk as in the proof of Theorem4.

Now assume the order of E is h, where h | s and n | hk. Say s = qh. Then E + s = E +h+h+· · ·+h = E, so E ∈ Fix(s). □

Since Fix(n) = E (k)
n , by taking s = n in the previous lemma we see that m(h) > 0 if and only if h | n and n | hk, and by

Lemma 3 with r = n this happens if and only if h = en0, where e | n/n0 = d. This is the first conclusion of the following
theorem.

Theorem 6. Let n and k be positive integers, and consider E (k)
n . Set d = gcd(n, k), n = dn0, k = dk0. The values of s such that

N(s) > 0 are exactly the integers s = en0, where e runs through the positive divisors of d. In this case

N(s) =
1
s

∑
f |s0

µ(s0/f )
(
n0f
k0f

)
,

where s0 = s/n0.

Proof. Let s be a positive divisor of n such that Fix(s) ̸= ∅. Then as in the proof of Theorem 4 we have n | sk. Since if E has
order h, then

⏐⏐[E]
⏐⏐ = h, the total number of edges of order h is hN(h). By Lemma 5 we have

|Fix(s)| =

∑
h|s
n|hk

hN(h) =

∑
e|s0

en0N(en0),

where in the second sum we have applied the first part of Lemma 3 and set s0 = s/n0. In the proof of Theorem 4 we found
that |Fix(s)| =

( s
sk/n

)
, so we have∑

e|s0

en0N(en0) =

(
s

sk/n

)
=

(
n0s0
k0s0

)
.

The last equation has the form G(s0) =
∑

f |s0
g(f ), where G(s0) =

(n0s0
k0s0

)
, and g(f ) = fn0N(fn0). By the Möbius inversion

formula we have

g(s0) =

∑
f |s0

µ(s0/f )G(f ) or s0n0N(s0n0) = sN(s) =

∑
f |s0

µ(s0/f )
(
n0f
k0f

)
,

so

N(s) =
1
s

∑
f |s0

µ(s0/f )
(
n0f
k0f

)
. □

Example 3. If n = 30 and k = 24 so that d = 6, we have n0 = 5 and k0 = 4. The divisors of d are 1, 2, 3, and 6, the
corresponding values of s are 5, 10, 15, and 30, and of s0 are 1, 2, 3, and 6. Then

N(5) =
1
5

∑
f |1

µ(1/f )
(
5f
4f

)
=

1
5
(1)
(
5
4

)
= 1,

N(10) =
1
10

∑
f |2

µ(2/f )
(
5f
4f

)
=

1
10

(
(−1)

(
5
4

)
+ (1)

(
10
8

))
= 4,

N(15) =
1
15

∑
f |3

µ(3/f )
(
5f
4f

)
=

1
15

(
(−1)

(
5
4

)
+ (1)

(
15
12

))
= 30,

N(30) =
1
30

∑
f |6

µ(6/f )
(
5f
4f

)

=
1
30

(
(1)
(
5
4

)
+ (−1)

(
10
8

)
+ (−1)

(
15
12

)
+ (1)

(
30
24

))
= 19,776.

Note that 1 + 4 + 30 + 19,776 = 19,811, which agrees with the results in Examples 1 and 2.
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If E ∈ E (k)
n and D ∈ D(k)

n are in corresponding orbits, then
⏐⏐[D]

⏐⏐ = (k/n)
⏐⏐[E]

⏐⏐. Thus if we define M(h) to be the number of
orbits of D(k)

n of size h, then M(h) = N(nh/k). For example D(24)
30 has 1 orbit of size 4, 4 orbits of size 8, 30 orbits of size 12,

and 19,776 orbits of size 24.

