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We provide a precise coupling of the finite circular beta ensembles
and their limit process via their operator representations. We prove explicit
bounds on the distance of the operators and the corresponding point pro-
cesses. We also prove an estimate on the beta-dependence of the Sineg pro-
cess.

1. Introduction. Valké and Virdg (2017) introduced a family of differential operators
parametrized by a path y : [0, 1) — H in the upper half plane and two points on the boundary.

When the path is a certain hyperbolic random walk in the Poincaré half-plane model, the
operator Circg , has eigenvalues given by the points of the circular beta ensemble scaled
and lifted periodically to the real line. With the path y(¢) = B(—% log(1 — t)) where B is
standard hyperbolic Brownian motion, the operator Sineg has eigenvalues given by the
Sineg process, the limit of the circular beta ensembles. (See Theorems 7 and 8.)

The inverses of these operators in a compatible basis are integral operators denoted by
rCircg , and rSineg, respectively. Our main result is a coupling which gives Circg, —
Sineg with an explicit rate of convergence. (See Section 2 for additional details, and Figure 1
for an illustration of the coupling.)

THEOREM 1. There is a probability space with a standard hyperbolic Brownian mo-
tion B and an array of stopping times 0 = 1,, < Typ—1 < -+ < Tn,0 = OO0 Sso that
B(tu,[(1-tn1)- t € [0, 1) has the law of the random walk on H used to generate Circg .
This provides a coupling of Sineg and the sequence of operators Circg .

There exists an a.s. finite positive random variable N so that in this coupling

log®n

(1) lrSineg — rCircpnlfs < .

a.s. in the Hilbert—Schmidt norm for alln > N.

As a corollary, we get new results about the rate of convergence of the eigenvalue pro-
cesses. Let Ax, k € Z be the ordered sequence of eigenvalues of Sineg with 19 <0 < Ay, the
sequence Ay ,, k € Z is defined analogously for Circg .

COROLLARY 2. In the coupling of Theorem 1, we have a.s.,

log®n

—1 —1)2 g

2) D =) < ,
keZ

foralln > N. (Here, N is the finite random variable from Theorem 1.) Moreover, as n — o0

we have a.s.

3) max |Ax — Ak | — O.
el <220

n
log2 n
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FI1G. 1.  Simulation of hyperbolic Brownian motion and a coupled random walk.

For all ¢ > 0, there is a random N, so that for n > N, and |k| < nY/2=¢ we have a.s.

1+k?
“4) Ak — Aionl| < 2—e
This provides the best known coupling of the circular S-ensemble to the Sineg process,
even for § = 2, when both processes are determinantal with explicitly given kernels. For
B = 2, the bound (4) improves on a coupling given in Maples, Najnudel and Nikeghbali
(2019) in which the inequality holds with the exponent 1/3 instead of 1/2, for |k| <n'/4.
Using the techniques introduced in our proof, we also give an estimate on the dependence
on B for the Sineg process.

THEOREM 3. Construct the Sineg operators for all B > 0 with the same hyperbolic
Brownian motion. Denote the eigenvalues corresponding to B by {Ay g, k € Z} with Ao, g <
0 < A1,8. Then for 0 < 0, there is an a.s. finite C = Cy depending only on 6 and B so that if
0<5<ﬁ/§ooand5:g—§51/3zhen

1 1 \?
(5) (_ - > < |rSineg — rSineglfg < C8log(s™").
Zk: )"k,ﬂ )"k,ﬁ’

The theorem allows the choice 8’ = oo. In this case, the driving path y (¢) is just a constant,
and the corresponding point process Sine is the so-called clock process: the set 27 Z shifted
by a uniformly distributed random variable on [0, 277 ]. The bound (5) in this case provides a
quantitative description of the limit in distribution of Sineg as  — oo.

The theorem requires a positive lower bound on g, hence it cannot describe the § — 0
behavior. It is known that in this case the limit in distribution of Sineg is a homogeneous
Poisson process; see Allez and Dumaz (2014).

Structure of the paper. 'The proof of Theorem 1 relies on a precise coupling of a hyper-
bolic random walk and hyperbolic Brownian motion.

The starting point is a hyperbolic heat kernel bound. Consider the squared Euclidean norm
for a hyperbolic Brownian motion started at the origin in the Poincaré disk model. We show
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that this quantity at a small time is very close in total variation to a beta random variable,
which also stochastically dominates it (Lemma 9 in Section 3.1).

This leads to a coupling of the hyperbolic random walk steps with hyperbolic Brownian
increments at stopping times (Sections 3.2 and 3.3). For each single step, with high probabil-
ity we stop at a fixed time. Otherwise, we just wait for the Brownian motion to hit the right
distance. At the tail of the random walk, a slightly different coupling is implemented.

A modulus of continuity estimate for hyperbolic Brownian motion then implies that the
random walk is close to the Brownian path (Section 3.4).

In Section 4, we show that if two paths are close and escape to the boundary of H simi-
larly as a geodesic then the corresponding operators are also close. Finally, in Section 5 we
use the linear rate of escape for hyperbolic Brownian motion to complete the proof of Theo-
rem 1. Section 6 proves Theorem 3. Some of the technical facts needed are collected in the
Appendix.

Historical background. The modern history of random matrices originates from Wigner
(1951), who used them to approximate the spectrum of self-adjoint operators from statistical
physics point of view.

In the following decades, the scaling behavior of a number of random matrix models were
derived. The point process limits of the random matrix spectra were described via the limiting
joint densities, usually relying on some algebraic structure of the finite models. (See the
monographs Mehta (2004), Anderson, Guionnet and Zeitouni (2010) and Forrester (2010)
for an overview of the classical results.)

Dumitriu and Edelman (2002) constructed tridiagonal random matrix models with spec-
trum distributed as beta ensembles, one parameter extensions of classical random matrix
models. Edelman and Sutton (2007) observed that under the appropriate scaling, these tridi-
agonal matrix models behave like approximate versions of random stochastic operators, and
conjectured that scaling limits of beta ensembles can be described as the spectra of these
objects.

These conjectures were confirmed in Ramirez, Rider and Virdg (2011) and Ramirez and
Rider (2009) for the soft and hard edge scaling limits of beta ensembles. The authors rig-
orously defined the stochastic differential operators that show up as limits, and proved the
convergence of the finite ensembles to the spectrum of these operators.

In Valké and Virdg (2009) and Killip and Stoiciu (2009), the bulk scaling limit of the
Gaussian and circular beta ensembles were derived, and the counting functions of the limit
processes were characterized via coupled systems of SDEs. In Nakano (2014) and Valké and
Virdg (2017), it was shown that the scaling limit of the circular beta ensemble is the same as
Sineg, the bulk limit of the Gaussian beta ensemble. Furthermore, Valk6 and Virdg (2017)
constructed a stochastic differential operator with a spectrum given by Sineg and showed
that several random matrix limits can be described via differential operators parametrized by
certain random walks or diffusions.

The coupling of the circular beta ensemble for 8 = 2 (the circular unitary ensemble) to
its limit, the Sine, process has been recently studied in Bourgade, Najnudel and Nikegh-
bali (2013), Maples, Najnudel and Nikeghbali (2019) and Meckes and Meckes (2016). In
Bourgade, Najnudel and Nikeghbali (2013), the circular unitary ensembles of various sizes
are coupled together and it is shown that the scaled ensembles converge a.s. to a Sinej pro-
cess. Moreover, a bound of the form (4) is given with an exponent ¢ > 0. This coupling was
further studied in Maples, Najnudel and Nikeghbali (2019) where a bound of the form (4) is
given with an exponent 1/3.

In Meckes and Meckes (2016), the total variation distance between the counting functions
of the finite and the limiting process is considered. Denote by N, the counting function of
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the appropriately scaled circular unitary ensemble of size n, and by A the counting function
of the Sine; process. It is shown that for any fixed interval / the following bound holds:

|1]?

(©6) dry(Nu (D). N (D) <5575 forn = no(D).

This provides a bound on the distance between the distributions for the number of points in a
given interval, but does not seem to imply a process level result.

2. Stochastic differential operators. We review the framework introduced in Valké and
Virdg (2017) to study random matrix ensembles via differential operators.

2.1. Dirac operators. We consider differential operators of the form
1 d
(7 T:f—R (t)JEf.

Here, f:[0,1) — R2, and

— 1 1 —
(8) J= <0 1), R=-X'X, X:—(1 x),
1 0 2 Yy \0 y
with x : [0,1) > R and y : [0, 1) — (0, 00). We consider boundary conditions parametrized

by nonzero vectors ug, u; € R? where we assume that u6J u; = 1. We set the domain of the
differential operator T as

©9) dom(r) ={ve L Nac:Tv e Lk, v(0) Jug =0, lim ()" Juy = 0}.
s—

Here, L%a is the L? space of functions f : [0, 1) — R? with the L2 norm ||f||% = fol f'Rf ds,
while AC is the set of absolutely continuous functions.

