SeeSAw: Optimizing Performance of In-Situ
Analytics Applications under Power Constraints

Ivana Marincic
University of Chicago
Chicago, IL, USA
imarincic@cs.uchicago.edu

Abstract—Future supercomputers will need to operate under
a power budget. At the same time, in-situ analysis—where a
set of analysis tasks are concurrently executed and periodically
communicate with a scientific simulation—is expected to be a
primary HPC workload to overcome the increasing gap between
the performance of the storage system relative to the computa-
tional capabilities of these machines. Ongoing research focuses
on efficient coupling of simulation and analysis considering
memory or I/O constraints, but power poses a new constraint
that has not yet been addressed for these workflows. There are
two state-of-the-art HPC power management approaches: 1) a
power-aware scheme that measures and reallocates power based
on observed usage and 2) a time-aware scheme that measures
the relative time between communicating software modules and
reallocates power based on timing differences. We find that
considering only one feedback metric has two major drawbacks:
1) both approaches miss opportunities to improve performance
and 2) they often make incorrect decisions when facing the
unique requirements of in-situ analysis. We therefore propose
SeeSAw—an application-aware power management approach,
which uses both time and power feedback to balance a power
budget and maximize performance for in-situ analysis workloads.
We evaluate SeeSAw using the molecular dynamics simulation
LAMMPS with a set of built-in analyses running on the Theta
supercomputer on up to 1024 nodes. We find that the strictly
power-aware approach slows down LAMMPS as much as ~25%.
The strictly time-aware approach shows improvements of up to
~13% and slowdowns as much as ~60%. In contrast, SeeSAw
achieves ~4-30% performance improvements.

Index Terms—HPC, power-constraints, in-situ analysis

I. INTRODUCTION

Future high performance computing (HPC) systems are ex-
pected to operate within strict power budgets [1], [2], requiring
more intelligent power management of hardware, systems and
applications. Application-level power management in HPC
has been given relatively little treatment. In this work we
harness application-specific knowledge from HPC application
developers to achieve performance improvements of in-situ
analytics applications.

In-situ analysis is of paramount importance to HPC.
Through periodic synchronization, simulation-time analysis
provides scientific insights into the simulation using compu-
tation or visualization while reducing the I/O needs. Figure 1
shows a power trace from the molecular dynamics simulation
LAMMPS, demonstrating simulation-analysis activity. A sim-
ulation step corresponds to the regions between two analysis

Venkatram Vishwanath
Argonne National Laboratory
Lemont, IL, USA
venkat@anl.gov

Henry Hoffmann
University of Chicago
Chicago, IL, USA
hankhoffmann@cs.uchicago.edu

spikes in activity, and for each step, the analysis spends nearly
half the time idling at ~105 W to synchronize with simulation
resulting in unused power.

—s— Simulation —— Analysis

100 L \ \ \ | |
76 78 80 82 84 8 8 90 92

Time since application start (s)

Power/node (W)
=
S
I

Fig. 1: Partial power trace of LAMMPS simulation and
analysis processes running on separate nodes on the Theta
supercomputer, exposing periodic synchronization. Power col-
lected every 200 ms.

This idling period can be detected by observing 1) dif-
ferences in power—the waiting process will consume less
power, or 2) differences in time—given a synchronization
point, time measurements differentiate faster from slower pro-
cesses. However, detecting such differences and linking them
to application-specific events is non-trivial due to complex
process organization and workflows. In-situ analysis frame-
works can organize MPI processes with both intra- and inter-
dependencies of MPI sub-communicators. Different analyses
can communicate with simulation at different intervals, re-
sulting in complex workflows that can be difficult to learn
using an online process. Therefore, by exposing HPC ap-
plication developers’ knowledge about processes organization
and communication patterns, we can relate time and power
measurements to programmatic events we are interested in:
simulation-analysis compute and synchronization phases.

There are two state-of-the-art power management systems
deployed on production HPC systems: the job scheduler
SLURM [3] uses power feedback to shift power from nodes
below to nodes at the power cap, and Intel’s Power Balancer
as part of GEOPM [4] uses time feedback to shift power
from faster to slower nodes. By looking at only one feedback
metric, both approaches miss opportunities for efficient power
allocation and can make wrong decisions when faced with
complex in-situ analysis workflow.

To optimize performance of power-constrained in-situ anal-
ysis we propose SeeSAw, which finds the optimal power
allocation between simulation and analysis such that the two
synchronize at the same time. SeeSAw observes time and
power to obtain energy as a feedback metric, which provides
insights the SLURM- and GEOPM-based approaches are
lacking: tasks with no differences in power may still exhibit
differences in time, while tasks with no differences in time
may not utilize power efficiently.

Prior work by Zhang and Hoffmann [5] uses both time and
power to shift power from fast to slow applications running
concurrently and demonstrate improvements over SLURM.
However, the timing data are based on estimates from offline
profiles and, without code instrumentation of the application,
do not tie to application-specific events of importance to in-
situ analysis.

Our paper makes the following contributions:

e We propose SeeSAw: the first dynamic and fully online
power management solution for coordinating developer
knowledge with system power management for in-situ
analysis workflows.

¢ An empirical demonstration that production power man-
agement systems that rely on either power or timing alone
miss crucial information.

o« We propose energy as the right feedback metric for
optimizing performance of in-situ analysis workflows
under power constraints.

« An interface that allows scientists to communicate their
application knowledge with minimal code instrumenta-
tion.

We refer to SLURM’s strategy as the strictly power-aware
and GEOPM as the strictly time-aware approach. Using
varying simulation and analysis compositions, we compare
SeeSAw against both approaches on the Theta supercomputer
system at Argonne National Laboratory relative to a static
power allocation as the baseline on up to 1024 nodes. As
a widely used and representative HPC workload, we use
LAMMPS with its built-in analyses as a case study. We find
that the strictly power-aware approach slows down LAMMPS
as much as ~25% compared to the baseline in all cases. The
strictly time-aware approach shows improvements of up to
~13% and slowdowns as much as ~60%. SeeSAw achieves
~4-30% improvement in time to complete the simulation.