5. Orbits under r-Pyramidal Actions

Let n, k, and r be integers with 0 ≤ r < k < n and let Ir = {∞1, ∞2, . . . ,∞r}. Also, let E
(k)
n,r be the set of all k-element

subsets of Zn−r ∪ Ir . Then the set E (k)
n,r can be thought of as being the edge set of the complete k-uniform hypergraph K (k)

n with
vertex set Zn−r ∪ Ir . If ∞i ∈ Ir and s ∈ Zn−r , we define ∞i + s to be ∞i. Furthermore if E ∈ E (k)

n,r , we let E + s = {x+ s : x ∈ E}.
It is easy to see that the group Zn−r acts on E (k)

n,r via (s, E) → E + s, and so E (k)
n,r is partitioned into Zn−r -orbits under this

r-pyramidal action. As before if s ∈ Zn−r , we let Fix(s) = {E ∈ E (k)
n,r : E + s = E}. Clearly if E and E ′ are in the same orbit, then

E ∩ Ir = E ′
∩ Ir . Suppose E ∈ E (k)

n,r and E ∩ Ir = J , where |J| = j. Let E∗
= E \ Ir , so |E∗

| = k − j. Then E + s = E exactly when
E∗

+ s = E∗.
Let EJ = {E ∈ E (k)

n,r : E ∩ Ir = J}. Then Zn−r acts on EJ , and by Theorem 4 the number of Zn−r -orbits in EJ is

1
n − r

∑
e|gcd(n−r,k−j)

φ(e)
(
(n − r)/e
(k − j)/e

)
.

Let Ej = {E ∈ E (k)
n,r : |E ∩ Ir | = j}. Since there are

(r
j

)
subsets of Ir with j elements, the number of Zn−r -orbits in Ej is(

r
j

)
1

n − r

∑
e|gcd(n−r,k−j)

φ(e)
(
(n − r)/e
(k − j)/e

)
.

Noting that j can vary from 0 to r gives the following.

Theorem 7. Let n, k, and r be integers with 0 ≤ r < k < n and consider the complete k-uniform hypergraph K (k)
n with vertex set

Zn−r ∪ Ir . Let Zn−r act on the set of edges E (k)
n,r as described above. Then the number of Zn−r -orbits is

1
n − r

r∑
j=0

((
r
j

) ∑
e|gcd(n−r,k−j)

φ(e)
(
(n − r)/e
(k − j)/e

))
.

Example 4. If n = 30, k = 24, and r = 3, the number of Z27-orbits of E
(24)
30,3 is

1
27

3∑
j=0

⎛⎝(3
j

) ∑
e|gcd(27,24−j)

φ(e)
(

27/e
(24 − j)/e

)⎞⎠
=

1
27

⎛⎝(3
0

)∑
e|3

φ(e)
(
27/e
24/e

)
+

(
3
1

)∑
e|1

φ(e)
(
27/e
23/e

)

+

(
3
2

)∑
e|1

φ(e)
(
27/e
22/e

)
+

(
3
3

)∑
e|3

φ(e)
(
27/e
21/e

)⎞⎠
=

1
27

(((
27
24

)
+ 2

(
9
8

))
+ 3

(
27
23

)
+ 3

(
27
22

)
+

((
27
21

)
+ 2

(
9
7

)))
=

1
27

(2943 + 52,650 + 242,190 + 296,082) = 21,995.

Now we consider the number of orbits of a given size. With general n, k, and r as before the example consider a fixed set
J ⊆ Ir with |J| = j. The action of Zn−r on EJ = {E ∈ E (k)

n,r : E ∩ Ir = J} amounts to the action of Zn−r on E (k−j)
n−r . Set n′

= n − r ,
k′

= k − j, d′
= gcd(n′, k′), n′

= d′n′

0, k
′
= d′k′

0. By Theorem 6 the orbit sizes are exactly the integers s = en′

0, where e runs
through the positive divisors of d′. Then for such an integer e the number of Zn−r -orbits of EJ of size en′

0 is

1
s

∑
f |s0

µ(s0/f )
(
n′

0f
k′

0f

)
,

where s0 = s/n′

0. Letting J run through the
(r
j

)
subsets of Ir of size j gives the following.
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Theorem 8. Let n, k, r , and j be integers with n > k, 0 ≤ r < k, and 0 ≤ j ≤ r, and consider the complete k-uniform hypergraph
K (k)
n with vertex set Zn−r ∪ Ir . Set n′

= n− r, k′
= k− j, d′

= gcd(n′, k′), n′
= dn′

0, and k′
= d′k′

0. The achievable sizes of orbits of
E (k)
n,r with exactly j elements in Ir are the integers s = en′

0, where e is a positive divisor of d′, and the number Nj(s) of such orbits is

Nj(s) =

(
r
j

)
1
s

∑
f |s0

µ(s0/f )
(
n′

0f
k′

0f

)
,

where s0 = s/n′

0.

