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In practice, lead time demand (LTD) can be non-standard: skewed, multi-modal or highly variable; factors

that compromise the validity of the classic approaches for setting safety stock levels. Motivated by encoun-

tering this problem at our industry partner, we develop an approach for setting safety stock levels using

the bootstrap, a widely-used statistical procedure. We extend prior research that has used the bootstrap

for quantile estimation to address the multi-parameter estimation of safety stocks. We develop a multi-

variate central limit theorem for the bootstrap mean and bootstrap quantile – components of the safety

stock calculation – highlighting why the generalization of these bootstrap methods is critical for inventory

management. These results provide a theoretical underpinning for the bootstrap estimator of safety stock

and permit the construction of confidence intervals for safety stock estimates, allowing decision makers to

understand the reliability with which the desired service level will be achieved. Building on our theoretical

results, and supported by numerical experiments, we provide insights on the behavior of the bootstrap for

various LTD distributions, which our results demonstrate are critical when employing the bootstrap method.

Implementation results with our industry partner indicate our approach is quite effective in setting safety

stock levels.
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1. Introduction

Setting appropriate safety stock levels is an important decision for firms in many industries. As

global sourcing continues to grow (Rose and Reeves 2017, Torsekar 2018), firms face long and

variable lead times, potentially making safety stock decisions more important and more difficult.

The textbook approach to setting safety stocks assumes that lead time demand (LTD) follows a

known distribution (e.g., normal), but it is well documented that lead time demand can be skewed,

multi-modal or highly variable (Tyworth and O’Neill 1997, Vernimmen et al. 2008). When these

factors are present, and compromise the validity of distributional assumptions, classic textbook
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approaches may produce poor results (Das et al. 2014). This is precisely the problem we encoun-

tered at our industry partner (MakerCo) where lead time demands were not well represented with

standard distributions and attempts to apply classic approaches were unsuccessful.

This paper describes the development and implementation of our data-driven, non-parametric

approach to setting safety stocks based on the bootstrap. While our work on this problem was

motivated by conditions at MakerCo, our approach is general and can be implemented without

modification in other settings. There are both theoretical and methodological contributions of

our work, as the statistical theory for the safety stock estimator, and the bootstrap safety stock

estimator have not been developed or explored in the literature.

1.1. Setting safety stocks at MakerCo

MakerCo is a large firm that manufactures several thousand discrete, limited shelf-life products in

manufacturing facilities globally. Several of these products rank among the highest selling products

in their category in several global markets. In this study, we worked on a small set of high-value,

limited shelf-life raw materials, each of which is used in the production of a single finished product

at a single production facility in North America. These materials are sourced from international

suppliers where limited production capacity from batch manufacturing campaigns and unreliable

transit times contribute to long, stochastic lead times that frequently exhibit left- or right-skew and

multi-modality. In addition, MakerCo experiences volatility in the demand for finished products,

and thus the dependent raw material demand. While management typically aims for a four-month

fence to freeze production, the reality is that changes within this horizon are frequently made, with

one manager noting the four-month fence is “a ‘slushy’ period due to the volatile demand in the

industry and the need to be flexible” (email communication with procurement manager). Inspection

of the finished goods demand and forecasting data confirmed that demand distributions are non-

standard, forecast errors were non-normal, and forecast accuracy is poor, with mean absolute

percentage error (MAPE) >50%. The stochasticity of lead time and demand combine to result in

LTD distributions that are skewed and multi-modal. Figure 1 shows estimated LTD distributions

for two of MakerCo’s raw materials.

The underlying non-standard nature of the LTD distribution means that the classic approaches

built into most ERP systems (Das et al. 2014), including that used by MakerCo, failed to provide

safety stock estimates that met the desired service level within the limits of the target inventory

investment. Confronted with inconsistent estimates produced by the classic approaches in the ERP

systems, managers resorted to alternate solutions. In the absence of any guidance of how to balance

service and cost when faced with irregular LTD distributions, these alternate solutions involve

elaborate yet imprecise computations that lead to sub-optimal results maximizing one metric (e.g.,
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underlying lead-time demand process and led to poor results. High inventory levels of some products

took up valuable warehouse space and resulted in obsolescence and expensive material write-offs.

Low inventories resulted in frequent stockouts of critical raw materials that delayed customer

fulfillment incurring expensive failure-to-supply penalties. Additionally, the baseline approach was

lengthy, requiring 40 hours of analyst time to review and set safety stocks. Consequently, this was

typically done every quarter. Hence, MakerCo opted to work with the research team to develop and

implement the non-parametric approach to set safety stocks for a small set of 9 key raw materials.

These are all classified as A-items: high-volume, high-value, and high-impact if there is a failure to

supply.

1.2. The Bootstrap Approach

We estimate safety stocks directly from empirical lead time and demand data. This builds on

the work of Bookbinder and Lordahl (1989), Lordahl and Bookbinder (1994) and Fricker and

Goodhart (2000). These previous approaches estimate reorder points for the continuous review

control policies with a probability of no stockout (PNS) service criterion (Bijvank 2014) where LTD

data potentially follows non-standard distributions. Estimation of the reorder point using bootstrap

is equivalent to estimating a quantile, which is a typical application for bootstrap methods. In this

work we generalize these approaches to multi-parameter inventory estimators, specifically safety

stock. Through our theory development and numerical experiments we demonstrate that accounting

for the correlation structure between the sample mean and the sample quantile produces a better

estimator of safety stock.

We ground our method in bootstrap theory and develop central limit theorems for the bootstrap

estimator of safety stock. Our theoretical results establish that safety stock must be bootstrapped

directly from empirical LTD. This explicates the validity of the bootstrap approach to estimate

safety stocks from an empirical LTD mixture of observed empirical lead time and demand data. This

contribution is particularly salient as many popular ERP software, including those encountered by

the authors in their field work, require operations managers to enter safety stocks to set materials’

inventory policies.

We employ controlled simulation experiments to provide insights on appropriate tuning param-

eters for the bootstrap approach, and the behavior of the bootstrap estimator of safety stock

compared to classic approaches. We demonstrate that ignoring proper tuning of the bootstrap

parameters can potentially compromise the reliability of the safety stock estimates. We also demon-

strate that when LTD takes non-standard distribution forms the bootstrap out performs alternative

approaches. In the case of standard distributions as the number of lead time cycles increases the

bootstrap begins to outperform alternative approaches that make heavy distributional assumptions.
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The controlled simulation results establish appropriate tuning parameters and provide evidence

that our approach works well for non-standard LTD distributions such as those observed at Mak-

erCo. These results motivated a simulation study based on MakerCo data. The results of this

simulation study were critical in the research teams’ engagement with MakerCo as a means of

securing managers’ trust in the bootstrap approach by using the organization’s own data to rig-

orously test the proposed approach. Based on the MakerCo simulation results, the procurement

planning team began a pilot of the bootstrap method in the second quarter of 2018. Since then,

comparisons of the bootstrap approach relative to the baseline approach indicate the potential for

significant reductions in safety stocks without sacrificing service levels. Our controlled and industry

simulation experiments along with the pilot implementation results provide a compelling case for

supply chain managers encountering similar replenishment lead-time and demand conditions to

estimate bootstrap safety stocks and corresponding confidence intervals directly from their ERP

systems’ empirical lead-time and demand data.

The remainder of the paper is organized as follows, in Section 2, we discuss the relevant literature

and position our contribution. In Section 3 we present the bootstrap central limit theorems that

provide the theoretical justification for our approach. In Section 4 we present our controlled numer-

ical experiments allowing us to compare the performance of our bootstrap approach to optimal

benchmarks, which are of course not identifiable in our industry use case. In Section 5, we describe

our simulation using MakerCo data, the results of which led to the pilot implementation. Results

from the pilot implementation are reported in Section 5.3. We conclude with a discussion of our

contributions to the literature and the mainstream practice of inventory management in Section 6;

highlighting areas where the bootstrap is appropriate and where it is limited in setting inventory

policies with potential areas for future research.

2. Literature Review

We focus our discussion around the two main approaches in the literature for dealing with non-

standard LTD: the compound distribution approach, where different distributions, including mix-

tures, are used to represent LTD; and, distribution-free approaches. The bootstrap approach we

propose in this article is a non-parametric approach that falls under the distribution-free literature.

2.1. Compound Distribution Approach

The classic compound distribution approach popular in the literature and practice follows the

seminal works of Fetter and Dalleck (1961) and Hadley andWhitin (1963). This approach, assuming

a known underlying distribution of LTD, suffers from three well-documented flaws. First, in practice

LTD data are rarely tracked by firms’ information systems and are rarely known or observed
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(Rossetti and Ünlü 2011, Silver et al. 2016). Instead, for mathematical tractability we assume

the unobserved probability distribution of LTD follows some known form. In cases where LTD

are observed we can evaluate the fit of the empirical data and use an appropriate probability

distribution. Even if LTD are tracked, in cases of seasonal demand and non-normal forecast errors

(Eppen and Martin 1988), the textbook methods would fall short. Second, compound-distribution

approaches typically assume standard LTD distributions, while LTD distributions can often exhibit

high coefficients of variance, right skew and multi-modality (Das et al. 2014, Tyworth and O’Neill

1997, Vernimmen et al. 2008). In practice we observe right-skew, multi-modal and generally non-

standard distributional forms for the LTD component distributions of demand (Bachman et al.

2016, Zhang et al. 2014), and lead time (Das et al. 2014, Saldanha et al. 2009), which result in

non-standard distributional forms of LTD (Mentzer and Krishnan 1985, Tyworth and O’Neill 1997,

Saldanha and Swan 2017). Third, operations managers often have to work with small sample sizes

of lead time and/or demand to set inventory parameters that may lead to significant errors in

estimation for both compound distribution approaches (Bai et al. 2012, Silver and Rahnama 1986),

and data-driven bootstrap approaches (Bookbinder and Lordahl 1989, Efron and Tibshirani 1986).

The compound distribution approach that enjoys widespread use is the normal distribution,

primarily because of its ease of use. However, incorrectly assuming LTD is normally distributed

introduces significant errors in inventory policy decisions and costs (Das et al. 2014, Eppen and

Martin 1988, Mentzer and Krishnan 1985), and can result in a significant cost penalty from the vio-

lation of the normality assumption of LTD (Lau and Lau 2003). Consequently, several alternatives

have been proposed to the normal , notably the gamma distribution (Keaton 1995, Turrini and

Meissner 2019, Tyworth et al. 1996, Vernimmen et al. 2008) the Erlang distribution, a special case

of the gamma (Kim et al. 2004, Levén and Segerstedt 2004), the Weibull, the lognormal (Tadika-

malla 1984), and the negative binomial (Shore 1986). However, similar to the normal approach,

all of these approaches suffer when the LTD distribution realized in practice does not follow the

underlying distributional assumption.

Other approaches include the use of a mixture of truncated exponentials (MTE) to estimate

reorder points when demand has normal, gamma or lognormal distribution that rely on complex

statistical routines to fit empirical data (Cobb 2013, Cobb et al. 2015). Tyworth (1992) employs

a convex combination of conditional normal probability distributions of demand erected over a

range of discrete lead time values. Keaton (1995) extends this approach to include conditional

gamma probability distributions of demand. However, the true underlying demand distributions

are typically unknown and assuming specific demand distributions to estimate inventory control

parameters can be problematic (Bai et al. 2012).
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Rossetti and Ünlü (2011) propose a workaround to these problems when LTD is unknown employ-

ing a set of rules for selecting the most appropriate distribution of LTD based on the distributions of

lead time and demand.These rules are predicated on LTD data conforming to a standard unimodal

distributional form and do not accommodate non-standard multi-modal LTD distributions often

found in practice (Bachman et al. 2016, Bookbinder and Lordahl 1989, Das et al. 2014, Eppen and

Martin 1988, Fricker and Goodhart 2000, Zhang et al. 2014). Also, we know that the distributions

of demand (Bachman et al. 2016, Cattani et al. 2011) and lead time (Das et al. 2014, Saldanha

et al. 2009) rarely follow standard distributional forms.