II. BACKGROUND AND RELATED WORK

In-situ Analysis Optimizations. Many in-situ analysis
frameworks have been developed to date, enabling fast and
scalable simulation-time analysis [6]-[16]. Few consider re-
source constraints. Malakar et al [17], [18] consider a fixed and
offline memory, compute and I/O resource profile. However,
these vary over time and the dynamic needs of the application
were not considered. SeeSAw adapts dynamically without
requiring offline power and performance profiles.

Several works model energy and power requirements of
in-situ frameworks, but do not take power constraints into
account [19]-[23]. Adhinarayanan et al [24], [25] compare

the energy cost of in-situ analysis against post-processing.
Labasan et al [26] characterize the power and performance
trade-off in visualization algorithms under power caps. These
works do not consider the opportunity to optimize the slack
power exposed through communication patterns of in-situ
analysis that we are concerned with.

Power-constrained HPC. Recent works concern power-
constrained HPC applications. The collection of power shifting
algorithms proposed in [27] move power from I/O-intensive
to compute phases, but require the duration of these phases to
be known ahead of time. SeeSAw does not require any time
or power information up front. PowerShift [5] is a collection
of heuristics that rely on power and performance profiles col-
lected offline of individual coupled applications to shift power
from the faster to the slower application. The application
couples are synthesized of stand-alone benchmarks. SeeSAw
obtains feedback dynamically, and we demonstrate it on real-
world workloads tightly coupled as one LAMMPS job where
analyses are not executable as stand-alone tasks. Related work
in power-constrained scheduling [28]-[31] offer system-wide
solutions complementary to our application-level approach.

Strictly power-aware approach. The real-world example
of a strictly power-aware approach is deployed in the SLURM
scheduler. This approach aims to address power imbalances
between nodes by shifting excess power from nodes that are
not at the power cap to nodes that are at the power cap. The
excess power is divided evenly among nodes that require more
power. This redistribution is performed at fixed time intervals
for the duration of a job.

Strictly time-aware approach. The strictly time-aware
approach is given by GEOPM’s power balancing plug-in.
Given a power budget and an application loop, this approach
slows down nodes which arrived at the end of the iteration
first, and speeds up the slower nodes by shifting a specific
amount of power. The rate of change in power decreases over
time until a user-configured minimum. Each node finds the
median runtime of its respective ranks. A target runtime is
designated corresponding to some percentage below the max-
imum median runtime of all nodes. The higher the percentage,
the more reactive the algorithm is. If there is slack power, it
is redistributed to all nodes equally.

ITII. ASSUMPTIONS

We assume the following conditions:

¢ Space-shared in-situ analysis. The time-shared mode with
alternating simulation and analysis poses a simpler prob-
lem of managing a power budget: when one workload
enters the critical section, power can be either kept at the
budget or reduced to save energy. SeeSAw addresses the
unique requirements of space-shared in-situ analysis.

o The in-situ analysis workflow is partitioned into two sets
of tasks on separate power domains or voltage planes. For
example, if per-core power can be controlled, simulation
and analysis can be co-located on the same CPU. On our
evaluation platform, power is controlled per node.

o Simulation (analysis) processes have equal work.

< 210 < 210

g) |

g 90 g 90

2 : |

W) [S —
0 50 100 0 50 100
Time (s) Time (s)

(a) Inefficient state (b) Efficient state with SeeSAw

Fig. 2: Illustration of the SeeSAw goal to shift power from the
red to the blue task such that both finish at an earlier time.
Dashed lines show synchronization points.

o Simulation (analysis) compute units are equal, but com-
pute units for simulation can be different from analysis.

IV. SEESAW: OPTIMIZING IN-SITU ANALYSIS UNDER
POWER CAP

SeeSAw balances power between simulation and analysis so
that the two reach points of synchronization at the same time.
Figure 2 illustrates how power is allocated with SeeSAw. With
210 W total power for all compute units (nodes, cores, etc.),
the blue task requires 90 W and takes 100 s to reach the
synchronization, while the red task needs 120 W and 60 s. In
Figure 2a 120 W is unused for 40 s. By moving ~3 W from
the red to the blue task, SeeSAw reduces the iteration time to
~77 s, as illustrated in Figure 2b.

Finding how much power to redistribute requires addressing
two challenges: 1) the function between power and time is
unknown and difficult to estimate, 2) there could be presence
of system noise affecting the power and performance behavior
of the application [32]. By approximating the relationship
between power and time as a linear function, SeeSAw accounts
for non-linearity with a series of small linear steps each time
simulation and analysis synchronize. SeeSAw addresses the
second challenge by taking the steps in a controlled way to
guard against anomalies and noise, in which past informa-
tion is consolidated with the present using an exponentially
weighted moving average.

SeeSAw uses energy as the feedback metric from past
time and power measurements to make decisions about power
allocations, because energy captures the impact of changes in
power on time and vice versa. Then, a fraction of the power
budget is assigned to each task corresponding to the fraction
of that task’s energy needs with respect to the total energy
required by simulation and analysis to reach a synchronization.

Furthermore, energy enables finding a new power value in
one step, rather than incrementally moving power to slow
down the faster task (the time-aware approach) or move unused
power to the more power-demanding task (the power-aware
approach). By shifting specific amounts of power determined
by heuristics, these incremental approaches may also miss
the power distribution that makes simulation and analysis
equal in time, thus resulting in a less optimal or worse state.
Further benefits of SeeSAw include: no requirements for of-
fline profiling, minimal code instrumentation to indicate points

of synchronizations, light-weight calculations incur negligible
overhead.

A. SeeSAw Formulation

We formally describe how SeeSAw allocates power for
power-constrained in-situ analysis. Let C' be the global power
budget available for an in-situ analysis job. Let S and A
designate the simulation and analysis tasks, respectively. Let
T7 and T/ be the time it takes for S and A to reach the
synchronization at time step ¢. Our goal is to reduce the time
it takes both S and A to arrive at the synchronization point,
so we have the following objective:

min mazx (Tis, TiA)
2

The solution to this objective is optimal when:
S A
7 =T;

A proof is given by Zhang and Hoffmann [5], and Demirci et
al [30], [31]. We paraphrase: when moving power from one
task to the other in the optimal state, one task will slow down
beyond the optimal time and the other speed up, and thus the
overall runtime as determined by the slower task is longer.

