
SeeSAw: Optimizing Performance of In-Situ

Analytics Applications under Power Constraints

Ivana Marincic

University of Chicago

Chicago, IL, USA

imarincic@cs.uchicago.edu

Venkatram Vishwanath

Argonne National Laboratory

Lemont, IL, USA

venkat@anl.gov

Henry Hoffmann

University of Chicago

Chicago, IL, USA

hankhoffmann@cs.uchicago.edu

Abstract—Future supercomputers will need to operate under
a power budget. At the same time, in-situ analysis—where a
set of analysis tasks are concurrently executed and periodically
communicate with a scientific simulation—is expected to be a
primary HPC workload to overcome the increasing gap between
the performance of the storage system relative to the computa-
tional capabilities of these machines. Ongoing research focuses
on efficient coupling of simulation and analysis considering
memory or I/O constraints, but power poses a new constraint
that has not yet been addressed for these workflows. There are
two state-of-the-art HPC power management approaches: 1) a
power-aware scheme that measures and reallocates power based
on observed usage and 2) a time-aware scheme that measures
the relative time between communicating software modules and
reallocates power based on timing differences. We find that
considering only one feedback metric has two major drawbacks:
1) both approaches miss opportunities to improve performance
and 2) they often make incorrect decisions when facing the
unique requirements of in-situ analysis. We therefore propose
SeeSAw—an application-aware power management approach,
which uses both time and power feedback to balance a power
budget and maximize performance for in-situ analysis workloads.
We evaluate SeeSAw using the molecular dynamics simulation
LAMMPS with a set of built-in analyses running on the Theta
supercomputer on up to 1024 nodes. We find that the strictly
power-aware approach slows down LAMMPS as much as ∼25%.
The strictly time-aware approach shows improvements of up to
∼13% and slowdowns as much as ∼60%. In contrast, SeeSAw
achieves ∼4–30% performance improvements.

Index Terms—HPC, power-constraints, in-situ analysis

I. INTRODUCTION

Future high performance computing (HPC) systems are ex-

pected to operate within strict power budgets [1], [2], requiring

more intelligent power management of hardware, systems and

applications. Application-level power management in HPC

has been given relatively little treatment. In this work we

harness application-specific knowledge from HPC application

developers to achieve performance improvements of in-situ

analytics applications.

In-situ analysis is of paramount importance to HPC.

Through periodic synchronization, simulation-time analysis

provides scientific insights into the simulation using compu-

tation or visualization while reducing the I/O needs. Figure 1

shows a power trace from the molecular dynamics simulation

LAMMPS, demonstrating simulation-analysis activity. A sim-

ulation step corresponds to the regions between two analysis

spikes in activity, and for each step, the analysis spends nearly

half the time idling at ∼105 W to synchronize with simulation

resulting in unused power.

76 78 80 82 84 86 88 90 92
100

120

140

160

Time since application start (s)

P
o
w

er
/n

o
d

e
(W

)

Simulation Analysis

Fig. 1: Partial power trace of LAMMPS simulation and

analysis processes running on separate nodes on the Theta

supercomputer, exposing periodic synchronization. Power col-

lected every 200 ms.

This idling period can be detected by observing 1) dif-

ferences in power—the waiting process will consume less

power, or 2) differences in time—given a synchronization

point, time measurements differentiate faster from slower pro-

cesses. However, detecting such differences and linking them

to application-specific events is non-trivial due to complex

process organization and workflows. In-situ analysis frame-

works can organize MPI processes with both intra- and inter-

dependencies of MPI sub-communicators. Different analyses

can communicate with simulation at different intervals, re-

sulting in complex workflows that can be difficult to learn

using an online process. Therefore, by exposing HPC ap-

plication developers’ knowledge about processes organization

and communication patterns, we can relate time and power

measurements to programmatic events we are interested in:

simulation-analysis compute and synchronization phases.

There are two state-of-the-art power management systems

deployed on production HPC systems: the job scheduler

SLURM [3] uses power feedback to shift power from nodes

below to nodes at the power cap, and Intel’s Power Balancer

as part of GEOPM [4] uses time feedback to shift power

from faster to slower nodes. By looking at only one feedback

metric, both approaches miss opportunities for efficient power

allocation and can make wrong decisions when faced with

complex in-situ analysis workflow.



To optimize performance of power-constrained in-situ anal-

ysis we propose SeeSAw, which finds the optimal power

allocation between simulation and analysis such that the two

synchronize at the same time. SeeSAw observes time and

power to obtain energy as a feedback metric, which provides

insights the SLURM- and GEOPM-based approaches are

lacking: tasks with no differences in power may still exhibit

differences in time, while tasks with no differences in time

may not utilize power efficiently.

Prior work by Zhang and Hoffmann [5] uses both time and

power to shift power from fast to slow applications running

concurrently and demonstrate improvements over SLURM.

However, the timing data are based on estimates from offline

profiles and, without code instrumentation of the application,

do not tie to application-specific events of importance to in-

situ analysis.

Our paper makes the following contributions:

• We propose SeeSAw: the first dynamic and fully online

power management solution for coordinating developer

knowledge with system power management for in-situ

analysis workflows.

• An empirical demonstration that production power man-

agement systems that rely on either power or timing alone

miss crucial information.

• We propose energy as the right feedback metric for

optimizing performance of in-situ analysis workflows

under power constraints.

• An interface that allows scientists to communicate their

application knowledge with minimal code instrumenta-

tion.

We refer to SLURM’s strategy as the strictly power-aware

and GEOPM as the strictly time-aware approach. Using

varying simulation and analysis compositions, we compare

SeeSAw against both approaches on the Theta supercomputer

system at Argonne National Laboratory relative to a static

power allocation as the baseline on up to 1024 nodes. As

a widely used and representative HPC workload, we use

LAMMPS with its built-in analyses as a case study. We find

that the strictly power-aware approach slows down LAMMPS

as much as ∼25% compared to the baseline in all cases. The

strictly time-aware approach shows improvements of up to

∼13% and slowdowns as much as ∼60%. SeeSAw achieves

∼4–30% improvement in time to complete the simulation.

