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Abstract: The magnetic Laplacian (also called the line bundle Laplacian) on a con-
nected weighted graph is a self-adjoint operator wherein the real-valued adjacency
weights are replaced by unit complex-valued weights {ωxy}xy∈E , satisfying the con-
dition that ωxy = ωyx for every directed edge xy. When properly interpreted, these
complex weights give rise to magnetic fluxes through cycles in the graph. In this pa-
per we establish the spectrum of the magnetic Laplacian, as a set of real numbers with
multiplicities, on the Sierpinski gasket graph (SG) where the magnetic fluxes equal α

through the upright triangles, and β through the downright triangles. This is achieved
upon showing the spectral self-similarity of the magnetic Laplacian via a 3-parameter
map U involving non-rational functions, which takes into account α, β, and the spectral
parameter λ. In doing so we provide a quantitative answer to a question of Bellissard
[Renormalization Group Analysis and Quasicrystals (1992)] on the relationship between
the dynamical spectrum and the actual magnetic spectrum. Our main theorems lead to
two applications. In the case α = β, we demonstrate the approximation of the magnetic
spectrum by the filled Julia set of U , the Sierpinski gasket counterpart to Hofstadter’s
butterfly. Meanwhile, in the case α, β ∈ {0, 1

2 }, we can compute the determinant of the
magnetic Laplacian and the corresponding asymptotic complexity.
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1. Introduction and Main Results

Spectral analysis of the magnetic Laplacian on a planar lattice has both theoretical and
practical implications. The famous “Hofstadter’s butterfly” [25] describes the energy
spectrum of a noninteracting electron gas moving on the planar integer lattice under
a uniform magnetic field, i.e., the magnetic flux through every square cell is constant.
Understanding the fractal nature of this spectrum involves the interplay of analysis,
geometry, topology, and number theory.

We can also study the magnetic spectrum on other periodic or quasi-periodic planar
graphs under a uniformmagnetic field. For instance, we can replace the square lattice by
the triangular lattice. From the triangular lattice, we can remove vertices and attached
edges in such a way that the remainder is an infinite blow-up of the Sierpinski gasket
graph (SG); see Fig. 1 for an informal construction, and see Fig. 2 for the nesting property
of SG graphs. Formal definition of SG is given in Sect. 1.1.

By trading a periodic crystal (the square lattice) for another graph without transla-
tional invariance (SG), it is natural to ask the following question: how does the magnetic
spectrumchange? In fact, the problemof computing themagnetic spectrumon SG started
in the early 1980s [1,14,21,43]. Already then the authors have identified the “nesting
mechanism” for generating the spectrum recursively, and pointed out the existence of
localized eigenfunctions associatedwith certain “exceptional” eigenvalues. Probably the
most important claim made was that the magnetic spectrum is given by an analog of
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Spectral Decimation of the Magnetic Laplacian on the Sierpinski Gasket 189

Fig. 1. The (unscaled) Sierpinski gasket graphs from G0 to G4

Fig. 2. The graph G N−1 is nested in G N

Hofstadter’s butterfly shown in [21, Figure 2],1 which already differs qualitatively from
the original butterfly on the square lattice. We refer the reader to Bellissard’s survey
[4] for an overview of spectral problems on quasi-periodic lattices and renormalization
group methods, which includes a discussion of the magnetic spectral problem on SG.

From the mathematics perspective, the aforementioned nesting mechanism can be
formalized into an abstract framework known as spectral decimation. Details are pro-
vided in Sect. 2 below. Regarding its applicability, we note the well-known results of
Fukushima-Shima [20] and Shima [45], which establish the Laplacian spectrum (under
zero magnetic field) on the scaling limit of certain self-similar fractals such as SG. As
for the infinite SG lattice, the first complete characterization of the Laplacian spectrum
was attained by Teplyaev [48], based on an abstract formulation of spectral decimation
by him and Malozemov [38]. The said techniques have since been applied to obtaining
Laplacian spectra on a variety of fractals. There are too many subsequent works to list
here in this introduction, but we single out the pedagogically influential paper [3].

