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ABSTRACT
Cognitive radio networks (CRNs), which offer novel network architecture for utiliz-
ing spectrums, have attracted significant attention in recent years. CRN users use
spectrums opportunistically, which means they sense a channel, and if it is free,
they start transmitting in that channel. If the status determination is wrong, sec-
ondary users (SUs) may unnecessarily interfere with the licensed primary user (PU).
There are many spectrum sensing techniques, including cooperative spectrum sens-
ing and database assisted spectrum sensing. In cooperative spectrum sensing, an
SU makes a decision about the presence of the PU based on information from other
SUs. The information used to make this decision follows different rules than other
SUs’ sensing information. Malicious SUs (MSUs) send false sensing information to
other SUs so that they make wrong decisions about the spectrum status. As a result,
an SU may transmit during the presence of the PU or may keep starving for the
spectrum. Both consequences degrade the performance of CRNs. In this paper, we
propose a reputation-based mechanism which can minimize the effects of MSUs on
decision making in cooperative spectrum sensing. Some of the SUs are selected as
distributed fusion centers (DFCs), that are responsible for making decisions about
the presence of PU and informing the reporting SUs. A DFC uses weighted majority
voting among the reporting SUs, where weights are normalized reputation. The DFC
updates reputations of SUs based on confidence of an election. If the majority wins
by a significant margin, the confidence of the election is high. In this case, SUs that
belong to the majority gain high reputations. We conduct extensive simulations to
validate our proposed model.

KEYWORDS
SSDF, spectrum sensing, cognitive radio networks, spectrum sensing data falsifying
attack, security, spectrum security

1. Introduction

In a cognitive radio network (CRN), users can use a channel if it is not used by
the licensed user. The licensed users are called primary users (PUs) and the CRN
users are called secondary users (SUs). Detection of the PU transmission plays an
important role in the throughput of a CRN. There can be two error cases: the PU is
transmitting but an SU detects the channel to be free (false-negative), or the PU is not
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Figure 1.: Example of an SSDF attack.

transmitting but an SU detects the channel to be occupied (false-positive). A false-
negative scenario leads the SU to transmit and cause interference with the PU, which
is unexpected. A false-positive scenario prevents an SU from using the free channel,
which reduces the CRN throughput. These kinds of detection errors are very common
because of shadowing, multipath effects, path loss, and hidden terminals. SUs use the
cooperative sensing mechanism to reduce the error rate [1]. In this mechanism, SUs
share their sensing results with other SUs. An SU determines the channel status based
on sensing information from itself and from others.

There are two kinds of architectures for cooperative spectrum sensing: distributed
spectrum sensing and centralized spectrum sensing. In a distributed system, SUs
broadcast their sensing information to their neighbors, and they make decisions ac-
cording to “and”, “or”, “majority”, or other rules. In a centralized system, all the SUs
send sensing information to the fusion center (FC), and the FC makes the decision.
SUs ask the FC for the channel status before starting transmissions. Cooperative sens-
ing is also divided into two classes: soft combining and hard combining. In the soft
combining method, SUs do not make decisions about the PU’s presence; instead, they
send their raw sensing information, including received energy and the signal-to-noise
ratio, to the FC or to other SUs. The SUs or the FC make decisions based on raw
information. In the hard combining method, every SU makes their own decision and
shares that information to the FC or to other SUs. The information is basically an
array of one bit information that represents the presence of PU in different time slots.

We consider that there are some malicious SUs (MSUs) in the system. The number
of MSUs are less than the number of benign SUs. MSUs send incorrect sensing infor-
mation to the FC or to other SUs to change the results. Some MSUs always say that
the PU is absent, which leads to SU’s transmission interfere with PU’s transmission.
Some MSUs always say that the PU is present, which prevents the SUs from using a
free channel. Some MSUs are very smart and always say the opposite of the truth to
fool the decision maker. We assume that the majority of SUs are benign so that one
can argue that if the majority vote among the SUs will give the correct result. In the
worse case, the MSUs and the benign SUs with wrong sensing information can win
the vote. This type of attack is called spectrum sensing data falsifying (SSDF) attack.

In Fig. 1, SU 3 remains behind an obstacle. The error rate of SU 3 is greater than
SU 2, but less than MSU 1 . We represent the PU presence as 1 and absence as 0.
When the PU =0 (PU is absent), the sensing results of SUs 1, 2, and 3 are 1, 0,
and 0, respectively. The majority decision is 0 (PU is absent), which is correct. When
the PU=1 (PU is present), the sensing results of SUs 1, 2, and 3 are 0, 1, and 0,
respectively. The majority decision is 0 (PU is absent), which is incorrect. Therefore,
it is important to identify the MSUs and reduce their weights in election.

In this paper, we propose an algorithm to calculate the reputations of SUs. We in-
troduce a system with distributed fusion centers (DFCs) that keep track of reputations
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of the SUs. To the best of our knowledge, for the first time, we use an adaptive learning
rate based on the confidence for reputation calculation. We consider the confidence
of an election as the difference between the majority and minority population. When
the confidence level is low, reputation increases or decreases at a lower rate. When
the confidence level is high, reputation increases or decreases at a higher rate. None of
the existing works use the confidence for reputation calculation, which is an important
parameter. The adaptive learning rate helps the system identity the MSUs quickly and
correctly. We conduct extensive simulations with multiple synthetic detests to com-
pare our proposed cooperative spectrum sensing scheme with some existing schemes.
Our main contributions are as follows:

• We propose an adaptive multiplicative reputation update method that uses con-
fidence as a parameter.