To account for noisy measurements of past time and power,
we provide a configurable window w which determines after
how many synchronizations to redistribute power. We take the
average time and power over the last w intervals to obtain a
value of simulation power Pjs and time Tjs at each allocation
7, ie at the start of every w synchronizations:

1< 1<
PP=— 0, TP=o 3 8

1=j—w =7 —w

and likewise for analysis power P/* and T7.

Using these past measurements, the goal is to find optimal
powers PﬁgTS and PﬁjT“ such that we obey the power
budget C' and such that S and A arrive at a new time ¢7; for
the next w synchronizations.

To compute the new optimal power, we approximate the
time and power relationship as linear using a parameter «:

s 1 A 1
O =, Qf = ———— 1
ITTSxPS N T TApA M

Using the power constraint C' and the time equality property,

we solve for POLTs and P25 for the next allocation:

Jj+1 Jj+1
A s
(6%} (071
PT, j OPT,4 j
porTs —o_ Y porTa_ o Y (g
1 1
It af+oz34’ It oszroaj‘

To account for noise, anomalies, and to reduce the rate at
which we change power at each synchronization point, we
use the exponentially weighted moving average to set the
optimal power. The weight we place on the most recent data
is determined by the ratios:

OPTB OPT%
P = Pj+1 rA = Pj+1 (3)
J+1 — C’) J+1 — C

We compute the total new allocated power for simulation
and analysis for the next w steps:

Prevs = v x PONTS 4+ (113,)) x POITS

Jj+1 J Jj+1 Jj+1 4)
newy _ A OPTa A OPT 4
Pl =rig x PR+ (L —rihy) X Py

Since power is controlled per voltage plane, P;"’\"® and
Py are evenly divided by the number of compute units
designated for simulation and analysis, respectively.

To account for the new power values being below or
above what the hardware supports, we set a 6,5, and 6pqz
corresponding to the lowest and highest supported power. If
the simulation nodes are below d,,,;, (above d,,4.), they are
set at d,in (maz) and analysis nodes at remaining power, and
vice versa. In case of a tie, handling d,,,,, takes priority.

B. Harnessing Application Developers’ Knowledge

Developers of in-situ analysis applications or frameworks
can enable SeeSAw through two pieces of application-
specific information: the application’s process organization,
and simulation-analysis synchronization pattern.

First, to allocate power between the corect entities, a pro-
cess’ identity as simulation or analysis must be supplied. In-
situ frameworks already make this distinction typically using
sub-communicators. As only process membership is relevant,
this information enables SeeSAw to navigate complex process
organization in such frameworks with potentially many MPI
sub-communicators.

In addition, SeeSAw must be invoked prior to a synchroniza-
tion or point of communication between the simulation and
analysis partitions. This enables differentiating independent
work from communication between simulation and analysis,
and correct power and time characterization of these events.

As illustrated in the case of LAMMPS in Section VI-C,
the two requirements can be satisfied in just two lines of
code. We make SeeSAw available! as part of an application-
level power management library called PoLiMEr, discussed in
Section VI-B.

V. LAMMPS: OVERVIEW

Molecular dynamics (MD) simulations explore the physics
and chemistry governing systems such as liquids, biomolecules
and materials. LAMMPS (Large-scale Atomic/Molecular Mas-
sively Parallel Simulator) is a classical MD simulation and a
key workload on HPC supercomputers [33], [34] cited in over
10,000 publications [35], and used by thousands of users world
wide. It can simulate different systems containing different
types of particles (atoms, molecules, ions, etc.) divided into
sub-volumes assigned to individual MPI ranks.

We consider the velocity-Verlet timestepping algorithm
which drives the LAMMPS simulation. The Verlet algorithm
invokes specific analyses at the end of every j Verlet steps,
where j is configurable. Malakar et al propose an exten-
sion to the Verlet algorithm called Verlet-Splitanalysis which
forms physically separate partitions of simulation and analysis

Thttps://github.com/PoLiMEr-HPC/PoLiMEr-SeeS Aw

processes [18], [36], [37]. When a partition is created, an
analysis (A) process is paired with one or more simulation
(S) processes within one MPI subcommunicator. Each Verlet
step has the following flow:

1) S performs initial integration

2) S sends particle coordinates and velocities to A partition
3) both partitions rebuild a subset of data structures

4) S sends particle count to A for verification

5) both partitions update neighbor lists

6) S computes forces and final integration

7) S invokes A at the end of time step

8) optional output of state of S

Steps 2—4 constitute the synchronization phase between
simulation and analysis. Otherwise, simulation and analysis
are doing independent work. The rebuilding of neighbor
lists concerns the update of positions of particles, and is a
communication-intensive phase. In our LAMMPS runs we
request output of thermodynamic data at end of each time
step, which is also communication- and I/O-intensive. At each
Verlet time step both simulation and analysis perform a series
of actions with different resource utilization.

VI. METHODOLOGY AND EXPERIMENTAL SETUP

We describe the experimental hardware and software setup
for our evaluation, followed by details of the necessary code
instrumentation of LAMMPS.

A. Hardware Setup

All experiments were run on the Theta supercomputer at
Argonne National Laboratory—a Cray XC40 system ranked
#28 by the Top500 project [38]. Theta has 4392 single-socket
compute nodes with second-generation 64-core Intel Xeon Phi
7230 CPUs. The base frequency of each node is 1.3 GHz
with turbo frequency up to 1.5 GHz and TDP of 215 W.
Theta’s nodes support power capping and monitoring via
Intel’s RAPL interface [39], accessible to users through the
msr-safe module [40].