II. BACKGROUND AND RELATED WORK

In-situ Analysis Optimizations. Many in-situ analysis

frameworks have been developed to date, enabling fast and

scalable simulation-time analysis [6]–[16]. Few consider re-

source constraints. Malakar et al [17], [18] consider a fixed and

offline memory, compute and I/O resource profile. However,

these vary over time and the dynamic needs of the application

were not considered. SeeSAw adapts dynamically without

requiring offline power and performance profiles.

Several works model energy and power requirements of

in-situ frameworks, but do not take power constraints into

account [19]–[23]. Adhinarayanan et al [24], [25] compare

the energy cost of in-situ analysis against post-processing.

Labasan et al [26] characterize the power and performance

trade-off in visualization algorithms under power caps. These

works do not consider the opportunity to optimize the slack

power exposed through communication patterns of in-situ

analysis that we are concerned with.

Power-constrained HPC. Recent works concern power-

constrained HPC applications. The collection of power shifting

algorithms proposed in [27] move power from I/O-intensive

to compute phases, but require the duration of these phases to

be known ahead of time. SeeSAw does not require any time

or power information up front. PowerShift [5] is a collection

of heuristics that rely on power and performance profiles col-

lected offline of individual coupled applications to shift power

from the faster to the slower application. The application

couples are synthesized of stand-alone benchmarks. SeeSAw

obtains feedback dynamically, and we demonstrate it on real-

world workloads tightly coupled as one LAMMPS job where

analyses are not executable as stand-alone tasks. Related work

in power-constrained scheduling [28]–[31] offer system-wide

solutions complementary to our application-level approach.

Strictly power-aware approach. The real-world example

of a strictly power-aware approach is deployed in the SLURM

scheduler. This approach aims to address power imbalances

between nodes by shifting excess power from nodes that are

not at the power cap to nodes that are at the power cap. The

excess power is divided evenly among nodes that require more

power. This redistribution is performed at fixed time intervals

for the duration of a job.

Strictly time-aware approach. The strictly time-aware

approach is given by GEOPM’s power balancing plug-in.

Given a power budget and an application loop, this approach

slows down nodes which arrived at the end of the iteration

first, and speeds up the slower nodes by shifting a specific

amount of power. The rate of change in power decreases over

time until a user-configured minimum. Each node finds the

median runtime of its respective ranks. A target runtime is

designated corresponding to some percentage below the max-

imum median runtime of all nodes. The higher the percentage,

the more reactive the algorithm is. If there is slack power, it

is redistributed to all nodes equally.

III. ASSUMPTIONS

We assume the following conditions:

• Space-shared in-situ analysis. The time-shared mode with

alternating simulation and analysis poses a simpler prob-

lem of managing a power budget: when one workload

enters the critical section, power can be either kept at the

budget or reduced to save energy. SeeSAw addresses the

unique requirements of space-shared in-situ analysis.

• The in-situ analysis workflow is partitioned into two sets

of tasks on separate power domains or voltage planes. For

example, if per-core power can be controlled, simulation

and analysis can be co-located on the same CPU. On our

evaluation platform, power is controlled per node.

• Simulation (analysis) processes have equal work.



0 50 100

0

90

210

Time (s)

P
o
w

e
r

(W
)

(a) Inefficient state

0 50 100

0

90

210

Time (s)

P
o
w

e
r

(W
)

(b) Efficient state with SeeSAw

Fig. 2: Illustration of the SeeSAw goal to shift power from the

red to the blue task such that both finish at an earlier time.

Dashed lines show synchronization points.

• Simulation (analysis) compute units are equal, but com-

pute units for simulation can be different from analysis.

IV. SEESAW: OPTIMIZING IN-SITU ANALYSIS UNDER

POWER CAP

SeeSAw balances power between simulation and analysis so

that the two reach points of synchronization at the same time.

Figure 2 illustrates how power is allocated with SeeSAw. With

210 W total power for all compute units (nodes, cores, etc.),

the blue task requires 90 W and takes 100 s to reach the

synchronization, while the red task needs 120 W and 60 s. In

Figure 2a 120 W is unused for 40 s. By moving ∼3 W from

the red to the blue task, SeeSAw reduces the iteration time to

∼77 s, as illustrated in Figure 2b.

Finding how much power to redistribute requires addressing

two challenges: 1) the function between power and time is

unknown and difficult to estimate, 2) there could be presence

of system noise affecting the power and performance behavior

of the application [32]. By approximating the relationship

between power and time as a linear function, SeeSAw accounts

for non-linearity with a series of small linear steps each time

simulation and analysis synchronize. SeeSAw addresses the

second challenge by taking the steps in a controlled way to

guard against anomalies and noise, in which past informa-

tion is consolidated with the present using an exponentially

weighted moving average.

SeeSAw uses energy as the feedback metric from past

time and power measurements to make decisions about power

allocations, because energy captures the impact of changes in

power on time and vice versa. Then, a fraction of the power

budget is assigned to each task corresponding to the fraction

of that task’s energy needs with respect to the total energy

required by simulation and analysis to reach a synchronization.

Furthermore, energy enables finding a new power value in

one step, rather than incrementally moving power to slow

down the faster task (the time-aware approach) or move unused

power to the more power-demanding task (the power-aware

approach). By shifting specific amounts of power determined

by heuristics, these incremental approaches may also miss

the power distribution that makes simulation and analysis

equal in time, thus resulting in a less optimal or worse state.

Further benefits of SeeSAw include: no requirements for of-

fline profiling, minimal code instrumentation to indicate points

of synchronizations, light-weight calculations incur negligible

overhead.

A. SeeSAw Formulation

We formally describe how SeeSAw allocates power for

power-constrained in-situ analysis. Let C be the global power

budget available for an in-situ analysis job. Let S and A

designate the simulation and analysis tasks, respectively. Let

TS
i and TA

i be the time it takes for S and A to reach the

synchronization at time step i. Our goal is to reduce the time

it takes both S and A to arrive at the synchronization point,

so we have the following objective:

min
i

max
(

TS
i , TA

i

)

The solution to this objective is optimal when:

TS
i = TA

i

A proof is given by Zhang and Hoffmann [5], and Demirci et

al [30], [31]. We paraphrase: when moving power from one

task to the other in the optimal state, one task will slow down

beyond the optimal time and the other speed up, and thus the

overall runtime as determined by the slower task is longer.