• We propose a two level election scheme using a new combining method that also
considers the confidence from the first level election.

• We conduct extensive simulations with different distributions and different set-
tings to support our proposed model.

The remainder of the paper is as follows. Section 2 describes some related works.
Section 3 describes the system and the attacker model. Our proposed SSDF mitigation
scheme is presented in Section 4. Some existing and proposed reputation calculation
schemes are presented in Section 5. Section 6 presents rules for combining other DFCs’
decisions with other DFCs’ observations. In Section 7, experimental results are pre-
sented. Finally, Section 8 concludes our work.

2. Related Work

There are many existing works on cooperative sensing under the SSDF attack. Solu-
tions are based on the authentication of SUs [2], the clustering of benign SUs into a
group, and the reputation-trust of SUs. Authors in [3,4] propose two different cluster-
ing algorithms based on the hamming distance among the sensing results of different
timeslots of SUs. An associative rule mining based classification is proposed in [5].
Authors propose an apriori algorithm to get frequent subsets of the sensing results
from all the SUs. The MSUs remain in the frequent subsets of the sensing results.
Based on the probability of the PU’s presence, SUs are classified into benign SUs and
MSUs.

The reputation and trust based evaluation is well-studied in wireless sensor networks
[6–8] for detecting malicious nodes. A trust-based spectrum sensing scheme against
SSDF attack is proposed in [9]. In this method, the FC selects some of the SUs to
make local decisions and the FC combines detection results based on their reliability.
Authors in [10] propose a distributed spectrum sensing method in which reputations of
SUs are computed based on deviation from the majority’s decision. If an SU’s sensing
result is different from (or the same as) the majority, then its reputation is decreased (or
increased) by one. A trust based dynamic collusive SSDF attack mittigation approach
is proposed in [11]. The defense scheme called TFCA is based on trust fluctuation
clustering analysis.

A PU emulation-based testing scheme, FastProbe, creates PU signals to test whether
the SUs are reporting honestly or not [12]. They propose a scheduling algorithm to
periodically test the SUs. This detection technique is now ineffective because there
are a lot of mechanisms to detect PU emulation signals [13–17]. In addition, these
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Figure 2.: Cooperative sensing system.

mechanisms are based on distribution, mean, and variance of energy and transmitter
localization. An MSU can detect the PU emulated signal and report the correct result
in that timeslot to get a high reputation. Then, it can keep reporting false results
in other timeslots. The reputation-trust based systems use history to calculate SUs’
reputation. On every observation, their reputation is updated based on some rules.
None of them use the confidence of an election for updating reputation.

The SSDF attack can be launched with spoofing and jamming attack [18] using
a strategy to maximum attacking strategy using spoofing and jamming.The attacker
utilizes an optimal power distribution to maximize the attack effects. Spoofing and
jamming attacks are launched dynamically to interfere with the maximum number
of signal channels. However, we are not considering a mixed type of attack in this
research.

3. System and Attacker Model

In this section, we define the attacker and the system model. For ease of referencing
we list all the notations in Table 1.

3.1. System Model

We consider a CRN with some SUs and a PU. The PU frequently goes on and off in
its licensed channel and the PU presence is uniformly random. All the SUs are located
in a small area and impacted by a PU. In addition, the local sensing results of SUs
are mutually exclusive. The SUs sense the PU’s licensed channel and periodically send
sensing results directly to the DFC. DFCs are also SUs, but instead of only sensing,
they work as aggregators of others’ sensing results. DFCs make decisions based on the
sensing results sent from their neighbors.

An SU can become a DFC if it meets certain criteria. A connected dominating set
(CDS) is formed among the SUs. The CDS is used in wireless sensor networks (WSN)
to select relay nodes to broadcast a message. The main benefit of using CDS in a
WSN is that every node can reach a relay node within an 1-hop neighborhood. The
difference between CRN and WSN is that nodes are static in WSN but mobile in a
CRN. Therefore, computing CDS in a CRN is similar to mobile ad hoc networks. There
are some existing algorithms for constructing a CDS. Authors in [19] present a node-
degree-based dominating node selection process. In that process, all nodes are initially
colored white. Then, the node with the maximum node degree is selected as the root
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and colored black. All the neighbors of the root are colored gray. The process proceeds
by selecting a gray node who has maximum white neighbors. The node is colored black
and its white neighbors are colored gray. The process is complete if there is no more
white nodes. Finally the black nodes form the CDS. A minimum spanning tree-based
CDS is proposed in [20]. First, a spanning tree is constructed. Then, nodes on the tree
are colored white and labeled according to topological order. Nodes are marked based
on their positions starting from the root. When a node is marked black, its subsequent
node is labeled black if it does not have a black neighbor. Each black node except the
root node selects a neighbor with the largest label that is still smaller than its own
label and marks it gray. Then, the black nodes and gray nodes become the CDS. A
marking process-based CDS construction is proposed in [21]. A node is marked true
if it has two unconnected neighbors and the set of marked nodes forms a CDS. This
marking process generally produces a CDS with many nodes. Consequently, the CDS
needs to cut off some of the nodes. If a node’s neighbors are covered by other nodes,
then it can be removed. An energy change-based CDS formation is proposed in [22].
The reputation of an SU can be used as weight in this scheme which will prevent the
MSUs from becoming a DFC. When two nodes come closer, the energy of the “hello”
message increases, and when they move away from each other, the energy decreases.
Based on the increment or decrement, the weight of each edge is updated. An edge
between two nodes means that the two nodes can communicate with each other. A
positive weight value on an edge indicates that the corresponding nodes are coming
close to each other. A node’s weight is the summation of the weights of its edges. A node
with a higher weight is selected as a dominating node by lower-weighted neighboring
nodes. This selection process finally forms a CDS in the network. A weighted backbone
using a small communication cost is proposed in [23]. This method also uses a CDS
formation which works for both homogeneous and heterogeneous networks. The main
advantage of having a reputation/ weight-based CDS formation method is that the
MSUs cannot get selected as CDS. In this paper, we do not focus on the selection of
DFC.