Analysis of magnetic Laplacians on fractals has seen renewed interest in 2010s.
Probably closest to our present work is that of Hyde, Kelleher, Moeller, Rogers, and
Seda [26], where they obtained the spectrum on SG in which the magnetic 1-form
is locally exact and there is nonzero flux through only a finite number of triangles.
Another fractal graph whose magnetic spectrum can be solved exactly is the “diamond
fractal” [6]. On the functional analytic side, we would like to mention recent results on
the closability and self-adjointness of, and a Feynman-Kac formula corresponding to,
magnetic Laplacians on compact fractal spaces [22–24] (or more generally, resistance
spaces in the sense of Kigami [32]).

Despite the aforementionedprogress, the original problemof identifying the spectrum
of the magnetic Laplacian on SG under a uniform magnetic field, posed more than 30
years ago [1,14,43], does not have a complete mathematical solution. The outstanding
issue reads, according to Bellissard [4, p.128]: “Is the dynamical spectrum equal to the
actual spectrum of the original operator? This is a question with no answer yet.” Here
the dynamical spectrum refers to the (filled) Julia set of a certain dynamical system,
while the actual spectrum refers to the spectrum of the magnetic Laplacian operator.

1 See also [4, Figure 2] for what appears to be a higher-resolution picture of [21, Figure 2], though it is the
authors’ opinion that the two pictures have major differences.
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The main purpose of this work is to provide a full solution to this long-standing
problem. Via the aforementioned spectral decimation (see Sect. 2 for details), we
establish the magnetic spectrum on SG as a set of real numbers with multiplicities,
when the flux through each upright triangle (resp. downright triangle) equals α (resp.
β), for any α, β ∈ [0, 1). We not only identify the portion of the spectrum which is
generated recursively via a 3-parameter map, but also resolve the other portion of the
spectrum which does not arise from the recursive mechanism (i.e., the values which lie
in the exceptional set for spectral decimation).

In order to describe our results in more detail, we provide some definitions.

1.1. The Sierpinski gasket. Let x0 = (0, 0), x1 = ( 12 ,
√
3
2 ), and x2 = (1, 0) be the

vertices of a unit equilateral triangle in R2, and G0 be the complete graph on the vertex
set V0 = {x0, x1, x2}. We introduce three contracting similitudes �i : R

2 → R
2,

�i (x) = 1
2 (x − xi ) + xi for each i ∈ {0, 1, 2}. The Sierpinski gasket fractal K is the

unique nonempty compact set K such that K = ⋃2
i=0 �i (K ). To obtain the associated

level-N pre-fractal graph GN , N ≥ 1, we define by induction GN = ⋃2
i=0 �i (GN−1).

To make all edges of the graph have unit length, we set G N := 2NGN , where for α > 0
and � ⊂ R

2 we denote α� := {αx : x ∈ �} (see Fig. 2). The (one-sided) Sierpinski
gasket graph SG is then defined to be the union of a sequence of monotone increasing
graphs

⋃∞
N=0 G N . The number of vertices |VN | in G N = (VN , EN ) is easily shown to

be 3N+1+3
2 , which we will denote by dimN .

1.2. Magnetic Laplacian. Let G = (V, E) be a simple, locally finite, connected graph.
The (combinatorial) graph Laplacian on G is 	G = DG − AG , where DG and AG are
the degree operator and the adjacency operator, respectively. Equivalently,

(	Gu) (x) =
∑

y∼x

(u(x) − u(y)), u ∈ 
2(V ),

where the sum is over vertices y connected to x by an edge. Clearly 	G is self-adjoint
on 
2(V ). Sometimes it is more convenient to normalize the Laplacian by the degree,
i.e., to define LG = D−1

G 	G , or equivalently,

(LGu)(x) = 1

degG(x)

∑

y∼x

(u(x) − u(y)), u ∈ 
2(V ).