Example 5. Consider n = 30, k = 24, r = 3. If j = 0, we have n′
= 27, k′

= 24, d′
= 3, n′

0 = 9, k′

0 = 8, and s = 9e, where
e | 3. Thus s is 9 or 27, and

N0(9) =

(
3
0

)
1
9

∑
f |1

µ(1/f )
(
9f
8f

)
= 1,

N0(27) =

(
3
0

)
1
27

∑
f |3

µ(3/f )
(
9f
8f

)
=

1
27

(
(−1)

(
9
8

)
+

(
27
24

))
= 108.

Note that n′ does not change with j. If j = 1, we have k′
= 23, d′

= 1, n′

0 = 27, k′

0 = 23, and s = 27e, where e | 1. Thus
s = 27, and

N1(27) =

(
3
1

)
1
27

∑
f |1

µ(1/f )
(
27f
23f

)
= 1950.

Likewise if j = 2, then n′
= 27, k′

= 22, d′
= 1, n′

0 = 27, k′

0 = 22, and s = 27e, where e | 1. Thus s = 27, and

N2(27) =

(
3
2

)
1
27

∑
f |1

µ(1/f )
(
27f
22f

)
=

1
9

(
27
22

)
= 8970.

Finally if j = 3, then n′
= 27, k′

= 21, d′
= 3, n′

0 = 9, k′

0 = 7, and s = 9e, where e | 3. Thus s is 9 or 27, and

N3(9) =

(
3
3

)
1
9

∑
f |1

µ(1/f )
(
9f
7f

)
=

1
9

(
9
7

)
= 4,

N3(27) =

(
3
3

)
1
27

∑
f |3

µ(3/f )
(
9f
7f

)
=

1
27

(
(−1)

(
9
7

)
+

(
27
21

))
= 10, 962.

Notice that there are 1 + 4 = 5 orbits of size 9 and 108 + 1950 + 8970 + 10,962 = 21,990 of size 27, for a total of 21,995
orbits, just as we computed in Example 4 using Theorem 7. These include 5 · 9+ 21,990 · 27 = 593,775 edges, which is

(30
24

)
.

6. Forcing same-sized orbits

In order to decompose a complete uniform hypergraph K (k)
n into isomorphic subgraphs, it is convenient to use a group

action that yields same-sized orbits. As mentioned in the beginning of Section 4, if gcd(n, k) = 1 the action described in
Section 1 achieves same-sized orbits. If gcd(n, k) > 1, it may be possible to find an r-pyramidal action that yields same-sized
orbits. We call K (k)

n balancing if there exists an integer r ∈ [0, k − 1], such that E (k)
n,r has all orbits of size n − r .

Theorem 9. The hypergraph K (k)
n is balancing if and only if gcd(n − r, k − j) = 1 whenever 0 ≤ j ≤ r.

Proof. Suppose gcd(n − r, k − j) = 1 whenever 0 ≤ j ≤ r . For a fixed such j by Theorem 8, the achievable sizes of orbits of
edges containing exactly j elements of Ir are the integers s = en′

0, where e is a positive divisor of d′
= gcd(n − r, k − j) = 1.

Thus the only possible orbit size is n′

0 = n′/d′
= n − r . Since this number does not depend on j, all orbits must be the same

size.
Conversely, assume that for some j, 0 ≤ j ≤ r , we have gcd(n − r, k − j) = d′ > 1. Achievable orbit sizes for orbits

containing exactly j elements of Ir include n′

0 and d′n′

0 by Theorem 8. Thus there are orbits of at least two different sizes. □

If gcd(n, k) = 1, then there exists a graph G with
(n
k

)
/n edges such that K (k)

n admits a cyclic G-decomposition.
Let G be a subgraph of K (k)

n , where V (K (k)
n ) = Zn−r ∪ Ir and let Γ be a G-decomposition of K (k)

n . Then Γ is said to
be r-pyramidal if Γ is closed under clicking. Thus among decompositions, 0-pyramidal is equivalent to cyclic. If we
partition E (k)

n,r into m distinct Zn−r -orbits each of size n − r and if G with E(G) ⊆ E (k)
n,r is a subgraph of K (k)

n with edge-
set containing exactly one edge from each of the m distinct Zn−r -orbits, then Γ = {G + i : i ∈ Zn−r} is an r-
pyramidal G-decomposition of K (k)

n . For example, if G is the subgraph of K (3)
9 , with E(K (3)