In Fig. 2, the green SUs are selected as CDS. The black SUs are not members of
CDS and they can find a green SU within one hop. The SUs in CDS become DFCs.
Every SU sends their 1 bit sensing result to the neighboring DFC. The DFC runs a
weighted majority voting among the received sensing results and updates reputation
values of the SUs. Then the DFC shares its result with other DFCs. After receiving
results from other DFCs, a DFC makes a final decision combining its own and others’
voting results.

3.2. Attacker Model

The DFCs know only the SUs who report sensing information to them. A DFC or FC
does not know how many SUs are benign or malicious. We assume that the number
of MSUs is smaller than the number of benign SUs. We assume that all the SUs are
located in a small area and impacted by a PU and the local sensing result of SUs
are mutually exclusive. The misdetection probability and the false alarm probability
are similar for all benign SUs. On the other hand, the detection probability and the
false alarm probability are higher for MSUs. Based on the attacking behavior, we can
classify the attacker’s strategy in four classes:

(1) “Random Yes” Attack: The MSU sends “1” to the DFC regardless of the sensing
result with α probability. This may happen because the MSU does not have a
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Table 1.: Table of notations

M Distributed fusion center
I Number of SUs report to M
sui i th SU.
PU 1 (or 0) for PU present (or absent).
wt[i] Weight of sui at timeslot t
Dt[M ] Decision of M at timeslot t
xt[i] Sensing result of sui at timeslot t
rt[i] Reputation of sui at timeslot t
ρt[M ] Confidence of DFC M at timeslot t
δ Sliding window size
η Learning rate
D′

t[M ] Decision of M from neighbor DFCs’ decisions
ρ′t[M ] Confidence of DFC M from neighbor DFCs’ decisions
D′′

t [M ] Final decision of M
ρ′′t [M ] Final confidence of M
Th Threshold for first level election
Th′ Threshold for second level election
Th′′ Threshold for combining election results
μ Weight of first level election

sensing module and tries to fool other SUs. This type of MSU succeeds when
it makes DFC’s decision “1” when there is no PU present. When α = 1, the
MSU always sends “1” to the DFC, which is called the “Always Yes” attack. To
maximize success, the MSU tries to send as many false reports as possible.

(2) “Random No” Attack: This attack is the opposite of the “Random Yes” attack.
The MSU sends “0” to the DFC regardless of the sensing result with α probabil-
ity. This type of MSU succeeds when it makes the DFC’s decision “0” when PU
is present. When α = 1, the MSU always sends “0” to the DFC; this is called the
“Always No” attack. The consequence of this attack is more devastating than
the “Random Yes” attack. SUs that know the PU is absent start transmitting,
resulting in interference with the PU.

(3) “Random False” Attack: The MSU sends the opposite sensing result to the DFC
with a probability of α. That means when the MSU’s sensing result is “1”, it
sends “0”, and when it is “1”, it sends “0” to the DFC. When α = 1, the
MSU always sends the opposite sensing result. This kind of attack is basically a
mixture of “Random Yes” and “Random No” attacks.

(4) “Completely Random” Attack: The MSU sends random sensing information with
a probability of α. MSU selects “0” or “1” randomly and overwrites the result
in a time slot with α probability. α = 1 means the MSU sends a random sensing
result in each time slot. This type of MSU may not be intentionally malicious,
but it is a threat to the system. Unintentionally, MSUs try to hide their sensing
process failures by sending random sensing information in the time slot.

Figure 3 depicts these attacks when α = 1. It shows the sensing result of a benign SU,
an “Always No” MSU, and of an “Always Yes” MSU for timeslot to to t7.
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4. Proposed Cooperative Sensing Architecture

Online machine learning is referred to as a learning system where data is available to
the system in a sequential manner. In our system, SUs keep sending sensing results of
each timeslot to DFCs. Data from nearby SUs go to the DFC in a sequential manner.
Let us consider that SU M becomes a DFC and I SUs report to M . At time t, the
sensing result from su1, su2, .., suI goes to M . In addition, M keeps the weight and
reputation of each neighboring SU. When the sensing results from neighboring SUs
arrive at M , it calculates the sensing result based on the weighted votes of the SUs’
results.