The function y = x + iy is a path in the upper half-plane {(x, y) : y > 0}. In Valké and
Virdg (2017), it was shown that various properties of T can be identified by treating y as a path
in the hyperbolic plane H (using the upper half-plane representation) with ug, u; identified
with boundary points ng, 1 of H. The set of boundary points of H in the upper half-plane
representation is R U {oo}. A nonzero vector v = (v, v2)" € R? can be identified with the
boundary point Pv € dH where Pv = Z—; if vy #0 and Pv = oo if v = 0. To show the
dependence on these parameters, we use the notation T = Dir(y, 0o, n1)-

For a given boundary point € oH, the (signed) horocyclic distance of points ¢ and b in
H with respect to n is defined as

dy(a,b) = Z1i_r)1}7(d]141(a, z) —du(b, 2)).

Here, dpy is the hyperbolic distance and the limit is evaluated along a sequence of points in H
converging to 1. We record the following formulas for the half-plane representation:

2 w2
(10) dH(x1+iy1,xz+iy2):arccosh<l+ 1 = x2)” + (1 = 32) )
2y1y2
1 .
log<—> if n = o0,
o y
(11) dr)(-x'i'ly,l)— (x_q)2+y2 )
(0] W lfT} =q € R.

The following theorem gives a condition in terms of the parameters y, 1o, 71 for T to be
self-adjoint with a Hilbert—Schmidt inverse.
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THEOREM 4 (Valké and Virdg (2017)). Let ng, n1 be distinct boundary points of H and
y : 10, 1) — H be measurable and locally bounded. Assume that there is a & € H with

1 1 1
(12) / YO8 g 0o and / / @m0 )8 +dn V(.9 g gt < o0,
0 0 Js

Then the operator T = Dir(y, no, n1) is self-adjoint on dom(t) and its inverse is Hilbert—
Schmidt. The inverse T~ is an integral operator on L% with kernel function

(13) K (s, 1) = (uou1(s < 1) +ujuyl(s > 1)).

This means that if g € L% then (r_lg)(x) = fol K(x,yYYR(y)g(y)dy.

Suppose that y, ng, 1 satisfy the conditions of the theorem above and consider the op-
erator T = Dir(y, no, n1). Let £ = Xt X ~!; this means that (7 f)(x) = X (x)(rg)(x) where
gy)y=X -1 (y) f(y). Then 7 is just T after a change of coordinates. In particular, 7 is a self-
adjoint differential operator on {v: X ~'v € dom(t)} C L?, with the same spectrum as 7. We
denote the inverse of 7 by rt (r standing for resolvent). By Theorem 4, the operator rt is
an integral operator acting on L? functions with kernel

(14) Kei(s,t) = %(a(S)C(t)’l(s <t)+c($)a@®)'1(s = 1)),
where a(s) = X (s)ug and c(s) = X (s)u. Thus for g € L? we have

1
(r7g)(x) = /0 Ko G, y)g(y) dy.

2.2. Stochastic operators. The Gaussian and circular 8 ensembles are defined via the
following joint densities on R” and [0, 27)", respectively,

1 _Byn_ 52
(15) p%,n()‘l""’)‘"):T l_[ |)»j—)xk|'8€ 42121)»]’
Z”sﬂ I<j<k=<n
1 . .
(16) p%’n()\.l, ey )\'I’l) = ZC 1_[ |el)kj _ el)Lk|,B'

n,B 1<j<k=<n

For B = 2, these give the joint eigenvalue densities of the Gaussian and circular unitary
ensemble. We use angles to represent the eigenvalues in the circular case.

The bulk scaling limits of these ensembles have been identified in Valké and Virdg (2009)
and Killip and Stoiciu (2009). In Nakano (2014) and Valké and Virdg (2017), it was shown
that the scaling limit of the circular beta ensemble is the same as the bulk limit of the Gaussian
beta ensemble.

THEOREM 5 (Valké and Virag (2009)). Fix 8 > 0and |E| < 2. Let A be a finite point
process with density (15). Then v4 — EZ\/ﬁ(A,g1 — «/nE) converges in distribution to a point
process Sineg.

THEOREM 6 (Killip and Stoiciu (2009), Nakano (2014), Valké and Virdg (2017)). Fix
B > 0 and let A}, be a finite point process with density (16). Then n A\, converges in distribu-
tion to the point process Sineg.

In Valké and Virdg (2017), the authors constructed random Dirac operators with spectrum
given by Sineg and the finite circular beta ensemble. Recall that the standard hyperbolic
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Brownian motion x + iy in the upper half-plane representation started from i is the solution
of the SDE

d(x+iy)=y(@dB +idBy),  x(0)+iy(0)=i,

where B1, B, are independent standard real Brownian motions.

THEOREM 7 (Valké and Virdg (2017)). Fix B > 0 and let B be a standard hyperbolic
Brownian motion in the upper half-plane started from B(0) = i. Set B(t) = B(—% log(1 —
1),t €10, 1), ng = o0 and n1 = limy_, oo B(¢). Then the operator

(17) Sineg =Dir(B(t), no, 1)

is a.s. self-adjoint with a Hilbert—Schmidt inverse and spec(Sineg) 4 Sineg.

The definition (17) can be extended to 8 = oo. In this case, we set B(t)=i fort €
[0,1). Then the corresponding operator is just 2J % on [0, 1) with boundary conditions
ug = (—1,0)" and u; = (1,n1)’, with the same 7, as in Theorem 7. We call this operator

Sinego. A simple computation shows that spec(Sineq) Lonz, + U where U is uniform
on [0, 2r]. We denote this process Sineo, this is sometimes referred to as the clock process.
Killip and Nenciu (2004) gave a construction for generating a random unitary matrix with
eigenvalues distributed as the circular beta ensemble. Building on this result, Valké and Virag
(2017) produced a random Dirac operator representation for the circular beta ensemble using
a random walk in H.
Fixn > 1andlet &, ..., {,—> be independent with ¢ distributed as Beta(1, ﬁ(n —k—1).!

Set Y = log( t%) We define the random walk by, b1, ..., b,—1 in H with a final boundary
point b, € dH. We set bg =i, and for O < k < n — 2 we choose by+1 uniformly (according
to the hyperbolic geometry) among the points in H with hyperbolic distance Y from by,
independently of the previous choices. The final point b,, is chosen uniformly on the boundary
oH as viewed from b,,_, independently of the previous choices. Note that ¢ is the squared

Euclidean norm of the random walk step in the Poincaré disk model with b at the origin.

THEOREM 8 (Valké and Virdg (2017)). Consider the random walk bg, by, . . ., b, defined
above. Set ng = 00, 11 = by, and By, (t) = by for t € [0, 1). The operator

Circg, =Dir(B,(1), no. m)

is a.s. self-adjoint with a Hilbert—Schmidt inverse and spec(Circg ) 4 nA; +2mwnZ where
A is the finite point process with joint density (16).

Theorems 7 and 8 imply that zero is not an eigenvalue for the operators Sineg and
Circpg,, with probability one.

2.3. Coupling Circg , and Sineg. Fix g > 0.Let B be a hyperbolic Brownian motion,
no = 00, 1 = B(00), and consider the operator Sineg = Dir(B(—% log(1 — 1)), no, n1).

Let U be a uniform random variable on [0, 1] independent from B, and let F;,t > 0
be the natural filtration of B enlarged with U. In Proposition 12 below, we construct an

I'A random variable has distribution Beta(a, b) with a, b > 0 if it has density %xa—l (1—x)P=11(x e
[0, 17).
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array of stopping times 7, with respect to J; so that for each n > 1 the random vari-
ables B(t,.0), B(th.n-1), ..., B(t,,0) have the same joint distribution as the random walk
by, ..., b, from Theorem 8. (Note that B(z, ;) corresponds to b,_, so the index k matches
up Wlth the parameter of the Beta distribution in the appropriate step of the random walk.)
Setting Circg, = = Dir(B,(1), no, N1) with B, (1) = B(tu,[(1-1n1)-t € [0, 1) gives the ap-
propriate coupling of Sineg and the sequence {Circg ,},>1 thatis used in Theorem 1.

3. Coupling construction. The goal of this section is to construct the coupling of the
hyperbolic random walk and the hyperbolic Brownian motion that appears in Theorem 1.
Since the steps in the random walk have rotationally invariant distributions and the same
is true for the increments of the hyperbolic Brownian motion, it would be easy to embed
the walk via simple hitting times. However, this “naive” embedding would not give enough
control for us to obtain the error bound in Theorem 1. Instead we construct a coupling that
also exploits the fact that the single step hyperbolic distance distributions in the random walk
can be well approximated with the distance distribution of the hyperbolic Brownian motion
at a certain fixed time.

3.1. A heat kernel bound on the hyperbolic plane. Our coupling relies on a careful esti-
mate of the transition density of hyperbolic Brownian motion. Although there are a number
of similar bounds in the literature (see, e.g., Davies and Mandouvalos (1988)), we could not
find one that would be strong enough for our purposes. We show that the distribution of the
distance of hyperbolic Brownian motion from its starting point at time ¢ < 1 can be well
approximated estimated using a Beta(l £ — 1/2) random variable.

