Discrete Mathematics 341 (2018) 3348-3354

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

I.)

Check for
updates

Edge orbits and cyclic and r-pyramidal decompositions of
complete uniform hypergraphs

Ryan C. Bunge?, Saad 1. El-Zanati?, Joel Jeffries°, Charles Vanden Eynden?

2 Department of Mathematics, Illinois State University, Normal, IL 61790-4520, USA
b Department of Mathematics, lowa State University, Ames, IA 50011, USA

ARTICLE INFO ABSTRACT

Article history: Let Z, denote the group of integers modulo n and let £ be the set of all k-element subsets
Received 19 February 2018

(k) _ . i i
Received in revised form 28 July 2018 of Z, where 1 < k < n.IfE € &, let[E] = {E+7r : r € Z,}. Then [E] is the orbit of

Accepted 21 August 2018 E(){/;/here Zn acts on Sﬁ,k) via (r, E) — E + r. Furthermore, {[E] : E € sr(,k)} is a partition of

Available online 15 September 2018 &, into Zy-orbits. In this article, we count the total number of Z,-orbits of S,(f , count the
number of orbits of each size, determine the corresponding results when fixed points are

Keywords: introduced, and give an application to cyclic and r-pyramidal decompositions of complete

Edge orbits uniform hypergraphs into isomorphic subgraphs.

k-uniform hypergraphs © 2018 Elsevier B.V. All rights reserved.

Cyclic decompositions
r-pyramidal decompositions

1. Introduction

If (G, @) is a group with identity 0, X is a set, and f is a function from G x X into X such that f(0,x) = xforallx € X
and f(g1 & g2, x) = f(g1,f(g2, x)) for all g1, g, € Gand x € X, then it is said that G acts on X. Furthermore, f partitions X
into G-orbits, where two elements x, y € X are in the same orbit if and only if x = f(g,y) for some g € G.Forg € G, let
Fix(g) = {x € X : f(g, x) = x}. Thus Fix(g) is the set of elements of X that are fixed by g. Burnside’s lemma (see [10]) gives
the number of G-orbits of X.

Lemma 1 (Burnside’s Lemma). Let a finite group G act on a set X. The number of orbits that G induces is given by:

1 .
& > IFix(g)!.

getG

Let Z, denote the group of integers modulo n and let 5,(,") be the set of all k-element subsets of Z, where 1 < k < n.If

E e E,Sk) and r € Z,, let E 4 r be formed by replacing each element x € E withx + r; so (r, E) — E 4+ r maps Z, X S,(qk) into
E,ﬁk). It can be seen that the group Z, acts on the set E,(lk) partitioning it into Z,-orbits, where Eq, E; € 8,(1") are in the same
orbit if and only if E; 4+ r = E, for some r € Z,. We define [E] to be {E + 1 : r € Z,}, which we refer to as the Z,-orbit of E.

IfS C 5,(1") andr € Zy, letS +r = {E +r : E € S}. By clicking S, we shall mean replacing S with S + 1.
1.1. Applications in hypergraphs

The set 5,2’” can be thought of as being the edge set of the complete k-uniform hypergraph K,(lk) with vertex set Z,. The
Zq-orbit of an edge E can be viewed as the set resulting from successively clicking E.
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Let K and G be k-uniform hypergraphs with G a subgraph of K. A G-decomposition of K is a set I' = {Gy, Ga, ..., G¢} of
subgraphs of K each of which is isomorphic to G and such that each edge of K appears in exactly one G;. In this case, we may
refer to the elements of I" as G-blocks. A G-decomposition of K is also known as a (K, G)-design. A (I(,(,f), ")) design is known
as a Steiner system S(k, m, n). A summary of results on Steiner systems S(k, m, n) can be found in [6]

Let G be a subgraph of Kn‘), where V(K” ) = Zn, and let I" be a G-decomposition of K ) Then I is said to be
cyclic if I" is closed under clicking. Thus 1f Gi € I',then G; + 1 € I.If we partition 5( ) into m distinct Zy-orbits
each of size n and if G a subgraph of K con51st1ng of one edge from each of the m distinct Z,-orbits, then I =
{G+i : i € Z}is a cyclic G-decomposition of I(,Ek). For example, if G is the subgraph of Ké3) with edge-set S =
{{0,1,2},{0,1,3},{0,1,4},{0,1,5},{0, 1,6}, {0,2,4},{0,2,5}}, then I' = {G+i : i € Zg} constitutes a cyclic G-
decomposition of Kf)

The requirement that the hypergraph G in the previous paragraph must contain exactly one edge from each of the different

Zn-orbits of size n can be viewed as an extension of the notlon of a p-labeling of G in the case k = 2 as introduced by Rosa
in [11]. Although stated differently in [11], a subgraph G of sz+1 with m edges admits a p-labeling if each of the m edges
of G belongs to a different orbit under the action of Z;y,, 1. In [9], Meszka and Rosa extend this definition to 3-uniform
hypergraphs.