B. Software Setup: Power Management

We extend a power monitoring and capping library for dis-
tributed MPI applications called PoLiMEr [41] to implement
SeeSAw. We implement the power- and time-aware approaches
as closely as possible to the original implementations provided
in [42] and [43]. PoLiMEr supports power monitoring and
capping via RAPL, and monitors time of each MPI rank. It
uses the available MPI ranks of the application and desig-
nates one rank per node for power monitoring. To measure
simulation and analysis time and power for each interval
between w synchronizations, we use the time of the slowest
simulation (analysis) ranks, including the time to perform the
power allocation, and the sum of power measurements from
all simulation and analysis nodes.

The SLURM-based power-aware approach checks if power
can be shifted at a fixed time interval independent of the
application. To give the power-aware approach an advantage,
in our implementation we allocate power at the start of

the simulation-analysis synchronization instead, because we
expect a fixed time interval to perform badly with non-
uniform workloads such as LAMMPS with Splitanalysis. The
w window applies to our power-aware implementation.
GEOPM'’s power balancer is invoked at each iteration of any
application loop. Since analyses may not be invoked at each
iteration, our implementation aids the time-aware algorithm by
invoking it at each synchronization instead. Changing w does
not have an effect, to mimic the original intended behavior.

C. Software Setup: LAMMPS

We use a custom benchmark for LAMMPS from prior
works [17], [36], [37] simulating a box of water molecules
solvating two types of ions. We consider analyses commonly
used in scientific computing [44], [45] and as case studies [17],
[18], [36]:

o Hydronium and ion RDF - radial distribution functions,

averaged over all molecules

o VACF - velocity auto-correlation function

e« MSD, MSD1D, MSD2D - mean squared displacements

for 1D and 2D spatial bins, averaged over all molecules

The analyses have different resource requirements [18].
MSD has high CPU and memory utilization, MSD2D is mostly
memory-intensive (less than MSD), RDF is compute bound
but with higher memory needs than VACF and MSDID,
both having low memory and CPU utilization. An analysis
is invoked every j timesteps, and the number of analysis and
simulation ranks is equal in all results in Section VII.

We modified the LAMMPS Splitanalysis extension to ini-
tialize PoLiMEr’s power management capability:
//universe->uworld : MPI communicator for all

processes or MPI_COMM_WORLD
//universe->me : rank of current process
//master : 0 if simulation, 1 if analysis
//power_cap : initial power cap on node of

current process (specified by user)

poli_init_power_manager (universe->uworld,
universe->me, master, power_cap);

This distinguishes simulation from analysis processes. We then
eallocate power before synchronization:

—

poli_power_alloc();
//synchronization

Detailed implementation documentation is provided in our
code (see Section IV-B).

VII. EVALUATION

We evaluate SeeSAw against the power- and time-aware
approaches relative to the static baseline. The baseline equally
divides the global power budget between simulation and
analysis nodes. The power cap per node remains fixed (static)
and is maintained by RAPL on our evaluation platform. We
use the following parameters and settings in our experiments:

e dim — The problem size in LAMMPS is the number

of atoms replicated within the simulation cube with
dimension dim. Our benchmark has 1568 atoms, so the
total number of atoms is 1568 x dim?.

e 7 — LAMMPS parameter specifying after how many
Verlet steps simulation and analysis synchronize. When
j =1 they synchronize at each step, otherwise Steps 2—
4, 5 and 7 from Section V are skipped until every ;"
step. We use a total of 400 Verlet steps.

e w — SeeSAw parameter specifying after how many syn-
chronizations power should be allocated. Because the
evaluated strategies allocate power at different intervals,
for a fair comparison we set w = 1 so that each power
management strategy is invoked at every synchronization.

o Global power budget of 110 x n W, where n is the total
number of nodes of the LAMMPS job. Section VII-D
explains our choice of power cap.

First we outline how we mitigate run-to-run variability, then
we compare the power management algorithms on different
analyses and scales, followed by a sensitivity analysis specific
to SeeSAw, and overhead measurements.

A. Variability of Results

HPC systems are subject to run-to-run variability [32].
Table I shows the variability of 7 LAMMPS runs for different
power caps. Since variability is low on repeated runs on the
same node, to reduce the job sizes of our experiments, we
compare the differences in runtime between jobs containing
two runs: the power management algorithm of interest and
the baseline. Simulation and analysis rank placement on nodes
and cores is identical in both runs.

TABLE I: Variability across 7 runs for different types of power
caps and problem size for LAMMPS on 128 nodes.

Power Cap | dim | Variability Type | Variability %
36 run-to-run 0.8
| B R
48 job-to-job 0.8
36 run-to-run 0.7
oy | 2| |
48 job-to-job 5.7
36 run-to-run 2.1
Long and Short (110 W each) ig iﬁ ::tg?r?] 2 2;
48 job-to-job 24

Variability is exacerbated by power caps. RAPL maintains
a moving average of the requested power cap over a period of
time (1 s on Theta). A short-term power cap allows for brief
(9.766 ms on Theta) violations of the long-term power cap.
Capping both long- and short-term power guarantees the power
budget will not be violated as RAPL limits the power slightly
below the requested power, however, the variability increases.
The power-aware algorithm takes action only if nodes are
at the power cap, otherwise it assumes the application has
available power. In contrast, SeeSAw does not depend on the
application reaching the power cap. For or a fair evaluation,
however, and to reduce variability, we show results with long-
term power capping only.

B. Different Analyses Require Different Power Allocations

We compare SeeSAw against the power- and time-aware ap-
proaches on LAMMPS with different sets of analyses, problem
sizes, and scales shown in Figure 3. Full MSD includes three
components: MSD1D, MSD2D, and a final averaging of all
particles. The all category includes RDF, MSD1D, MSD2D,
final MSD averaging in case of full MSD, and VACEF, executed
in sequence at each synchronization. The full MSD analysis is
a high-demand workload compared to VACF and RDF and its
subcomponents MSD1D and MSD2D. Due to its high memory
needs it is limited to problem size with dim = 16. In addition,
for a comparison of full MSD and its subcomponents, we set
dim = 16 for MSD1D and MSD2D.