To account for noisy measurements of past time and power,

we provide a configurable window w which determines after

how many synchronizations to redistribute power. We take the

average time and power over the last w intervals to obtain a

value of simulation power PS
j and time TS

j at each allocation

j, ie at the start of every w synchronizations:

PS
j =

1

w

j
∑

i=j−w

pSi , TS
j =

1

w

j
∑

i=j−w

tSi

and likewise for analysis power PA
j and TA

j .

Using these past measurements, the goal is to find optimal

powers POPTS

j+i and POPTA

j+1
such that we obey the power

budget C and such that S and A arrive at a new time t∗j+1 for

the next w synchronizations.

To compute the new optimal power, we approximate the

time and power relationship as linear using a parameter α:

αS
j =

1

TS
j × PS

j

, αA
j =

1

TA
j × PA

j

(1)

Using the power constraint C and the time equality property,

we solve for POPTS

j+1
and POPTA

j+1
for the next allocation:

POPTS

j+1
= C

αA
j

αS
j + αA

j

, POPTA

j+1
= C

αS
j

αS
j + αA

j

(2)

To account for noise, anomalies, and to reduce the rate at

which we change power at each synchronization point, we

use the exponentially weighted moving average to set the

optimal power. The weight we place on the most recent data

is determined by the ratios:

rSj+1 =
POPTS

j+1

C
, rAj+1 =

POPTA

j+1

C
(3)



We compute the total new allocated power for simulation

and analysis for the next w steps:

PnewS

j+1
= rSj+1 × POPTS

j+1
+ (1− rSj+1)× POPTS

j+1

PnewA

j+1
= rAj+1 × POPTA

j+1
+ (1− rAj+1)× POPTA

j+1

(4)

Since power is controlled per voltage plane, PnewS

j+1
and

PnewA

j+1
are evenly divided by the number of compute units

designated for simulation and analysis, respectively.

To account for the new power values being below or

above what the hardware supports, we set a δmin and δmax

corresponding to the lowest and highest supported power. If

the simulation nodes are below δmin (above δmax), they are

set at δmin (δmax) and analysis nodes at remaining power, and

vice versa. In case of a tie, handling δmax takes priority.

B. Harnessing Application Developers’ Knowledge

Developers of in-situ analysis applications or frameworks

can enable SeeSAw through two pieces of application-

specific information: the application’s process organization,

and simulation-analysis synchronization pattern.

First, to allocate power between the corect entities, a pro-

cess’ identity as simulation or analysis must be supplied. In-

situ frameworks already make this distinction typically using

sub-communicators. As only process membership is relevant,

this information enables SeeSAw to navigate complex process

organization in such frameworks with potentially many MPI

sub-communicators.

In addition, SeeSAw must be invoked prior to a synchroniza-

tion or point of communication between the simulation and

analysis partitions. This enables differentiating independent

work from communication between simulation and analysis,

and correct power and time characterization of these events.

As illustrated in the case of LAMMPS in Section VI-C,

the two requirements can be satisfied in just two lines of

code. We make SeeSAw available1 as part of an application-

level power management library called PoLiMEr, discussed in

Section VI-B.

V. LAMMPS: OVERVIEW

Molecular dynamics (MD) simulations explore the physics

and chemistry governing systems such as liquids, biomolecules

and materials. LAMMPS (Large-scale Atomic/Molecular Mas-

sively Parallel Simulator) is a classical MD simulation and a

key workload on HPC supercomputers [33], [34] cited in over

10,000 publications [35], and used by thousands of users world

wide. It can simulate different systems containing different

types of particles (atoms, molecules, ions, etc.) divided into

sub-volumes assigned to individual MPI ranks.

We consider the velocity-Verlet timestepping algorithm

which drives the LAMMPS simulation. The Verlet algorithm

invokes specific analyses at the end of every j Verlet steps,

where j is configurable. Malakar et al propose an exten-

sion to the Verlet algorithm called Verlet-Splitanalysis which

forms physically separate partitions of simulation and analysis

1https://github.com/PoLiMEr-HPC/PoLiMEr-SeeSAw

processes [18], [36], [37]. When a partition is created, an

analysis (A) process is paired with one or more simulation

(S) processes within one MPI subcommunicator. Each Verlet

step has the following flow:

1) S performs initial integration

2) S sends particle coordinates and velocities to A partition

3) both partitions rebuild a subset of data structures

4) S sends particle count to A for verification

5) both partitions update neighbor lists

6) S computes forces and final integration

7) S invokes A at the end of time step

8) optional output of state of S

Steps 2–4 constitute the synchronization phase between

simulation and analysis. Otherwise, simulation and analysis

are doing independent work. The rebuilding of neighbor

lists concerns the update of positions of particles, and is a

communication-intensive phase. In our LAMMPS runs we

request output of thermodynamic data at end of each time

step, which is also communication- and I/O-intensive. At each

Verlet time step both simulation and analysis perform a series

of actions with different resource utilization.

VI. METHODOLOGY AND EXPERIMENTAL SETUP

We describe the experimental hardware and software setup

for our evaluation, followed by details of the necessary code

instrumentation of LAMMPS.

A. Hardware Setup

All experiments were run on the Theta supercomputer at

Argonne National Laboratory—a Cray XC40 system ranked

#28 by the Top500 project [38]. Theta has 4392 single-socket

compute nodes with second-generation 64-core Intel Xeon Phi

7230 CPUs. The base frequency of each node is 1.3 GHz

with turbo frequency up to 1.5 GHz and TDP of 215 W.

Theta’s nodes support power capping and monitoring via

Intel’s RAPL interface [39], accessible to users through the

msr-safe module [40].

B. Software Setup: Power Management

We extend a power monitoring and capping library for dis-

tributed MPI applications called PoLiMEr [41] to implement

SeeSAw. We implement the power- and time-aware approaches

as closely as possible to the original implementations provided

in [42] and [43]. PoLiMEr supports power monitoring and

capping via RAPL, and monitors time of each MPI rank. It

uses the available MPI ranks of the application and desig-

nates one rank per node for power monitoring. To measure

simulation and analysis time and power for each interval

between w synchronizations, we use the time of the slowest

simulation (analysis) ranks, including the time to perform the

power allocation, and the sum of power measurements from

all simulation and analysis nodes.