LEMMA 9. Let B(t) be standard hyperbolic Brownian motion and let t € (0, 1]. Let
= log( 1Jr‘/—) where & has distribution Beta(l, 2 — 1/2) and set ¢ = dy(B(0), B(t)). Then
the followmg statements hold:

(@) P(Y >r)=> P(¢ >r)forallr >0, in other words Y stochastically dominates ¢.
(b) The total variation distance of { and Y is bounded by %t.

The proof of the lemma relies on a precise analysis of the explicit formula for the transition
density. We leave it for Section A.1 in the Appendix.

3.2. Single step coupling. We first concentrate on a single step in the hyperbolic random
walk corresponding to Circg , and couple it to the hyperbolic Brownian motion.

PROPOSITION 10. Fix y > 3/2. Let B be hyperbolic Brownian motion and U an inde-
pendent uniform random variable on [0, 1]. Let F;, t > 0 be the filtration of B enlarged with
U. Consider a Poincaré disk representation of the hyperbolic plane where B(0) =

There exists a finite random variable o > 0 so that the following hold:

o is a stopping time with respect to F;.

B(o) has rotationally invariant distribution and |B(0)|? has Beta(1, y) distribution.
4 N _ 4 3

P(UZm)—]dﬂdP(O’#m)_y

Forr > 8,we have P(o > r/y) <3e” Sr/.

el

The proof of the proposition will rely on Lemma 9 and the Lemma 11 below. Lemma 11
is a standard coupling statement, we include its proof in the Appendix for completeness.
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LEMMA 11. Assume that X| and X, are random variables so that X, stochastically
dominates X| and the total variation distance of their distributions is €. Then there exists
a measurable function g : R*> — R so that if U is a uniform random variable on [0, 1],
independent of X | then the following hold.:

(a) g(X1, U) has the same distribution as X».
(b) P(X1=gX1,U))=1.
(c) PX1=gX1,U))=1-—c¢.

PROOF OF PROPOSITION 10. Set ¢t = 41 +1’ then 0 < ¢ < 1. Recall that if z is in the

Poincaré disk with |z] = < 1 then di (0, z) = log(11£).

Let £ be a random variable with distribution Beta(1, y). Then by Lemma 9 the random

variable log( }Jrlgggl) is stochastically dominated by log(5 1+‘/§

) and their total variation dis-

tance is bounded by 2t Since log( 1+,) is strictly increasing in r, we get that |B(¢)| is stochas-

tically dominated by /£ and their total variation distance is bounded by 5t

By Lemma 11, there exits a measurable function g so that almost surely g(|B(¢)|, U) >
|B(t)|, g(I1B()|, U) has the same distribution as /&, and P(|B(t)| # g(|1B@®)|,U)) < %t <
3/y.

We set

o =inf{s >1:|B(s)| = g(

v)).

Then o is an a.s. finite stopping time with respect to F; and almost surely o > ¢. Because
o only depends on |B| and U, it follows that B(c) has rotationally invariant distribution.
Finally, from our construction we get that |3(c) |2 =g(|B®)|,U )2 has Beta(1, y ) distribution
and P(c #1) <3t <3/y.

The only thing left to prove is the tail bound for o. We start with the bound

1/3
P(o >V/)/)SP(0 >r/y al’lddH(O,B(o'))Srl_/z>
(18) . Y
r
+P<dH(0, B(o)) > W)

For the rest of the proof, we assume r > 8. Then o > r/y > t and from the definition of
o, it follows that di (0, B(s)) < di (0, B(o)) for t <s < o. Thus we can bound the first term
on the right of (18) by writing

173
P(a > r/y and dy (0, B(0)) < m)

/3
<P di (0, B < —
- (tsr?sarx/y (0. B() = V1/2>

IA

1/3
P( max dy(B(1), B(s))<2r )

[<s<r y 1/2

173
o2
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Since t < % andr > 8,wehaver/y —t > %ry_l. Using the bound (67) from Lemma 20 of
the Appendix, we get

r1/3 r1/3
P( max  dg(0, B(s))<2 ) P< max  dg(0, B(s))<2 )

O<s<r/y—t 1/2 O<s<zry~ 1 1/2
4 72rl/3
< —e 40
T

For the second term in (18), we recall that by construction dig(0, B(c)) has the same

distribution as log( ) where £ has distribution Beta(1, y). By an explicit computation,
1
P(log< ki \/g) > u) = sech?” <Z>
1 — € 2
We have sech(x) = W < 2e¢™* for x > 0, which gives the following upper bound for
u>4log?2:
1 u
P(log( * \/g) > u) <2Wevu < e 7.
1-VE
For 0 <u < 4log2, we have logsech(u/2) < —75 so for these values we get
1 u2
(19) P(log( J“/?) >u) e
1- &

From this, we get

173 Jrrl3 2/3
P(dH(O, B(o)) > r]_/z) < max(e” 7 ey <o 1 1/3’
14

where in the last step we used y > 3/2 and r > 8. Collecting our estimates, we get

2 1/3 l/?

4 -1
Po>r/y)<—e e <3e 57
b

which completes the proof of the proposition. [

3.3. Path coupling. Using Proposition 10 repeatedly, we can provide a coupling of the
hyperbolic Brownian motion and the hyperbolic random walk appearing in the construction
of Circg,.

PROPOSITION 12. Let B be hyperbolic Brownian motion, U,k > 1 Uniform[O0, 1]
random variables, and &,k > 1 random variables with distribution Beta(l, gk), with
B,U,Us, ..., &1, &, ... all independent. Let F;,t > 0 be the filtration of B enlarged with
the random variables Uy, &, k > 1.

There exists a collection of stopping times (1, k; 1 <n,0 <k <n) withrespectto F;,t >0
so that the following statements hold.

1. For each fixed n, we have 0 =1, , < Ty n—1 < -+ < Ty,0 = 00, and the random vari-
ables Aty i = Ty k — Tn.k+1 are independent fork =1,2,...,n — 1.
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2. Foreach n, the process (b,(cn) = B(th.n—k), k=0, 1,...,n) is a hyperbolic random walk
with the same distribution as the one given above Theorem 8.
3. Let ty = %log(%) for 1 <k < n. There exists a random integer No > 0 so that for

n > Ny and log6 n <k <n we have almost surely
4+1/2 ,

k

(20) i . -
—— <7
n,k ﬂzk =Unk =Ink
4. For k fixed the hyperbolic distance dy(B(ty 1), B(t, k—1)) does not depend on n as
long as k < log®n.

PROOF. We first give the construction of the stopping times, then prove that they satisfy
all the conditions.

For a fixed n > 1, we define 7, x recursively, starting with 7, , = 0. If for a certain k < n,
we have already defined 7, 41 then we define 7, 4 as follows.

e In the case of k > max(log6n, %):

We apply Proposition 10 with y = gk for the hyperbolic Brownian motion 5(r) =
B(t + th.k+1) — B(Th k+1), t > 0 and the independent uniform random variable Uy, and
denote the constructed stopping time by o, k. We set T, k = Ty k+1 + On k-
e Inthecaseof 1 <k < max(log6 n, %):
We set

=

Tnk = inf{t > Tp k1 du(B(Tn k1), B(@)) = 10g<1 - V&

e For k =0, we define 1, ; = c0.

Note that we use the coupling given in Proposition 10 when £ is not too small compared to
n. This will enable us to prove the estimate (20), and allows us to control the distance between
B(ty.x) and b,(cn) (see Proposition 13 below) in this regime. The bounds in Proposition 10 are
not strong enough to use this approach for all k, that is why we need to use a different coupling
construction for small values of k.

By construction, the random variables 7, x, 1 < k < n are a.s. finite stopping times with
respect to the filtration F;, t > 0, and they satisfy conditions 1, 2 and 4. To check Condition
3, we first choose ng so that for n > ny we have logn > % and log**3/8 n > 8. During the

rest of this proof, we will assume 1 < log6 n<k<n.
For n > ng, by Proposition 10 we have almost surely

n—1
4 4 41
Tk > ) = Z—log<z)——2—.
Bj+1—pB k Bk

j=k
This takes care of the lower bound in (20).
For the upper bound, recall the definition of o, x = T, x — s k+1. From Proposition 10, we
have the following estimates:

4 4 6
P(UnkZ )=1, P<Gnk= )zl——,
T Bk+1 T Bk+1 Bk
(21)
P(Un,k - log3+3/8n> < 36_%10g1+1/8n‘
B
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S, 00, by the Borel-Cantelli lemma

) log3+3/8 1
Since Y , P(Onk > gﬁk %) <3 ,ne 58
2

there is a random Np > ng so that for n > N1 we have 0, x < By a.s. Set
7
) s 4 1( 4 ) N 21o0g3 33 n 1( ” 4 )
= — O, — (o .
k1 \ U T et Bl T

For n > Nj, we have 0, x < Z,  and 7, x < Z?;,l Zyj as.