We observe the following: 1) SeeSAw outperforms with
high-demand analyses, 2) the time-aware approach is competi-
tive with low-demand analyses, 3) scale is a dominating factor
over problem size for effectiveness of power management.

1) Impact of High-Demand Analyses: We demonstrate the
performance differences between the three approaches on
LAMMPS with full MSD in Figure 4 which shows the
power allocated per node. The slack time (black graphs) is
the difference between simulation and analysis time between
synchronizations normalized to the total time the slowest
process took to reach the next synchronization. For reference,
Figures 4d and 4e show baseline simulation and analysis time
and power between the first 10 synchronization points with
110 W power cap per node. In our implementation step 0 is
ignored because it is outside of the main simulation loop. In
the first couple steps the simulation has extra setup overhead,
which is consistent in repeated runs with MSD. Onward MSD
and LAMMPS are nearly identical in runtime with 4 seconds
between synchronizations, whereas VACF, RDF, MSD1D, and
MSD2D are 2—4x faster than simulation.

Figure 4a shows that SeeSAw settles on a power distribution
within the first 20 steps, assigning analysis more power and
bringing the slack time down to an average of 0.8% (calculated
from the 10™ step).

By only referencing time, the time-aware approach can
move power in the wrong direction and not correct the
power allocation later on. This strategy picks a direction and
gradually increases the gap in the power distribution in that
direction. Because MSD is initially faster than simulation, as
shown in Figure 4d, the time-aware approach assigns it more
power too quickly. The power allocation flattens out due to a
reduction in the rate of change parameter and reaching 6,
(98 W). It is unable to return to a better power distribution,
because at each subsequent synchronization point simulation
and analysis nodes alternate in terms of being the slowest,
causing no net power being shifted over time. Furthermore, the
simulation is not able to utilize the assigned 120 W per node.
Power measurements show that simulation consumes 102-104
W at each synchronization, due to the analysis nodes being
capped low. The slack time of 12% reflects this inefficient
distribution.

Finally, by only referencing power, the power-aware ap-
proach is unaware of performance impacts of its chosen power

= SeeSAw — Time-Aware — Power-Aware

—19.66]
=394 [T
022

—20.35]
—40.78]
04.23

—20.09]
all+full MSD (16) |—66.36]
16.9

—21.13]
[—

—44.67
04.09

—16.57]
[]8.62
721

—23.9]
=50.18]
[C113.82
—9.42]
—7.51 [0
[06.61
—20.1]
—5.88 0
0 6.08

all (48) |

all (36) |

MSD2D (16) |

MSDID (16) |

full MSD (16) |

VACF+RDF (48) |

VACF+RDF (36) |

RDF (48) |

RDF (36)

VACF (48) |

VACF (36) |

|
—50 0 50

% Improvement over static

(a) 128 nodes
—9.66 []
all (48) {—63.78]
1 8.63

—2739 []
—54.66]
[C116.46

full MSD (16) |

-9.02
[112.03
!] 4.23

|
—50 0 50

% Improvement over static

VACF (48) |

(b) 1024 nodes with representative workloads

Fig. 3: Performance of SeeSAw, time- and power-aware ap-
proaches for different analyses, w = 1, 7 = 1. Median of 3
runs shown for each bar.

—— Simulation —— Analysis

—~ AL
= 130 70.6 8
g 120 104
S <
£ 110 102 =
B o
2 100 R lg E
5 ! - 1 ! ! S
- 0 500 1,000 1,500 2,000 2,500 Z
Time since start (s)
(a) SeeSAw: power allocated over time
—~ A
= 130 70.6 8
v 120 i -
2 f 0.4 E
£ 110 102 =
B g
= 100 § 1o E
o I | | ! !)
- 0 500 1,000 1,500 2,000 2,500 Z
Time since start (s)
(b) Time-aware approach: power allocated over time
— e
z 130 706 2
g 1201 ki 104 g
g i g
£ 110 ‘ 1092 =
B ‘ A | i : s
z 100 - L 114 1o é
o | | |)
- 0 500 1,000 1,500 2,000 2,500 Z
Time since start (s)
(c) Power-aware approach: power allocated over time
= 20|
o 15|
£ 10|
= 5L ! 1 1 T 1
0 2 4 6 8 10
Synchronization count
(d) Time between first 10 synchronizations for baseline
% 112
3
g 1oy MZX
=
g 108 | ! ! ! ! !
£ 0 2 4 6 8 10

Synchronization count
(e) Power between first 10 synchronizations for baseline

Fig. 4: Power allocation per simulation and analysis node
at each synchronization step. Each row corresponds to a
run of LAMMPS with the MSD analysis on 128 nodes,
7 = 1,dim = 16. The right y-axis (black) shows the nor-
malized slack time relative to the total time interval between
synchronizations. Bottom two charts show time and power
between first 10 synchronizations for simulation and analysis
without any power management.

—— Allocated (S) —— Allocated (A)
—— Measured (S) —— Measured (A)

§ 0.8 e
T T T T -1 U.
< 120 1o =
3 O
e 110 104 8
B 102 =
=
z 100 [T ‘ ‘ o £
- 500 1,000 1,500 2,000 Z
Time since start (s)
(a) SeeSAw
z 08 8
~ 120 | 0.6 =
3 O
g 110 104 8
o - -10.2 g
2 10 bmemre— | £
- 500 1,000 1,500 2,000 Z

Time since start (s)
(b) Time-aware approach

Fig. 5: Power measured compared to allocated between syn-
chronizations by SeeSAw and time-aware approach at 1024
nodes. Normalized slack shown in black.

allocations. Under the power-aware approach, the slack time
fluctuates between 0.2% and 40%. Without any metric for
efficiency, it simply responds to potentially noisy differences
in measured power, worsened by irregular application patterns.