This is called the probabilistic graph Laplacian, and it is self-adjoint on L2(V, deg).
More generally, we introduce a conductance function c : {±E} → R+ on the set of
oriented edges of G, and define the weighted graph Laplacian as

(L(G,c)u)(x) =
∑

y∼x

cxy(u(x) − u(y)), u ∈ 
2(V ).

We allow cxy �= cyx : a natural example is to let cxy be the transition probability p(x, y)

of an irreducible Markov chain on G.
Whereas the adjacency operator contains entries with values 0 or 1, we now replace

the 1’s by unit complex numbers to form the magnetic Laplacian. The motivation behind
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the definition is from differential geometry. Place a copyWv ofW = C at each v ∈ V .
We call W = ⊕

v∈V Wv a complex line bundle on G. On W we endow a unitary
connection � which satisfies the property that for every oriented edge e = vv′, the
parallel transport from v to v′, φvv′ : Wv → Wv′ , is a unitary complex linear map
such that φv′v = φ−1

vv′ . By our choice that Wv = C, the action of φvv′ is multiplication
by a unit complex number ωvv′ , satisfying ωv′v = ωvv′ . From now on we will use the
notation ω to denote a unitary (U (1)) connection on the complex line bundle. We say
that two U (1) connections ω and ω′ are gauge equivalent if there exists a unitary map
ψv : Wv → Wv such that ψv′ωvv′ = ω′

vv′ψv , that is, ψv induces a change of angle in
the unit complex exponentials ωvv′ .

We can also extend the definition of the line bundle to E . Place a copyWe ofW = C

at each e ∈ E . Then define a connection isomorphism ωve = ω−1
ev for a vertex v ∈ V

and an edge e containing v, satisfying the condition that if e = vv′, thenωvv′ = ωev′ωve,
where ωvv′ is the parallel transport from v to v′.

Given a unitary connection ω, we define the corresponding magnetic Laplacian as

(Lω
(G,c)u)(x) =

∑

y∼x

cxy(u(x) − ωxyu(y)), u ∈ 
2(V ). (1.1)

Another way to express (1.1) is through the identity “Laplacian = div grad.” Let

0(G, ω) = 
2(V ) and
1(G, ω) = {u ∈ 
2(E) : u(−e) = −u(e)for all oriented edges
e ∈ E} denote, respectively, the space of square-summable 0-forms and 1-forms on
(G, ω). Then Lω

(G,c) = d∗d, where

d : 
0(G, ω) → 
1(G, ω), (d f )(e) = ωye f (y) − ωxe f (x), e = xy, (1.2)

d∗ : 
1(G, ω) → 
0(G, ω), (d∗χ)(v) =
∑

e=v′v
cvv′ωevχ(e), (1.3)

are, respectively, the gradient and the divergence operators.
A sequence P of vertices {x0, x1, x2, . . . , xm−1, xm} is a path if xi ∼ xi+1 for

all i ∈ {0, 1, . . . , m − 1}. The product of the parallel transports along P , ω(P) :=
ωx0x1ωx1x2 . . . ωxm−1xm , is called the holonomy of ω along P . We are particularly inter-
ested in the holonomy of ω along P when P is a simple cycle: by simple we mean that
xi �= x j for any pair i, j ∈ {0, 1, . . . , m − 1}, and by cycle we mean that xm = x0.

Definition 1.1. Given an oriented simple cycle γ in (G, ω), the magnetic flux through
γ is defined as the number θ ∈ [0, 1) such that the holonomy is ω(γ ) = e2π iθ .

1.3. Spectrum of the magnetic Laplacian on the Sierpinski gasket. Denote by Lω
N the

magnetic Laplacian on the level-N gasket graph G N endowed with the unitary connec-
tion ω, that is,

(Lω
N u)(x) =

∑

y∼x

1

degG N
(x)

(u(x) − ωxyu(y)), u ∈ 
2(V ). (1.4)

By embedding SG into the plane, we can unambiguously assign the counterclockwise
orientation to each simple cycle, and apply Definition 1.1.