All these compound-distribution approaches involve an intermediate step estimating the

moments of some combination of lead time, demand and LTD to arrive at the safety stockand

thus run counter to the Main Principle of Inference (Vapnik 2013). Distribution-free or non-

parametric approaches are worthy of investigation as candidate approaches for setting safety stocks

directly from empirical lead time and demand data. Next, we turn to distribution-free, data-driven

approaches.

2.2. Distribution-Free Approaches

Distribution-free approaches preclude the need to determine the distributional form of lead-time,

demand, or LTD. We have seen such approaches employed for single-period newsvendor settings

with limited historical demand data (Akcay et al. 2011, Huh et al. 2011, Levi et al. 2015, 2007,

Saghafian and Tomlin 2016). Notably, Ramamurthy et al. (2012) invoke Vapnik’s Main Principle

of Inference to employ a data-driven approach employing operational statistics to estimate the

optimal policy for the newsvendor model. More recently Ban and Rudin (2019) investigated using

a data-driven approach to the newsvendor problem using machine learning algorithms based on

high dimensional quantile regression. Similarly, Cao and Shen (2019) extend a time-series quantile

estimation approach to determine replenishment strategies for the newsvendor problem. Huber

et al. (2019) demonstrate that such data-driven machine learning approaches that employ quantile

regression perform well with large data-sets.

Following Yano (1985), there is a stream of literature on distribution-free min-max, continuous-

review integrated inventory modeling approaches (cf. Gutgutia and Jha 2018, Moon et al. 2014,

Tajbakhsh 2010). The distribution-free nature relies on the assumption that the distribution of

LTD can be constructed using a mixture model where the LTD mixture of the component dis-

tributions of lead time and demand has a finite mean and variance. However, variances must be

equal between components and the means and variances must conform to a specific relationship.

In addition, these methods assume fixed lead times and, are computationally intense often relying
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on iterative algorithms to estimate the distributional functions of LTD to obtain estimates of the

mean, variance, and mixture proportions.

Bachman et al. (2016) develop a specialized aggregate inventory policy for the United States

Defense Logistics Agency (US DLA) to manage inventory assuming replenishment lead times are

fixed, for items that face either frequent highly-variable demand or infrequent demand, in group-

ings or portfolios. Inventory decisions for items in each portfolio are estimated according to a

continuous review inventory policy. Besides being computationally intensive and necessitating a

multi-step iterative solution method involving simulations, the Bachman et al. (2016) approaches

are tailored to US DLA settings that assumes fixed lead times. Zhang et al. (2014) also develop a

specialized approach for managing Kroger Pharmacies’ drug inventories. Their approach is similarly

computationally-involved necessitating a multi-step approach including simulations and assumes

lead times are fixed.

Application of the bootstrap approach to estimate inventory in not new. Hasni et al. (2019)

review the literature on bootstrapping demand forecasts to manage spare parts inventories. Similar

to Zhou and Viswanathan (2011), the work in this literature stream assumes fixed lead times. As we

have mentioned earlier, lead-time distributions encountered in practice are frequently non-standard

(Das et al. 2014, Saldanha et al. 2009), which results in non-standard distributional forms of LTD

(Mentzer and Krishnan 1985, Tyworth and O’Neill 1997, Saldanha and Swan 2017).

Bookbinder and Lordahl (1989) were the first to propose the bootstrap method to estimate

quantiles from the empirical non-standard LTD distribution corresponding to different levels of

PNS, or P1 service level, to set reorder points (ROP) for the (s,Q) policy.Consistent with bootstrap

theory (Efron and Tibshirani 1986), Bookbinder and Lordahl (1989) prove that the consistency

and unbiasedness of the bootstrap estimates increases with the bootstrap sample size (m) and

the number of bootstrap resamples (B) for the sample quantile. Wang and Rao (1992) extend the

bootstrap approach to estimate the ROP quantiles from empirical LTD data when demand follows

an AR(1) process. Fricker and Goodhart (2000) build on the (Fetter and Dalleck 1961, p. 52) Monte

Carlo method extending the Bookbinder and Lordahl (1989) approach to bootstrap an empirical

mixture of LTD from empirical lead time and demand data to directly estimate the reorder point

in the singular setting of the U.S. Marine Corps’ Expeditionary Force’s local “retail” inventories.

While they introduce the concept of bootstrapping an empirical mixture of LTD from empirical

lead time and demand data to estimate the ROP from the quantile defined by the PNS .

These works are important because they show the applicability of the bootstrap in an inventory

setting, but only investigate the estimation of the reorder point, which is equivalent to estimating

a quantile of a distribution. These works do not provide methodological or theoretical guidance

on how multi-parameter inventory control parameters, such as safety stock, should be estimated.
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As our focus is on safety stock, which we argue is an essential inventory control policy input to

many popular ERP systems, our work provides an example of the generalization of the methodol-

ogy proposed by Bookbinder and Lordahl (1989) and Fricker and Goodhart (2000). Furthermore,

we provide theoretical justification for the bootstrap estimation of safety stock using asymptotic

statistical theory that shows a non-negligible covariance between the sample mean and sample

quantile, the components of the safety stock calculation.

3. Bootstrap Theory for Estimating Safety Stocks

3.1. Methodology

Since logistics information systems and ERP systems typically do not directly capture LTD data

(Das et al. 2014), managers must use lead time data and demand data that are not paired. Even if a

system would directly capture LTD data, when lead-times and demands are highly variable, viewing

these data as separate offers managers some flexibility in specifying the input data. For instance,

it could be beneficial to supplement demand data with forecasts of demands to accommodate

market volatility. With this compound distribution framework in mind we define the lead time

data li , i= 1, . . . , nL̃ as independent realizations of the random variable L, which has mean µL and

variance σ2
L. Similarly we assume the demand data dj, j = 1, . . . , nD̃ as independent realizations

of the random variable D, which has mean µD and variance σ2
D. We also assume that L and D

are independent random variables. Finally assume, though it is never observed directly in our

framework, LTD is generated from the random variable X which has mean µX and variance σ2
X .

Under the compound distribution framework for LTD discussed in Section 2.1 the estimates of the

mean and variance of lead time (µ̂L , σ̂2
L) and, the estimates of the mean and variance of demand

(µ̂D, σ̂
2
D) are used to estimate the mean of LTD µ̂X = µ̂Lµ̂D and its variance σ̂2

X = µ̂Lσ̂
2
D+ µ̂2

Dσ̂
2
L. Our

focus is on the estimation of the safety stock, which is defined in the familiar way as SS = τ −µX

where τ = F−1
X (P1) such that F−1

X is the inverse cumulative distribution function (CDF) of X.

For example, the safety stock estimate under the normal distribution assumption is calculated as

SS = F−1
Z (P1)σ̂X , where F−1

Z (·) is the CDF of the random variable Z ∼ N(0,1) for a P1 service

level.

As we consider a bootstrap under the compound-distribution framework, an issue arises when

considering the bootstrap sample size (m), which would typically be the number of observations

in the sample of LTD, which in this case is unknown because a random sample of LTD is not

observed directly. We present results from a a simulation study in Appendix C to justify the

choice of bootstrap sample size as m = nL̃. This choice matches intuition under the compound

distribution framework as the number of observed lead time demands correspond to the number of

observed lead times. The previous guidance provided by Fricker and Goodhart (2000) is m=B or
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the bootstrap sample size equals the bootstrap re-samples, which we demonstrate (Appendix C)

results in significantly biased estimates.

To obtain the bootstrap estimates of safety stock we first generate the bootstrap samples under

the compound distribution framework, and then directly estimate safety stock for each bootstrap

sample. More explicitly, we construct the b-th bootstrap sample of LTD, x̃
(b)
1 , . . . , x̃(b)

n
L̃
such that

the ith observation is x̃
(b)
i =

∑l̃i
j=1 d̃j, where each l̃i is randomly selected with replacement from

l1, . . . , ln
L̃
, and each d̃j, j = 1, ..., l̃i is randomly selected with replacement from d1, . . . , dn

D̃
. We

repeat this procedure B times to construct B bootstrap samples. We propose calculating the

bootstrap safety stock as ŜS
∗

=B−1
∑B

b=1 SS
(b), where SS(b) = Y (b)−n−1

L̃

∑n
L̃

i=1 x̃
(b)
i , is the estimate

of safety stock for the b-th bootstrap sample such that Y (b) is the P1-th quantile for the b-th

bootstrap sample.

Using methods proposed by the extant literature that bootstrap only the reorder point either

directly from LTD data (Bookbinder and Lordahl 1989), or from a mixture of LTD (Fricker and

Goodhart 2000), one could estimate safety stock using a second method. Given the bootstrap

quantile Ŷ ∗ is the estimate for the reorder point at a given PNS, safety stock can be calculated as

SS = Ŷ ∗ − µ̂X̃ where µ̂X̃ = µ̂L̃µ̂D̃ is the empirical estimate of the mean of LTD. Our results in the

next section indicate that this procedure ignores relevant information: the covariance between the

estimates of the mean and quantile.

3.2. Theoretical Results

In this section, we show there exists a central limit theorem for safety stock and bootstrap of

safety stock when LTD is known, both of which have a non-negligible covariance structure that is

computationally intractable without heavy distributional assumptions. This shows that calculating

the safety stock for each bootstrap sample, as we propose, will account for this covariance structure.

In Appendix A we provide some insights on how the re-sampling technique we propose is actually

generating a distribution under the assumption that L and D are independent.

To formulate the asymptotic results, consider the setting where LTD can be observed directly.

Consider x1, . . . , xn as the sample of lead time demands akin to the bootstrap setting in Bookbinder

and Lordahl (1989). The distributions of both the sample mean and sample quantile are known,

and the joint asymptotic properties were explored by Lin and Wu (1980) and Ferguson (1998).

Though the joint distribution of the sample mean and sample median was discovered by Laplace

well before this work. We restate this critical result from Ferguson (1998) here in the context of

LTD as it is central to our discussion of safety stock.

Theorem 1. Let x1, . . . , xn, the observed LTD, be random draws from a random variable, X,

with distribution function FX(x), density fX(x), mean µ, variance σ2, and empirical distribution
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function Fn(x). Let 0 < p < 1 so that FX(τp) = p. Assume fX(x) is continuous and positive at

F−1
X (p). Let Fn(Yp) = p, and

x̄=
n∑

i=1

xi/n

then

√
n

((
x̄
Yp

)
−
(
µ
τp

))
L−→N2



(
0
0

)
,




σ2
x

κ(p)

fx(F
−1

X
(p))

κ(p)

fX (F−1

X
(p))

p(1−p)

f2

X
(F−1

X
(p))






where κ(p) =E
(
Lp(X,F−1

X (p))
)
, such that Lp(z, a) = p(z− a)I(z ≥ a)+ (1− p)(z− a)I(a< z).