The SLURM-based power-aware approach checks if power

can be shifted at a fixed time interval independent of the

application. To give the power-aware approach an advantage,

in our implementation we allocate power at the start of



the simulation-analysis synchronization instead, because we

expect a fixed time interval to perform badly with non-

uniform workloads such as LAMMPS with Splitanalysis. The

w window applies to our power-aware implementation.

GEOPM’s power balancer is invoked at each iteration of any

application loop. Since analyses may not be invoked at each

iteration, our implementation aids the time-aware algorithm by

invoking it at each synchronization instead. Changing w does

not have an effect, to mimic the original intended behavior.

C. Software Setup: LAMMPS

We use a custom benchmark for LAMMPS from prior

works [17], [36], [37] simulating a box of water molecules

solvating two types of ions. We consider analyses commonly

used in scientific computing [44], [45] and as case studies [17],

[18], [36]:

• Hydronium and ion RDF – radial distribution functions,

averaged over all molecules

• VACF – velocity auto-correlation function

• MSD, MSD1D, MSD2D – mean squared displacements

for 1D and 2D spatial bins, averaged over all molecules

The analyses have different resource requirements [18].

MSD has high CPU and memory utilization, MSD2D is mostly

memory-intensive (less than MSD), RDF is compute bound

but with higher memory needs than VACF and MSD1D,

both having low memory and CPU utilization. An analysis

is invoked every j timesteps, and the number of analysis and

simulation ranks is equal in all results in Section VII.

We modified the LAMMPS Splitanalysis extension to ini-

tialize PoLiMEr’s power management capability:

//universe->uworld : MPI communicator for all

processes or MPI_COMM_WORLD

//universe->me : rank of current process

//master : 0 if simulation, 1 if analysis

//power_cap : initial power cap on node of

current process (specified by user)

poli_init_power_manager(universe->uworld,

universe->me, master, power_cap);

This distinguishes simulation from analysis processes. We then

reallocate power before synchronization:

poli_power_alloc();

//synchronization

Detailed implementation documentation is provided in our

code (see Section IV-B).

VII. EVALUATION

We evaluate SeeSAw against the power- and time-aware

approaches relative to the static baseline. The baseline equally

divides the global power budget between simulation and

analysis nodes. The power cap per node remains fixed (static)

and is maintained by RAPL on our evaluation platform. We

use the following parameters and settings in our experiments:

• dim – The problem size in LAMMPS is the number

of atoms replicated within the simulation cube with

dimension dim. Our benchmark has 1568 atoms, so the

total number of atoms is 1568× dim3.

• j – LAMMPS parameter specifying after how many

Verlet steps simulation and analysis synchronize. When

j = 1 they synchronize at each step, otherwise Steps 2–

4, 5 and 7 from Section V are skipped until every jth

step. We use a total of 400 Verlet steps.

• w – SeeSAw parameter specifying after how many syn-

chronizations power should be allocated. Because the

evaluated strategies allocate power at different intervals,

for a fair comparison we set w = 1 so that each power

management strategy is invoked at every synchronization.

• Global power budget of 110× n W, where n is the total

number of nodes of the LAMMPS job. Section VII-D

explains our choice of power cap.

First we outline how we mitigate run-to-run variability, then

we compare the power management algorithms on different

analyses and scales, followed by a sensitivity analysis specific

to SeeSAw, and overhead measurements.

A. Variability of Results

HPC systems are subject to run-to-run variability [32].

Table I shows the variability of 7 LAMMPS runs for different

power caps. Since variability is low on repeated runs on the

same node, to reduce the job sizes of our experiments, we

compare the differences in runtime between jobs containing

two runs: the power management algorithm of interest and

the baseline. Simulation and analysis rank placement on nodes

and cores is identical in both runs.

TABLE I: Variability across 7 runs for different types of power

caps and problem size for LAMMPS on 128 nodes.

Power Cap dim Variability Type Variability %

None

36 run-to-run 0.8
36 job-to-job 2.0
48 run-to-run 0.2
48 job-to-job 0.8

Long (110 W)

36 run-to-run 0.7
36 job-to-job 6.0
48 run-to-run 0.3
48 job-to-job 5.7

Long and Short (110 W each)

36 run-to-run 2.1
36 job-to-job 8.7
48 run-to-run 5.5
48 job-to-job 2.4

Variability is exacerbated by power caps. RAPL maintains

a moving average of the requested power cap over a period of

time (1 s on Theta). A short-term power cap allows for brief

(9.766 ms on Theta) violations of the long-term power cap.

Capping both long- and short-term power guarantees the power

budget will not be violated as RAPL limits the power slightly

below the requested power, however, the variability increases.

The power-aware algorithm takes action only if nodes are

at the power cap, otherwise it assumes the application has

available power. In contrast, SeeSAw does not depend on the

application reaching the power cap. For or a fair evaluation,

however, and to reduce variability, we show results with long-

term power capping only.



B. Different Analyses Require Different Power Allocations

We compare SeeSAw against the power- and time-aware ap-

proaches on LAMMPS with different sets of analyses, problem

sizes, and scales shown in Figure 3. Full MSD includes three

components: MSD1D, MSD2D, and a final averaging of all

particles. The all category includes RDF, MSD1D, MSD2D,

final MSD averaging in case of full MSD, and VACF, executed

in sequence at each synchronization. The full MSD analysis is

a high-demand workload compared to VACF and RDF and its

subcomponents MSD1D and MSD2D. Due to its high memory

needs it is limited to problem size with dim = 16. In addition,

for a comparison of full MSD and its subcomponents, we set

dim = 16 for MSD1D and MSD2D.