Next, we will bound P(X"=}(Zy,; — 5) = 5. For & > 0 from (21) and (22), we
get

n— n—1 338,
@ E(H- i) < (1 -0 i&“m).
j=k Bi  BJ

3+3/8 X
Assuming that AZIOgﬂ% < 1, we can use that ex—_l <2 for x <1 to bound the right-hand
side of (23) as

n—1 3+3 n—1 343/8
6 6 ;2038 6 2log3t3/8
||(1——.+—_eA 7 ) ||<1+— TR R )
Bj  Bj ik Bj BJ

Jj=k =
n—1 24)10g3+3/8
Tl
j=k

Setting now A = 2log/33—f3/8n and using the exponential Markov inequality, we obtain

n—1 441/2
4 lo n
P Z(zn,j— _ )z 2
- Bj+1 k

Jj=k

1 4+1/2
— E( Zn—k }‘(Zn J ﬁk+l)) - o8

48Alogz+3/8n _)Llog4+l/2n 24 B lo
<e Pk Fo<ep 2%

1+1/8 ,

24_p . . . .
Since Y, ne? 2% < 00, the Borel-Cantelli lemma implies that there is a random

No > Nj so that for n > Ny and 10g6n <k <n we have a.s.,

1+1/8

o 4+1/2n

n—1 n—1 4+41/2
4 1 4 1

E Zn,j < E - + £ < —log(ﬁ) + e "

= B+ 1 k B “\k k

Since 1, x < Z?;}c Zy, j, the upper bound in (20) follows. [

3.4. Path comparison. Let B be a hyperbolic Brownian motion and consider the stop-
ping times 7, constructed in Proposition 12. Set B, (1) = B(t,, ra- ,),,1) and B(t) =

(—— log(1 — t)). The next proposition gives uniform bounds on dy (B(t) B (2)). The esti-
mates rely on path properties of the hyperbolic Brownian motion which are stated in Propo-
sitions 22 and 23, and proved in the Appendix.
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PROPOSITION 13. There is a random integer N* so that for n > N* we have the follow-
ing a.s. inequalities:

300 73 log* 1/ logbn
24 (1) € ———— | - ,
24) du(B(1), Ba (1)) < = ifo<t< -
6 6
(25) dH([}n<1— log ”),Bn(z)) < (oglogm® if1— &M _/ 1.
n

6
PROOF. Let T, =1 — long. Consider Ny from the statement of Proposition 12. For
n>Ngand 0 <t <T,, we have a.s.,

4 1
Tn,[(1—n)n] — % log(:>

5
4 log’?n 4 n 1
(20) =B —on  Td—on] B‘l"g(r(l - r)n]) _k’g(E)‘
3 logh+5/8
= 0=on’

where for the second inequality we also assume n > ng with an no only depending on B.
Inequality (26) implies

d(B(1), By (1)) < max|dy (B(s), B(s +u)) : lu| <h,0<s+ul,

. . log4+5/8n 4 1 10g4+5/8n 1
with h = ~=on_ and s = B log(l—_t) Note that & < W < Togn
Consider the random constant /¢ from the statement of Proposition 22 of the Appendix. If
—1
n>eh  thenh < ho and we may apply Proposition 22 with s, s 4+ u if 0 < u < h and with

s+u,s if 0 < —u <min(h, s). Using the fact that 2 log(2 + Shil) is monotone increasing in
h and s, we get

max{dy (B(s), B(s +u)) : u| <h,0<s +u}

s+1 log>~1/3n
<20./hlog(2+ )5 ,
\/ g( h V({1 =Hn

if 0 <t < T, and n > Ny, with a random integer N.
Next, we prove the estimate for the 7,, <t < 1 case. Recall the construction of the stopping
times 7, x from the proof of Proposition 12. From the construction, it follows that

~ loghny -
27) dH(B”<1_ n )’B”(t))

< max{du(B(th.1a-1,)n1), B()) : Ta.ra=1,)n] <5 < Tn.1}-

From Proposition 22 (and the comment after it), we get that there is a random constant Cp
depending only on 5 so that

max {du (BT, 11=1,)n1)s BS)) : Tu.f(1=T)n] <8 < Tn1}

< CB(Tn,1 — T, [(1=T,)n1)/108(3 + Ty 1)-

We will show that there is a random constant 0 < C < oo (not depending on 7) so that a.s. for
all n

(28)

(29) Tnl — Tn,[(1=Tyn] = C(loglogn)3, 7,1 < Clogn.
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This bound together with (27) and (28) implies the estimate (25) for n > N*, where N* is
random.

Consider the Beta distributed random variables &; used in the construction in the proof of
1+,/%;
Vs

Proposition 12. Setting Y; = log( ) and using the tail bound (19), we get the following

bound for 0 < r < 4log2:
. .1‘2
P(Yj>r)= sech?’ (r/2) < e_ﬂjT.

This 1mphfas i P> A / = ) < o0, and shows that there is a random constant Ce¢ <
oo depending only on the sequence {&,}, so that a.s.,

log2)
(30) Y; < Ce |25

J

We will prove that there are random constants A and Np so that for alln > Ny and 1 <k <
n(l — T,) we have a.s.,

A log(2k)loglogn
. .
The bound (26) applied for t = T, shows that for n > Nj,

(31) Tnk — Tnk+1 =

4
(32) T, [(1=Ty)n] = 5 logn.

From (31) and (32), the bounds in (29) follow directly.

Let Cp be the random constant from the statement of Proposition 23. Choose A > 0 so that

% > Cg where C¢ is the constant from (30), and set 4, = Aw. For1 <k <

n(l —T,), we have
Aloglogn <n < Alog(2log6 n)loglogn
k
for n > 3. From this, it follows that there is a constant N > 3 (depending only on Cp and
C¢) so that the following inequality holds forall N, <nand 1 <k <n(1 —-T,) = log® n:
Co hn k _ ~2log2k
4 log(2 + %logn + hp k) + log(hy k + h;,lc) - kT

log6 n

(33)

Consider 1 < k < n(1 — T,) and the stopping time 7, x+1. By (74) of Proposition 23, there
exists 0 < u < hy_, so that

du(B(tn k41), BTy k+1 + u))2
- @ hn,k
T 4 1082+ Tuktt + hnk) +log(hn i +hy )

If

C hnk > c2log2k

(34) " —1y = ¢
41022+ tn k1 + hn k) +1og(hn ik +hy ) k

then by (30) and the construction of the stopping times 7, x we had 7, ¥ < 7 k+1 + hn k. The
inequality (34) holds for k + 1 = [r(1 — T,,)] if n > N> by (32) and (33). From this (34),
and hence 1, x < Ty k+1 + hn i follows for all 1 <k < n(l — T,,) by induction as long as
ZZ(:II_ Tw) hgn < %log n, which holds for n large enough. This completes the proof of (31)
and also that of (25). 0O
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4. Hilbert-Schmidt bounds. This section contains general bounds on Dirac operators
in the case when the corresponding hyperbolic paths escape to the boundary of H with a
positive speed. Proposition 14 below shows that such a Dirac operators has a Hilbert—Schmidt
inverse. The next result, Proposition 15 below, compares such a Dirac operator to its truncated
version. Finally, Proposition 16 below compares two Dirac operators if their driving paths are
close.

These propositions will be used in the next section to prove Theorems 1 and 3. In par-
ticular, for Theorem 1 we will bound ||[rSineg — rCircg, ||12{S by replacing each integral
operator with its truncated version using Proposition 15, and then use the path comparison in
Proposition 13 together with Proposition 16 to estimate the norm difference of the truncated
operators.

PROPOSITION 14 (Hilbert—Schmidt property). Let {y(¢), 0 <t} be a measurable path in
H, no, n1 € 0H distinct boundary points and zo € H. For av > 0, set y(t) =y (v log(%)).
Let z(t) be the point moving with speed o > 0 on the geodesic connecting zo to n1 with
z(0) = zo. Assume that there are constants b > 0 and 0 < e < v 1 so that forallt >0 we
have

(35) du(y (1),z(t)) <b+et.

Then the operator
(36) T =Dir(y (), no, )

is self-adjoint on the appropriate domain and T~ is Hilbert—Schmidt.
Here, the “appropriate domain” is described in and around (9).

PROOF. We will check that the conditions of Theorem 4 are satisfied.

If Q is an isometry of H, then dy(z1,z2) = du(Qz1, Qz2) and d,(z1,22) = dg,(Qz1,
0z>). Take an isometry Q for which Qz¢p =i and Qn; = oo and denote Qng by g. The
geodesic z(t) is mapped into the geodesic connecting i with co with speed «, thus Qz(f) =
ie®’. From (11), it follows that

dﬂ] (Z(t)’ ZO) = doo(ieat, l) = —aof,

2 —2at
e +1
q7> <at.

dno(z(t),zo):dq(ie“’,i)zat‘i‘log( 1442

From the triangle inequality, we get

dy, (7 (1), 20) < dyy, (2(1), 20) + du(y (1), 2(t)) < —(o — &)t + b,

37
dno (v (), 20) < dyy(2(2), 20) + du(y (1), 2(t)) < (¢ + &)t + b.