We omit the proof and refer the reader to Section 5 of Ferguson (1998) for the full discussion

of the proof. Instead, we provide a brief outline of the proof here as the concepts are important

to our understanding of the bootstrapping of safety stocks; a multivariate estimator. The proof

uses the Bahadur representation of the sample mean and sample quantile, and the convergence

of each distribution to a distinct Brownian bridge. From there the Cramer-Wold device shows

that the limiting distribution is jointly normal. Finally, the covariances are calculated between

the two resulting Brownian bridges, and converge to what is shown above. It is of note that this

asymptotic covariance term is non-zero if κ(p) 6= 0. Ferguson (1998) describes this as the minimum

p-th deviation around F−1
X (p). To our knowledge, this work is the first in the inventory literature

to point out this multivariate central limit theorem. Next, we extend Theorem 1 directly to obtain

a central limit theorem for safety stock.

Corollary 1. Define safety stock as

ŜS = Yp − x̄.

Given the assumptions and definitions in Theorem 1, safety stock has the asymptotic distribution

√
n
(
ŜS−F−1

X (p)+µ
)

L−→N(0, σ2
ss),

where σ2
ss = σ2

X + p(1−p)

f2

X
(F−1

x (p))
− 2 κ(p)

fX (F−1

X
(p))

.

We omit the proof as this is just a linear transformation of the joint distribution in Theorem 1.

As Cramer-Wold was used in the proof for Theorem 1 this is just a direct consequence.

The results of Theorem 1 show the asymptotic covariance between the sample mean and sample

quantile is non-zero and could be considered intractable for non-standard distributions of LTD.

Thus, the bootstrap could be used to create confidence intervals on safety stock in general settings.

Even if the distributions are standard, the covariance terms that include the quantity κ(p) are
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still difficult to calculate directly, making bootstrap estimation an attractive alternative. Moreover,

the asymptotic properties of the bootstrap estimates of sample quantities are known and well

understood using Bickel and Freedman (1981), but the joint asymptotic properties of the bootstrap

mean and bootstrap quantiles have not been investigated. In this case we need to combine the

concepts of both techniques to define the joint distribution of the sample mean and sample quantile,

and therefore, the distribution of the bootstrap of safety stock. Again we will present this theorem

in the context of LTD.

Theorem 2. Given the assumptions and definitions of Theorem 1, also assume FX is twice differ-

entiable at the p− th quantile. Let x∗

1, . . . , x
∗

n represent a bootstrap sample of size n (sampling with

replacement) from the sample of lead time demands x1, . . . , xn. Define the empirical distribution

function of the bootstrap sample as Gn such that Gn(Y
∗

p ) = p. Finally define x̄∗ = n−1
∑n

i=1 x
∗

i , then

along almost all sample sequences and as n tends to infinity,

√
n

((
x̄∗

Y ∗

p

)
−
(
x̄
Yp

))
L−→N2



(
0
0

)
,




σ2
x

κ(p)

fX (F−1

X
(p))

κ(p)

fX (F−1

X
(p))

p(1−p)

fX (F−1

X
(p))






We relegate a more detailed proof of Theorem 2 to Appendix B of the e-companion for this

manuscript. Notice the asymptotic covariance is the same as presented in Theorem 1. The signif-

icance of this result is the multivariate normality of the estimators, and the ability to explicitly

state the covariance structure. We next extend this result directly to safety stock.

Corollary 2. Assume the settings detailed in Theorem 2 hold, then

√
n
(
Y ∗

p − x̄∗ − ŜS
)

L−→N(0, σ2
ss)

Again the proof of the corollary follows directly from Theorem 2 as the Cramer-Wold device is

used in the proof.

The theorems and corollaries introduced in this section give theoretical justification for the boot-

strap approach we propose for safety stock.The asymptotic covariance matrices from Theorems 1

and 2 shows that there is a non-negligible relationship between the two statistics that yield safety

stock. When safety stock is calculated directly for each bootstrap sample, then the covariance

structure for each bootstrap sample is maintained and a sampling distribution of the statistic is

preserved enabling the estimation of bootstrap confidence intervals for safety stock. Should the two

quantities be bootstrapped independently and difference of estimates taken, then the covariance

structure is ignored, and the information of the sampling distribution is lost. Corollaries 1 and 2

provide the transformation directly to the safety stock calculation, which show how that covariance

structure plays a role in the variance of safety stock. To our knowledge this is the first work to
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explicitly define the variance of safety stock and suggest the distribution of safety stocks be inves-

tigated. With this in mind, the variance component required for inference is difficult to calculate,

meaning in practice whether LTD is observed or in a compound distribution setting, the bootstrap

procedure for safety stock is an attractive procedure for estimation (Efron and Tibshirani 1986).

Next, we present a set of numerical experiments where we evaluate our approach, and the classic

approach comprised of the commonly used normal and gamma approaches, against optimal bench-

marks. The results of these experiments demonstrate the performance of the bootstrap approach

relative to the classic approaches for estimating safety stocks and minimizing inventory costs under

different replenishment conditions represented by standard and non-standard LTD distributions.

4. Numerical Experiments

Our numerical experiments compare the bootstrap approach and two classic textbook compound

distributional approaches (normal and gamma) to an optimal benchmark. As shown in Figure 1,

we encounter multi-modal LTD distributions at MakerCo, but we also want to investigate how our

approach works for unimodal distributions. Thus, in our experiments, we consider both unimodal

and bimodal lead time distributions. For unimodal lead times, we employ lognormal distributions

as described in Table 1. These lead-time distributions include regular bell-shaped to non-standard

right skew. For bimodal lead times we vary the mixture ratio (π) of the left and right modes to yield

left- and right-skew distributions (Table 2). For all experiments we employ a single gamma demand

distribution with a CV = 0.2 that allow us to represent the non-standard LTD distributions using

only the skew and bimodality of the lead time distributions.

Table 1 Unimodal lead time distributions used to generate lead time demand.

Distribution Mean CV Skew
Lognormal 5 0.1 0.30
Lognormal 5 0.4 1.26
Lognormal 5 0.7 2.44
Lognormal 25 0.1 0.30
Lognormal 25 0.4 1.26
Lognormal 25 0.7 2.44

Note. Distribution of demand is fixed as a gamma distribution with µ= 100 and σ= 20.

4.1. Safety Stocks

We calculate the safety stock levels assuming complete backordering, comparing the safety stock

calculated by the bootstrap, and normal and gamma methods to the optimal safety stock for every

experiment level. The quantile estimate Y ∗(b) of each bootstrap sample (b) is calculated using
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Table 2 Component distributions of the bimodal lead time distributions used to generate the mixture of lead

time demand.

Mean CV Skew π µL1 σL1 µL2 σL2

5 0.34 -1.18 0.2 1.8 0.4 5.8 0.6
5 0.9 1.53 0.8 2.8 0.56 13.86 1.39
25 0.34 -1.19 0.2 9 1.8 29 2.9
25 0.9 1.52 0.8 13.93 2.79 69.3 6.93

Note. Component distribution 1 of the bimodal lead time distribution is gamma with the α and

β parameters taken as α= µ2/σ2 and β = σ2/µ, and distribution 2 of the bimodal distribution

is normal. Distribution of demand is fixed as a gamma distribution with µ= 100 and σ= 20.

both the rank quantile estimator and the SV3 estimator for right-tailed quantiles (Sfakianakis and

Verginis 2008). These two quantiles represent a limited sample of the quantile estimators available

and allow us to control for the effects of the bootstrap method under different settings. The normal

safety stock is estimated as SSN = F−1
Z (P1) · σ̂X̃ and the gamma safety stock is estimated as

SSN = F−1
Γ (P1)− µ̂X̃ .

From the results of bootstrap tuning parameter experiments reported in Appendix C we see that

m= nL̃ and B = 1,000 provides the best results. Hence, we set the levels of nL̃ = 6, 12, 24, 50, 100.

We set nD̃ = nL, 2nL as it is reasonable to assume that the sample size of demand will be either as

large or larger than the sample size of lead time. We considered 40 levels of PNS (P1 = 60%–99%),

yielding 2,400 experiments for the unimodal case and 1,600 experiments for the bimodal case.

The experiments are run in R version 3.5.2 on a Unix system in a high performance computing

cluster with 100 replications using fixed random seeds to ensure reproducibility. Safety stock is

calculated using all four methods (normal, gamma, bootstrap with rank quantile, bootstrap with

SV3 quantile) for each replication, which is a combination of a lead-time distribution and a level

of nL, nD and PNS. We analyze this complete set of experimental results using classification trees

with recursive partitioning methodology to identify when each of the methods yielded the best

result. The results of these analyses are available in Appendix A. Those results generally support

use of our approach when lead times are bimodal, and performance differences between methods

are small for unimodal lead time distributions. We explore these findings in Tables 3 and 4 which

show MAPE from optimal safety stock values for a subset of the experiments for a unimodal lead

time case (Table 3) and a bimodal lead time case (Table 4).

For the unimodal lead-time case shown in Table 3, we see that for almost all experiments reported,

setting safety stocks by using the gamma distribution to represent lead-time demand provides

the lowest MAPE. However, based on the 100 replications in our experiments, the mean absolute

deviations from optimal safety stock with gamma are rarely lower in a statistically significant way
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as compared to bootstrap approaches. (Statistical tests are one-way ANOVAs comparing MAD

from optimal safety stock across methods.) For the bimodal lead-time case shown in Table 4, we

see that the bootstrap approaches outperform normal and gamma approaches except for P1 values

between 70%-80%. When LTD is multi-modal, for certain values of P1, the ideal safety stock value

will specify a reorder point that is in-between modes of LTD. Figure 2 corresponds to Table 4, and

it is around this value of P1 = 75% where the normal and gamma CDFs happen to intersect with

the true bimodal CDF. We note two things regarding this phenomenon. First, a manager will not

know a priori when a unimodal approach would have the good fortune to intersect the true multi-

modal LTD distribution at the desired service level. Second, as we will see in the next subsection,

the expected holding and backorder cost as a function of the reorder point is very flat in-between

modes; thus, large deviations from optimal safety stock may translate to small deviations from

optimal cost.

Table 3 Mean Absolute Percent Error from optimal safety stocks for unimodal lead time, lognormal

µ= 5,CVL = 0.4 with bootstrap approaches using B = 1,000 resamples. The lowest MAPE value for each

experiment is in bold. Cells are shaded if mean absolute deviations from optimal safety stock are not statistically

significantly different from the method with the lowest MAD.

Method nL 60% 65% 70% 75% 80% 85% 90% 95% 99% Median

True Safety Stock 12.87 40.29 70.74 105.34 146.19 197.32 266.90 383.46 650.45

B
o
ot
-R

an
k 6 123% 37% 30% 32% 35% 37% 41% 49% 65% 37%

10 136% 44% 30% 27% 26% 27% 30% 36% 53% 30%
24 113% 40% 27% 23% 22% 20% 20% 22% 36% 23%
50 103% 34% 21% 17% 16% 14% 13% 13% 24% 17%
100 71% 24% 15% 12% 10% 10% 8% 10% 16% 12%

B
o
ot
-S
V
3

6 131% 49% 38% 36% 37% 39% 43% 50% 65% 43%
10 109% 36% 26% 24% 25% 27% 30% 36% 53% 30%
24 100% 34% 24% 20% 19% 18% 18% 21% 36% 21%
50 95% 31% 19% 16% 15% 13% 12% 13% 23% 16%
100 70% 23% 14% 11% 10% 9% 8% 9% 16% 11%

G
am

m
a

6 74% 27% 27% 28% 30% 31% 32% 34% 37% 31%
10 78% 28% 23% 23% 24% 24% 25% 26% 29% 25%
24 83% 28% 20% 18% 17% 17% 17% 18% 20% 18%
50 85% 30% 18% 14% 12% 12% 12% 12% 14% 14%
100 87% 31% 19% 14% 12% 10% 9% 9% 11% 12%

N
or
m
al

6 276% 85% 50% 39% 34% 32% 32% 34% 39% 39%
10 289% 89% 49% 35% 29% 26% 25% 27% 34% 34%
24 291% 90% 48% 30% 22% 18% 17% 20% 29% 29%
50 301% 95% 51% 31% 19% 13% 11% 15% 27% 27%
100 307% 98% 53% 32% 19% 11% 8% 12% 26% 26%

4.2. Inventory and Backorder Costs

Using the safety stock values from the experiments in the previous subsection, we investigate the

expected holding and backorder cost implications of deviations from optimal safety stock values.
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Table 4 Mean Absolute Percent Error from optimal safety stocks for bimodal lead time,

µ= 25,CVL = 0.34, π= 0.2 with bootstrap approaches using B = 1,000 resamples. The lowest MAPE value for each

experiment is in bold. Cells are shaded if mean absolute deviations from optimal safety stock are not statistically

significantly different from the method with the lowest MAD.