We observe the following: 1) SeeSAw outperforms with

high-demand analyses, 2) the time-aware approach is competi-

tive with low-demand analyses, 3) scale is a dominating factor

over problem size for effectiveness of power management.
1) Impact of High-Demand Analyses: We demonstrate the

performance differences between the three approaches on

LAMMPS with full MSD in Figure 4 which shows the

power allocated per node. The slack time (black graphs) is

the difference between simulation and analysis time between

synchronizations normalized to the total time the slowest

process took to reach the next synchronization. For reference,

Figures 4d and 4e show baseline simulation and analysis time

and power between the first 10 synchronization points with

110 W power cap per node. In our implementation step 0 is

ignored because it is outside of the main simulation loop. In

the first couple steps the simulation has extra setup overhead,

which is consistent in repeated runs with MSD. Onward MSD

and LAMMPS are nearly identical in runtime with 4 seconds

between synchronizations, whereas VACF, RDF, MSD1D, and

MSD2D are 2–4× faster than simulation.

Figure 4a shows that SeeSAw settles on a power distribution

within the first 20 steps, assigning analysis more power and

bringing the slack time down to an average of 0.8% (calculated

from the 10th step).

By only referencing time, the time-aware approach can

move power in the wrong direction and not correct the

power allocation later on. This strategy picks a direction and

gradually increases the gap in the power distribution in that

direction. Because MSD is initially faster than simulation, as

shown in Figure 4d, the time-aware approach assigns it more

power too quickly. The power allocation flattens out due to a

reduction in the rate of change parameter and reaching δmin

(98 W). It is unable to return to a better power distribution,

because at each subsequent synchronization point simulation

and analysis nodes alternate in terms of being the slowest,

causing no net power being shifted over time. Furthermore, the

simulation is not able to utilize the assigned 120 W per node.

Power measurements show that simulation consumes 102-104

W at each synchronization, due to the analysis nodes being

capped low. The slack time of 12% reflects this inefficient

distribution.

Finally, by only referencing power, the power-aware ap-

proach is unaware of performance impacts of its chosen power

−50 0 50

VACF (36)

VACF (48)

RDF (36)

RDF (48)

VACF+RDF (36)

VACF+RDF (48)

full MSD (16)

MSD1D (16)

MSD2D (16)

all+full MSD (16)

all (36)

all (48)

6.16

6.8

5.6

5.24

6.08

6.61

13.82

7.21

4.09

16.9

4.23

2.2

12.38

10.62

9.53

4.68

−5.88

−7.51

−50.18

8.62

−44.67

−66.36

−40.78

−39.4

−5.03

−13.43

−7.02

−9.59

−20.1

−9.42

−23.9

−16.57

−21.13

−20.09

−20.35

−19.66

% Improvement over static

SeeSAw Time-Aware Power-Aware

(a) 128 nodes

−50 0 50

VACF (48)

full MSD (16)

all (48)

4.23

16.46

8.63

12.03

−54.66

−63.78

−9.02

−27.39

−9.66

% Improvement over static

(b) 1024 nodes with representative workloads

Fig. 3: Performance of SeeSAw, time- and power-aware ap-

proaches for different analyses, w = 1, j = 1. Median of 3

runs shown for each bar.



0

0.2

0.4

0.6

N
o

rm
al

iz
ed

sl
ac

k

0 500 1,000 1,500 2,000 2,500

100

110

120

130

Time since start (s)

P
o
w

er
/n

o
d

e
(W

)

Simulation Analysis

(a) SeeSAw: power allocated over time

0

0.2

0.4

0.6

N
o

rm
a
li

z
e
d

sl
a
c
k

0 500 1,000 1,500 2,000 2,500

100

110

120

130

Time since start (s)

P
o
w

e
r/

n
o

d
e

(W
)

(b) Time-aware approach: power allocated over time

0 500 1,000 1,500 2,000 2,500

100

110

120

130

Time since start (s)

P
o
w

e
r/

n
o

d
e

(W
)

0

0.2

0.4

0.6

N
o

rm
a
li

z
e
d

sl
a
c
k

(c) Power-aware approach: power allocated over time

0 2 4 6 8 10

5

10

15

20

Synchronization count

T
im

e
(s

)

(d) Time between first 10 synchronizations for baseline

0 2 4 6 8 10

108

110

112

Synchronization count

P
o
w

er
/n

o
d

e
(W

)

(e) Power between first 10 synchronizations for baseline

Fig. 4: Power allocation per simulation and analysis node

at each synchronization step. Each row corresponds to a

run of LAMMPS with the MSD analysis on 128 nodes,

j = 1, dim = 16. The right y-axis (black) shows the nor-

malized slack time relative to the total time interval between

synchronizations. Bottom two charts show time and power

between first 10 synchronizations for simulation and analysis

without any power management.

0

0.2

0.4

0.6

0.8

N
o

rm
a
li

z
e
d

sl
a
c
k

500 1,000 1,500 2,000

100

110

120

Time since start (s)

P
o
w

e
r/

n
o

d
e

(W
)

Allocated (S) Allocated (A)

Measured (S) Measured (A)

(a) SeeSAw

500 1,000 1,500 2,000

100

110

120

Time since start (s)

P
o
w

e
r/

n
o

d
e

(W
)

0

0.2

0.4

0.6

0.8

N
o

rm
a
li

z
e
d

sl
a
c
k

(b) Time-aware approach

Fig. 5: Power measured compared to allocated between syn-

chronizations by SeeSAw and time-aware approach at 1024

nodes. Normalized slack shown in black.

allocations. Under the power-aware approach, the slack time

fluctuates between 0.2% and 40%. Without any metric for

efficiency, it simply responds to potentially noisy differences

in measured power, worsened by irregular application patterns.

2) Impact of Low-Demand Analyses: The MSD result

shows that SeeSAw is able to address the counter-intuitive

need to give analysis more power even though simulation and

analysis are both nearly identical in time as shown in the base-

line time measurements in Figure 4d. The time-aware approach

works well with LAMMPS+RDF and LAMMPS+VACF.

These low-demand analyses do not benefit from more power,

while the simulation does. SeeSAw and the time-aware strat-

egy perform differently, due to settling at different power

distributions. The time-aware approach settles at 120 W and

121 W for each simulation node, and 100 W and 101 W for

each analysis node for LAMMPS+RDF and LAMMPS+VACF,

respectively. SeeSAw does not exceed 115 W per simulation

node for LAMMPS+RDF and 117 W for LAMMPS+VACF.