Dt[M ] =

{
1, for

∑I
i=0wt[i]Dt[i] ≥ Th

0, otherwise
(1)

Here, Th is a threshold, which determines the portion required to win the vote.
For example, if the weights of all SUs are equal, then Th = 0.5 means the “majority”
voting, Th = 1 means the AND voting, and Th = 0 means the OR voting. We express
the reputation rt[i] of sui at time t as following:

xt[i] =

{
1, ifDt[i] = Dt[M ]

−1, ifDt[i] �= Dt[M ]

rt[i] = f(∗)
(2)

Here, Dt[i] and Dt[M ] denote the one bit decisions about the PU presence of sui
and M at time t. ρt[M ] denotes the confidence of election at the DFC M at time
t. f(∗) is called the weight update function (WUF). Different WUFs take different
parameters, including a common parameter xt. We are not defining the parameters
to make WUFs general. Examples of different WUFs will be discussed in Section 5.
Let C0 of the SUs report that the PU is absent and C1 of them report that the PU is
present (C0 + C1 = I) to M at timeslot t. So, the confidence level of M at time t is:

ρt[M ] =

∣∣∣∣C0 − C1

C0 + C1

∣∣∣∣ (3)

When someone wins by a significant difference in vote, we conclude that the confi-
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Algorithm 1 Online Learning-Based Spectrum Sensing

Input: D of DFC M , where Dt[i] is sensing result of neighboring SU i at time t.
Output: Weights for voting w.
1: procedure Continuous-Update(D)
2: Initialize reputation r0[i] for SU i for i ∈ Neighbor(M) and t ← 0.
3: while true do
4: C0 ← number of 0 s in Dt, C1 ← number of 1 s in Dt.
5: if

∑I
i=0wiDt[i] > Th then

6: Dt[M ] ← 1.
7: else
8: Dt[M ] ← 0.

9: ρt ←
∣∣∣C0−C1

C0+C1

∣∣∣
10: xt[i] =

{
−1, ifDt[i] �= Dt[M ]

1, ifDt[i] = Dt[M ]

11: rt+1[i] = f(∗)
12: wt+1[i] =

rt+1[i]∑I
i=0 rt+1[i]

13: Output wt+1.
14: t ← t+ 1.

dence of the election is high. If the confidence is high, then the effect of the result will
also be high. That is why we use the proposed adaptive multiplicative WUF in the
Algorithm 1. The complete process is shown in Algorithm 1.

The stated problem is similar to the experts’ opinion aggregation problem where an
aggregator with little knowledge tries to come to a Yes/No decision. Before making
any decision, the aggregator asks all of its nearby experts for their opinions. Experts
respond with Yes/No answers. Based on their decisions, the aggregator makes its
own decision and calculates their reputation values. Reputation values are used for
future decision making; a high reputation value means that the experts’ decisions
will have priority over others with low reputation values. Some literature assume that
the aggregator knows the ground truth of the result in the next timeslot. They can
update the reputation values of experts based on differences between their answers
and the ground truth. Our problem becomes more challenging because there is no
ground truth. The most challenging part of the problem is to find an SUitable WUF.
We discuss some WUFs in the next section.

5. Different WUFs

In this section, we present the existing linear, and multiplicative WUFs with or without
a sliding window. We propose our adaptive-multiplicative WUF with a sliding window.

5.1. Linear WUF

Some articles like [10,24] use linear WUF to update the reputations of sensor nodes
in WSN. At t = 0, an aggregator can assume all the SUs are benign (highly reputed)
and decrease reputation based on their behavior. The drawbacks of this assumption
are that the system needs some initial time to set up and an MSU can start again
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with a new ID when its reputation becomes too low. Let us assume that at t = 0,
an aggregator assumes all the SUs’ reputations are 0. After evaluation, the aggregator
increases the SU’s reputation. Reputation update depends on two types of information:
first-hand information and second-hand information. First-hand information refers to
an SU’s own observed information. Second-hand information refers to the reputations
of other SUs. Based on the first-hand information, the reputations update is done as
following:

f(∗) = f(rt[i], xt[i]) = μ× rt[i] + (1− μ)× xt[i] (4)

Here, μ is between [0, 1] and it determines how much the current observation affects
the reputation. If the SU’s prediction is wrong, then the last part of the equation
((1− μ)× xt[i]) is negative and the reputation is reduced.

5.2. Multiplicative WUF

In multiplicative WUF, reputations are increased or decreased by a factor. f(∗) for
the multiplicative WUF can be defined as following:

f(∗) = f(rt[i], xt[i]) = rt[i]× exp(ηxt[i]) (5)

Here, η is the learning rate, and it determines the portion of contribution from the
current observation to the reputation. Another version of this multiplicative WUF
considering the sliding window can be expressed as the following:

f(∗) = f(rt[i], xt[i]) = rt[i]× exp(ηxt[i])

exp(ηxt−δ[i])
= ri × exp(η(xt[i]− xt−δ[i])) (6)

Here δ is the effective evaluation period of the SUs. Dividing it by a factor exp(ηxt−δ[i])
nullifies the reputation contribution at timeslot t − δ. Therefore, DFCs need to store
δ number of past sensing results for every reporting SU. DFCs do not need to store
past confidence because they can recalculate it from the sensing result.