Method nL 60% 65% 70% 75% 80% 85% 90% 95% 99% Median

True Safety Stock 397.75 446.69 496.61 549.55 607.37 673.55 756.08 876.78 1099.85

B
o
ot
-R

an
k 6 39% 35% 34% 35% 36% 35% 34% 35% 40% 35%

10 29% 30% 30% 29% 28% 27% 27% 27% 33% 29%
24 25% 24% 23% 21% 21% 20% 19% 18% 22% 21%
50 19% 18% 17% 16% 15% 14% 13% 12% 14% 15%
100 12% 11% 10% 9% 9% 8% 7% 7% 8% 9%

B
o
ot
-S
V
3

6 77% 59% 45% 36% 33% 33% 34% 35% 40% 36%
10 43% 31% 28% 27% 27% 26% 26% 27% 33% 27%
24 23% 23% 22% 21% 20% 19% 19% 18% 22% 21%
50 19% 18% 17% 16% 14% 13% 13% 12% 14% 14%
100 12% 11% 10% 9% 9% 8% 7% 7% 7% 9%

G
am

m
a

6 76% 53% 33% 25% 34% 50% 67% 91% 131% 53%
10 73% 50% 31% 17% 23% 36% 54% 78% 117% 50%
24 71% 48% 28% 12% 17% 30% 47% 72% 111% 47%
50 70% 48% 28% 10% 12% 28% 47% 73% 113% 47%

100 70% 47% 27% 8% 11% 28% 49% 74% 115% 47%

N
or
m
al

6 48% 32% 29% 34% 43% 52% 62% 74% 90% 48%
10 48% 30% 20% 22% 28% 38% 49% 62% 80% 38%
24 47% 29% 15% 15% 22% 31% 42% 56% 75% 31%
50 47% 28% 12% 10% 18% 29% 42% 57% 76% 29%

100 46% 27% 11% 7% 17% 30% 43% 58% 78% 30%

Figure 2 The cumulative distribution functions comparing the true left skew bimodal distribution with µL = 25

and CVL = 0.34 (blue dashed line) with the normal (red) and gamma (black)
 

 

Lead Time Demands 

 

For a given choice of P1, we set the under-stocking cost (cost of a unit backorder) to be cu = P1 and

the over-stocking cost (cost of carrying one unit of inventory for the time between replenishment

cycles) to be co = (1−P1). These costs are thus consistent with P1 = cu/(cu+ co) being the optimal

service level choice.

We carry through the two examples from the previous section and present cost results for one

unimodal case (Table 5) and one bimodal case (Table 6). For each case, we use the true, underlying
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LTD distribution, specified in the previous subsection, to evaluate expected holding and backorder

cost for the reorder points implied by each calculated safety stock value. This expected cost is then

compared to the optimal expected cost.

For the unimodal case, recall from Table 3, we saw the gamma approach provide the best safety

stock values with bootstrap approaches not too far behind, often not different in a statistically

significant sense. This pattern carries through to expected cost results shown in Table 5. One

point that emerges, or is at least emphasized, in the cost results is that the data-driven bootstrap

approach suffers for small amounts of data and high quantile values (e.g., nL ≤ 10, P1 ≥ 95%).

This suggests that firms with limited data, very high target service levels, and unimodal LTD

distributions may not be well-served with non-parametric, data-driven approaches.

The better safety stock estimates produced by the bootstrap approaches for the bimodal lead-

time case shown in Table 4 also carry through to the cost results shown in Table 6. Similar to

the unimodal cost results, we see large cost deviations for limited data and very high service

levels. Recall from the previous section that the normal and gamma approaches resulted in lower

deviations from optimal safety stock for service level values near 75% due to the CDFs for those

distributions intersecting with the true LTD distribution at those values (Figure 2). As indicated

in Table 6, those better safety stock estimates do not translate to substantial cost savings since

the cost function is relatively flat between modes.

Results from these controlled experiments demonstrate that our proposed bootstrap approach

is competitive with classic approaches when lead time demand distributions are unimodal (Tables

3 and 5), and can provide better performance when LTD distributions are multi-modal (Table 4

and 6). This suggests that our approach may work well for the multi-modal LTD distributions

we observe for MakerCo (Figure 1). The results of these controlled experiments provided the

impetus for the MakerCo procurement planning team to provide the organizational data necessary

to rigorously test the proposed bootstrap approach for their own raw materials replenishment

inventories in a discrete-event simulation. In the next section, we describe this simulation study

and its results that eventually led the MakerCo management team to run a pilot implementation.

Results from the pilot implementation are also described in the next section.

5. Industry Application

To gain organizational acceptance for implementation at MakerCo, we sought to validate the

bootstrap beyond the known distributional settings studied in Section 4. To do this, we simulated

the firm’s raw materials’ replenishment operation. MakerCo operates a continuous review (s,Q)

with order quantities (Q) determined by minimum-order-quantities set by the supplier or the

frequency of MakerCo’s production needs. MakerCo management aimed for a service level of P1 =
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Table 5 Mean Absolute Percent Error from optimal cost for unimodal lead time, lognormal µ= 5,CVL = 0.4

with bootstrap approaches using B = 1,000 resamples. The lowest MAPE value for each experiment is in bold. Cells

are shaded if mean absolute deviations from optimal expected cost are not statistically significantly different from

the method with the lowest MAD.

Method nL 60% 65% 70% 75% 80% 85% 90% 95% 99% Median
B
o
ot
-R

an
k 6 8% 9% 10% 12% 14% 18% 28% 60% 302% 14%

10 6% 6% 7% 8% 9% 11% 15% 30% 164% 9%
24 2% 3% 3% 4% 5% 6% 8% 13% 64% 5%
50 1% 1% 2% 2% 2% 2% 3% 4% 23% 2%

100 1% 1% 1% 1% 1% 1% 1% 2% 9% 1%

B
o
ot
-S
V
3 6 8% 9% 10% 12% 15% 19% 29% 62% 303% 15%

10 5% 6% 6% 7% 8% 10% 15% 30% 164% 8%
24 2% 3% 3% 4% 4% 5% 7% 12% 64% 4%
50 1% 1% 1% 2% 2% 2% 2% 4% 22% 2%

100 1% 1% 1% 1% 1% 1% 1% 2% 9% 1%

G
am

m
a

6 8% 9% 10% 12% 13% 16% 20% 30% 73% 13%
10 5% 6% 6% 7% 8% 10% 12% 17% 39% 8%
24 2% 3% 3% 3% 4% 5% 6% 9% 21% 4%
50 1% 1% 1% 1% 2% 2% 2% 3% 8% 2%
100 1% 1% 1% 1% 1% 1% 1% 2% 5% 1%

N
or
m
al

6 11% 12% 12% 13% 14% 16% 20% 32% 101% 14%
8% 8% 8% 9% 9% 10% 12% 19% 62% 9%
24 4% 4% 4% 4% 4% 5% 6% 11% 42% 4%
50 3% 3% 3% 2% 2% 2% 2% 5% 25% 3%

100 2% 2% 2% 2% 2% 1% 1% 3% 20% 2%

Table 6 Mean Absolute Percent Error from optimal cost for bimodal lead time, µ= 25,CVL = 0.34, π= 0.2 with

bootstrap approaches using B = 1,000 resamples. Cells are shaded if mean absolute deviations from optimal

expected cost are not statistically significantly different from the method with the lowest MAD.

Method nL 60% 65% 70% 75% 80% 85% 90% 95% 99% Median

B
o
ot
-R

an
k 6 23% 24% 25% 26% 28% 34% 46% 85% 391% 28%

10 10% 10% 11% 12% 14% 16% 22% 40% 198% 14%
24 3% 3% 3% 4% 4% 5% 6% 10% 43% 4%
50 2% 2% 2% 3% 3% 3% 4% 5% 17% 3%

100 1% 1% 1% 1% 1% 2% 2% 3% 7% 1%

B
o
ot
-S
V
3 6 34% 34% 34% 34% 36% 40% 51% 88% 394% 36%

10 16% 15% 14% 14% 15% 17% 23% 41% 199% 16%
24 3% 3% 3% 4% 4% 5% 6% 9% 43% 4%
50 2% 2% 2% 3% 3% 3% 3% 5% 17% 3%
100 1% 1% 1% 1% 1% 2% 2% 3% 6% 1%

G
a
m
m
a

6 35% 33% 31% 27% 25% 26% 35% 61% 116% 33%
10 26% 24% 20% 16% 13% 16% 26% 50% 96% 24%
24 15% 11% 7% 5% 6% 13% 27% 52% 95% 13%
50 17% 12% 8% 4% 4% 10% 24% 50% 94% 12%

100 15% 10% 6% 2% 3% 9% 25% 51% 96% 10%

N
o
rm

a
l

6 25% 24% 23% 22% 23% 26% 33% 47% 81% 25%
10 17% 15% 13% 12% 13% 16% 23% 37% 62% 16%
24 8% 6% 4% 5% 7% 13% 23% 39% 62% 8%
50 9% 6% 4% 3% 5% 10% 20% 36% 61% 9%
100 7% 4% 2% 2% 4% 10% 21% 37% 62% 7%
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95%. Using the baseline approach, safety stocks are manually calculated in a spreadsheet and

entered into the inventory module of the ERP system that would use the fixed preset supplier lead

times to set the ROP. Raw material replenishment decisions are made continuously to maintain

sufficient safety stocks depending upon the production usage. In case of stockouts any unmet

demand due to production shortfalls is backordered.

5.1. Simulation Model

We worked with MakerCo to collect data for 9 raw material SKUs. Lead time data were collected

from each SKU’s ordering history. For the demand data we used the parent finished good’s historic

demand as there is a one-to-one relationship between finished goods and the raw materials in this

study. As the lead time and demand did not conform to any standard distributional forms we

employed empirical histograms for each of these inputs to the simulation. Baseline safety stocks

along with the resulting reorder points were used from the firm’s operations (Appendix D Table

EC.3 ). For each SKU a benchmark LTD distribution was compiled from the empirical lead time

and empirical demand data using a Monte-Carlo simulation with one million draws. These bench-

mark distributions are provided in Appendix D Figure EC.1. From these “true” benchmark LTD

distributions we compute the benchmark safety stock for the desired P1 = 95% and other LTD

statistics for each SKU, which we use to check the internal logic of the simulation model as well

as use for later comparisons.