2) Impact of Low-Demand Analyses: The MSD result
shows that SeeSAw is able to address the counter-intuitive
need to give analysis more power even though simulation and
analysis are both nearly identical in time as shown in the base-
line time measurements in Figure 4d. The time-aware approach
works well with LAMMPS+RDF and LAMMPS+VACE.
These low-demand analyses do not benefit from more power,
while the simulation does. SeeSAw and the time-aware strat-
egy perform differently, due to settling at different power
distributions. The time-aware approach settles at 120 W and
121 W for each simulation node, and 100 W and 101 W for
each analysis node for LAMMPS+RDF and LAMMPS+VACE,
respectively. SeeSAw does not exceed 115 W per simulation
node for LAMMPS+RDF and 117 W for LAMMPS+VACF.
This suggests that SeeSAw may be susceptible to local optima.
Finally, the power-aware approach is sensitive to noisy envi-
ronments and is not suitable for in-situ analysis where nodes
do not have equal amount of work.

3) Impact of Scale: At larger scales an additional deciding
power allocation factor are utilization limits due to communi-
cation overhead. Figure 3b shows the performance difference
between the three power allocation algorithms in case of
full MSD, all analyses and VACF, chosen as representative
workloads out from Figure 3a. Figure 5 shows a detailed
comparison between SeeSAw and the time-aware approach for
all analyses. We omit the power-aware approach as its behavior
is similar to Figure 4c.

In Figure 5a SeeSAw allocates more power to analysis.
For the same workload and problem size on 128 nodes,
SeeSAw fluctuates between 109-115 W per simulation node,
which suggests that simulation at larger scale has lower power
utilization.

Despite the normalized slack time in Figure 5b being nearly
0, the time-aware approach causes severe performance degra-
dation. The time-aware approach chooses the wrong direction,
increasing the gap in power distribution until reaching d,,;,.
Because the analysis is capped at d,,,;, and due to longer but
low-power communication-intensive phases, the simulation is
forced into a low-power state. As both tasks are running barely
above the system operating power, the time difference between
them is incidentally low. Therefore, low differences in time
between simulation and analysis is not indicative of an energy-
efficient state and power feedback must be considered as well.

C. Sensitivity Analysis

In this section we examine parameters that affect SeeSAw’s
performance, the impact of analyses with mixed intervals, and
different initial power between simulation and analysis.

1) Impact of SeeSAw Window Size and LAMMPS Synchro-
nization Rate: Figure 6 shows the impact of the frequency j at
which simulation and analysis synchronize, and the frequency
w at which power is reallocated on SeeSAw’s performance
on 1024 nodes when LAMMPS is executed with all analyses.
Allocating power more frequently is favorable over infrequent
re-allocations which miss past slack optimization opportuni-
ties. If invoked at each synchronization step, SeeSAw is more
reactive to potential anomalies, so choosing 1 < w < 10
mitigates that. When simulation and analysis synchronize
less frequently, SeeSAw has fewer opportunities to correct
inefficient power distributions causing LAMMPS to spend
more time in inefficient states. In such configurations, we
observe that allocating power as frequently as possible helps.
Optimal settings of w are empirically determined and may
differ for different applications.

% Improvement
over Static
ot
I

|
100

Fig. 6: SeeSAw w and LAMMPS synchronization rate j on
1024 nodes, dim = 48, mix of analyses.

2) Mixed Analysis Intervals: Different analyses can be
configured to run at different time steps. Table II shows the
impact of varying the frequency of a high-demand and low-
demand analysis while the rest remain constant. One run
varies full MSD while RDF and VACF synchronize with the
simulation at each time step, another varies VACF while full
MSD and RDF run every step. Power is allocated at every step.

As the frequency of MSD decreases, and by fixing w = 1,
SeeSAw is too reactive to the now anomalous MSD analysis.
VACEF, on the other hand, is a low-demand workload and
does not skew SeeSAw’s measurements. When properly tuned,
SeeSAw tolerates variable analysis frequencies well. For high-
demand but infrequent analyses, setting w = 2 or higher will
not trigger sudden changes in power allocation.

TABLE II: SeeSAw runtime improvement over the baseline
on 2 runs of LAMMPS with RDF, full MSD and VACF: 1)
frequency of only full MSD is varied, 2) only VACEF is varied.
The rest synchronize at each time step. Median of 3 runs on
128 nodes shown, w = 1, dim = 16.

j | 4 | 20 | 100
MSD % improvement over static | 5.03 | 094 | 0.90
VACF % improvement over static | 16.76 | 15.09 | 16.24

3) Unbalanced Initial Power Distribution: Finally, we con-
sider different initial power distributions between simulation
and analysis to reflect differences in power requirements
between the two if, for instance, they are given different
resources. Figure 7 shows that SeeSAw improves performance
in such cases in comparison to keeping simulation and anal-
ysis at the initial power distribution. To account for noisy
measurements, we chose w = 2. The median of three runs
shows performance improvement of 28.26% when simulation
starts with more power, 19.21% when analysis starts with
more power, and 8.94% when the two start with the same
power. In Figure 7b SeeSAw improves power utilization of
the analysis, which in the static baseline does not utilize the
assigned 120 W per node because it depends on the now much
slower simulation restricted to run at 100 W per node.

D. Diminishing Returns with More Power Headroom

To justify our choice of 110 W in our evaluation, we preset
Figure 8 which shows that SeeSAw is more effective at tighter
power budgets. There are limited benefits with more liberal
power budgets as LAMMPS fails to utilize additional power
beyond 140 W per node. The minimum supported power cap
by RAPL on Theta’s nodes is 98 W, at which application
performance is significantly reduced and run-to-run variability
increases. For a stringent power cap that is not too close to
the minimum, we chose 110 W. The trend shown in Figure 8
is consistent for different analyses, but the exact improvement
over the static baseline varies across different power caps with
highest improvements in the 110-120 W range per node.