5.3. Adaptive Multiplicative WUF

In our society, the reputations of people do not rise or sink linearly. People have to
work hard to become popular in politics, school, or work. Once someone becomes
popular, his/her small positive activities raise his/her popularity to a great extent.
Our reputation calculation scheme is motivated by this social fact. The higher an
SU’s reputation is, the more it can be increased (or decreased) by correct (or wrong)
sensing. If a large number of SUs agree with the DFC’s result, then its confidence level
is higher. On the other hand, if almost half of the SUs disagree with the DFC’s result,
then its confidence level is lower. Therefore, we propose adaptive multiplicative WUF
which is slightly different than the multiplicative WUF. Instead of using a constant
learning rate η, we multiply it by the confidence of the election. The WUF can be
expressed as following:

f(∗) = f(rt[i], xt[i]) = ri × exp(η(ρt[M ]xt[i]− ρt−δ[M ]xt−δ[i])) (7)
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Table 2.: Job Interview Scoring Summary

Student Interviewer
Confidence Answer Confidence Score
High Correct High High
High Wrong High -High
Low Correct High Low
Low Wrong High -Low
High Correct Low Low
High Wrong Low -Low
Low Correct Low Lower
Low Wrong Low -Lower

6. Hard but Soft Combining Rule

Consider a scenario where a student is answering tough questions in a job interview.
Some of the answers are known and some are unknown to the student. The student
sometimes answers with high confidence and sometimes with low confidence. Some of
the questions are ambiguous and even the interviewer is confused about the answer.
In this scenario, the interviewer follows some simple rules. When the student is very
confident and his answer is correct, he gets a high score when interviewers confidence
is high. When the student answers with less confidence and his answer is correct, he
gets a low score when interviewers confidence is high. Table 2 summarizes this concept.

Observing Table 2, we see that the confidence of interviewer and student are multi-
plied to get the score. The correctness of the answer determines the sign of the score.
Based on this principle, we propose the “Hard but Soft” combining rule. In soft com-
bining methods, SUs send their raw sensing information to the FC. In hard combining
rules, SUs send one bit information to the FC whether or not the PU is present to the
FC. Our proposed “Hard but Soft” rule is in between. This combining rule is applica-
ble when DFCs share their results with other DFCs. Each DFC result has a confidence
level. Each DFC shares their one bit result and the confidence level of the result with
other neighboring DFCs. When a DFC’s result matches (or does not match) with the
majority’s result and both its confidence level and the aggregator DFC’s confidence
level is high, then its reputation increases (or decreases) significantly. When a DFC’s
confidence or the aggregator DFC’s confidence is low, the reputation of the DFC in-
creases/decreases at a low rate. When both of the DFCs’ confidences are low, the
DFC’s reputation increases/decreases at a lower rate.

Let P and Q be two neighboring DFCs. P receives a result about the PU’s presence
Dt[Q] and confidence of result ρt[Q] at time t. P determines its decision Dt[P ] and
confidence ρt[P ] using weighted majority rules. Then it compares that decision with the
decision from the DFC Q at the timeslot t. The reputation of Q is updated according
to the following:

rt[Q] =

{
rt−1[Q]× exp(ηρt[P ]ρt[Q]), Dt[P ] = Dt[Q]

rt−1[Q]× exp(−ηρt[P ]ρt[Q]), otherwise
(8)

The difference between Equation 5 and Equation 8 is, Equation 5 uses only the con-
fidence of the aggregator and Equation 8 uses both the aggregator’s and sender’s
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confidence level. This reputation update scheme increases truthfulness. When a DFC
lies with high confidence, then it has a high chance of being caught and penalized
by the aggregator. On the other hand, lying with low confidence will not affect the
aggregator DFC’s result significantly. Let there be N neighboring DFCs of the DFC
M who send their aggregated results with confidence levels. So, M ’s result from other
DFCs is as follows:

D′
t[M ] =

{
1,
∑N

i=0wt[i]ρt[i]Dt[i] > Th′

0, otherwise

ρ′[M ]t =
1

N

N∑
i=0

ρt[i]

(9)

Here, wt[i] is the weight (normalized reputation) of the DFC i at time t. ρt[i] is the
confidence of the result of Dt[i] of DFC i. ρ′t is the confidence of the result D′

t[M ] from
second hand information, and Th′ is another system variable that is similar to Th,
which determines the portion required to win the vote.

6.1. Combining Results from SUs and other DFCs

As discussed in the previous sections, DFCs get information from two types of sources:
SUs and other DFCs. Two types of sources produce two results which may or may not
be the same. The final result is a combination of information from SUs and other DFCs.
Let’s assume that DFC M ’s calculated result from first hand information (neighboring
SUs sensing information) is Dt[M ], and the confidence of the result is ρt[M ]. From the
second hand information (other DFCs shared results) M ’s decision is D′

t[M ] and the
confidence of the result is ρ′t[M ]. The final result is D′′

t [M ] and confidence of the final
result is ρ′′t [M ].

D′′
t [M ] =

{
1, Dt[M ]ρt[M ]μ′ +D′

t[M ]ρ′t[M ](1− μ′) > Th′′

0, otherwise

ρ′′t [M ] = ρt[M ]μ′ + ρ′t[M ](1− μ′)

(10)

Here, μ′ is a system variable, which determines how much a DFC will believe its
neighboring SUs. The value of μ′ can change for different DFCs. For example, if a
DFC finds that its reputation among other DFCs is very low, then it can reduce its μ′
to give less emphasis to its neighboring SUs. This adjustment is helpful when a DFC
is surrounded by many MSUs. Th′′ is another system variable similar to Th and Th′.