Most of the work on G-decompositions of K% focuses on the case k = 2 (see [1] for a summary of known results). In
general, little is known when k > 3. Some of the focus has been on G-decompositions of Kn , Where G is a graph with a
relatively small number of edges (see for example, [4] and [5]). Perhaps the best known general result on decompositions of
complete k-uniform hypergraphs is Baranyai’s result [ 3] on the existence of 1-factorizations of K for all positive integers m.
There are, however, several articles on decompositions of complete k-uniform hypergraphs (see [2] and [8]) and of k-uniform
k-partite hypergraphs (see [7] and [ 12]) into variations on the concept of a Hamilton cycle.

In this article, we count the total number of Z,-orbits of 5,(,"), count the number of orbits of each size, determine the
corresponding results when fixed points are introduced, and give an application to cyclic and r-pyramidal decompositions
of complete uniform hypergraphs into isomorphic subgraphs.

2. Counting orbits

In this paper lowercase letters represent integers. If a and b are integers, we define [a,b]tobe{r € Z : a <r < b}.In
sums of the form Zelmf(e) we assume e is restricted to positive divisors. Let d = gcd(n, k), with n = dng and k = dkg, so
gcd(ng, ko) = 1. By ¢ and u we mean the Euler ¢-function and the Mébius function.

Lemma 2. If r > 0 and gcd(r, n) = e, then Fix(r) = Fix(e).

Proof. There exists a positive integer s such that r = se. First suppose E € Fix(e), SOE + e = E.ThenE +r = E + se =
E+4+e+4e+---+e=E,andsoE € Fix(r). Conversely, suppose E € Fix(r). Since gcd(r, n) = e, we can find integers x > 0 and
y such that xr +yn = e. Then, performing additionin Z,, we haveE+e =E+xr+yn=E+xr+0=E+r+r+---+r =E,
and so E € Fix(e). O

Lemma 3. Let n and k be positive integers and set d = gcd(n, k), n = dny, and k = dkg. Suppose r is a positive integer such that
r | nandn | kr (song | r). For any positive integer h, we have h | r and n | hk if and only if h = eng, where e | % Moreover, if
h | n then the number of integersr, 0 < r < n, with gcd(n, r) = his ¢(n/h).

Proof. First suppose h | r and n | hk. Now nq | hkg, song | h. Let h = eng, and let r = hh'. Thenr/ng = hh'/ng = eh’, so
e | r/ng.

Conversely, suppose h = eng, where e | r/ng. Then h = eng | (r/ng)ng = r. Also kh = keny = (k/d)e(dng) = koen, so
n | kh.

To see the second statement note that gcd(r, n) = h if and only if gcd(r/h, n/h) = 1,0 <r/h <n/h. O

Theorem 4. Let k and n be positive integers, d = gcd(n, k), and let Z, act on S(k) Then the number t of Zy-orbits of Sn is given

by
RN
=1 Zqb(e)(k/e)

eld

Proof. Suppose Fix(q) # @. Then by Lemma 2, Fix(q) = Fix(h), where h = gcd(q, n). Suppose E € Fix(h). This implies that if
AC[0,h—1]andA C E,then A+ jh C E forj € [0, n/h — 1]. Hence E must have the form

AUh+A)URh+A)U---U((n/h — 1h+A).

Then (n/h)|A| |[E| = k, so |A| = hk/n and n | hk. The number of ways of choosing |A| elements from {0, 1, ..., h — 1} is
(ml) (hk/n) and this is the same for all the ¢(n/h) values of r such that gcd(r, n) = h. Thus by Burnside’s Lemma and the
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first part of Lemma 3 with r = n,

1 h
t= n Z¢(n/h)<hlc/n>

1 n eng
n Z ¢(%) <en0k/n>

hin eld

n|hk
1 n/(d/e)
20 (i)

Now if we notice that as e runs through the positive divisors of d, so does d/e, we get the formula of the theorem. O

Example 1. When n = 30 and k = 24, we have d = 6, so

1 30/e
=3 Z¢(e)<24/e>

e|6

1 30 15 10 5
(60 sea) <o D) <uo )

1
= %(l -593,775+1-455+2-45+2-5)=19,811.