The bounds in (12) now follow easily:

1 1
/ I (P0.20) gp < / o—@—evlog(y)+b 4,
0 0

el

1
=eb/ (1= Ndt=—— <00
0 14+ (x—¢)v
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and

1 -
f / " g (7). 20+, 7 0.20) g gy
0 JO

1 pt
S eZb/ / (l _S)—((X+8)V(1 _ t)(Ol—S)l) dS dt
0 JO

eZb

T2+ @) =

Recall from (14) that r7 is an integral operator with kernel K,.. For 0 < T < 1, we denote
by rrt the integral operator with kernel

Kyr(x,y)-10<x<T,0<y=<T).
PROPOSITION 15 (Hilbert—Schmidt truncation). Let y, no, 01, 20, &, vV, ¥, 2(t) be as in
Proposition 14, and define T according to (36).
1. Assume that for some 0 < b and 0 < k < 1 the following inequality holds for all 0 <t:
(38) du(y(1),z(1)) <b+1",
and that for some co < 0o we have
(39) av <cg.

Then for any T € (0, 1), we have

4 1
(40) lrt —rredg < C(1 — T)H%mm(“"’l)(l +log - T)

with C depending only on ng, n1, b, a, k and cq from (39).

2. Assume that for some 0 < T < 1 (38) holds for 0 <t < vlog(ﬁ) with some 0 < b,
0 <« < 1. Assume further that dg(y (t), y(T)) < M fort > T and that (39) holds. Then we
have

. 1
1) Izt~ xrelfhs = Ce (1 = DD (1 4 1og ),
with C depending only on no, n1, b, o, k and cq from (39).

PROOF. We denote the representation of y in the half-plane by x + iy and use X + iy for
the representation of y. We represent 19, n; with nonzero vectors ug, u; that satisfy uf)] up =
1. Recall the integral kernel of rt from (14). From the definition of r7 7, we get

1 1 T 1
2lrT —rTr||12{S:/T /S |a(s)}2|c(t)|2drds+/0 /T|a(s)|2|c(t)|2dtds,

where a(s) = X (s)uo and ¢(s) = X (s)u; with X = ﬁ(}) )
| X

. . 7 7 2 .
From (11), one can check that if u € R? is a nonzero vector then ¢ (<+i¥.1) = ﬁ Using

the triangle inequality, we get

la()[* =X (s)uo|* = Juol?e™0 T < Jug|*edn? 20 oD
(42) ) ] .
) = X )ur]* = uy Pen 7D < juy Pedn T a0 +datod)
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Using now (37) and recalling y () = y (v log(ﬁ)), we get that if (38) holds for all ¢ then
(43) |c(t)|2 < Co(1 =)™ 1ogk(ﬁ)’ |a(t)|2 < Co(1— 1)~ 1ogK(1'T,)’
where Co depends on ug, u; and b. This leads to
2llrt — rrtilfs

1 1
44) < CS/ / (1—0)*( — S)_avevKlogk(ﬁ)e"xlogk(ﬁ) dt ds
T Js

T 1
+ C(%/ (1 _S)—avew logK(]%S) dS/ (1 _ t)oweuk IOgK(Ilj) dr.
0 T
Note that for 0 <s < 1 and 0 < & < 1 we have

1 1
/(1—t)°‘”e"”°g”<ﬁ)dt5/ (1 =199 g1 max (1 — 1)2@V " 102" ()
S S

0<t<l1
< (1 —5) 1794 C(eq, 1),

_ K
where C(sa, k) = maxo<y e 5%

to

is a positive constant depending on e« and «. This leads

1,1
/ / (1—s)ve” IOg(ﬁ)(l —1)%e” g (+57) g1 ds
T Js
1 K k¢l
< C(ea, K)/ (1 — ) 780" 108 (55 g < C(ear, k)2 (1 — T)2 2607,
T
where for the validity of the last step we also assume 2ecy < 1. Moreover,
T K1 K(L) 1 “ K(L)
/0 (1 _S)—avev og" (1= ds‘/; (1 _ t)ozvev og" (1 dt

T
S C(g(X, K)2(1 _ T)1+(1—8)0t1)/ (1 _ s)—(1+8)0tv dS
0

. (1 _ T)1+min(1—26av,(1—s)av)

) 1
< C(ea, k)" log 7

where the last bound follows from the inequality

. (1 _ T)min(l—i-r,O)

T
-

45) /0 (1—yx) dsflogl_T
which holds forall0 < T < 1 and r € R.

Now choose ¢ = min(%, %) with ¢g from (39). Collecting all of our bounds and returning
to (44), we get the estimate in (40).

Now assume that (38) holds for 0 <t < vlog(ﬁ), and dg(y(t), y(T)) <M fort > T.
Then for 0 <r < T, we still have (43), while for t > T we can use dy(x, y) < d,(x,z) +
dm(y, z) together with (42) to get

K ko 1
le()]? < Coe™ (1 — T)@Ve" 1og (=),

K kol
la@)[? < Coe (1 — 1)~ 1 (),
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for T <t < 1. This gives

2

1 1 o 1
< Che*M / / 2102 (=) gy s
T Js

T 1
geM/ (1 _ S)—(Xvev" logk(llfs) dsf (1 _ T)C{veu’(IOgK(ﬁ) dr.
0 T
The bound (41) now follows by using similar estimates as in the proof of (40) from (44). U

PROPOSITION 16 (Hilbert—Schmidt approximation). Let y, no, 01, 20, &, v, ¥, z(t) be as
in Proposition 14, and define t according to (36). Assume that (38) holds for 0 <t <
vlog(ﬁ)for someT €(0,1),0<band0 <k <1.

Suppose that the path ) is measurable and for 0 <t <v log(ﬁ) we have

1 2
(46) sinh(5 du(7 (@), 71 (z))) <min(§(1 —1)~!, M)

for some M, § > O.
Consider Ty = Dir({y(t),t > 0}, no, n1), define rrt as in Proposition 15, and r17|
similarly. Then

(47) lrrt — rrnillig < C(M + 1)3,

with a constant C depending only on no, n1, k, b, and v.

PROOF. Denote the representation of y; in the half-plane by x1 + i y;.
The hyperbolic distance formula (10) in the upper half-plane representation gives

2 _ 2
4sinh( du (7, y1)) (x x‘) /» \/;
51

Consider a, ¢, defined as in the proof of Proposition 15 and the analogously defined ay, c;.
1

2 — 1 (1% _ 1 (-5
If u € R is a nonzero vector, X = ﬁ(o 5 )and X| = \/9_1(0 5 ) then
| Xu—Xu| |(I—X1 X" HXul

= <|I-Xxx1,.

An explicit computation gives
2 S\ 2
- X =X i M
|| l2= Ty V5 =
S /_ _ /)’1
Vi

_4smh( dy(X +1iy, X +ly1))

This yields

&54smh( du(y, J’l)) lezal §4smh( du(, yl))
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To compute |r7T —rr71] ||%S, we need to estimate tr(AK (s, 1) AK (s, t)!) where AK (s, 1) =
%(a ()c(®)" —ai(s)c1(¢)"). Using the Cauchy—Schwarz inequality, we obtain

4tr(AK (s, 1) AK (s, 1)")
<3(la()|*c) — c1()* + |als) — ar()[*|e@) |

+la(s) — ar()Ple®) — 1))
The previous estimates with (46) yield

2
lrrt —rr7illis

T [/t
— t
_2/ f tr(AK (s, 1) AK (s, 1)) dsdt

<24 [ [l Pleco (s 57 ) 4 s )
+ sin h(de( )> smh(ahﬂzﬁ) >d3dl

T pt 5 5 o o
524/0 /Oya(s)y le()] <5(1 T +8(1—s)

+ %SM((l -0 (- s)—1)> dsdt,

where we used the notation dy(¢) = du(y (¢), y1(¢)). Using the arguments in the proof of
Proposition 15, we get that (43) holds for 0 <t < T, with a constant C; depending on ng, 11
and b. Using the temporary notation g(7) = v* log" (ﬁ)’ this leads to

2
lrrt — rr7illis

M T pt
< 24c125(1 + 7)/ / e () Iy O I L
0 JO

+ (1 =) (1 —1)* N dsdt

1 t
524C125(2+M)/ ezg(’)(l—t)“”_I/ (1 —s)"*dsdt

<24C78(Q2+ M) / 280 10g< )(1 pymintev=1.0) gy,

where we used (45) in the last step.

Since the integral fol o2V log (1) log(l—lt)(l — r)mine@v=10) 7z is finite for any given 0 <
k <1,v>0and a > 0, the bound (47) now follows. [

5. Proof of Theorem 1. We now return to the proof of our main theorem.

PROOF OF THEOREM 1. Let B be a hyperbolic Brownian motion. Set B@t) =
B(—% log(1 — 1)) for 0 <t < 1. Set 1o = 00, 01 = B(c0) and set Sineg = Dir (B, no, n1).