Definition 1.2. The magnetic LaplacianL(α,β)
N , α, β ∈ [0, 1), is defined by (1.4) assum-

ing that the magnetic flux through each upright (resp. downright) triangle of side length
1 in the graph distance on G N equals α (resp. β), cf. Fig. 3.
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β

α
β β

α α
β

α −→
α↓

β↓

Fig. 3. Left: The magnetic flux through each upright (resp. downright) triangle of side length 1 equals α (resp.
β). Right: Upon one step of spectral decimation, the magnetic flux through each upright (resp. downright)
triangle of side length 2 equals α↓ (resp. β↓), defined in (1.12) and (1.13), cf. Proposition 3.3

It is easy to check that all the triangles in SG are independent cycles. Therefore, for
every N , there is a well-defined unitary connection ω on G N which satisfies Definition
1.2, unique up to gauge equivalence.

Notat i on.For anoperatorL,wedenote byσ(L) := {z ∈ C : L−z I is not invertible}
the spectrum of L. The notation mult(L, λ) (resp. mult(P, λ)) represents the multiplic-
ity of λ ∈ C in σ(L) (resp. in the zero set of a polynomial function P). In particular,
mult(L, λ) = 0 means that λ /∈ σ(L). Last but not least, given a function f : C → C

and k ∈ N, we denote by f −k(a) := {z ∈ C : f ◦k(z) = a} the set of kth backward
iterates of a ∈ C under f . If f is a polynomial of degree d, then f −k(a) consists of dk

points, counted with multiplicity.
As mentioned above, we are interested in characterizing σ(L(α,β)

N ) as a set of real
numbers with multiplicities. To describe our first main result, we introduce the quadratic
polynomials

R(0, 0, λ) = λ(5 − 4λ), R

(
1

2
,
1

2
, λ

)

= −(λ − 2)(4λ − 3),

R

(
1

2
, 0, λ

)

= −4λ2 + 9λ − 3, R

(

0,
1

2
, λ

)

= −4λ2 + 7λ − 1.

These four polynomials appear as special cases of R(α, β, λ) in (3.24) below.
In the case α = β = 0, i.e., the graph Laplacian, Fukushima and Shima [20] showed

that σ(L(0,0)
N ) consists of the following eigenvalues:

Eigenvalue Condition on k Multiplicity

0 – 1
3
2 – 3N +3

2

(R(0, 0, ·))−k
(
3
4

)
k ∈ {0, 1, . . . , N − 1} 3N−k−1+3

2

(R(0, 0, ·))−k
(
5
4

)
k ∈ {0, 1, . . . , N − 2} 3N−k−1−1

2

The eigenvalue colored in red lies in the exceptional set for spectral decimation. In
the analysis on fractals literature [3,47], the sets of preimages {(R(0, 0, ·))−k( 34 )}k and
{(R(0, 0, ·))−k( 54 )}k are called the 3

4 -series and 5
4 -series, respectively. We will recall
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this terminology in Sect. 4. As a sanity check, let us count the eigenvalues listed in the
table, noting that (R(0, 0, ·))−k(a) consists of 2k points counted with multiplicity:

1 +
3N + 3

2
+

N−1∑

k=0

3N−k−1 + 3

2
· 2k +

N−2∑

k=0

3N−k−1 − 1

2
· 2k = 3N+1 + 3

2
= dimN .

(1.5)

We claim that such an explicit characterization of σ(L(α,β)
N ) holds for any α, β ∈

{0, 1
2 }.

Theorem 1. Suppose α, β ∈ {0, 1
2 } but not α = β = 0. Then σ(L(α,β)

N ) consists of
the following eigenvalues counted with multiplicities. (Eigenvalues in red lie in the
exceptional set for spectral decimation.)