6.2. Performance Analysis

In the worst case, we assume the population of the benign SU is N and the population
of the MSU is N − 1. MSUs use the “always opposite” attack strategy. The accuracy
(probability of correct sensing) of benign SU is p and MSUs’ accuracy is very low
(≈ 0%). Then, the probability distribution of number of correct sensing x, is denoted
by P (x).
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Table 3.: Dataset description

Dataset 1 Dataset 2 Dataset 3 Dataset 4
# of SUs 10 10 10 50
# of MSUs 10 10 7 40
SU error rate [0, 0.3] [0, 0.3] [0, 0.3] [0, 0.3]
MSU error rate [0.8, 1] [0.8, 1] [0.7, 1] [0.7, 1]
# of time slots 200,000 200,000 500 3000

P (x) =

(
N

x

)
(1− p)x(p)N−x (11)

At the beginning, the weights/reputation of all SUs are equal. Therefore, only at
x = N , the DFC can produce the correct sensing result. The expected increase in
the reputation of a benign SU is by a factor of P (N)exp(ηρ[M ]). On the other hand,
MSU’s reputation will decrease by a factor of P (N)exp(ηρ[M ]). For x < N , MSUs
are the majority and the DFC’s result would be wrong. Therefore, an MSU’s expected
increase in reputation is

∑N−1
x=0 P (x)exp(ηρ[M ]). In order to produce the correct result,

the DFC should set parameters so that

N−1∑
x=0

P (x)exp(ηρ[M ]) < P (N)exp(ηρ[M ]) (12)

We compare the tolerance limit of our proposed WUF and the exponential WUF of
99 SUs (50 benign SUs and 49 MSUs). We define the tolerance limit as the error
rate which violates the Equation 12. The tolerance limit of the proposed WUF is
greater than the multiplicative WUF. The tolerance limit remains constant for the
multiplicative WUF.

7. Experiments and Simulations

In this section, we present the experimental settings and simulation results conducted
to support our proposed model.

7.1. Comparison among different WUFs

We compare the performances of linear, multiplicative, and adaptive multiplicative
WUFs for two datasets. We consider 10 benign SUs with sensing error rates within
[0, 0.3] and 10 MSUs with error rates within [0.8, 1]. Both datasets have sensing results
over 200, 000 timeslots. In dataset 1, the MSUs show their malicious behavior from the
beginning. In the dataset 2, the MSUs show benign behavior to build their reputations
up to 100, 000 timeslots. From the 100, 001th timeslot, the MSUs start sending the
wrong sensing results. We also have a couple of small datasets. Dataset 3 contains 10
SUs and 7 MSUs of 3000 timeslots and dataset 4 contains 50 SUs and 40 MSUs of
3000 timeslots. MSUs and SUs in datasets 3 and 4 have error rates within [0.7, 1] and
[0, 0.3], respectively. Table 3 presents the detailed information about the datasets.
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(a) Multiplicative WUF. (b) Adaptive multiplicative WUF.

Figure 4.: Comparison of reputations for dataset 3.

(a) Adaptive-multiplicative and

multiplicative WUFs.

(b) Linear WUF for dataset 1. (c) Adaptive-multiplicative WUF

for dataset 1.

(d) Linear WUF for dataset 2. (e) Adaptive-multiplicative WUF

for dataset 2.

Figure 5.: Simulation results.

Fig. 4 shows reputations of MSUs and SUs for 500 timeslots in dataset 3. We plot the
reputation of multiplicative WUF in Fig. 4(a). We can observe that the reputations of
SUs are very high compared to the MSUs. Reputations of SUs and MSUs are close to 0
and varied from from 1 to 290. Because of the high variation in reputations of SUs, any
mistake in sensing results by a highly reputed SU results in changing the election result.
We plot the reputation of adaptive multiplicative WUF in Fig. 4(b). The reputations
of SUs are not as high as that of the multiplicative WUF. The variation in reputations
of SUs or MSUs are not as high as the variation in reputations in multiplicative WUF.
As a result, all the SUs (or MSUs) get similar priority in election. Therefore, any
mistake by an SU cannot affect the election result largely.

Fig. 5(a) shows a comparison between adaptive multiplicative and multiplicative
WUFs for dataset 1. It is observed that the number of errors in adaptive multiplicative
WUF is less than that of the multiplicative WUF. Figs. 5(b) and 5(c) show the number
of total errors (ER), false positive (FP), false negative (FN), and error in simple
majority voting (ME) in linear and adaptive multiplicative WUFs for different values
of μ and η in dataset 1. From the plots, we can observe that the number of errors
in the linear weight update is very small (0.02%) when μ is within [0.6, 1.0]. On the
other hand, the number of errors in the adaptive multiplicative WUF is higher than
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Table 4.: FC and DFC comparison

Fig. 6(b) Fig. 6(c)
SU error rate [0,0.1] [0,0.2]
MSU error rate [0.7,1] [0.8,1]

Lowest affected SU [FC,DFC] [0%, 0%] [0%,0%]

the linear WUF (0.6%). When η is within [0.2, 1.0], the linear WUF does better than
multiplicative in the first scenario. However, MSUs can be as clever as they are in
the second scenario, where they hide their original behavior until they build good
reputations. In that scenario, the multiplicative WUF works better. Figs. 5(d) and
5(e) show the ER, FP, FN, and ME in linear and adaptive multiplicative WUFs for
different values of μ and η in dataset 2. The lowest error rate with the linear update
function is 49%. On the other hand, the multiplicative WUF error rate is almost
stable at 3.6% for a learning rate within [0.3, 1]. The simple majority rule shows a
40% error for the dataset 1 and a 32% error for the dataset 2. We also see that the
false positive and false negative rates are almost same, because we assume the PU’s
presence is uniformly random. Therefore, we conclude that the adaptive multiplicative
WUF performs better than linear WUF and simple majority rules.