Let Uy, &, k > 1 be random variables independent of each other and B with distributions
given in Proposition 12, and let 7, ; be the stopping times constructed there. According to the
proposition, the path l§n(t) = B(ty,[(1-1)n) t € [0, 1) has the same distribution as the path in
the construction of Circg , in Theorem 8, and we may write Circg, = Dir(l?n, 10, N1)-
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6
To prove the bound (1), weset T, =1 — long' Recall the definition of r7 from Section 4
and write
[rSineg — rCirc/s,nH%s
(48) <3|lrr,Sineg — rr,Circpalis

+3||rSineg — rTnSinelgIIIz{S
+3|xCircp, — rr,Circgllis.

We will use Propositions 13, 15 and 16 to estimate the three terms on the right. Let z(z) be
the point moving with speed 1/2 on the geodesic connecting 5(0) to B(co). From Lemma 21
of the Appendix, it follows that for k = 2/3 there is a random b so that a.s. for all # > 0 we
have

(49) ds(B(t), (1) < b+ 13,

Applying the first statement of Proposition 15 for Sineg = Dir(B(r), no, n1) with y = B,
V= %,a: 1/2,k =2/3 and ¢y = %,weget

. . 5 log®n 1+ min(3,1) n
lrSineg — rr1,Sineglljs < C( ) (1 + log 3 )
n log®n

with a random C depending on 5 and 8.
Recall from Proposition 13 that for n > N* we have

. . log3~1/8 1 _
(50) du(B(1), By(1)) < ﬁ <1 if0<r<T,,
(51) dig (B (Tp), By (1)) < (loglogm)* if T, <t < 1.

Let B, (t) = B (1 — e~ 41), then By (1) = B (3 log(5)) for 0 < 7 < 1. From (49), (50) and
the triangle inequality, we get

4 1
du (B (1), 2(t)) <b + 1 4123 f0r05t5—10g< )
/3 1_Tn

Recall that Circg, = Dir(B, (1), no, n1)- Applying the second statement of Proposition 15
withy =B,,v = %, a=1/2,k=2/3,c0= % and M = (loglogn)*, T = T,, we get

) . 2
lrCircg,, — rr,Circgallis

6\ 144 min(2,1
SCez(loglogn)“(lOg ”) 2 )(1+10g n6 )
n log’n

if n > N*, with a random C depending on B and 8.
Since sinh(x/2)? < x? for 0 < x < 1, from (50) we get
1 B B 2 1 6—1/4
sinh(EdH(B(t),Bn(t))) <22 "a_pnTl<1 if0<i<T,.
n

Hence we may use Proposition 16 with y =B, y| = B,, v = %, a=1/2,T=1T,, 6 =
10g6_1/4n
—“=——— M=1,k=2/3to get

6-1/4

1
o8 ifn> N*,

. : 2
|r7,Sineg — rr,Circgallys <C
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with a random C depending on B and g. Collecting our estimates, going back to (48) and
modifying the random lower bound N* appropriately, we get

6
log”n forn > N*.

|[rSineg — rCirCﬂ,n||2HS =
This completes the proof of Theorem 1. [

Before proving the three statements of Corollary 2, we state a law of large numbers for the
points of Sineg.

PROPOSITION 17.  Suppose that the points of Sineg are given by Ay, k € Z with Ay <0 <
M1. Then with probability one, we have

(52) lim 28 = lim ZX =on.

PROOF. In Holcomb and Valké (2015), it was shown that %#{)\,k 10 < Mg < A} satisfies a

large deviation principle as A — oo with scale A2 and rate function 81 (p), where I (%) =0
is the global minimum. From this, the statement follows for k — oo by a simple Borel-
Cantelli argument. The kK — —o0 case follows similarly using the symmetry of the Sineg
process. [

PROOF OF COROLLARY 2. The bound (2) follows directly from (1) and the Hoffman—
Wielandt inequality for compact integral operators (see, e.g., Bhatia and Elsner (1994)). Note
that it might be possible to get a sharper bound by comparing the eigenfunctions as well.

From Proposition 17, we see that there is a random constant C so that a.s. [A¢| < C(|k|+ 1)

for all k. Set a,, = 1(’)’;—24". From (1), it follows that for large enough n we have

10g3n
(53) Sll:PMk _)‘kn|<\/Z|)‘k _)‘kn| =2
Let ben =A; ' — A . then

(54) (hten = M) (1= benhie) = b
For large enough n, we have

log® n logn  logn
Imélc)l(n |bic, nhic| < Wc(a” +1)= C(W + ’117>,
which means that lim;,_, oo max k| <g, |br,nAk| = 0 a.s. From (54), for large enough n, we have

5 21og n_ 4C?
max |Akn—kk|<2C (an—i-l) max |bkn|<4C
k| <an lk|< " nl/2 logn

This completes the proof of (3).
By Proposition 17, we may choose a random C > 0 so that |Ax| < C+/1 + k2 for all k.
Then we have ﬁ < Iklkl and for n > N, |k| <n'/27¢ we have

1 - 1 1 1 - 1 log n 1
binl = Pkl 13k Mn | CSTT R Vn 20 TE R
(For the last inequality, one might need to change N.) Then for such k and n, we get

log®n 1+ k?
iz nl/2—¢’

Ak — A = Melldgn] < —575-2C*(1 +K%) <

M M
again by setting a large enough random lower bound on n. [
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6. Beta dependence in the Sineg operator. The construction of the Sineg operator
provides a natural coupling of this operator for all values of . The techniques we developed
for the proof of Theorem 1 can be used to estimate how the operator Sineg (and the process
Sineg) depends on the value of 8 in this coupling.

PROOF OF THEOREM 3. We start with the case 8’ < 0o. We have
Sineg =Dir(y, no, n1), Sineg =Dir(yi, 0o, N1),

where 7 (1) = B(% log(+5)), 71 (1) = B(% log(71)), no = 00 and 1y = B(co). We will esti-
mate [|[rSineg — rSineg||gs using Propositions 15 and 16. Note that with probability one
no # 11, and hence a.s. 0 is not an eigenvalue for any of the Sineg operators.

Set T =1—6 < 1. Cutting off Sineg and Sineg at T and using the first statement of
Proposition 15 withae =1/2,k =2/3,co = 9 ,and v = B 4 and g/ , respectively, as in the proof
of Theorem 1) gives

143 min(3,1)

lrSineg — rrSinegllfs < Cod (1+1logs™),

1+%min(% )

lrSineg — rrSinegllfg < Cod (1+1logs™)

with a random Cj depending only on B.

To estimate || rTSineﬂ — rTSineﬂ/ ||12{S, we first bound d (v (¢), y1(¢)) in [0, T']. For 0 <
t <T, we have (— — —)log(1 -) < 810g(8_1) < 1 and by Proposition 22 (and the comment
following the proposmon) we get the bound

o s o))

1 —/ log(—) +1
<C2% log( >log<2 + —’3 1 )
s log(11-)

(55)

for 0 <t < T with a random C depending only on 5.
Since0 <t <T =1-25, the right—hand side of (55) can be bounded as

1 1
C2810g< )(log(2 + =6 ) + log(l + 71)) < C?¢,
11— dlog(1=)

with a constant ¢; depending only on 6.
Using log(l—it) < (1 —)~/2 (which holds for 0 < r < 1), we also get the bound
N . 1 ~12
du(7(1), 71(t))” < min| C18log 3 1-0 ,C1), tel0,T]
with a constant C depending on 53 and 6. We can turn this into an upper bound of the form

1
sinh(EdH(? ®), 7 (f))2
(56)

<m1n<C25log< )(1 z)—l/z,cz), te€[0,T],

with C depending on B and 6.
Using the arguments in the proof of Proposition 16, we get the bounds

lrrSineg — rTSineﬁrH%{s

2
<C3810g( )f /eg(f)+g(S) —5) E_l/z(l—t)

hsN[S}
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_2 2_
+(1—s5) FA=0F ) dsdr

1\ (! 2_ t _2
§2C3810g<g>/ eXO(1 —1)B 1/2/ (1 —s) Fdsdt
0

1 in(2_
§2C3510g<g>/ 28(f)10g< )(1 )mm(fj 1/2,1/2)dt’
0

with g(t) = (4/,3)2/3 10g2/3( -) and C3 still only depending on B and 6. Since 6 < 8, we
have

/ 2g(z)10g< )(1 )min(§—1/z,1/z)dt
0 1-—
Lo 1 1 min(2,6)—1,/2
5/ e8¢ log(ﬁ>(1—t)ﬁ : dt
O J—

/ log< )(1 012 di max > A MO < ¢y
x>0
with C4 depending only on 6. This gives

1
lr7Sineg — rTSineﬂ/H%IS < C5510g(5>’

with Cs depending only on 5 and 6. (Note that we needed the bound (56) that was slightly
better than the assumption (46) in Proposition 16 to get an upper bound here that does not
depend on B, B'.)

Collecting all the terms gives

1
[rSineg — rSineﬁ/H%IS < C810g(5),

with a C depending only on B and 6. The Hoffman—Wielandt inequality completes the proof
of (5).