(1) σ(L( 12 , 12 )

N ):

Eigenvalue Condition on k Multiplicity

1
2 – 3N +3

2

3
4 – 3N−1−1

2

5
4 – 3N−1+3

2

2 – 1
(

R
(
1
2 , 1

2 , ·
))−1 ◦ (R(0, 0, ·))−k

(
3
4

)
k ∈ {0, 1, . . . , N − 2} 3N−k−2+3

2
(

R
(
1
2 , 1

2 , ·
))−1 ◦ (R(0, 0, ·))−k

(
5
4

)
k ∈ {0, 1, . . . , N − 3} 3N−k−2−1

2

(2) σ(L( 12 ,0)
N ):

Eigenvalue Condition on k Multiplicity

1
2 – 3N +3

2

1 – 1

5
4 – 3N−1−1

2

7
4 – 3N−1+3

2
(

R
(
1
2 , 0, ·

))−1 ( 3
4

)
– 3N−2−1

2
(

R
(
1
2 , 0, ·

))−1 ( 5
4

)
– 3N−2+3

2
(

R
(
1
2 , 0, ·

))−1 ◦
(

R
(
1
2 , 1

2 , ·
))−1 ◦ (R(0, 0, ·))−k

(
3
4

)
k ∈ {0, 1, . . . , N − 3} 3N−k−3+3

2
(

R
(
1
2 , 0, ·

))−1 ◦
(

R
(
1
2 , 1

2 , ·
))−1 ◦ (R(0, 0, ·))−k

(
5
4

)
k ∈ {0, 1, . . . , N − 4} 3N−k−3−1

2
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L(0,0)
N L(0,0)

N−1 L(0,0)
N−2 · · · −→ L(0,0)

0

L( 12 ,
1
2 )

N L( 12 ,
1
2 )

N−1

L( 12 ,0)
N L(0, 12 )

N

R(0,0,·) R(0,0,·) R(0,0,·)

R( 12 ,
1
2 ,·) R( 12 ,

1
2 ,·)

R( 12 ,0,·)
R(0, 12 ,·)

Fig. 4. Amnemonic for Theorem 1 in the case where the fluxes α, β ∈ {0, 1
2 }. Each arrow represents one step

of spectral decimation from the magnetic Laplacian on G N to that on G N−1. Details are given in Sect. 4.2

(3) σ(L(0, 12 )

N ):

Eigenvalue Condition on k Multiplicity

1
4 – 3N−1+3

2

3
4 – 3N−1−1

2

1 – 1

3
2 – 3N +3

2
(

R
(
0, 1

2 , ·
))−1 ( 3

4

)
– 3N−2−1

2
(

R
(
0, 1

2 , ·
))−1 ( 5

4

)
– 3N−2+3

2
(

R
(
0, 1

2 , ·
))−1 ◦

(
R
(
1
2 , 1

2 , ·
))−1 ◦ (R(0, 0, ·))−k

(
3
4

)
k ∈ {0, 1, . . . , N − 3} 3N−k−3+3

2
(

R
(
0, 1

2 , ·
))−1 ◦

(
R
(
1
2 , 1

2 , ·
))−1 ◦ (R(0, 0, ·))−k

(
5
4

)
k ∈ {0, 1, . . . , N − 4} 3N−k−3−1

2

The spectra {σ(L(α,β)
N ) : α, β ∈ {0, 1

2 }} are related via spectral decimation, see Fig. 4.
It is natural to extend the spectral analysis to the infinite SG lattice G∞. Theorem 1

states that each of the 4 spectra contains certain sets of backward iterates under R(0, 0, ·).
As a consequence, we expect a portion of the (magnetic) spectrum to involve the Julia
set of R(0, 0, ·), viz. the dynamical spectrum referred to by Bellissard. Let us recall
some basic notions from complex dynamics. The Fatou set F( f ) of a nonconstant
holomorphic function f on Ĉ := C∪{∞} is the domain inwhich the sequence of iterates
{ f ◦n}n converges uniformly on compacts. The Julia set of f is J ( f ) = Ĉ \ F( f ); by
definition it is closed. By [40, Theorem 14.1], the Julia set for any rational map of degree
≥ 2 equals the closure of its set of repelling periodic points. Also, by [40, Corollary
4.13], if z0 is any point of the Julia set J ( f ), then the set of all iterated preimages⋃∞