3. Difference vectors

IfE € é‘f,k), we can write E uniquely as {a, az, ..., ax} where 0 < a; < a, < --- < a; < n. By the difference vector of E,
we mean the k-tuple AE = (a; — ay,a3 — @y, ..., Gy — Ax_1, N + a; — a). Note that the components of AE are positive and
sum to n. Also, distinct elements of a Z,-orbit may yield distinct difference vectors. For example, if E = {0, 3, 4} € Sf’ ) then
AE = (3, 1, 1), while A(E + 2) = A{0, 1, 2} = (1, 1, 3). However, it is easy to see that edges are in the same Z,-orbit if and
only if they have difference vectors that are cyclic permutations of each other. By the reduced difference vector A’E of an
edge E, we mean the difference vector among the cyclic permutations of AE that is lexicographically first. In our example,
the cyclic permutations of AE are (3, 1, 1), (1, 3, 1), and (1, 1, 3), and thus A’E = (1, 1, 3) = A'(E + 2).

Now let Dg‘) be all ordered k-tuples of positive integers with sum n. Using standard counting techniques, it can be proved
that the number of sequences of u positive integers with sum v is (\}). In particular, D(nk)| = (}°})-1fD = (b1, ba, ... . by)
is a difference vector in Dﬂk) and r € Z, we define D & r to be (b14r, bo4r, - .., brsr), Where the subscripts are taken
modulo k. Then the group Z; acts on Df.,k), and we will denote the Z-orbit containing D € Df.,k) by [D]. There is a one-to-one
correspondence between the Z-orbits of Dg‘) with respect to @ and the Z,-orbits of Sr(,k) with respect to +. In particular, if
Ee 5,(1‘), then the Z,-orbit [E] contained in 5,(,") corresponds to the Z-orbit [AE] contained in Dg‘).

We can count the Z-orbits of D(nk) using Burnside’s Lemma. This yields the formula

_1 nje—1
= k ZMe)(k/e - 1)’

e|d

where as before d = gcd(n, k). This formula gives the same result as that of Theorem 4.

Example 2. Ifn = 30 and k = 24 so d = 6, we have

1 30/e —1
iy Z¢(E)<24/e - 1)

e|6

1 29 14 9 4
=% (¢(1)(23> + ¢(2)<“) + ¢(3)<7> + ¢(6)(3>>

1
= ﬂ(l -475,0204+1-364+2-36+2-4) = 19,811.
4. Orbits of a given size

If ged(n, k) = 1 the sum in Theorem 4 has a single term, and the number of Z,-orbits of £%° is 1(H)- since |£,(lk)| = (),
every orbit in this case has size n. If gcd(n, k) > 1 however, there will be orbits of various sizes. In this section we count the
number of orbits of each size.

We consider the Z,-orbits of 5,(1"). Let N(h) be the number Z,-orbits in 5,(1") with exactly h elements. By the order of E € 5,(1
we mean the least positive integer h such that E + h = E. Since E + h = E + gcd(h, n), this means h | n. Clearly the order of
E is |[E]|. Recall that Fix(h) = {E € & : E + h = E}.

k)
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Lemma 5. Let s be a positive divisor of n. Then E € Fix(s) if and only if E has order h, where h | s and n | hk.

Proof. Let E € Fix(s) have order h,and lets = q¢’h+r/,where0 <r’ < h.ThenE = E+s = (E+h+h+---+h)+r' =E+71/,
and so by the definition of order we must have r’ = 0. Thus h | s. Since Fix(h) # @ we have n | hk as in the proof of Theorem 4.
Now assume the order of E is h, where h | sand n | hk.Says = gh.ThenE+s=E+h+h+---+h =E,soE € Fix(s). O

Since Fix(n) = 5,(7"), by taking s = n in the previous lemma we see that m(h) > 0 if and only if h | n and n | hk, and by
Lemma 3 with r = n this happens if and only if h = eng, where e | n/ng = d. This is the first conclusion of the following
theorem.

Theorem 6. Let n and k be positive integers, and consider 5 ) Setd = gcd(n, k), n = dng, k = dko. The values of s such that
N(s) > 0 are exactly the integers s = eng, where e runs through the positive divisors of d. In this case

of
%M so/f) (’Qf)
where so = s/ny.