To treat the B’ = oo case, we note that here p;(r) = B(0), hence the integral kernel of
rSineg is constant on the sets {(s,7) :0<s <1 < l} and {(s,7) : 0 <t <s < 1}, with the

constants depending only on 71 = B(c0). Setting § = z <1/3and T =1 — §, we have

[rSines — rTSineooHHS < Cob
with C¢ depending only B(00).
Using (56), we have

1
lrSineg — rrSinegllfs < C18log(g>

with C depending only on B and 6.
The term |[r7Sineg — rTSineoollaS can be bounded similarly as in the case g’ < oo,
leading to the same upper bound. This completes the proof of (5) in the 8’ = oo case. [J

APPENDIX

In the first part of the Appendix, we collect the proofs of Lemmas 9 and 11 that were used
in the single step coupling of Proposition 10. In the second part, we collect some estimates
on the hyperbolic Brownian motion.
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A.1. Proof of the coupling statements. We now return to the proof of Lemma 9. Let B
be a hyperbolic Brownian motion and set { = ¢ = dp(B(0), B(?)).

The circumference of a hyperbolic circle of radius r is 277 sinh(r) and the density function
of the hyperbolic BM at time ¢ and distance r is given by the following formula (see, e.g.,
Karpelevi¢, Tutubalin and Sur (1959)):

2

V2e!/8 poe se” % J
s
(2mt)3/2 ), /coshs — coshr

gl 1) =
From this, the density of ¢; is

2
e~ !/Bsinh(r) [o° se”x

_— ds
V32 ) J/coshs — coshr

and the tail of the cumulative distribution function is

(57) pe(r,t) =2m sinh(r)g(r, 1) =

2

® dnh) e [ STT
1—F:(r :/ sinh(u sdu
c(r) r ( )ﬁt3/2 u +/coshs — coshu
2
18— .
(58) _ /‘OO e si 22r s sinh(u) du ds
Jrt32 ). Jcoshs — coshu

00 D —t/ ;7
_/ ef :/2 V/cosh(s) — cosh(r) ds.

LetY =Y, = log(H‘/_) where & has distribution Beta(1, ). We record the cumulative

distribution function Fy and the probability density function py of Y, which follow from
direct computation with the Beta distribution:

(59) Fy(r) = 1 — sech® (%) py(r) =y sinh(%) sech?’+!1 (%)
We start with a simple estimate.

LEMMA 18. For0<r <s, we have
1 1 r2 452
60 ——/52 —r2 < /cosh(s) — cosh(r) < —=+/s% — r2ex ( )
(60) NG </ () ()_ﬁ p o

PROOF. The statement follows from the bound 1 < smg_(x) < exz/ 6 and

2(cosh(s) — cosh(r)) . sinh((s —r)/2) sinh((s +7r)/2)
s2—r2 (s —r)/2 . (s+r)/2 0

Applying Lemma 18 to (57) and (58) and computing the resulting integrals directly, we
get the following bounds:

t 1/21 r2 r2
61 pe(r,t) > (1 + E) ;e_f_ﬁ_g sinh(r) =: p_(r, 1),
1 2
(62) pe(r,t) < te‘f‘g sinh(r) =: p4.(r, 1),
t =3/2 22
(63) 1—F:(r) < (1 - E) e 7ty

where the last bound is valid for 0 < < 12.
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We also record the following bounds on logcosh(r) which can be readily checked by

differentiation and Taylor expansion:
2

=

(64) logcosh(x) < ER for all x,
x2 x*
(65) log cosh(x) > ERERTE forO0<x<1.

PROOF OF (A) IN LEMMA 9. From (59) and (64), we get

2 2 2
1 — Fy(r) = exp(—2y logcosh(r/2)) > exp(—y Z) = exp(—g + §>

One can check that if 0 < ¢ <1 and ¢ <r then

t _3/2 22 r2 r2
<1 - —) e T8 < exp(—— + —).

Together with (63), this proves the statement for ¢ <r.
To prove the statement in the 0 < r < ¢ case, we will show

r r
/ pg(u,t)duzf pyr(w)du forO<r<t<l
0 0

using the lower bound (61) on p, (r, t). We will prove that for 0 <r <t < 1 we have

N2 e e,
p—(r,t) = (l + E) ;eif*ﬁfg sinh(r)

r r
> inh( = h2)/+l (_) — .
> y sin (2) sec 5 py(r)

The last inequality is equivalent to

2.2 t t 4
(66) e n 12 >e 1+ —(l — —) exp(—(— + 1) 10gcosh(r/2)>.
12 4 t
For0 <7 <1, we have ¢'/% /1 4+ (1 — £) < 1. Then by the bound (65), we get
8 1+ i(l — 5) ex (-(i + 1)10 cosh(r/2)>
2\ 3P\ &
zenl-(F+1)(5 - 1))
exp| —( - — ).
=PU\7 8§ 192

To complete the proof of (66), we need to show that for 0 < r <t <1 we have

(4+1)<r2 r“)>r2+r2
t 8 192) — 2t 12
which follows from direct computation. [

Now we turn to the proof of the total variation bound.

PROOF OF (B) IN LEMMA 9. We need to show that [;° | py (r) — p¢ (r, 1)|dr < 3t.

By part (a), we have P(¢{ > r) < P(Y, > r) which leads to

00 K
/ |py (r) — pe(r,t)|dr <2(1 — Fy(K)) = 2sech? (5> for K > 0.
K
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Setting K =2./tlog(2/t) <2, we get
0 2w (K 5 2
/ |py(r) — pe(r, t)| dr < 2sech y(;) < 2exp(—2y . E(K/Z) )
K

< 2(;/2)% <t,

where we used (65) in the second inequality.
Using the triangle inequality and the bound (62), we get

K K K
/O|PY(F)—P;(FJ)|dFS/(; |py<r>—p+<r,r>|dr+f0 (p+(r.1) — pe(r.0)) dr.

We can bound the second integral explicitly:
K 00
[ (e = pea)ar < [T (piin) = po0) e
JEeteown -1
—1

Jt
<e¥ —1<1)2.
Introduce
)
2e~ 7 sinh(%)
po(r,t) = ———— 2.
Then
r2
Pr_ o tBeosh(r/2),  PX = (1 —t/4)e sech <5>
Do Do 2
We have, for0<r<1,0<r <2:
2
t
e 1‘ <-4
Po 8 4

Using the bounds (64) and (65), we get that for 0 <r < K < 2 we have

(5-35) =l (5) <oml( -3 (5 - 1)) =
l=exp|l — ——— ) <eZsechi|-|<expl — — | = ——=) ) =e%.
2t t 8 2 2t t\8 192

This leads to

where we used that é < tlog(2/t)2 < 1ifr < 1. Note also that sinh(x) < gx for x < 1.From
this,

K K /3 1, r4
/0 |py<r>—p+<r,r>|drs/0 St o) dr
2
<6/OO(3:+1 2+r4>e_§rd 29t
= 1+ —r 4+ — r=—f.
—5J)o 8 4 24¢ t 20

Collecting all our estimates gives

o0
[ 1) = petrnfar <3 .



OPERATOR LIMIT OF THE CIRCULAR BETA ENSEMBLE 1311
The proof of Lemma 11 follows a standard coupling construction.

PROOF OF LEMMA 11. Denote the distributions of X, X» by w1, o, and let u =
%(Ml + w2). Denote that density function of X; with respect to u by f;. From our assump-
tions, it follows that

3 1 N 1 N
fo(x) = T, min(f(x), f>(x)), filx) = E|f1 (xX) — ()],

+

N 1
frx) = glfz(x) — fikx)

are also density functions with respect to s, and the distributions corresponding to fi, f> are
stochastically ordered just as X1 and X,. Moreover, (1 —¢) fo+¢fi = f; fori =1, 2.
Recall that if F is a cumulative distribution function, F~1(x) = sup{y : F(y) < x}isits
generalized inverse, and U is uniform on [0, 1] then F ~1(U) has cumulative distribution
function given by F'. . B
Denote the cumulative distribution function corresponding to f; by F;. Let Uy, U be
independent uniform random variables on [0, 1] and consider the pair of random variables

(Y1,Y2) =1(U; = 1 —&)(Fy ' (Ua), Fy ' (V)
+1(UL > 1 —&)(Fy (U, Fy ' (U).

In plain words, with probability 1 — ¢, we generate (Z, Z) where Z has density fo, and
with probability ¢ we generate (f( 1 )~(2) where )~(,- has density f, and X 1 < )~(2 a.s. Then
Y1 <Yyas., P(Y1 =Y2) =1—¢ and Y; has the same distribution as X;. Consider the regular
conditional distribution of Y, given Y1, and let g(x,u) be the generalized inverse of the
conditional cumulative distribution function of Y given Y| = x. Then (X1, g(X1, U)) has
the same joint distribution as (Y1, Y2), and thus g satisfies the requirements of the lemma.

O

A.2. Hyperbolic Brownian motion estimates. The first two lemmas give estimates on
the behavior of the process dp(B(0), B(¢)) where B is a (standard) hyperbolic Brownian
motion.