7.2. Simulation with real primary user Data

In the experiments above, we consider the PU’s presence in each timeslot to be random.
To get the PU’s behavior, we observe a 2.4 GHz Wi-Fi band and assume Wi-Fi users to
be the PU. We capture the signal power of the 6th channel (2.437Ghz 20Mhz channel)
of the 2.4GHz band and use that information for the PU emulation. We observe that
the PU remains OFF for long stretches of time before suddenly coming ON at some
timeslots. Fig. 6(a) shows the PU behavior for certain time. We experiment with 1, 000
CR users where 50% of them are MSUs. We generate sensing results from 1, 000 users
according to their sensing error rates, and we compare the conventional FC-based
architecture with our DFC-based architecture in terms of the number of users affected
when a wrong decision is made. In the conventional FC-based architecture, all sensing
results are sent directly to the FC so that every SU is affected by the decision made
by the FC. On the other hand, only the SUs that report to the DFC are affected by
a wrong decision.

Figs. 6(b) and 6(c) show the number of error affected users (ER), false positive
affected users (FP), and false negative affected users (FN) for 2, 000 timeslots for
different learning rates (η) of both the FC and DFC based architectures. We keep
μ′ = 0.5 for these experiments. We observe that false positive affected users are about
96% of the total affected users due to the fact that the PU remains off in most timeslots.
For both systems, we use adaptive multiplicative WUFs. From Figs. 6(b) and 6(c), we
see that for η < 0.4, both systems have no affected users. One can argue that if we set
a low (η < 0.4) learning rate, we do not need the DFC-based system. The low learning
rate is dangerous in a scenario where SUs/MSUs frequently changes behavior. For
example, in Fig. 5(e), the low learning rate (η < 0.3) shows a large number of errors.
From this perspective, the DFC-based architecture shows higher robustness. For η
within [0, 1], the DFC-based system shows no error. From the figure, we can conclude
that the DFC-based system works better than the conventional FC-based system.
Table 4 shows detailed parameters of the simulations.
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(a) Received signal power. (b) FC and DFC based system for
dataset 1.

(c) FC and DFC based system for
dataset 2.

(d) Uniform MSU distribution for
dataset 4.

(e) Clustered MSU distribution for
dataset 4.

Figure 6.: More simulation results.

Figs. 6(d) and 6(e) show the number of errors (ER) of FC-based and DFC-based
architectures for 3, 000 timeslots for different MSUs distributions. We use dataset 4
and keep η = 0.01 for this experiment. In the uniform distribution, all the MSUs are
distributed uniformly. On the other hand, in the clustered distribution, 20% MSUs are
distributed uniformly and the remain 80% are distributed in a clustered way (existence
of a neighboring MSU increases probability of being an MSU). In the uniform distri-
bution, we observe that the FC-based and DFC-based architecture show that over a
period of 100 timeslot the number of errors are approximately 30 and 22. False positive
and false negative rates are similar for all timeslots. In the clustered distribution, the
FC-based and DFC-based architecture shows the number of errors are approximately
30 and 4. False positive and false negative rates are also similar. The number of errors
remains the same in clustered FC-based architecture. This is because, the distribution
of MSUs does not matter to FC as the number of MSUs and SUs are the same. The
number of errors is reduced in clustered in DFC-based architecture. This is because
the clustered MSUs can win at some of the DFCs in the first level election, but in the
second level election, they fail.

Therefore, from the experiments we can conclude that our DFC-based architecture
with adaptive multiplicative WUF is more robust to parameter settings. The number
of errors and affected SUs are also less than other approaches mentioned above.

8. Conclusion

Though cooperative spectrum sensing with the FC shows great performance when
detecting the PU’s presence in CR networks, it suffers from SSDF attacks. We propose
a CDS-based distributed spectrum sensing mechanism where some SUs become DFCs.
The DFCs collaborate on spectrum sensing information sent by SUs. We propose an
adaptive multiplicative WUF for reputation updates of SUs, which shows a better
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performance compared to conventional multiplicative and linear WUFs. We consider a
2.4Ghz Wi-Fi channel as an unlicensed channel and Wi-Fi users as PUs, which is more
realistic than assuming a random PU’s presence. We also show that the DFC-based
system performs consistently and better than the conventional FC-based system.

Acknowledgments

This research was supported in part by NSF grants CNS 1757533, CNS1629746, CNS
1564128, CNS 1449860, CNS 1461932, CNS1460971, and IIP 1439672.

References

[1] Y. Dai and J. Wu, “Cooperation Scheme For Distributed Spectrum Sensing In
Cognitive Radio Networks,” EAI Endorsed Transactions on Mobile Communica-
tions and Applications, vol. 1, no. 4, 9 2014.

[2] J. Dai, J. Liu, C. Pan, J. Wang, C. Cheng, and Z. Huang, “MAC Based Energy
Efficiency in Cooperative Cognitive Radio Network in the Presence of Malicious
Users,” IEEE Access, vol. 6, 2018.