Each simulated day, observed demand is fulfilled from available inventory, the unfilled portion

of demand is backordered. A replenishment order of fixed quantity Q is placed when the inventory

position (on-hand inventory and orders outstanding) is less than or equal to the reorder point. At

the end of each simulated day inventory and order records are updated. Three identical discrete-

event simulations of the firm’s daily inbound raw material replenishment inventory management

process run in parallel in Simul8 R© Professional Version 23. One simulation replicated MakerCo’s

extant inventory operations (baseline), a second simulated the use of the bootstrap method to set

inventory policies (bootstrap), and the third used the gamma approach to set inventory policies

(gamma). A limited experimental frame was set using three levels each of nL̃ = 6, 10, 24 and

nD̃ = 6, 10, 24 corresponding to the data availability defined by the firms’ operations managers.

Each experiment ran for 20 replications yielding a total of 320 runs for each method and SKU

combination. The baseline, bootstrap and gamma simulations ran in parallel, warming up for a

period of 25 years and running for 10 years. The baseline, bootstrap or gamma inputs are calculated

after the warmup period employing the historic nL̃ and nD̃ values collected by the end of the warm-

up period. The inventory policies by each approach are updated every 30 days reflecting MakerCo’s

practice. A single random draw of daily demand is used by all three simulations running in parallel.
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An order is triggered separately by each of the three simulations for which a lead time value is

randomly drawn from the lead time distribution of the SKU for which the inventory process is

being simulated. Thereby, the difference in safety stocks, realized PNS and total inventory costs

(holding and backorder) is only due to the inventory estimates used and comparable across the

three approaches.

5.1.1. Model Validation To ensure the internal logic of the simulation we ran 20 replications

of the simulation warming up for a period of 25 years and running for 25 years for all 9 SKUs.

Accurate LTD data is an outcome of the correct functioning of the simulation and is critical

for correctly setting the inventory policies therein. The LTD statistics simulation output can be

compared with that of the benchmark LTD distribution statistics run independently in the Monte-

Carlo simulation. Hence, we use t-tests to compare the simulated LTD mean and standard deviation

from the three methods for each SKU with the benchmark LTD mean and standard deviation.

The comparisons use t-test confidence intervals for the mean deviation (MD) of each simulated

LTD statistic from the benchmark value shown in Appendix D Table EC.4. The results confirm

that in virtually all cases the simulated data are not significantly different from the benchmark.

An exception is for average LTD for SKU 16, which is still close to the benchmark.

To ensure the simulation was satisfactorily modeling MakerCo’s process for managing inbound

raw material replenishment inventories we met several times with the management team and pro-

vided graphical output of the simulated inventory system for each SKU, represented by the inven-

tory balance on hand, inventory position and backorders. The graphs of the simulated inventory

system allowed the management team to identify the symptoms they encountered particularly with

SKUs that posed a management challenge. For example, in Appendix D Figure EC.2, we provide

examples where the operations managers were able to identify problems with chronic overages and

underages for SKU 3 and 17, respectively. This validation offers some confidence that the simu-

lation model is internally valid and satisfactorily models the firm’s replenishment and inventory

operation.

5.2. MakerCo Simulation Results

The results of the 320 runs were used to conduct 9 one way ANOVAs for each SKU, one for each

nL̃ and nD̃ combination. We use the mean absolute deviation (MAD) of each method’s safety stock

estimator from that of the benchmark as the response variable and the method as the predictor. For

each ANOVA we conduct multiple pairwise comparisons of each method’s MAD by constructing

confidence intervals using the Bonferroni correction for multiple t-test comparisons. We compile

the results of these analyses in Table 7 where we show the MAD of each method’s average safety
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stock from the benchmark shown as a percentage of the true safety stock for each nL̃ and nD̃

combination. For each experiment we highlight the lowest MAD with bold font and color the cell

where the difference of that cell’s MAD from the lowest MAD is not statistically significant at

the α = 0.05 level. In order to visually represent settings where each method’s estimate is not

statistically different from the benchmark we sort the results by method, nL̃ and nD̃.

Table 7 Results of the 9 one-way ANOVAs for each of the 9 SKUs comparing the estimators of the bootstrap,

gamma and baseline as the percentage mean absolute deviation (MAD) from the benchmark. (Lowest MAD for each

experiment in bold. Cell is colored if MAD is lowest or if MAD is not statistically significantly different than lowest.)

Method nL nD SKU3 SKU6 SKU7 SKU9 SKU10 SKU13 SKU14 SKU16 SKU17 Avg %age Diff

Bootstrap

6

6 33% 28% 42% 26% 15% 26% 44% 47% 43% 34%
10 32% 30% 47% 15% 18% 32% 44% 51% 50% 35%
24 37% 31% 49% 20% 19% 40% 50% 49% 54% 39%

10

6 9% 11% 23% 40% 18% 7% 22% 22% 18% 19%
10 11% 13% 27% 25% 13% 10% 24% 26% 25% 19%
24 14% 14% 26% 14% 12% 17% 24% 25% 32% 20%

24

6 9% 11% 11% 62% 41% 19% 10% 8% 16% 21%
10 8% 9% 8% 41% 22% 11% 10% 9% 7% 14%
24 4% 10% 7% 19% 20% 5% 11% 10% 4% 10%

Gamma

6

6 31% 16% 9% 91% 51% 26% 14% 13% 13% 29%
10 29% 14% 13% 74% 40% 14% 12% 10% 14% 25%
24 21% 11% 14% 43% 31% 9% 16% 13% 20% 20%

10

6 37% 18% 8% 84% 58% 35% 13% 7% 6% 30%
10 35% 18% 6% 71% 41% 23% 12% 8% 10% 25%
24 30% 15% 7% 54% 30% 14% 13% 6% 17% 21%

24

6 42% 21% 6% 88% 61% 44% 15% 8% 12% 33%
10 41% 19% 6% 72% 37% 31% 13% 7% 6% 26%
24 35% 18% 5% 48% 35% 23% 14% 8% 7% 21%

Baseline

6

6 125% 67% 67% 204% 15% 73% 35% 8% 84% 75%
10 124% 65% 68% 205% 15% 75% 37% 9% 85% 76%
24 124% 65% 66% 204% 18% 74% 34% 8% 83% 75%

10

6 123% 67% 69% 206% 18% 75% 33% 7% 84% 76%
10 125% 64% 69% 203% 16% 77% 35% 9% 83% 76%
24 125% 64% 66% 203% 15% 71% 37% 9% 84% 75%

24

6 126% 66% 69% 204% 19% 73% 30% 8% 83% 75%
10 123% 65% 66% 202% 18% 74% 32% 8% 84% 75%
24 123% 64% 66% 203% 16% 74% 31% 8% 84% 74%

For each Method, nL̃ and nD̃ combination we average the MAD percentage difference of the

estimate from the benchmark across all SKUs, in the last column of Table 7. In the last column

we use data-bars representing the percentages in each cell to provide a visual of the settings where

the methods’ estimates are closest to the benchmark. From this column it is apparent that the

difference of the bootstrap safety stock estimator from the benchmark safety stock becomes smaller

as a function of nL̃ and to a lesser extent nD̃. From the MakerCo and the controlled simulations

we can conclude that the bootstrap is almost always the best method when nL̂ ≥ 24.

Notably, for some SKU’s the baseline and the gamma appear to yield the safety stocks closest

to the benchmark. The baseline, representing MakerCo’s current method, provides the estimate

closest to the benchmark for SKUs 10 and 16; and, the gamma does the same for SKUs 7, 14, 16 and
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17. As discussed in Section 4.1, Figure 2 this is due to the serendipitous coincidence of the baseline

and gamma quantiles with that of the benchmark at the 95% PNS for those SKUs. We plotted

the CDF of the benchmark and the gamma LTD distribution calculated from the benchmark LTD

statistics and overlay-ed the gamma, MakerCo’s baseline and benchmark reorder points on the

plots for each SKU (Appendix B, Figure 8). The baseline approach provides an estimate of 440

and 1,120 (Appendix D Table EC.3) that due to chance is close to the 95% PNS benchmark of 456

and 1,039 for SKUs 10 and 16, respectively. Similarly, the serendipitous coincidence of the gamma

and benchmark quantile at the 95% PNS for SKUs 7, 14, 16 and 17 result in gamma estimates

that are closer to the benchmark.

5.2.1. Cost Results As our non-disclosure agreement precludes us from sharing the cost

results, for the purpose of illustration here, we used an approach similar to that of the numerical

cost experiment (Section 4.2) where we infer per-unit holding and backorder costs from the specified

service level. For each of the 9 SKUs we conducted 100 replications of a Monte-Carlo simulation

at P1 = 95% for nL̃ = nD̃ = 24, which typified MakerCo’s sample size of lead time and demand.

Each replication consisted of a random draw of nL̃ = 24 lead times and nD̃ = 24 demands from the

empirical distributions constructed from MakerCo’s lead time and demand data. These random

draws of lead time and demand are used to estimate the gamma, baseline and the bootstrap reorder

points. The resulting reorder points are used to estimate the safety stock and expected shortage

in each cycle as we did in Section 4.2. We implied the overage cost co as the product of the SKU

value v, holding cost h and length of the order cycle Q/D. The underage cost cu is implied by

(P1 ·h ·v ·Q/D)/(1−P1). We take MakerCo’s values for each SKU’s P1 = 95% holding cost h= 18%

order quantity Q, annual average demand D, and unit cost v. Q and D are provided for each SKU

in Appendix D Table EC.3, the values v of each SKU are withheld as per the confidential disclosure

agreement signed with MakerCo. The benchmark LTD distributions provided the benchmark safety

stock, shortages and total cycle costs for comparison.

The results of the comparison of the three methods to the benchmark is reported in Figure 3 as

a percentage of the mean absolute deviation of each method from the benchmark. The bootstrap

and gamma estimates result in significantly lower costs to that of the baseline, exhibiting the

potential for several orders of magnitude of cost savings from employing these approaches over the

baseline. As expected from the results in Table 7 the baseline is better than the bootstrap and

gamma for SKUs 10 and 16; this is due to chance. It should be noted that the difference of the

baseline from the bootstrap and gamma for SKU’s 10 and 16 are not statistically significant. In

order to determine the relative cost performance of the bootstrap and the gamma we took the

MAPE of the bootstrap and the gamma from the benchmark. We then took the difference between
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Figure 3 The mean absolute percentage error of the bootstrap, gamma and baseline from the benchmark with

nL = nD = 24 at PNS = 95% over 100 replications for all 9 SKUs.

the bootstrap MAPE and the gamma MAPE. This metric indicates the closeness of the bootstrap

to the benchmark relative to the gamma (Figure 4)–positive values indicate the average percentage

by which the bootstrap is closer to the benchmark than the gamma.

For SKU 3, employing the bootstrap estimate shows the potential of realizing an over 20% cost

saving as compared to the gamma. More modest savings are potentially available relative to the

gamma for SKUs 6, 14, 16 and 17. These savings are notable as for SKU’s 14, 16 and 17 the gamma

95% quantile is very close to the benchmark and for SKU 16 the baseline reorder point coincides

with the benchmark quantile (Appendix B Figure 8).
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Figure 4 Relative difference of the bootstrap and gamma to the benchmark for nL = nD = 24 at PNS = 95%

over 100 replications with 95% T-statistic error bars indicating the statistically significant differences.

Positive values indicate the average percentage by which the bootstrap is closer to the benchmark than

the gamma.