k=0 f −k(z0) is everywhere dense in J ( f ).
The polynomial R(0, 0, ·) has three fixed points: ∞ (attracting), 0, and 1 (the latter

two are repelling). Thus {0, 1} ∈ J (R(0, 0, ·)), and ⋃∞
k=0(R(0, 0, ·))−k(0) is every-

where dense in J (R(0, 0, ·)). Since 5
4 ∈ R(0, 0, ·)−1(0), it follows that the closure

of {0} ∪⋃∞
k=0 R(0, 0, ·)−k( 54 ) equals J (R(0, 0, ·)). Meanwhile, R(0, 0, 3

4 ) = 3
2 and

(R(0, 0, ·))k( 32 ) → ∞ as k → ∞. So 3
2 belongs to the Fatou set (J (R(0, 0, ·))c, and

the same goes for the set of all backward iterates
⋃∞

k=0(R(0, 0, ·))−k( 34 ) by the invari-
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ance of the Fatou set under backward/forward iterates. This justifies the decomposition

σ(L(0,0)∞ ) = J (R(0, 0, ·)) ∪
( ∞⋃

k=0

(R(0, 0, ·))−k
(
3

4

))

∪
{
3

2

}

as shown by Teplyaev [48, Theorem 2].2 In the same paper Teplyaev proved that the
spectral type of σ(L(0,0)∞ ) is pure point, and that each eigenvalue has infinite multiplicity.

Following the same rationale as [48], we arrive at the following corollary. Here the
shorthand F 3

4
:=⋃∞

k=0(R(0, 0, ·))−k
( 3
4

)
is used.

Corollary 1.3. We have

σ(L( 12 , 12 )
∞ ) =

(

R

(
1

2
,
1

2
, ·
))−1 [

J (R(0, 0, ·)) ∪ F 3
4

]
∪
{
1

2
,
5

4

}

;

σ(L( 12 ,0)
∞ ) =

(

R

(
1

2
, 0, ·

))−1

◦
(

R

(
1

2
,
1

2
, ·
))−1 [

J (R(0, 0, ·)) ∪ F 3
4

]

∪
{
1

2
,
7

4

}

∪
(

R

(
1

2
, 0, ·

))−1 ({3

4
,
5

4

})

;

σ(L(0, 12 )
∞ ) =

(

R

(

0,
1

2
, ·
))−1

◦
(

R

(
1

2
,
1

2
, ·
))−1 [

J (R(0, 0, ·)) ∪ F 3
4

]

∪
{
1

4
,
3

2

}

∪
(

R

(

0,
1

2
, ·
))−1 ({3

4
,
5

4

})

.

In particular, the type of each of the three spectra is pure point, and each eigenvalue has
infinite multiplicity.

To summarize: in the case α, β ∈ {0, 1
2 }, the spectrum σ(L(α,β)∞ ) consists of (a

preimage of) the Julia set of R(0, 0, ·), as well as points which are preimages of isolated
points in the Fatou set of R(0, 0, ·).

The situation where not both of the fluxes α, β are in
{
0, 1

2

}
is more delicate. To state

our result, we introduce the exceptional set for spectral decimation,

E(α, β) = {λ ∈ R : �(α, β, λ) = 0 or D(β, λ) = 0}, (1.6)

as well as the following functions,

R(α, β, λ) = 1 +
A(α, β, λ) − 64D(β, λ)(1 − λ)

16|�(α, β, λ)| ; (1.7)

A(α, β, λ) = 16λ2 − (32 + 4 cos(2πα))λ + 15 + 4 cos(2πα) + cos(2π(α + β)); (1.8)

D(β, λ) = −λ3 + 3λ2 − 45

16
λ +

13

16
− 1

32
cos(2πβ); (1.9)