E. Overhead

Overhead of computing a new power allocation with See-
SAw is primarily due to communication costs from exchanging
power and time measurements between the PoLiMEr ranks,
whereas RAPL requires 10ms to react to new power cap
requests on Theta’s CPUs. We report overhead as relative cost
to LAMMPS in Figure 9a at the end of each synchronization,
and the absolute time of stand-alone execution of SeeSAw

— SeeSAw (S) — SeeSAw (A)
— Static (S) — Static (A)

120 F

-
3

110 (-
100 [f | | |
0 1,000 2,000 3,000

Time since start (s)
(a) Simulation starts at 120 W and analysis at 100 W per node

F”F" |

500 1 OOO 1 500 2 OOO 2,500 3, 000

Time since start (s)
(b) Analysis starts at 120 W and simulation at 100 W per node

115 F |
|V’\JL

500

Power/node (W)

|
4,000

110 |-
105 -
100 -

Power/node (W)

110 -

105 -

Power/node (W)

1 OOO 1,500 2,000 2 500

Time since start (s)
(c) Simulation and analysis both start at 110 W

Fig. 7: Simulation (S) and analysis (A) power traces with
SeeSAw and static baseline with different initial power distri-
butions. LAMMPS run on 128 nodes as three different jobs,
all analyses, dim = 36, w =2, j = 1.

2 2,500 5 —e— Static —=— SeeSAw
2 2,000
E 1,500 |-
2 ool 8% % 2.10%

|
110 120 130
Power cap/node (W)

|
100 140
Fig. 8: Improvement of SeeSAw over static baseline for vary-
ing power caps per node. LAMMPS is run with all analyses

with full MSD on 128 nodes, dim = 16, w = 1, j = 1. Each
point is the median total runtime of 3 LAMMPS.

in Figure 9b. Communication costs dominate at 1024 nodes,
causing a smaller relative overhead, but higher overhead in
absolute measurements. Furthermore, communication costs
depend on the underlying interconnect which is optimized for
collective MPI communication routines on Theta. Nonetheless,
overhead of allocating power itself is incorporated in the time
and power measurements by SeeSAw.

0.2 ” 128 nodes — 1024 nodes

0.1
i

‘l\‘m

% Overhead

| |
0 100 200 300
Synchronization count

(a) Overhead of SeeSAw as a percentage of total time at each
synchronization in LAMMPS with all analyses on 128 and 1024
nodes, dim =48, w =1, j = 1.

0.6 — 128 nodes — 1024 nodes |
0.4

Time (ms)

[
200
Power/node (W)

|
100 150 250

(b) Average duration of SeeSAw in a loop of 10 iterations across
different power caps on the Theta supercomputer.

Fig. 9: Overhead measurements of SeeSAw

VIII. CONCLUSION AND FUTURE WORK

SeeSAw is the first dynamic and completely online power
management solution for coordinating HPC application devel-
oper knowledge with system power management for in-situ
analysis workflows. Our results demonstrate that energy is the
right feedback metric for optimizing performance of in-situ
analysis workflows under power constraints. Existing strictly
power- or time-aware solutions miss key information such
as power utilization capabilities, whether measured feedback
is noise, or when simulation or analysis benefits from more
power than the other.

There are several avenues for future work. Methods to over-
come local optima could be explored for more performance
gains with low-demand analyses. To add support for hetero-
geneous hardware within the simulation (analysis) partition,
power should be allocated through a hierarchical decision-
making process that breaks down SeeSAw’s power allocation
to the individual compute units, or to different analyses when
they are invoked at mixed intervals. Furthermore, SeeSAw
could be integrated with job schedulers and system-wide
power management schemes.

Our results suggest that employing dynamic approaches
which utilize application-specific knowledge is a promising
direction for future research on power management in HPC.

Acknowledgements

We thank the anonymous reviewers for their insightful
feedback. This research is primarily supported by a DOE
Early Career award. Additional support comes from NSF
(CCF-1439156, CCF-1823032, CNS-1764039) and the Pro-
teus project under the DARPA BRASS program. This research
used resources of the Argonne Leadership Computing Facility,
which is a DOE Office of Science User Facility supported un-
der Contract DE-AC02-06CH11357. We thank Preeti Malakar

and Christopher Knight for their guidance on in-situ analysis
and LAMMPS.

[1]
[2]

[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

REFERENCES

K. Bergman et al., “Exascale computing study: Technology challenges
in achieving exascale systems peter kogge, editor & study lead,” 2008.
V. Sarkar et al., “Exascale software study: Software challenges in
extreme scale systems,” 2009, dARPA IPTO Study Report for William
Harrod.

“The slurm workload manager,” https://slurm.schedmd.com.

J. Eastep et al., “Global extensible open power manager: a vehicle for
hpc community collaboration toward co-designed energy management
solutions,” Supercomputing PMBS, 2016.

H. Zhang et al, “Performance & energy tradeoffs for dependent
distributed applications under system-wide power caps,” in Proceedings
of the 47th International Conference on Parallel Processing, ser. ICPP
2018. New York, NY, USA: ACM, 2018, pp. 67:1-67:11. [Online].
Available: http://doi.acm.org/10.1145/3225058.3225098

H. Abbasi et al., “Datastager: scalable data staging services for petascale
applications,” Cluster Computing, vol. 13, no. 3, pp. 277-290, 2010.
U. Ayachit et al,, “Performance analysis, design considerations, and
applications of extreme-scale in situ infrastructures,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis. 1EEE Press, 2016, p. 79.

T. Bicer et al., “Real-time data analysis and autonomous steering of
synchrotron light source experiments,” in e-Science (e-Science), 2017
IEEE 13th International Conference on. 1EEE, 2017, pp. 59-68.

M. Dorier et al., “Damaris: How to efficiently leverage multicore
parallelism to achieve scalable, jitter-free i/0,” in Cluster Computing
(CLUSTER), 2012 IEEE International Conference on. IEEE, 2012, pp.
155-163.

J. Y. Choi et al., “Coupling exascale multiphysics applications: Methods
and lessons learned,” in 2018 IEEE 14th International Conference on
e-Science (e-Science). 1EEE, 2018, pp. 442-452.

M. Dreher et al., “A flexible framework for asynchronous in situ and in
transit analytics for scientific simulations,” in Cluster, Cloud and Grid
Computing (CCGrid), 2014 14th IEEE/ACM International Symposium
on. IEEE, 2014, pp. 277-286.