5.3. Pilot Implementation

Following a presentation of these results by the research team, in October 2018 the management of

MakerCo began a pilot of the bootstrap approach with a subset of seven SKUs from the simulation

study. The pilot was limited as management would sometimes override the bootstrap for a variety

of reasons related to business conditions. The short implementation time combined with the long

stochastic lead-times and the management overrides of the bootstrap meant that we have a limited

number of order cycles over which we could realize the results. Due to the insufficient data to

estimate actual realized safety stock reductions and realized actual service level for each SKU we

look instead at the projected savings from employing the bootstrap and the aggregate change in

service level across all SKUs.
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For the seven SKUs in the pilot implementation, MakerCo used the bootstrap estimates of

safety stock beginning in October 2018 until December 2019. The seven SKUs included in the

pilot experienced a total of 67 order-cycles pre-pilot, six of which experienced a stockout. The

pre-pilot PNS averaged across all seven SKUs is 86.4%. Post-pilot, the seven SKUs experienced

36 order-cycles with only three order-cycles experiencing a stockout. The post-pilot PNS averaged

across all seven SKUs is 89.5%, which is closer to MakerCo’s target of 95%. Examining each of

the post-implementation stockouts when the bootstrap was employed we see that two out of the

three order cycles would have experienced a stockout had the baseline approach been used to set

safety stocks. We estimate MakerCo realized a $1.17 million inventory investment reduction from

the net reduction in safety stocks across all seven SKUs included in the Pilot implementation. This

reduction was realized with an overall increase in customer service as measured by the realized

PNS.

6. Discussion and Conclusions

The success of the pilot implementation resulted in MakerCo requesting that the bootstrap

approach for calculating safety stocks be rolled out to all replenishment items at the pilot plant.

Subsequently, company management initiated pilot implementations of the bootstrap approach at

other plants in its global network. Consequently, the research team developed an online application

(Figure 5), which will enable MakerCo material planners to bootstrap the safety stock estimates

for quarterly planning and periodic updates of safety stock levels.

In addition to providing a point estimate of safety stocks, the bootstrap approach allows us to

provide managers with a (1− β)100% confidence interval of the bootstrap safety stock estimate.

The upper confidence limit (UCL) and lower confidence limit (LCL) are the 1− β

2
and β

2
sample

quantiles of SS(1), . . . , SS(B) respectively. Intervals could also be constructed using the normality

results presented in Section 3.2. Confidence intervals such as these provide additional information

that enables managers to adjust safety stock settings based on their experience and the variability

of the estimate. For example, for a SKU in the pilot with a bootstrap safety stock estimate of 42.52

units, the 95% confidence interval is [-56.42, 141.46]. We explained to the managers that this result

is due to the variance in the lead-time and demand data, and the confidence interval tells us that

we would expect a stockout greater than 56.42 units about 2.5% of the time. The managers then

made a decision based upon their knowledge of the business environment, MakerCo’s goals and

the trade-off between the additional inventory investment and the consequences of stocking out to

adjust the safety stock upwards to further reduce the risk of a stockout.
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parametric assumptions would yield biased results in settings with non-standard LTD distributions

(Bai et al. 2012, Das et al. 2014, Lau and Lau 2003).

Our approach is not the first to employ the bootstrap approach to set inventory parameters

(Bookbinder and Lordahl 1989, Wang and Rao 1992, Fricker and Goodhart 2000). Our contribution

to the inventory literature is to develop a safety stock estimator recognizing the multi-parameter

estimation process including the bootstrap sample mean and bootstrap sample quantile. In par-

ticular our theoretical development of the joint asymptotic covariance structure of the bootstrap

sample mean and bootstrap sample quantile enables the construction of a least-biased bootstrap

safety stock estimator. In addition, we update the extant guidance that m = B (where B can

potentially be greater than nL̃) put forth by Fricker and Goodhart (2000) which can lead to biased

estimates. We develop the intuition and provide experimental validation that the bootstrap sample

size should be m= nL̃.

While the MakerCo application demonstrates the efficacy of the new bootstrap approach in

an industry setting, our numerical experimental framework offers some generalizability of the

bootstrap to other replenishment settings with similar non-standard LTD conditions. Our experi-

mental framework in Section 4 demonstrates that relative to the classic approaches the bootstrap

approaches are effective when LTD distribution are bimodal and exhibit high skew, and are compet-

itive when LTD are bell-shaped. The bootstrap performance degrades when the quantile coincides

with a gap in available data of the empirical LTD distribution. This may occur at lower PNS that

may coincide with gaps in modes or at extremely high PNS. When the PNS falls between the gaps

in the modes the cost function is flat and therefore large deviations from optimal safety stocks

may not translate into substantial cost differences. However, at extremely high PNS the number

of data are limited and can result in poor estimates, which cautions the use of the bootstrap with

outliers. Nevertheless, even when the bootstrap performance degrades, it remains competitive with

the classic approaches widely used in practice including those built into popular ERP systems

such as SAP and Oracle (Das et al. 2014), especially as sample size of lead-time increases. Our

numerical results provide support for the bootstrap intuition that the performance of the bootstrap

estimator improves with increased sample size (Efron and Tibshirani 1986). Although managers

may not be able to control their sample size of the lead time and demand, which is dependent upon

factors relating to the replenishment processes, they may be able to decide when it is appropriate

to employ the bootstrap when sufficient lead-time and demand data are observed. Nevertheless,

unlike some newer Machine Learning techniques (Huber et al. 2019) that work best with large data

sets, the MakerCo application illustrates that the bootstrap approach can be effective even with

limited lead-time and demand data (nL̃ = nD̃ = 24).
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6.2. Limitations and Future Research

A limitation of this research is our inability to exercise any experimental control in the industry

application due to the application of the bootstrap approach in a working production setting.

Consequently, as is typically the case when working with an industry partner, we were constrained

to the operational realities of MakerCo’s production operations including occasional management

overrides of safety stock decisions. Still, our pilot implementation led to sufficient improvement

that MakerCo has rolled out our approach to encompass more raw materials at more sites.

Our numerical experiments provide some generalizability to demonstrate the efficacy of the

bootstrap in other settings with non-standard LTD distributions (Das et al. 2014, Vernimmen et al.

2008). Given the target SKUs for the pilot implementation, our experiments focus only on fast-

moving non-discrete demand items. Future research can resolve the question about the applicability

of the bootstrap to manage inventories for discrete-demand and slow-moving items.

In the current research we present the bootstrap approach for estimating safety stocks for a

given PNS under the (s,Q) continuous review policy at MakerCo. Future research can investigate

the extension of the bootstrap to the periodic review policy with R review periods by sampling on

R+ L̃ instead of L̃. Further inventory policy extensions include the min-max policy, and the fill-

rate (P2) customer service criterion. Future research can also investigate extending this framework

to more complex settings such as cases where a single raw material goes into multiple finished

goods. This can be especially challenging in complex bills-of-materials settings when demand for

finished goods with common raw materials or components are correlated. Such settings involving

complex covariance frameworks include settings when lead-time and demand are correlated, and

when demand is correlated across multiple locations for virtual inventory pooling or when making

inventory centralization decisions.
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Appendix A: Classification Tree Results

We conducted separate classification analyses for the unimodal (lognormal) and the bimodal lead

times. Our predictor is the mean square error (MSE) between the estimator for each safety stock

method and the truth. As the variance of the MSE values decreases as nL̃ increase, which magnitude

varied by Method, we specified one-way weighted least square (WLS) ANOVA models using weights

proportional to the variance of the respective nL̃×Method effect. The predictors for each ANOVA

are Method and nL̃. Residual diagnostic plots are checked to ensure assumptions are not violated.

Tukey-HSD pairwise comparisons are run for each ANOVA to identify the set of methods over all

nD̃ from each experiment with the lowest MSE. The best set of methods identified in this manner

are then used to build the classification trees using CVL, PNS, nL̃, nD̃, and µL as predictors.

A.1. Unimodal Case

The results of the unimodal case classification tree analysis is provided in Figure 6. The classification

tree diagram lists the nodes with the levels of the predictors at which the data is partitioned. Read

each partition node such that the data is partitioned to the left branch if it meets the classification

condition or to the right otherwise. The block at the end of each branch after a partition node

is colored using the color caption on the right corresponding to the the dominant set of methods

that meets the condition of that node that is also listed at the top of the block. The percentage

indicates the percentage of the data partitioned to that node and the ratios in the center of the
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block indicate the percentage of each set of methods in serial order corresponding to the caption

on the right of the diagram.

For the unimodal (lognormal) case we expect the classic normal and gamma methods to perform

the best, especially when CVL and right skew is low. This is confirmed by Figure 6. When CVL =

0.71 the bootstrap method dominates as the best estimator. Two exceptions are when nL ≤ 12 and

the PNS≥ 0.98. The latter can occur when the gamma CDF coincides with that of the empirical

LTD, which is seen in Figure 2 and discussed in Section 4.2 in more detail. In keeping with

the data-driven approach, the bootstrap emerges as the superior estimator when nL increases.

Besides, the bootstrap also dominates the classic approaches when high CVL results in non-standard

distributions. Such a case is evident when the bootstrap approach with the SV3 quantile is the

best approach for CVL = 0.4, PNS < 0.86 and nL = 100.

A.2. Bimodal Case

In the bimodal case we expect the non-parametric bootstrap approach to dominate, which is

confirmed by the results of the classification tree analysis (Figure 7). There are only five cases

where, according to the classification analysis, gamma or normal are preferable to the bootstrap

methods. The cases are:

Case 1: When PNS> 0.90, CVL = 0.9, and nl ≤ 24, gamma is preferred.

Case 2: When 0.75< PNS ≤ 0.83 and CVL = 0.34 gamma is preferred.

Case 3: When 0.67 < PNS ≤ 0.75 and CVL = 0.34 normal is preferred.

Case 4: When 0.81 < PNS ≤ 0.90, CVL = 0.9, and nl ≤ 24 normal is preferred.

Case 5: When 0.65< PNS ≤ 0.67, CVL = 0.34, and nl ≤ 12 normal is preferred.

The underlying cause for these cases is related to the data-driven nature of the bootstrap. The

bootstrap suffers when there is insufficient data to sample. This occurs in case 4, when the PNS

falls between the modes of a multi-modal LTD distribution. Cases 1 and 5 are related to the

availability of sufficient lead time data, which in case 1 is exacerbated by the PNS at the right

tail of a very right skewed distribution. In addition, the LTD CDF for the gamma approximation

method coincides very closely with that of the true LTD for case 1. This is also true with the

gamma and normal CDF for cases 2 and 3, respectively.