�(α, β, λ) = (1 − λ)2 − 1

16
+
1 − λ

4
(2e−2π iα + e−2π i(2α+β)) +

1

16
(e−4π iα + 2e−2π i(α+β));

(1.10)

2 For the graph LaplacianL∞ on an infinite, locally finite, connected graph with geometric self-similarity,
it is expected that σ(L∞) = J ∪D, where the setD depends on the self-similar structure of the graph under
study. See [38] for illustrating examples. An example where D = ∅ appears in a one-parameter family of
self-similar “pq-Laplacians” on Z+ [10].
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θ(α, β, λ) = arg �(α, β, λ)

2π
(arg : C → [0, 2π)); (1.11)

α↓(α, β, λ) = 3α + β + 3θ(α, β, λ) (mod 1); (1.12)
β↓(α, β, λ) = 3β + α − 3θ(α, β, λ) (mod 1). (1.13)

Note that (1.6) through (1.13) are independent of N .

Theorem 2. Suppose not both of α and β are in {0, 1
2 }. Then

σ
(
L(α,β)

N

)
= S1(α, β) � S2(β) � S3(α), (1.14)

where

S1(α, β) =
{
λ ∈ R \ E(α, β) : R(α, β, λ) ∈ σ

(
L(α↓(α,β,λ),β↓(α,β,λ))

N−1

)}
, (1.15)

S2(β) =
{
λ ∈ R : D(β, λ) = 0, mult

(
L(α,β)

N , λ
)

> 0
}

, (1.16)

and S3(α) =
{ 3

2 , if α = 0
1
2 , if α = 1

2

}

. (1.17)

Concerning the multiplicity of each eigenvalue: λ ∈ S1 has multiplicity

mult
(
L(α↓(α,β,λ),β↓(α,β,λ)

N−1 , R(α, β, λ)
)

; λ ∈ S3 has multiplicity 3N+3
2 ; and λ ∈ S2 has

multiplicity given in Proposition 4.5-(G2) and Proposition 4.9-(II.2) below, which is too
complicated to be described here.

The set S1 on the RHS of (1.14) is driven by a 3-parameter map

U : T2 × R → T
2 × R, (α, β, λ) �→ (

α↓(α, β, λ), β↓(α, β, λ), R(α, β, λ)
)
,

(1.18)

where T = R/Z denotes the unit torus. Observe the full dependence of the image triple
on the domain triple. Unlike Theorem 1, the spectral decimation function R(α, β, ·) in
Theorem 2 is a non-rational function. And given how the flux variables evolve under
U , it is generally not possible to describe the backward iterates of (1.18). The more
natural approach is to study forward iterates of (1.18). We will discuss the dynamical
implications in the next subsection Sect. 1.4.

Note, however, that in S1 we have excluded points in the exceptional set E(α, β).
Determining which of the exceptional values belong to the spectrum is usually the
trickiest part of the spectral decimation program. In Theorem 2 we have identified them
in S2 and S3 on the RHS of (1.14).

Remark 1.4. Historically, Alexander [1] had obtained a 3-parameter map for the mag-
netic adjacency operator. The authors of [1,14,21] have shown existence of some of
these exceptional values in an ad hoc manner, without giving a systematic proof. The
present work completes the enumeration of the exceptional values in a self-consistent
framework.

The set S2 includes at most the three zeros of the cubic polynomial D(β, ·), whose
graph is shown inFig. 5. It is easy to verify thatD(β, ·)does not have a zero ofmultiplicity
3, and has a double zero only when β ∈ {0, 1

2 }—namely, 5
4 when β = 0, and 3

4 when
β = 1

2—see Lemma 4.2 below. Moreover, since D(β, ·) for two different values of β
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2
β ∈ { 1

4 , 3
4}

Fig. 5. The graph of D(β, ·)

differ by an additive constant, we see that the smallest zero of D(β, ·) lies in [ 12 , 3
4 ]; the

middle zero, [ 34 , 5
4 ]; and the largest zero, [ 54 , 3

2 ].
Identifying which zeros of D(β, ·) appear in the spectrum is a complicated task, and

we defer the case-by-case determination to the latter part of Sect. 4.3. That said, we can
make the following statements based on the proofs to be presented there.