LEMMA 19. There is a coupling of a hyperbolic Brownian motion B and a 2-dimensional
standard Brownian motion W so that almost surely for all t > 0 we have

|W ()| < du(B0), B(1)) < |W(@)|+1/2.

PROOF. The process g; = dip(B(0), B(t)) satisfies the SDE
cothg

dg =db+ dt, q(0)=0,

where b is a standard Brownian motion. This follows, for example, from (10) and the fact
that the half-plane representation x + iy of I3 satisfies the SDE d(x +iy) = y(dB1 +idB»)
for B.

Consider the following diffusions with the same driving Brownian motion b as in g:

1 1 1
dq) = db + — d1, dq2=db+(—+—> dt,  q1(0) = g2(0) =0.
2q1 2q 2

Since 1 < cothx < % + 1 for x > 0, we have a.s. g1 < g < ¢». (This follows from stan-
dard comparison theorems; see, e.g., Ikeda and Watanabe (1989).)The process g is a 2-
dimensional Bessel process, and it can be written as the absolute value of a 2-dimensional

Brownian motion W.
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For the upper bound, note that we have gq; < ¢, and taking the difference of the SDEs for
q> and g1 we get
( y = 1 1 L 1 - 1
BT T T 272

Thus g(¢) < ga(t) < q1(t) +t/2=|W(¢)| 4+ t/2, which completes the proof. [

LEMMA 20. Let B be a standard hyperbolic Brownian motion. Then for t > 0,a > 0 we
have

4 _x2
(67) P(Or;l?; dy (B(0), B(s)) < a) < e ud
If0 <t <a,then
161 &2
(68) P(OrggdH(B(O), B(s)) = a) < il

PROOF. By Lemma 19, the process g; = di(B(0), B(¢)) stochastically dominates |W (¢)|
where W = (Bq, Bj) is a 2-dimensional Brownian motion. Then

P (Or;l?g di(B(0), B(s)) <a) < P (Orggt} W(s)| <a)
<P(max}Bl(s)|<a)<ie 8a2
T \o=s<t A 4 ’

which proves (67). The last step follows from the following identity for the standard Brown-
ian motion Bj (see, e.g., Section 7.4 of Morters and Peres (2010)):

4 2 (—DF k2
): e 8u? .

;]§)2k+1

P(max |Bi(s)| <u

0<s<t

From Lemma 19, it follows that ¢, = dg(3(0), B(z)) is stochastically dominated by the
process |W(¢)| 4 t/2 where W is a 2-dimensional standard Brownian motion. Thus

P(Orgléit dii(B(0), B(s)) = a)
< P(ongﬁ‘;%”W(”' +5/2)>a) < P(Onslg;lW(SH >a—1/2)

<4p B >1 t/2) | =4P| |B()| > ! t/2
47y 5002 0 —1/2) = 4718012 560 -112)

8./t @2 164/t
<— e 4t <
T (a—t/2) 7 T am

In the second line, we used that W (s) > x implies that one of the coordinates of W is at least
izx in absolute value, then used the reflection principle. Finally, we used the well-known

_a
e 16t

tail bound for the normal distribution and t <a. O

The next lemma shows that /3 approaches its limit point with speed 1/2. (Note that proved
bound is not optimal.)
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LEMMA 21. Let B be a hyperbolic Brownian motion and let 7(t) be the point moving
with speed 1/2 on the geodesic connecting B(0) to B(oco) = lim;_, o, B(t). Then there is a
random C < oo so that almost surely

d(B(1), z(1)) < C +1'/?log(1 + 1)
forallt > 0.
PROOF. Consider the half-plane representation of H where B(0) =i and B(co) = oo,

and denote the representation of B by x + iy. Then x + iy is a hyperbolic Brownian motion
conditioned to hit oo, in particular, it satisfies

dy =y(dB; +dt), dx =ydBs, y0) =1, x(0) =0,

where Bj, By are independent standard Brownian motions. (See, e.g., Valké and Virdg
(2017).) The geodesic connecting i and oo is {ie’, t > 0}, and the point moving with speed
1/2 is z(t) = ie'/?. By the triangle inequality,
du(B(t), 2(1)) < du(x +iy,iy) +du(iy, z(1))
2
X

= arccosh(l + 27 (;)) + |10g(y(t)e_’/2)|

(69)
x? )
<1og(2+ 50) + flogly(0e )]
We can explicitly solve for y and x from the SDE:
t
y(t) — eBl(t)+t/2’ .x(t) — \/0 eBl(s)+s/2de(S).

We have | log(y(t)e_’/2)| = | B (¢)|, and using the law of iterated logarithm we get the bound

(70) llog(ye™/?)| = |B1(t)| < Co +/tlog(1 + 1)

for all ¢ > 0 with some random Cy depending on Bj.
To bound log(2 + ’yc—i), we start with the observation that there is a standard Brownian

motion B so that x (1) = B( fé y(s)2 ds). Thus, using the law of iterated logarithm again,

x(0))? 2(n 2 ! 2 ! 2
(—) < y(1) <2CO +2/ y(s)“dslog 1+/ y(s)“ds
y() 0 0
=2C06—23(z)—t+2/t62(B(s)—B(t))—z+s s log(l +/teZB(s)+s ds)
0 0

Using the bound |B(s)| < Co + +/tlog(1 +¢) for 0 <s <t leads to
2
(@) < C1(1 4 1VOETH)
y(1)
with a random C; depending only on B(-). Using (69) and (70), the statement follows. []

The next statement gives an estimate on the modulus of continuity of the hyperbolic Brow-
nian motion. The proof follows that of the analogous statement for standard Brownian mo-
tion, we include it for completeness. The constants have not been optimized.
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PROPOSITION 22. Let B be a hyperbolic Brownian motion. Then there is a random
constant 0 < hg <1 so that a.s.,

(71) du(B(s), B(s + h)) 520\/h10g(2+ %)

forall 0 <h <hgand 0 <s.

Note that the proof below also shows that there is a random constant C so that (71) holds
for all 0 < h <1 with C in place of 20.

PROOF. Let Iy =[m27", (m + 1)27"] and Ay, ,, = maxey,, , du(B(m2™"), B(t)) for
m,n > 0.1f 27/2 <y, then by Lemma 20 we have

»—‘li
N

16
P(Ann = 27" u) = P( max du(B(0).B®) =27 u) < Vil

Thus for n > 0, m > 0 we get

9 _ 32" +m+ 1)/

P(Apn>=-27"2%log(2 1>< :

( m,n_2 \/Og( +m + ) _\/log(2n+m+1)
Wehave > 00 o> (2" +m+ 1)~%/* < co. By the Borel-Cantelli lemma, there is a random

No > 1 so that if n > Ny then

9
(72) A < 5\/2—n log(2" +m + 1).

We will show that (71) holds with 0 < & < hg =20 and 0 < s. Let m, n be nonnegative
integers with 27"~ ! < h <27 and m2™" < s < (m + 1)27". Then we have n > N, and
using the triangle inequality and (72) we get

9
dir(B(s), B(s + 1)) < 2Amn + Aparn <3- 5\/z—n log(2" +m +2))

1
< 20\/}1 10g<2+ %),

which completes the proof. [J

Our next proposition gives a lower bound on the fluctuations of the hyperbolic Brown-
ian motion. The proof again follows that of the analogous statement for standard Brownian
motion.

PROPOSITION 23. Let B be a hyperbolic Brownian motion. Then there is a random
constant Cy < 00 so that a.s. for any 0 <s <t there exists u, v € [s, t] with

t—s

73 du(Bw), Bw))* > C .
(73) (B, Bw)" = 010g(2+t)+10g(t—s+$)

Moreover, with the same constant Cy a.s. for any 0 < s < t there exists u € [s, t] with

1 t—s
74 du(B(s), Bw))* = -C .
(74) m(B(s), B(v)) = Olog(2+t)+10g(t—s+¢)

t—s
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PROOF. The second part of the statement follows from the first part using the triangle
inequality.

To prove (73), it is enough to show the statement for pairs of the form s =m?2",t = (m +
1)2" with m, n € Z and m > 0. We partition the interval [s, ¢) into k = [1+|n|+51log(2+m)]
subintervals [a;, a;+1) of size % For a given 0 <i < k, we have

P(du(B(@). Blais) < ﬁ) = p(ax(50.5(7)) = 2—/2)

vk k)~ Wk
5P(‘B<%) 5%)§P(IB(1)}51)52,

where B(t) is a standard Brownian motion and we used Lemma 19. Using the Markov prop-
erty of the hyperbolic Brownian motion, we get that

4 [n|4+51og(24+m)
5

2n/2 4 k
P(dH(B(a,-), B(ai+1)) < W forall0 <i < k) < (§> <
Since )00 >, GZ(%)"”Jr5 log(2+m) < o0, there are a.s. finitely many pairs m, n for which we
cannot find u, v € [m2", (m + 1)2"] with

o

Now (73) follows with a random Cy for pairs of the form s = m2”", t = (m + 1)2", and from
this (73) follows with a modified Cy for all s,¢. [
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