[3] S. Nath, N. Marchang, and A. Taggu, “Mitigating SSDF attack using K-medoids
clustering in Cognitive Radio Networks,” in 2015 IEEE 11th International Con-
ference on Wireless and Mobile Computing, Networking and Communications,
Oct 2015.

[4] K. Rina, S. Nath, N. Marchang, and A. Taggu, “Can clustering be used to detect
intrusion during spectrum sensing in cognitive radio networks?” IEEE Systems
Journal, vol. PP, no. 99, 2017.

[5] S. Bhattacharjee, R. Keitangnao, and N. Marchang, “Association rule mining for
detection of colluding SSDF attack in Cognitive Radio Networks,” in 2016 Inter-
national Conference on Computer Communication and Informatics, Jan 2016.

[6] T. Anantvalee and J. Wu, “Reputation-Based System for Encouraging the Co-
operation of Nodes in Mobile Ad Hoc Networks,” in 2007 IEEE International
Conference on Communications, Jun 2007.

[7] A. Srinivasan, J. Teitelbaum, and J. Wu, “DRBTS: Distributed Reputation-based
Beacon Trust System,” in Proceedings of the 2Nd IEEE International Symposium
on Dependable, Autonomic and Secure Computing, 2006.

[8] X. Du and H.-H. Chen, “Security in wireless sensor networks,” IEEE Wireless
Communications, vol. 15, no. 4, 2008.

[9] F. Zeng, J. Li, J. Xu, and J. Zhong, “A Trust-Based Cooperative Spec-
trum Sensing Scheme against SSDF Attack in CRNs,” in 2016 IEEE Trust-
com/BigDataSE/ISPA, Aug 2016.

[10] R. Chen, J. M. Park, and K. Bian, “Robust Distributed Spectrum Sensing in
Cognitive Radio Networks,” in IEEE INFOCOM 2008 - The 27th Conference on
Computer Communications, Apr 2008.

[11] F. Zhao, S. Li, and J. Feng, “Securing cooperative spectrum sensing against DC-
SSDF attack using trust fluctuation clustering analysis in cognitive radio net-
works,” Wireless Communications and Mobile Computing, 2019.

[12] T. Bansal, B. Chen, and P. Sinha, “FastProbe: Malicious user detection in Cog-
nitive Radio Networks through active transmissions,” in IEEE INFOCOM 2014
- IEEE Conference on Computer Communications, Apr 2014.



[13] S. Anand, Z. Jin, and K. P. Subbalakshmi, “An Analytical Model for Primary User
Emulation Attacks in Cognitive Radio Networks,” in 2008 3rd IEEE Symposium
on New Frontiers in Dynamic Spectrum Access Networks, Oct 2008.

[14] D. Salam, A. Taggu, and N. Marchang, “An effective emitter-source localisation-
based PUEA detection mechanism in cognitive radio networks,” in 2016 Interna-
tional Conference on Advances in Computing, Communications and Informatics,
Sep 2016.

[15] Y. Liu, P. Ning, and H. Dai, “Authenticating Primary Users’ Signals in Cognitive
Radio Networks via Integrated Cryptographic and Wireless Link Signatures,” in
2010 IEEE Symposium on Security and Privacy, May 2010.

[16] C. Chen, H. Cheng, and Y. D. Yao, “Cooperative Spectrum Sensing in Cognitive
Radio Networks in the Presence of the Primary User Emulation Attack,” IEEE
Transactions on Wireless Communications, vol. 10, no. 7, Jul 2011.

[17] R. Chen, J. M. Park, and J. H. Reed, “Defense against Primary User Emula-
tion Attacks in Cognitive Radio Networks,” IEEE Journal on Selected Areas in
Communications, vol. 26, no. 1, Jan 2008.

[18] K. Gai, M. Qiu, Z. Ming, H. Zhao, and L. Qiu, “Spoofing-jamming attack strat-
egy using optimal power distributions in wireless smart grid networks,” IEEE
Transactions on Smart Grid, vol. 8, no. 5, pp. 2431–2439, 2017.

[19] B. Das and V. Bharghavan, “Routing in ad-hoc networks using minimum con-
nected dominating sets,” in Communications, 1997. ICC ’97 Montreal, Towards
the Knowledge Millennium. 1997 IEEE International Conference on, vol. 1, Jun
1997.

[20] K. M. Alzoubi, P. J. Wan, and O. Frieder, “Distributed heuristics for connected
dominating sets in wireless ad hoc networks,” Journal of Communications and
Networks, vol. 4, no. 1, Mar 2002.

[21] J. Wu and H. Li, “On Calculating Connected Dominating Set for Efficient Routing
in Ad Hoc Wireless Networks,” in Proceedings of the 3rd International Workshop
on Discrete Algorithms and Methods for Mobile Computing and Communications,
1999.

[22] S. Leu and R.-S. Chang, “A weight-value algorithm for finding connected dominat-
ing sets in a MANET,” Journal of Network and Computer Applications, vol. 35,
no. 5, 2012.

[23] Yu Wang, Weizhao Wang, and Xiang-Yang Li, “Efficient distributed low-cost
backbone formation for wireless networks,” IEEE Transactions on Parallel and
Distributed Systems, vol. 17, no. 7, 2006.

[24] S. Buchegger and J.-Y. Le Boudec, “Performance Analysis of the CONFIDANT
Protocol,” in Proceedings of the 3rd ACM International Symposium on Mobile Ad
Hoc Networking &Amp; Computing, 2002.

17