Proof. Let s be a positive divisor of n such that Fix(s) # . Then as in the proof of Theorem 4 we have n | sk. Since if E has
order h, then |[E]| = h, the total number of edges of order h is hN(h). By Lemma 5 we have

[Fix(s)| = ) " hN(h) =) " enoN(eny),
his elsp
n|hk
where in the second sum we have applied the first part of Lemma 3 and set sq = s/ng. In the proof of Theorem 4 we found

that |Fix(s)| = (sks/n), so we have

E engN(en = oS0
‘ 0 o) sk/n koso /)
elsog

The last equation has the form G(sg) Zf‘s(]g(f ), where G(sg) = (',:g;g) and g(f) = fngN(fng). By the Mdbius inversion
formula we have

glso) = ) ulso/f)G() or sonoN(somo) = sN(s) =y _ uu(so/f) (12?)
flso flso

SO

of
ZM so/f) <k f)

fIs

Example 3. If n = 30 and k = 24 so that d = 6, we have ng = 5 and kg = 4. The divisors of d are 1, 2, 3, and 6, the
corresponding values of s are 5, 10, 15, and 30, and of sg are 1, 2, 3, and 6. Then

_1 S\ _ 1 (%) =
NG) = - ;u(l/f)(4f) = 5(1)(4> =1,
N(15) = — Zuw/f)@ = ]]5< -
f13
f16
1 5 10 15 30
= 30((1)(4) +(—1>( 8) +<—1)(]2) +(1)(24))

1
mZu /f( ) 0(( 1)
f12
) (-1
1 5
NGO = 55> M(G/f)( 4§>
= 19,776.

Note that 14 4 + 30 + 19,776 = 19,811, which agrees with the results in Examples 1 and 2.
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IfE € £ and D € D are in corresponding orbits, then |[D1| = (k/n)|[E]|. Thus if we define M(h) to be the number of

orbits of D,(f‘) of size h, then M(h) = N(nh/k). For example D%‘” has 1 orbit of size 4, 4 orbits of size 8, 30 orbits of size 12,
and 19,776 orbits of size 24.

5. Orbits under r-Pyramidal Actions
Let n, k, and r be integers with0 < r < k < nand let I, = {ooq, 00, ..., 00;}. Also, let 5,1") be the set of all k-element
subsets of Z,,_ UI,. Then the set S(k) can be thought of as being the edge set of the complete k-uniform hypergraph K,S ) with
vertex set Z,_, UIl,.Ifoo; € I, and s € Z,_,, we defme o0; + s to be co;. Furthermore ifE € 8,(1 weletE+s={x+s:xe€E}.
It is easy to see that the group Z,_, acts on Sn ;via(s,E) — E + s, and so 8,1 ; is partitioned into Z,_,-orbits under this
r-pyramidal action. As before if s € Z,_,, we let Fix(s) = {E € Enk) E +s = E}. Clearly if E and E’ are in the same orbit, then
ENL =E'NI.SupposeE € S,(,kz and E NI, =], where |J| = j.LetE* = E \ I, so |[E*| = k — j. Then E 4+ s = E exactly when
E*+s=E*.
Letg ={E € S(k) E NI, =J}. Then Z,_, acts on &, and by Theorem 4 the number of Z,_.-orbits in & is
1 (n—r)/e
— > ¢(e)( )
=T gcdinor k=) (k—J)/e

Let& = {E € £ : |ENI,| = j}. Since there are (;) subsets of I, with j elements, the number of Z,_,-orbits in & is

r 1 (n—r)/e
(j)ﬁ 2 .¢(e)<(k—j>/e>'

e|ged(n—r,k—j)

Noting that j can vary from O to r gives the following.

Theorem 7. Let n, k, and r be integers with 0 < r < k < n and consider the complete k-uniform hypergraph K,(lk) with vertex set
Zn—r Ul Let Z,_, act on the set of edges 5,(1{‘2 as described above. Then the number of Z,_.-orbits is

1 —f/(r (n—r)/e
n—r;):((j) 2 .)q’(e)((k—j)/e))'

e|ged(n—r,k—j

Example 4. If n = 30, k = 24, and r = 3, the number of Z,7-orbits ofé’%‘g is

1< [/3 27 /e
f; 0). 2 ool

e|gcd(27,24—j)
27/e 3 27/e
~5 ( (o) Zelatre) + () 2o

+(2) o)+ (3) Do)
() +2) =) =) () =)

1
5(2943 + 52,650 + 242,190 + 296,082) = 21,995.