We used 100 replications to ensure a high power for our experimental tests to avoid false posi-

tives. However, this resulted in a very small threshold for statistical significance. In addition, the

classification analysis uses predicted values from the WLS ANOVA instead of the raw values, which

would influence the results. Hence, we look at the percentage errors between the truth and the

1 The breakpoints at each node for the factors CVL and nL̃ that have discrete levels but are treated as numeric by
the classification analysis, occur at the midpoints between the levels of these factor e.g., at the first node that is for
CVL < 0.55 the left branch from that node is when CVL ≤ 0.4 and the right branch is for CVL = 0.7.
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Figure 6 Best method for estimating safety stocks when LTD distribution is unimodal
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 gamma
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100%

 gamma
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67%

 gamma

.01  .81  .00  .02  .14  .02

43%

 gamma

.00  .90  .00  .02  .06  .02

35%

 gamma

.04  .48  .00  .01  .47  .00

9%

 gamma

.08  .90  .00  .02  .00  .00

4%

 boot−sv3

.00  .06  .00  .00  .94  .00

4%

 norm

.03  .39  .48  .07  .04  .00

23%

 gamma

.05  .58  .22  .10  .05  .00

14%

 gamma

.01  .95  .00  .04  .00  .00

7%

 norm

.08  .21  .44  .17  .10  .00

7%

 norm

.00  .09  .87  .02  .03  .00

9%

 boot−sv3

.00  .16  .09  .00  .62  .13

33%

 norm

.00  .21  .39  .00  .02  .38

8%

 norm

.00  .06  .81  .00  .00  .14

3%

 boot−rank

.00  .31  .11  .00  .04  .54

4%

 gamma

.00  1.00  .00  .00  .00  .00

1%

 boot−rank

.00  .12  .14  .00  .05  .69

4%

 boot−sv3

.00  .15  .00  .00  .79  .06

26%

 boot−sv3

.00  .26  .00  .00  .74  .00

15%

 boot−sv3

.00  .43  .00  .00  .57  .00

9%

 gamma

.00  1.00  .00  .00  .00  .00

3%

 boot−sv3

.00  .14  .00  .00  .86  .00

6%

 boot−sv3

.00  .00  .00  .00  1.00  .00

6%

 boot−sv3

.00  .00  .00  .00  .86  .14

11%

yes no

 boot−sv3 norm gamma (unused)

 gamma

 norm

 norm gamma (unused)

 boot−sv3

 boot−rank

method estimates where there is statistical significance to determine whether these difference are

practically significant. Table 8 reports the average percentage difference relative to the truth, and

corresponding standard errors in parenthesis for each of the five cases where bootstrap was not

suggested by the classification tree analysis for the bimodal simulation settings. The analysis was

performed directly on the results from the 100 replications.

In each case we see that the bootstrap estimate is below the true value, while the best approach in

most cases is above the value. The high standard errors show that the bootstrap is competitive and
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Figure 7 Best method for estimating safety stocks when LTD distribution is bimodal

PNS < 0.75

CV_L >= 0.62

n_L >= 17

PNS >= 0.66

n_L < 75

PNS < 0.67

n_L >= 17
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PNS < 0.65

CV_L < 0.62
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n_L < 8
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PNS >= 0.95
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 boot−sv3

.27  .36  .00  .15  .21

100%

 boot−rank

.38  .33  .01  .02  .26

38%

 boot−sv3

.49  .51  .00  .00  .00
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.82  .18  .00  .00  .00

11%
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7%

 boot−rank
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4%
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.83  .17  .00  .00  .00

3%
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2%
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.00  1.00  .00  .00  .00
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.27  .15  .01  .05  .52

19%

 boot−rank
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9%
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5%

 boot−rank

.75  .18  .07  .00  .00

4%

 boot−sv3

.00  1.00  .00  .00  .00

2%

 norm

.46  .00  .00  .00  .54

4%

 boot−rank

.65  .00  .00  .00  .35

2%

 norm

.00  .00  .00  .00  1.00

1%

 norm

.07  .05  .00  .09  .79

10%

 boot−sv3

.21  .38  .00  .23  .18

62%

 boot−sv3

.18  .52  .00  .26  .03

31%

 boot−sv3

.26  .72  .01  .01  .00

21%

 boot−rank

.94  .06  .00  .00  .00

4%

 boot−sv3

.10  .88  .01  .01  .00

17%

 gamma

.01  .11  .00  .79  .09

10%

 norm

.24  .23  .00  .21  .32

31%

 boot−rank

.48  .31  .00  .05  .16

12%

 boot−sv3

.00  1.00  .00  .00  .00

2%

 boot−rank

.60  .14  .00  .06  .20

10%

 norm

.07  .18  .00  .31  .43

19%

 boot−sv3

.19  .75  .00  .06  .00

4%

 norm

.04  .00  .00  .39  .57

14%

 gamma

.07  .00  .00  .73  .20

8%

 norm

.00  .00  .00  .02  .98

7%

yes no

 boot−rank
 boot−sv3
 boot−sv3 boot−rank (unused)
 gamma
 norm

Boot-Rank Boot-SV3 Best
Case 1 -0.417 (0.200) -0.427 (0.190) -0.122 (0.351)
Case 2 -0.091 (0.248) -0.121 (0.221) 0.016 (0.213)
Case 3 -0.111 (0.225) -0.122 (0.211) 0.291 (0.300)
Case 4 -1.268 (1.194) -1.297 (0.894) -2.314 (0.944)
Case 5 -0.195 (0.309) -0.260 (0.267) 0.175 (0.401)

Table 8 Percentage error relative to the truth in cases where the classification tree analysis suggests using a

method other than bootstrap for the bimodal settings.
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in cases 3–5 the bootstrap outperforms the best approach suggested by the classification analysis.

Therefore, when LTD is not expected to conform to a standard bell-shaped distribution with low

CVL managers implementing the bootstrap would on average be competitive even with the best

suggested approaches from the classification analysis.

Appendix B: Cumulative Distribution Functions of MakerCo’s Benchmark and the Gamma

Lead-Time Demand Distributions
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Figure 8 Plots of the benchmark (blue) and gamma (red) LTD cumulative distribution function for SKUs 7, 14,

16 and 17 with the 95% quantile marked as dashed vertical lines for the benchmark (blue) gamma (red)

and baseline (black).
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Appendix A: Intuition for Bootstrap Approach

To motivate our approach we relate our bootstrap algorithm to statistical sampling theory. We

assume LTD is an unobserved random variable X with an unknown distribution function FX with

the mean µX and the variance σ2
X . Let us consider a theoretical framework where we can observe

realizations of the LTD random variable X, X̃ = {x1, . . . , xn
X̃
}. We know in the development of

X, there are two random variables that represent lead time and demand and are independent. To

develop intuition for our proposal let us assume that lead time and demand are discrete random

variables and there exists n pairs, (l̇i, ḋi) ∈ Rli+1 such that xi =
∑l̇i

j=1 ḋij, ∀ii = 1, . . . , n. Note,

this assumes that lead time is paired with demand in the theoretical framework. Define L̇ as the

vector of all l̇i, and Ḋ as the vector of all ḋi. Also assume we have observed samples of lead time

L̃= {l1, . . . , ln
L̃
} and demand D̃ = {d1, . . . , dn

D̃
}, which are not observed in pairs, and we assume

that the generating random variables of lead time and demand are independent. The bootstrap

method we propose is similar to developing a null distribution for a statistic of interest in bootstrap

hypothesis tests under the assumption that lead time and demand are independent. Furthermore, if

we assume that L̇ and D̃, and Ḋ and L̃ have the same empirical distributions, then the probability

of selecting a given sample of size nL̃, is exactly the same, which means the algorithm would

not recognize the two samples as different. This intuition leads to the idea that this bootstrap

methodology is attempting to create the sampling distribution of the statistic of interest, in this

case the safety stock, under the assumption that lead time and demand are independent.

Appendix B: Proof of Theorem 2

The proof of this theorem uses arguments from both Bickel and Freedman (1981), Ferguson (1998),

and Zou (2015)). We will provide a basic sketch of the proof as many of these results are well

known in the literature. Define x(1), . . . , x(n) to be the order statistics of the original sample and

x∗

(1), . . . , x
∗

(n), be the order statistics of the bootstrap sample. Zou (2015) gives the the Bahadur

type representation of the bootstrap sample quantile as

Y ∗

p −Yp ≈
Gn(F

−1
X (p))−Fn(F

−1
X (p))

fX(F
−1
X (p))

.

Using this representation we have that

√
n
(
Y ∗

p −Yp

)
≈

√
n
(
Gn(F

−1
X (p))−Fn(F

−1
X (p))

)

fX(F
−1
X (p))

,

Electronic copy available at: https://ssrn.com/abstract=3624998



ec2 e-companion to Saldanha, Price, Thomas: A non-parametric approach for setting safety stock levels

where Fn is the empirical distribution function of the original sample and Gn is the empirical

distribution function of the bootstrap sample.

We use the approximation here because the other terms become negligible as n→∞ Based on

Theorem 4.1 in Bickel and Friedman (1981), we have that

√
n
(
Gn(F

−1
X (p))−Fn(F

−1
X (p))

)

fX(F
−1
X (p))

=
Wn(p)− pWn(1)

fX(F
−1
X (p))

→ W (p)− pW (1)

fX(F
−1
X (p))

.

Where W (p)− pW (1) is a Brownian Bridge. A similar result can be found in Zou (2015) and

Theorem 5.1 of Bickel and Freedman (1981). By using this result we can apply the same approach

as Ferguson (1998) to obtain the covariance of the bootstrap mean and bootstrap quantile.

To show the convergence of the mean, we again employ the Bahadur type representation of the

bootstrap sample quantile,

√
n(x̄∗ − x̄) =

√
n

n

n∑

i=1

(x∗

i −xi)

=

√
n

n

n∑

i=1

(x∗

(i) −x(i))

=

√
n

n

n∑

i=1

(
G−1

n (
i

n+1
)−F−1

n (
i

n+1
)

)

=
1

n

n∑

i=1

Wn(
i

n+1
)− i

n+1
Wn(1)

f(F−1( i

n+1
))

→
∫ 1

0

W (t)− tW (t)

f(t)
dt

From here we can show that the two quantiles are asymptotically bivariate normal using the

Cramer-Wold device. The variances of each quantity are known from Bickel and Friedman (1981),

all that is left is to find the covariance. Based on the asymptotic results, we must find

Cov

(
W (p)− pW (1)

f(F−1(p))
,

∫ 1

0

(W (t)− tW (t))dt

f(t)

)
.

This proof is given in Ferguson (1998), and the theorem is complete.

Appendix C: Bootstrap Tuning Parameters

Here we develop guidance on the bootstrap tuning parameters, i.e., the bootstrap sample size (m)

and number of bootstrap samples (B). We use the identical lead time and demand distribution

inputs from Table 1 & Table 2 of the article. In Table EC.1 we provide the experimental levels of

the bootstrap parameters and empirical data inputs. We varied the number of bootstrap re-samples
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B, the sample size of the empirical data for lead time (nL̃) and demand (nD̃) and the bootstrap

sample sizem. Supply chain managers have less control of nL̃ and nD̃ that depend upon the demand

and replenishment processes that are governed by many other factors such as the inventory control

policy, order sizes and, purchasing and production economies of scale. The bootstrap sample size

is known to be statistically important for the asymptotic convergence of the bootstrap estimator

Bickel and Freedman (1981). Bootstrap theory prescribes that the bootstrap sample size should be

at most the sample size of the observed data Efron and Tibshirani (1986). This is a critical result

for bootstrapping the LTD distribution from empirical lead-time and empirical demand data due

to the fact that LTD data are not directly observed, which is a common occurrence (Das et al.

2014, Rossetti and Ünlü 2011). Hence, the sample size of the LTD data, nx̃, is typically unknown

and thus the sample size m of each bootstrap resample b∈B cannot be determined.

Table EC.1 Experimental levels for exploring the bootstrap tuning parameters of bootstrap resampling

replications (B) and bootstrap sample size (m) for setting the ROP with different levels of empirical lead time (nL̃)

and demand (nD̃) sample sizes, respectively.