This suggests that SeeSAw may be susceptible to local optima.

Finally, the power-aware approach is sensitive to noisy envi-

ronments and is not suitable for in-situ analysis where nodes

do not have equal amount of work.

3) Impact of Scale: At larger scales an additional deciding

power allocation factor are utilization limits due to communi-

cation overhead. Figure 3b shows the performance difference

between the three power allocation algorithms in case of

full MSD, all analyses and VACF, chosen as representative

workloads out from Figure 3a. Figure 5 shows a detailed

comparison between SeeSAw and the time-aware approach for

all analyses. We omit the power-aware approach as its behavior

is similar to Figure 4c.



In Figure 5a SeeSAw allocates more power to analysis.

For the same workload and problem size on 128 nodes,

SeeSAw fluctuates between 109-115 W per simulation node,

which suggests that simulation at larger scale has lower power

utilization.

Despite the normalized slack time in Figure 5b being nearly

0, the time-aware approach causes severe performance degra-

dation. The time-aware approach chooses the wrong direction,

increasing the gap in power distribution until reaching δmin.

Because the analysis is capped at δmin and due to longer but

low-power communication-intensive phases, the simulation is

forced into a low-power state. As both tasks are running barely

above the system operating power, the time difference between

them is incidentally low. Therefore, low differences in time

between simulation and analysis is not indicative of an energy-

efficient state and power feedback must be considered as well.

C. Sensitivity Analysis

In this section we examine parameters that affect SeeSAw’s

performance, the impact of analyses with mixed intervals, and

different initial power between simulation and analysis.

1) Impact of SeeSAw Window Size and LAMMPS Synchro-

nization Rate: Figure 6 shows the impact of the frequency j at

which simulation and analysis synchronize, and the frequency

w at which power is reallocated on SeeSAw’s performance

on 1024 nodes when LAMMPS is executed with all analyses.

Allocating power more frequently is favorable over infrequent

re-allocations which miss past slack optimization opportuni-

ties. If invoked at each synchronization step, SeeSAw is more

reactive to potential anomalies, so choosing 1 < w < 10
mitigates that. When simulation and analysis synchronize

less frequently, SeeSAw has fewer opportunities to correct

inefficient power distributions causing LAMMPS to spend

more time in inefficient states. In such configurations, we

observe that allocating power as frequently as possible helps.

Optimal settings of w are empirically determined and may

differ for different applications.

0 20 40 60 80 100

−5

0

5

10

w

%
Im

p
ro

v
em

en
t

o
v
er

S
ta

ti
c j = 1 j = 2 j = 4

Fig. 6: SeeSAw w and LAMMPS synchronization rate j on

1024 nodes, dim = 48, mix of analyses.

2) Mixed Analysis Intervals: Different analyses can be

configured to run at different time steps. Table II shows the

impact of varying the frequency of a high-demand and low-

demand analysis while the rest remain constant. One run

varies full MSD while RDF and VACF synchronize with the

simulation at each time step, another varies VACF while full

MSD and RDF run every step. Power is allocated at every step.

As the frequency of MSD decreases, and by fixing w = 1,

SeeSAw is too reactive to the now anomalous MSD analysis.

VACF, on the other hand, is a low-demand workload and

does not skew SeeSAw’s measurements. When properly tuned,

SeeSAw tolerates variable analysis frequencies well. For high-

demand but infrequent analyses, setting w = 2 or higher will

not trigger sudden changes in power allocation.

TABLE II: SeeSAw runtime improvement over the baseline

on 2 runs of LAMMPS with RDF, full MSD and VACF: 1)

frequency of only full MSD is varied, 2) only VACF is varied.

The rest synchronize at each time step. Median of 3 runs on

128 nodes shown, w = 1, dim = 16.

j 4 20 100

MSD % improvement over static 5.03 0.94 0.90

VACF % improvement over static 16.76 15.09 16.24

3) Unbalanced Initial Power Distribution: Finally, we con-

sider different initial power distributions between simulation

and analysis to reflect differences in power requirements

between the two if, for instance, they are given different

resources. Figure 7 shows that SeeSAw improves performance

in such cases in comparison to keeping simulation and anal-

ysis at the initial power distribution. To account for noisy

measurements, we chose w = 2. The median of three runs

shows performance improvement of 28.26% when simulation

starts with more power, 19.21% when analysis starts with

more power, and 8.94% when the two start with the same

power. In Figure 7b SeeSAw improves power utilization of

the analysis, which in the static baseline does not utilize the

assigned 120 W per node because it depends on the now much

slower simulation restricted to run at 100 W per node.

D. Diminishing Returns with More Power Headroom

To justify our choice of 110 W in our evaluation, we preset

Figure 8 which shows that SeeSAw is more effective at tighter

power budgets. There are limited benefits with more liberal

power budgets as LAMMPS fails to utilize additional power

beyond 140 W per node. The minimum supported power cap

by RAPL on Theta’s nodes is 98 W, at which application

performance is significantly reduced and run-to-run variability

increases. For a stringent power cap that is not too close to

the minimum, we chose 110 W. The trend shown in Figure 8

is consistent for different analyses, but the exact improvement

over the static baseline varies across different power caps with

highest improvements in the 110-120 W range per node.

E. Overhead

Overhead of computing a new power allocation with See-

SAw is primarily due to communication costs from exchanging

power and time measurements between the PoLiMEr ranks,

whereas RAPL requires 10ms to react to new power cap

requests on Theta’s CPUs. We report overhead as relative cost

to LAMMPS in Figure 9a at the end of each synchronization,

and the absolute time of stand-alone execution of SeeSAw



0 1,000 2,000 3,000 4,000

100

110

120

Time since start (s)

P
o
w

e
r/

n
o

d
e

(W
)

SeeSAw (S) SeeSAw (A)

Static (S) Static (A)

(a) Simulation starts at 120 W and analysis at 100 W per node

0 500 1,000 1,500 2,000 2,500 3,000

100

105

110

Time since start (s)

P
o
w

e
r/

n
o

d
e

(W
)

(b) Analysis starts at 120 W and simulation at 100 W per node

0 500 1,000 1,500 2,000 2,500

105

110

115

Time since start (s)

P
o
w

e
r/

n
o

d
e

(W
)

(c) Simulation and analysis both start at 110 W

Fig. 7: Simulation (S) and analysis (A) power traces with

SeeSAw and static baseline with different initial power distri-

butions. LAMMPS run on 128 nodes as three different jobs,

all analyses, dim = 36, w = 2, j = 1.