T. Kuhlen et al., “Parallel in situ coupling of simulation with a fully
featured visualization system,” in Proceedings of the 11th Eurographics
Conference on Parallel Graphics and Visualization (EGPGV), 2011.
A. Luckow et al., “Pilot-streaming: A stream processing framework for
high-performance computing,” arXiv preprint arXiv:1801.08648, 2018.
“Paraview catalyst,” http://catalyst.paraview.org.

F. Zheng et al., “Predata—preparatory data analytics on peta-scale
machines,” in Parallel & Distributed Processing (IPDPS), 2010 IEEE
International Symposium on. 1EEE, 2010, pp. 1-12.

——, “Flexio: I/0o middleware for location-flexible scientific data ana-
lytics,” in Parallel & Distributed Processing (IPDPS), 2013 IEEE 27th
International Symposium on. 1EEE, 2013, pp. 320-331.

P. Malakar et al., “Optimal scheduling of in-situ analysis for large-scale
scientific simulations,” in High Performance Computing, Networking,
Storage and Analysis, 2015 SC-International Conference for. 1EEE,
2015, pp. 1-11.

——, “Optimal execution of co-analysis for large-scale molecular dy-
namics simulations,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. 1EEE
Press, 2016, p. 60.

M. Dorier et al., “On the energy footprint of i/0 management in exascale
hpc systems,” Future Generation Computer Systems, vol. 62, pp. 17-28,
2016.

M. Gamell et al., “Exploring power behaviors and trade-offs of in-situ
data analytics,” in High Performance Computing, Networking, Storage
and Analysis (SC), 2013 International Conference for. 1EEE, 2013, pp.
1-12.

G. Haldeman et al., “Exploring energy-performance-quality tradeoffs
for scientific workflows with in-situ data analyses,” Computer Science-
Research and Development, vol. 30, no. 2, pp. 207-218, 2015.

I. Rodero et al., “Evaluation of in-situ analysis strategies at scale for
power efficiency and scalability,” in Cluster, Cloud and Grid Computing
(CCGrid), 2016 16th IEEE/ACM International Symposium on. IEEE,
2016, pp. 156-164.

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[31]

(32]

[33]
[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

0. Yildiz et al., “A performance and energy analysis of i/o management
approaches for exascale systems,” in Proceedings of the sixth interna-
tional workshop on Data intensive distributed computing. ACM, 2014,
pp. 35-40.

V. Adhinarayanan ef al., “On the greenness of in-situ and post-processing
visualization pipelines,” in Parallel and Distributed Processing Sympo-
sium Workshop (IPDPSW), 2015 IEEE International. 1EEE, 2015, pp.
880-887.

——, “Characterizing and modeling power and energy for extreme-scale
in-situ visualization,” in Parallel and Distributed Processing Symposium
(IPDPS), 2017 IEEE International. 1EEE, 2017, pp. 978-987.

S. Labasan et al., “Power and performance tradeoffs for visualization
algorithms,” in 2019 IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS). 1EEE, 2019, pp. 325-334.

L. Savoie et al., “I/o aware power shifting,” in Parallel and Distributed
Processing Symposium, 2016 IEEE International. 1EEE, 2016, pp.
740-749.

T. Patki et al., “Practical resource management in power-constrained,
high performance computing,” in Proceedings of the 24th international
symposium on high-performance parallel and distributed computing.
ACM, 2015, pp. 121-132.

O. Sarood et al., “Maximizing throughput of overprovisioned hpc data
centers under a strict power budget,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis. 1EEE Press, 2014, pp. 807-818.

G. Demirci et al., “Approximation algorithms for scheduling with
resource and precedence constraints,” in 35th Symposium on Theoretical
Aspects of Computer Science (STACS 2018). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2018.

——, “A divide and conquer algorithm for dag scheduling under power
constraints,” in SCI8: International Conference for High Performance
Computing, Networking, Storage and Analysis. 1EEE, 2018, pp. 466—
477.

S. Chunduri et al., “Run-to-run variability on xeon phi based cray
xc systems,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. ~ACM,
2017, p. 52.

“Lammps,” http://lammps.sandia.gov.

S. Plimpton, “Fast parallel algorithms for short-range molecular dynam-
ics,” Journal of computational physics, vol. 117, no. 1, pp. 1-19, 1995.
“Lammps publications,” https://lammps.sandia.gov/papers.html, ac-
cessed: 2019-09-26.

P. Malakar et al., “Scalable in situ analysis of molecular dynamics
simulations,” in Proceedings of the In Situ Infrastructures on Enabling
Extreme-Scale Analysis and Visualization. ACM, 2017, pp. 1-6.

, “Topology-aware space-shared co-analysis of large-scale molec-
ular dynamics simulations,” in Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage, and
Analysis. 1EEE Press, 2018, p. 24.

“Top500 list - june 2019,” https://www.top500.0rg/list/2019/06/, ac-
cessed: 2019-07-20.

H. David et al., “Rapl: memory power estimation and capping,” in
2010 ACM/IEEE International Symposium on Low-Power Electronics
and Design (ISLPED). 1EEE, 2010, pp. 189-194.

K. Shoga et al., “Whitelisting msrs with msr-safe,” in 3rd Workshop on
Exascale Systems Programming Tools, in conjunction with SC14, 2014.
I. Marincic et al., “Polimer: An energy monitoring and power limiting
interface for hpc applications,” in Proceedings of the 5th International
Workshop on Energy Efficient Supercomputing. ACM, 2017, p. 7.

“Slurm power management documentation,”
https://slurm.schedmd.com/power_mgmt.html, accessed: =~ 2019-09-
16.

“Geopm power balancer source code,”

https://github.com/geopm/geopm/blob/dev/src/PowerBalancer.cpp,
accessed: 2019-09-16.

M. P. Allen et al., Computer simulation of liquids.
press, 2017.

N. Michaud-Agrawal et al., “Mdanalysis: a toolkit for the analysis of
molecular dynamics simulations,” Journal of computational chemistry,
vol. 32, no. 10, pp. 2319-2327, 2011.

Oxford university