Now we consider the number of orbits of a given size. With general n, k, and r as before the example consider a fixed set
J € I, with |J| = j. The action of Z,_, on & = {E € S(k) E NI, =]} amounts to the action of Z,_, on S,(f:J). Setn' =n-—r,
kK =k—jd =gcd(n', k'), n" =dny, k' = d'k;. By Theorem 6 the orbit sizes are exactly the integers s = eng, where e runs
through the positive divisors of d’. Then for such an integer e the number of Z,_,-orbits of & of size en; is

*%O:M o/f( )

where sq = s/n;,. Letting J run through the (jr) subsets of I, of size j gives the following.
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Theorem 8. Let n, k, r, and j be integers withn > k,0 <r < k,and 0 < j < r, and consider the complete k-uniform hypergraph
K" with vertex set Zy_, Ul,.Set ' =n—r,k' = k—j,d = ged(n', k'), n' = dn)), and k' = d'k). The achievable sizes of orbits of
5,(,"2 with exactly j elements in I, are the integers s = eng, where e is a positive divisor of d’, and the number Nj(s) of such orbits is

41 /
N(s) = (;) > u(so/n(zg),

flso
/
where sg = s/ng,

Example 5. Considern = 30,k = 24,r = 3.1fj = 0,we haven’ = 27,k' = 24,d' = 3,n; = 9, k; = 8, and s = 9e, where
e | 3.Thussis9or27, and

No(9) = (3)% Zu(l/f)(:D —1,

fm

No(27) = (f))% Zu(3/f)(:j:> - 22((—1)@ i @Z)) — 108,
f13

Note that n’ does not change with j. Ifj = 1, we have k' = 23,d" = 1,ny = 27, k; = 23,and s = 27e, where e | 1. Thus
s=27,and

N1(27) = (f); Zu(l/f)(g) = 1950.
il

Likewise if j = 2, thenn’ = 27,k = 22,d' = 1,ny = 27, k; = 22, and s = 27¢, where e | 1. Thus s = 27, and

3\ 1 27 1,27
Ny(27) = (z)ﬁ Zuu/f)(zzj{) = §(22> = 8970.
fl

Finally ifj = 3,thenn’ =27,k =21,d' = 3,n; = 9,k; = 7, and s = 9e, where e | 3. Thus s is 9 or 27, and

Ny(9) = @% ZM(UJ‘)(?D - %(3) —4,

m

v = ()5 T - 5 (o) + (5)) = 0002
f13

Notice that there are 1 + 4 = 5 orbits of size 9 and 108 + 1950 + 8970 + 10,962 = 21,990 of size 27, for a total of 21,995
orbits, just as we computed in Example 4 using Theorem 7. These include 5 - 9 + 21,990 - 27 = 593,775 edges, which is (;2)

6. Forcing same-sized orbits

In order to decompose a complete uniform hypergraph K,(lk) into isomorphic subgraphs, it is convenient to use a group
action that yields same-sized orbits. As mentioned in the beginning of Section 4, if gcd(n, k) = 1 the action described in
Section 1 achieves same-sized orbits. If gcd(n, k) > 1, it may be possible to find an r-pyramidal action that yields same-sized
orbits. We call K,E") balancing if there exists an integer r € [0, k — 1], such that 5,(1{‘3 has all orbits of sizen —r.

Theorem 9. The hypergraph I(,Sk) is balancing if and only if gcd(n — r, k — j) = 1 whenever 0 <j <.

Proof. Suppose gcd(n —r, k —j) = 1 whenever 0 < j < r. For a fixed such j by Theorem 8, the achievable sizes of orbits of
edges containing exactly j elements of I, are the integers s = eny, where e is a positive divisor of d' = ged(n —r, k —j) = 1.
Thus the only possible orbit size is ny = n’/d’ = n — r. Since this number does not depend on j, all orbits must be the same
size.

Conversely, assume that for some j, 0 < j < r, we have gcd(n — r, k — j) = d’ > 1. Achievable orbit sizes for orbits
containing exactly j elements of I, include nj and d'ny by Theorem 8. Thus there are orbits of at least two different sizes. O

If gcd(n, k) = 1, then there exists a graph G with (Z) /n edges such that K,Ek) admits a cyclic G-decomposition.