100 110 120 130 140

1,000

1,500

2,000

2,500
3.57%

15.82% 20.05% 7.51% 2.10%

Power cap/node (W)

R
u

n
ti

m
e

(s
) Static SeeSAw

Fig. 8: Improvement of SeeSAw over static baseline for vary-

ing power caps per node. LAMMPS is run with all analyses

with full MSD on 128 nodes, dim = 16, w = 1, j = 1. Each

point is the median total runtime of 3 LAMMPS.

in Figure 9b. Communication costs dominate at 1024 nodes,

causing a smaller relative overhead, but higher overhead in

absolute measurements. Furthermore, communication costs

depend on the underlying interconnect which is optimized for

collective MPI communication routines on Theta. Nonetheless,

overhead of allocating power itself is incorporated in the time

and power measurements by SeeSAw.

0 100 200 300 400
0

0.1

0.2

Synchronization count

%
O

v
er

h
ea

d 128 nodes 1024 nodes

(a) Overhead of SeeSAw as a percentage of total time at each
synchronization in LAMMPS with all analyses on 128 and 1024
nodes, dim = 48, w = 1, j = 1.

100 150 200 250

0.2

0.4

0.6

Power/node (W)

T
im

e
(m

s)

128 nodes 1024 nodes

(b) Average duration of SeeSAw in a loop of 10 iterations across
different power caps on the Theta supercomputer.

Fig. 9: Overhead measurements of SeeSAw

VIII. CONCLUSION AND FUTURE WORK

SeeSAw is the first dynamic and completely online power

management solution for coordinating HPC application devel-

oper knowledge with system power management for in-situ

analysis workflows. Our results demonstrate that energy is the

right feedback metric for optimizing performance of in-situ

analysis workflows under power constraints. Existing strictly

power- or time-aware solutions miss key information such

as power utilization capabilities, whether measured feedback

is noise, or when simulation or analysis benefits from more

power than the other.

There are several avenues for future work. Methods to over-

come local optima could be explored for more performance

gains with low-demand analyses. To add support for hetero-

geneous hardware within the simulation (analysis) partition,

power should be allocated through a hierarchical decision-

making process that breaks down SeeSAw’s power allocation

to the individual compute units, or to different analyses when

they are invoked at mixed intervals. Furthermore, SeeSAw

could be integrated with job schedulers and system-wide

power management schemes.

Our results suggest that employing dynamic approaches

which utilize application-specific knowledge is a promising

direction for future research on power management in HPC.

Acknowledgements

We thank the anonymous reviewers for their insightful

feedback. This research is primarily supported by a DOE

Early Career award. Additional support comes from NSF

(CCF-1439156, CCF-1823032, CNS-1764039) and the Pro-

teus project under the DARPA BRASS program. This research

used resources of the Argonne Leadership Computing Facility,

which is a DOE Office of Science User Facility supported un-

der Contract DE-AC02-06CH11357. We thank Preeti Malakar



and Christopher Knight for their guidance on in-situ analysis

and LAMMPS.

REFERENCES

[1] K. Bergman et al., “Exascale computing study: Technology challenges
in achieving exascale systems peter kogge, editor & study lead,” 2008.

[2] V. Sarkar et al., “Exascale software study: Software challenges in
extreme scale systems,” 2009, dARPA IPTO Study Report for William
Harrod.

[3] “The slurm workload manager,” https://slurm.schedmd.com.

[4] J. Eastep et al., “Global extensible open power manager: a vehicle for
hpc community collaboration toward co-designed energy management
solutions,” Supercomputing PMBS, 2016.

[5] H. Zhang et al., “Performance & energy tradeoffs for dependent
distributed applications under system-wide power caps,” in Proceedings

of the 47th International Conference on Parallel Processing, ser. ICPP
2018. New York, NY, USA: ACM, 2018, pp. 67:1–67:11. [Online].
Available: http://doi.acm.org/10.1145/3225058.3225098

[6] H. Abbasi et al., “Datastager: scalable data staging services for petascale
applications,” Cluster Computing, vol. 13, no. 3, pp. 277–290, 2010.

[7] U. Ayachit et al., “Performance analysis, design considerations, and
applications of extreme-scale in situ infrastructures,” in Proceedings

of the International Conference for High Performance Computing,

Networking, Storage and Analysis. IEEE Press, 2016, p. 79.

[8] T. Bicer et al., “Real-time data analysis and autonomous steering of
synchrotron light source experiments,” in e-Science (e-Science), 2017

IEEE 13th International Conference on. IEEE, 2017, pp. 59–68.

[9] M. Dorier et al., “Damaris: How to efficiently leverage multicore
parallelism to achieve scalable, jitter-free i/o,” in Cluster Computing

(CLUSTER), 2012 IEEE International Conference on. IEEE, 2012, pp.
155–163.

[10] J. Y. Choi et al., “Coupling exascale multiphysics applications: Methods
and lessons learned,” in 2018 IEEE 14th International Conference on

e-Science (e-Science). IEEE, 2018, pp. 442–452.

[11] M. Dreher et al., “A flexible framework for asynchronous in situ and in
transit analytics for scientific simulations,” in Cluster, Cloud and Grid

Computing (CCGrid), 2014 14th IEEE/ACM International Symposium

on. IEEE, 2014, pp. 277–286.

[12] T. Kuhlen et al., “Parallel in situ coupling of simulation with a fully
featured visualization system,” in Proceedings of the 11th Eurographics

Conference on Parallel Graphics and Visualization (EGPGV), 2011.

[13] A. Luckow et al., “Pilot-streaming: A stream processing framework for
high-performance computing,” arXiv preprint arXiv:1801.08648, 2018.