Parameter Experimental Levels

Lead Time Sample Size (nL̃) 6, 10, 24, 50, 100
Demand Sample Size (nD̃) 0.5nL̃, nL̃, 1.5nL̃

Bootstrap Sample Size (m) nL̃, 2nL̃, 3nL̃

Bootstrap Replications (B) 500, 1000

On the one hand, the intuition that LTD is the sum of demands conditioned on lead times; hence,

the number of LTD data is equivalent to the number of lead time data dictates that m= nL̃. On

the other hand, it could be argued that in the compound distribution setting sample lead times

and sample demands are assumed to be independent draws from independent random variables

then m could be the sample size of all possible random sum mixtures of the sample lead times and

sample demands. This would require us to setm>nL̃ and the use of sub-sampling strategies (Bickel

et al. 1997, Götze 1993). To determine the appropriate m we conduct simulation experiments

where m≥ nL̃, which also shed light on the bias and inconsistency of bootstrap estimates from not

employing the appropriate values of the bootstrap sample size, m. In the experiments we estimate

the bootstrap quantile but these results are easily extended to that of the bootstrap safety stock

estimator.

We conduct 100 replications of all levels of the experimental factors in Table EC.1 for quan-

tiles corresponding to P1 = 60%–99% in 5% increments, for each of the 8 lead-time distributions

from Table 1 and Table 2 of the article; a total of 6,480 experiments. For each replication of

each experimental cell we drew a random sample L̃= {l1, . . . , ln
L̃
} and demand D̃ = {d1, . . . , dn

D̃
}
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from the parent lead time and demand distributions, respectively. The bootstrap algorithm is

used to bootstrap an m size empirical distribution of the b-th bootstrap LTD mixture X̃(b) =

{x̃(b)
1 , . . . , x̃(b)

nm
} with replacement from L̃ and D̃ for B bootstrap replications. For each replication

r = 1, . . . ,100 we estimate Ŷ ∗

P1,r
=

∑B

b=1 Ŷ
(b)
P1,r

/B with the corresponding standard error ŝŶ ∗

P1,r
=

√
B−1

∑B

b=1

(
Ŷ

(b)
P1,r

− Ŷ ∗

P1,r

)2

where Ŷ
(b)
P1,r

is the bootstrap estimate for the P1-th quantile of the

b-th bootstrap resample and the r-th experimental replication. We then calculate the number of

standard errors the bootstrap quantile is from the true quantile YP1
for each replication using the

z-score calculated as zr =
Y ∗

P1,r
−YP1

ŝ
Ŷ ∗

P1,r

. This approach allows us to evaluate how well the bootstrap

performs in encompassing the true quantile YP1
, in a confidence interval. Hence, the bootstrap

mean and standard deviation of the quantile statistics offers useful insights on the variability of the

estimate. The z-score conveys the variability of the estimate from the truth. These values under-

score the robustness of the bootstrap method by clearly specifying how many times the bootstrap

quantile Ŷ ∗

P1
is a certain number of standard errors away from YP1

the true quantile.

We calculate true quantile YP1
using Monte-Carlo procedures fixing the random seed with 1

million random draws from the parent lead time distribution and for each lead time li the corre-

sponding lead time demand x1 =
∑li

j=1 dj. The z-scores from the previous step are then arranged

in ascending order and the 95-th z-score indicates that the bootstrap quantile Ŷ ∗

P1,r
is within ŝŶ ∗

P1,r

standard errors of the true YP1
95% of the time. The goal is to approximate large sample theory

where all 95% quantiles are close to 2 standard errors from the true ROP. This procedure also

follows current practice where the reporting of test statistics is becoming more prevalent so exper-

iments are reproducible and transparent, as advocated by the American Statistical Association

Wasserman and Lazar (2016).

C.1. Tuning Experiment Results

The experiments are run in R version 3.5.2 on a Unix system in a high performance computing

cluster with fixed random seeds to ensure results are reproducible. In Table EC.2 the colored heat

map represents the z-score values ranging from the lowest (most desirable) values in green and

highest (least desirable) values in red, with intermediate ranges graded accordingly with yellow.

The z-scores are calculated for the bootstrap sample quantile estimate using 1,000 resamples for

lognormal lead time (µL = 5 and CVL = 0.4) across a selection of values of m, nL̃, nD̃ and PNS. We

see the lowest z-scores when m= nL̃ and, for higher nL̃ and nD̃. From our experiments we notice

that the z-scores appear to get higher (indicating more bias) with greater right skew (higher CV)

at higher PNS (results available from the authors). This is because at extreme right skew, fewer

LTD samples in each bootstrap are drawn from the extremities of the right tail, which cautions
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Table EC.2 Bootstrap of the quantile with an (s, Q) policy for 100 replications of the LTD mixture bootstrap

1,000 times from lognormal distributed lead time (µL = 5 and CVL = 0.4), and gamma distributed demand (µD =

100 and CVD = 0.2) across different levels of PNS and, sample sizes for the mixtures of lead-time demand (m), lead

time (nL̃) and demand (nD̃).

PNS
m/nL̃ nL̃ nD̃/nL̃ 60% 65% 70% 75% 80% 85% 90% 95% 99%

1

6

0.5 2.799 3.034 3.238 3.781 4.457 5.997 8.038 10.321 17.800
1 2.015 2.571 2.774 3.170 3.895 5.314 7.119 10.187 17.453

1.5 1.725 1.996 2.574 3.140 3.529 4.817 6.470 9.411 15.340

24

0.5 2.627 2.631 2.661 2.998 3.045 3.307 3.153 4.013 8.342
1 2.242 2.405 2.611 2.892 3.083 3.228 3.259 4.352 8.449

1.5 2.435 2.475 2.389 2.909 2.776 2.919 2.790 3.831 7.990

100

0.5 2.440 2.414 2.366 2.351 2.242 1.903 2.014 2.107 4.957
1 1.903 1.939 2.013 1.937 2.072 1.875 1.950 2.323 4.931

1.5 1.774 1.939 1.930 2.031 1.940 1.705 1.950 2.277 4.803

2

6

0.5 4.160 3.899 4.274 5.135 6.251 7.938 9.510 13.765 25.037
1 3.065 3.124 3.522 4.354 5.633 7.481 9.353 14.205 22.819

1.5 2.601 2.654 3.298 3.871 4.956 6.498 8.134 12.745 21.915

24

0.5 3.622 3.651 3.684 3.936 4.318 4.539 4.135 5.044 11.085
1 3.208 3.515 3.613 4.078 4.337 4.132 4.125 5.298 10.912

1.5 3.271 3.589 3.763 4.309 4.164 4.280 3.652 4.719 10.078

100

0.5 3.399 3.473 3.300 3.247 3.085 2.818 2.915 2.720 5.974
1 2.803 2.685 2.775 2.680 2.805 2.703 2.557 3.027 5.964

1.5 2.587 2.693 2.704 2.720 2.856 2.407 2.665 3.078 6.170

3

6

0.5 5.017 5.097 4.753 5.529 7.076 8.987 11.333 16.889 29.867
1 3.617 3.680 4.203 5.350 7.045 9.088 11.746 16.809 27.920

1.5 3.189 3.161 3.784 4.534 6.002 7.531 10.312 14.481 26.068

24

0.5 4.482 4.425 4.377 4.681 5.274 5.708 4.873 6.004 13.108
1 4.010 4.455 4.758 5.090 5.336 5.101 4.928 6.077 13.078

1.5 3.840 4.389 4.717 4.980 5.194 5.227 4.569 5.211 12.276

100

0.5 4.293 4.212 4.071 4.134 3.817 3.458 3.509 3.305 6.906
1 3.417 3.520 3.328 3.230 3.478 3.289 3.117 3.624 7.027

1.5 3.141 3.158 3.172 3.401 3.573 2.978 3.332 3.619 7.308

use of the bootstrap in the presence of outliers. Nevertheless, even for this high skew when m= nL̃

the z-score is significantly lowered and close to three standard errors away from the true.

These results are consistent for all distributions (additional results are available from the

authors). The primary takeaway from these results is that using a bootstrap sample size of m= nL̃

will give estimates and standard errors that can be trusted for decision-making purposes. This

result conforms to the intuition that the number of lead time demands observed should correspond

to the number of lead times observed.

Electronic copy available at: https://ssrn.com/abstract=3624998



ec6 e-companion to Saldanha, Price, Thomas: A non-parametric approach for setting safety stock levels

Appendix D: Industry Simulation Validation

The inputs and lead-time and demand statistics for each of the 9 SKUs used in the simulation

are presented in Table EC.3. We use the MakerCo lead-time and demand data to construct the

benchmark LTD distributions.

Table EC.3 Industry simulation inputs

SKU Order Avg. Std. Dev. Avg. Std. Dev Baseline Baseline
Quantity (Q)* Lead Time† Lead Time† Demand† Demand† Safety Stock* Reorder Point

3 350 78.1 46.4 14.8 5.7 2,100 3,258
6 3,380 119.9 27.4 34.5 7.1 2,540 6,678
7 219 105.5 35.6 5 1.5 110 638
9 441 149.5 40.4 2.4 1.7 440 792

10 1,760 115.8 41.1 7 4.7 440 1,252
13 2,310 160.5 78.2 63.5 31.5 2,310 12,504
14 20,600 204.7 104.9 147.3 30.2 15,450 45,606
16 709 116.1 57.7 11.2 1.6 1,120 2,421
17 238 91.2 50.6 7.8 4.6 180 894

Note:
*Taken directly from inventory sheet data
†Calculated from the order lead time and demand data

The LTD distributions for each of the 9 SKU’s are provided in Figure EC.1. These are the

benchmark distributions that we considered the “true” distributions for computing the reorder

point, safety stocks, µX , σX and other LTD statistics. We use these for both establishing the

internal and external validity of our simulation and, the benchmarks for comparing the bootstrap,

baseline and gamma estimates.
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For establishing internal validity of the simulation model we constructed 95% confidence intervals

for the mean deviation (MD) of the simulation LTD statistics from the true LTD statistics. We ran

10 replication of the simulation for each of the three models (bootstrap, baseline and bootstrap)

and each of the 9 SKUs with each replication simulating 25 years with a 25 year warm-up. We

report 95% confidence intervals for LTD statistics of the baseline simulation in Table EC.4.

Table EC.4 95% Upper confidence level (UCL) and lower confidence level (LCL) of the mean difference (∆) in

the true and simulated µX and σX for the baseline simulation across all SKUs

µX σX

SKU Benchmark Mean ∆ S.D. ∆ UCL LCL Benchmark Mean ∆ S.D. ∆ UCL LCL

3 1,166.8 10.4 36.0 36.2 -15.4 653.4 -0.4 21.9 15.3 -16.0
6 4,234.5 -13.0 81.9 45.6 -71.6 931.0 -8.8 35.0 16.2 -33.8
7 517.4 -1.9 12.6 7.1 -10.9 166.7 -4.2 6.7 0.5 -9.0
9 377.3 4.3 13.1 13.7 -5.1 95.6 2.1 4.5 5.3 -1.1

10 857.8 7.5 68.9 56.7 -41.8 304.7 -8.1 37.9 19.0 -35.2
13 10,405.2 79.1 249.6 257.6 -99.5 4,668.6 -5.8 148.9 100.7 -112.4
14 30,955.9 83.0 1,454.9 1,123.8 -957.8 12,772.2 -172.3 828.3 420.3 -764.8
16 1,284.7 -37.6 51.0 -1.2 -74.1 573.5 -4.7 28.9 16.0 -25.3
17 755.8 3.3 10.4 10.7 -4.2 343.9 -3.3 12.4 5.6 -12.1

To establish external validity of our simulation we generated graphical output from all 9 SKUs

that we shared with the managers of MakerCo to. We present SKU 3 in Panel A and SKU 17 in

Panel B as exemplars in Figure EC.2. With managers feedback we were able to validate that our

simulation was closely approximating their replenishment and inventory processes.
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