Let G be a subgraph of K,Ek), where V(K,Sk)) = Zn_r U I, and let I be a G-decomposition of K,Ek). Then I" is said to
be r-pyramidal if I" is closed under clicking. Thus among decompositions, 0-pyramidal is equivalent to cyclic. If we
partition 5,(1"2 into m distinct Z,_,-orbits each of size n — r and if G with E(G) C 5,(1"2 is a subgraph of K,Sk) with edge-
set containing exactly one edge from each of the m distinct Z,_,-orbits, then I' = {G+i : i € Z,} is anr-
pyramidal G-decomposition of K,S"). For example, if G is the subgraph of Ké”, with E(KQB)) = 85()33 such that E(G) =
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{{0, 1,2}, {0, 1, 3}, {0, 1, 4}, {0, 1, 5}, {0, 2, 4}, {0, 1, co1}, {0, 2, 001}, {0, 3, 001}, {0, 1, 003}, {0, 2, 003}, {0, 3, 0oy},
{0, o001, ooz}}, then I' = {G+i: i € Z7} constitutes a 2-pyramidal G-decomposition ofl<é3).

The requirement that the graph G in the previous paragraph contains exactly one edge from each of the m different
Zn_r-orbits of size n — r can again be viewed as an extension of the notion of a p-labeling of G. Suppose I(,Sk) is balancing for
somer € [0,k — 1]. Let K,ﬁk) have edge set 5,5’2. Then a subgraph G of K,S") withm = (',:) /(n — r) edges is said to admit an
r-pyramidal p-labeling if each of the m edges of G belongs to a different orbit under the action of Z,,_,.

We call the integer k > 1 completely balancing if K,(lk) is balancing for all n > k.

Theorem 10. Let > 2. If k is completely balancing, then for every integer n > k there exists r with0 <r < k — 1and a graph G
with (Z) /(n —r) edges such that 1<,§") admits an r-pyramidal G-decomposition.

The following lemma allows us to decide whether k is completely balancing by checking a finite number of cases.

Lemma 11. Let my, denote the product of the primes that are at most k. If I(,s") is balancing for alln € [k + 1, k 4+ 7y], then k is
completely balancing.

Proof. Suppose K,Sk) is balancing for all n € [k + 1, k + 7¢]. Now let n > k. Then there exists n’ € [k + 1, k + 4] such that
n’ = n (mod 7). That is, n = sm, + n’ for some s > 0. By the assumption and Theorem 9, there exists r € [0, k — 1], such
that gcd(n’ —r, k —j) = 1for 0 <j < r.Thatis, any prime that divides k — j does not divide n’ — r. Since any prime dividing
k — j also divides 7y, we have gcd(n — r, k — j) = gcd(smy +n' —r, k—j)=ged(n’ —r,k—j)=1for0O<j<r. O

One can easily verify that every k with 2 < k < 6 is completely balancing. For example, k = 2 is completely balancing
with r = 0 when n is odd and with r = 1 when n is even. Similarly, k = 3 is completely balancing withr = O whenn = 1
or 2 (mod 3),and withr = 1whenn =0 (mod 6)andr = 2 whenn = 3 (mod 6).

Using Theorem 9 and Lemma 11 and a computer, one can easily verify that every k < 14 is completely balancing. Thus
we have the following.

Theorem 12. For each k with2 < k < 14 and each n > k, there exists anr with 0 < r < k — 1 and a graph G with (Z)/(n —r)
edges such that K,Sk) admits an r-pyramidal G-decomposition.

It is simple to verify that K. is balancing for all n < 2199. To show that Kﬂgg is not balancing, it suffices to note that for

re{0,3,4,6,9, 12, 14}, we have gcd(2199 — r, 15) > 1;forr € {1,5,7, 8, 11, 13}, we have gcd(2199 — r, 14) > 1; for
r = 2, we have gcd(2199 — r, 13) > 1; and for r = 10, we have gcd(2199 — r, 11) > 1. In fact, we have verified that K,E]S)
is balancing if and only if n = b (mod 30030) where b € {2199, 2200, 5765, 5766, 9125, 9126, 9455, 9456, 9459, 9460,
13,355, 13,356, 20,585, 20,586, 20,589, 20,590, 20,919, 20,920, 27,845, 27,846}. We have also verified that no k € [15, 50]
is completely balancing and conjecture that no k > 14 is completely balancing.
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