[14] “Paraview catalyst,” http://catalyst.paraview.org.

[15] F. Zheng et al., “Predata–preparatory data analytics on peta-scale
machines,” in Parallel & Distributed Processing (IPDPS), 2010 IEEE

International Symposium on. IEEE, 2010, pp. 1–12.

[16] ——, “Flexio: I/o middleware for location-flexible scientific data ana-
lytics,” in Parallel & Distributed Processing (IPDPS), 2013 IEEE 27th

International Symposium on. IEEE, 2013, pp. 320–331.

[17] P. Malakar et al., “Optimal scheduling of in-situ analysis for large-scale
scientific simulations,” in High Performance Computing, Networking,

Storage and Analysis, 2015 SC-International Conference for. IEEE,
2015, pp. 1–11.

[18] ——, “Optimal execution of co-analysis for large-scale molecular dy-
namics simulations,” in Proceedings of the International Conference for

High Performance Computing, Networking, Storage and Analysis. IEEE
Press, 2016, p. 60.

[19] M. Dorier et al., “On the energy footprint of i/o management in exascale
hpc systems,” Future Generation Computer Systems, vol. 62, pp. 17–28,
2016.

[20] M. Gamell et al., “Exploring power behaviors and trade-offs of in-situ
data analytics,” in High Performance Computing, Networking, Storage

and Analysis (SC), 2013 International Conference for. IEEE, 2013, pp.
1–12.

[21] G. Haldeman et al., “Exploring energy-performance-quality tradeoffs
for scientific workflows with in-situ data analyses,” Computer Science-

Research and Development, vol. 30, no. 2, pp. 207–218, 2015.

[22] I. Rodero et al., “Evaluation of in-situ analysis strategies at scale for
power efficiency and scalability,” in Cluster, Cloud and Grid Computing

(CCGrid), 2016 16th IEEE/ACM International Symposium on. IEEE,
2016, pp. 156–164.

[23] O. Yildiz et al., “A performance and energy analysis of i/o management
approaches for exascale systems,” in Proceedings of the sixth interna-

tional workshop on Data intensive distributed computing. ACM, 2014,
pp. 35–40.

[24] V. Adhinarayanan et al., “On the greenness of in-situ and post-processing
visualization pipelines,” in Parallel and Distributed Processing Sympo-

sium Workshop (IPDPSW), 2015 IEEE International. IEEE, 2015, pp.
880–887.

[25] ——, “Characterizing and modeling power and energy for extreme-scale
in-situ visualization,” in Parallel and Distributed Processing Symposium

(IPDPS), 2017 IEEE International. IEEE, 2017, pp. 978–987.
[26] S. Labasan et al., “Power and performance tradeoffs for visualization

algorithms,” in 2019 IEEE International Parallel and Distributed Pro-

cessing Symposium (IPDPS). IEEE, 2019, pp. 325–334.
[27] L. Savoie et al., “I/o aware power shifting,” in Parallel and Distributed

Processing Symposium, 2016 IEEE International. IEEE, 2016, pp.
740–749.

[28] T. Patki et al., “Practical resource management in power-constrained,
high performance computing,” in Proceedings of the 24th international

symposium on high-performance parallel and distributed computing.
ACM, 2015, pp. 121–132.

[29] O. Sarood et al., “Maximizing throughput of overprovisioned hpc data
centers under a strict power budget,” in Proceedings of the International

Conference for High Performance Computing, Networking, Storage and

Analysis. IEEE Press, 2014, pp. 807–818.
[30] G. Demirci et al., “Approximation algorithms for scheduling with

resource and precedence constraints,” in 35th Symposium on Theoretical

Aspects of Computer Science (STACS 2018). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2018.

[31] ——, “A divide and conquer algorithm for dag scheduling under power
constraints,” in SC18: International Conference for High Performance

Computing, Networking, Storage and Analysis. IEEE, 2018, pp. 466–
477.

[32] S. Chunduri et al., “Run-to-run variability on xeon phi based cray
xc systems,” in Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis. ACM,
2017, p. 52.

[33] “Lammps,” http://lammps.sandia.gov.
[34] S. Plimpton, “Fast parallel algorithms for short-range molecular dynam-

ics,” Journal of computational physics, vol. 117, no. 1, pp. 1–19, 1995.
[35] “Lammps publications,” https://lammps.sandia.gov/papers.html, ac-

cessed: 2019-09-26.
[36] P. Malakar et al., “Scalable in situ analysis of molecular dynamics

simulations,” in Proceedings of the In Situ Infrastructures on Enabling

Extreme-Scale Analysis and Visualization. ACM, 2017, pp. 1–6.
[37] ——, “Topology-aware space-shared co-analysis of large-scale molec-

ular dynamics simulations,” in Proceedings of the International Con-

ference for High Performance Computing, Networking, Storage, and

Analysis. IEEE Press, 2018, p. 24.
[38] “Top500 list - june 2019,” https://www.top500.org/list/2019/06/, ac-

cessed: 2019-07-20.
[39] H. David et al., “Rapl: memory power estimation and capping,” in

2010 ACM/IEEE International Symposium on Low-Power Electronics

and Design (ISLPED). IEEE, 2010, pp. 189–194.
[40] K. Shoga et al., “Whitelisting msrs with msr-safe,” in 3rd Workshop on

Exascale Systems Programming Tools, in conjunction with SC14, 2014.
[41] I. Marincic et al., “Polimer: An energy monitoring and power limiting

interface for hpc applications,” in Proceedings of the 5th International

Workshop on Energy Efficient Supercomputing. ACM, 2017, p. 7.
[42] “Slurm power management documentation,”

https://slurm.schedmd.com/power mgmt.html, accessed: 2019-09-
16.

[43] “Geopm power balancer source code,”
https://github.com/geopm/geopm/blob/dev/src/PowerBalancer.cpp,
accessed: 2019-09-16.

[44] M. P. Allen et al., Computer simulation of liquids. Oxford university
press, 2017.

[45] N. Michaud-Agrawal et al., “Mdanalysis: a toolkit for the analysis of
molecular dynamics simulations,” Journal of computational chemistry,
vol. 32, no. 10, pp. 2319–2327, 2011.