9 ) = E (3)
9,2, such that E(G) =
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{0, 1, 2}, {0, 1, 3}, {0, 1, 4}, {0, 1, 5}, {0, 2, 4}, {0, 1, ∞1}, {0, 2, ∞1}, {0, 3, ∞1}, {0, 1, ∞2}, {0, 2, ∞2}, {0, 3, ∞2},

{0, ∞1, ∞2}
}
, then Γ = {G + i : i ∈ Z7} constitutes a 2-pyramidal G-decomposition of K (3)

9 .
The requirement that the graph G in the previous paragraph contains exactly one edge from each of the m different

Zn−r -orbits of size n − r can again be viewed as an extension of the notion of a ρ-labeling of G. Suppose K (k)
n is balancing for

some r ∈ [0, k − 1]. Let K (k)
n have edge set E (k)

n,r . Then a subgraph G of K (k)
n with m =

(n
k

)
/(n − r) edges is said to admit an

r-pyramidal ρ-labeling if each of the m edges of G belongs to a different orbit under the action of Zn−r .
We call the integer k > 1 completely balancing if K (k)

n is balancing for all n > k.

Theorem 10. Let ≥ 2. If k is completely balancing, then for every integer n > k there exists r with 0 ≤ r ≤ k− 1 and a graph G
with

(n
k

)
/(n − r) edges such that K (k)

n admits an r-pyramidal G-decomposition.

The following lemma allows us to decide whether k is completely balancing by checking a finite number of cases.

Lemma 11. Let πk denote the product of the primes that are at most k. If K (k)
n is balancing for all n ∈ [k + 1, k + πk], then k is

completely balancing .

Proof. Suppose K (k)
n is balancing for all n ∈ [k + 1, k + πk]. Now let n > k. Then there exists n′

∈ [k + 1, k + πk] such that
n′

≡ n (mod πk). That is, n = sπk + n′ for some s ≥ 0. By the assumption and Theorem 9, there exists r ∈ [0, k − 1], such
that gcd(n′

− r, k− j) = 1 for 0 ≤ j ≤ r . That is, any prime that divides k− j does not divide n′
− r . Since any prime dividing

k − j also divides πk, we have gcd(n − r, k − j) = gcd(sπk + n′
− r, k − j) = gcd(n′

− r, k − j) = 1 for 0 ≤ j ≤ r . □

One can easily verify that every k with 2 ≤ k ≤ 6 is completely balancing. For example, k = 2 is completely balancing
with r = 0 when n is odd and with r = 1 when n is even. Similarly, k = 3 is completely balancing with r = 0 when n ≡ 1
or 2 (mod 3), and with r = 1 when n ≡ 0 (mod 6) and r = 2 when n ≡ 3 (mod 6).

Using Theorem 9 and Lemma 11 and a computer, one can easily verify that every k ≤ 14 is completely balancing. Thus
we have the following.

Theorem 12. For each k with 2 ≤ k ≤ 14 and each n > k, there exists an r with 0 ≤ r ≤ k − 1 and a graph G with
(n
k

)
/(n − r)

edges such that K (k)
n admits an r-pyramidal G-decomposition.

It is simple to verify that K (15)
n is balancing for all n < 2199. To show that K (15)

2199 is not balancing, it suffices to note that for
r ∈ {0, 3, 4, 6, 9, 12, 14}, we have gcd(2199 − r, 15) > 1; for r ∈ {1, 5, 7, 8, 11, 13}, we have gcd(2199 − r, 14) > 1; for
r = 2, we have gcd(2199 − r, 13) > 1; and for r = 10, we have gcd(2199 − r, 11) > 1. In fact, we have verified that K (15)

n
is balancing if and only if n ̸≡ b (mod 30030) where b ∈ {2199, 2200, 5765, 5766, 9125, 9126, 9455, 9456, 9459, 9460,
13,355, 13,356, 20,585, 20,586, 20,589, 20,590, 20,919, 20,920, 27,845, 27,846}. We have also verified that no k ∈ [15, 50]
is completely balancing and conjecture that no k > 14 is completely balancing.
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