Proposition 1.5. Suppose not both of α and β are in {0, 1
2 }.

(1) If λ is a simple zero of D(β, ·) and λ ∈ σ
(
L(α,β)

N

)
, then R(α, β, λ) ∈ σ

(
L(α↓(α,β,λ),β↓(α,β,λ))

N−1

)
.

(2) If λ is a double zero of D(β, ·), then for generic values of α, we have that λ ∈
σ
(
L(α,β)

N

)
whenever N ≥ 3, with

mult
(
L(α,β)

N , λ
)

= 3N−1 − 3

2
+ mult

(
L(α↓(α,β,λ),β↓(α,β,λ))

N−1 , R(α, β, λ)
)

.

The exceptions are when α ∈ { 16 , 5
6 }, β = 0 and λ = 5

4 , or when α ∈ { 13 , 2
3 }, β = 1

2
and λ = 3

4 , in which case further analysis is required to determine the multiplicity
of λ.

Theorem 2 and Proposition 1.5 imply the following result.

Corollary 1.6. Suppose β /∈ {0, 1
2 }. Then

σ
(
L(α,β)

N

)

⊆
{
λ ∈ R : �(α, β, λ) �= 0, R(α, β, λ) ∈ σ

(
L(α↓(α,β,λ),β↓(α,β,λ))

N−1

)}
�
{ 3

2 , if α = 0
1
2 , if α = 1

2

}

.

(1.19)

If in addition α /∈ {0, 1
2 }, then

{
λ ∈ R : D(β, λ) �= 0, R(α, β, λ) ∈ σ

(
L(α↓(α,β,λ),β↓(α,β,λ))

N−1

)}

⊆ σ
(
L(α,β)

N

)
⊆
{
λ ∈ R : R(α, β, λ) ∈ σ

(
L(α↓(α,β,λ),β↓(α,β,λ))

N−1

)}
.

(1.20)
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Fig. 6. (The Hofstadter–Sierpinski butterfly.) The intersection of the filled Julia set of the 3-parameter map
U : (α, β, λ) �→ (

α↓(α, β, λ), β↓(α, β, λ), R(α, β, λ)
)
and (α, α) × R. We claim that this gives the correct

approximation of σ(L(α,α)∞ ) (see Sect. 1.4 for details). See “Appendix A” for the MATLAB code used to
generate this figure

We now discuss implications for the magnetic spectrum σ(L(α,β)∞ ) on the infinite SG
lattice G∞. Let K(U) denote the set of all ((α, β), λ) ∈ T

2 × C for which the forward
orbit {U◦k(α, β, λ)}∞k=0 is bounded, also known as the filled Julia set ofU . By definition,
K(U) is the complement of the basin of attraction to infinity, T2 ×{∞}. The topological
boundary ofK(U) is the Julia set J (U). ThusK(U) is equal to the union of all bounded
components of the Fatou set (T2 × Ĉ) \ J (U), together with the Julia set J (U).

Theorem 3. Suppose not both of α and β are in {0, 1
2 }. Then

σ(L(α,β)∞ ) = S∞
1 (α, β) ∪ S∞

2 (β) ∪ S∞
3 (α), (1.21)

where

S∞
1 (α, β) ⊂ K(U) ∩ ((α, β) × R) , (1.22)

∅ ⊂ S∞
2 (β) ⊂ {λ ∈ R : D(β, λ) = 0}, (1.23)

S∞
3 (α) =

{
3
2 , if α = 0
1
2 , if α = 1

2

}

. (1.24)

Conjecture 1.7. S∞
1 (α, β) ⊃ J (U) ∩ ((α, β) × R).
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On the one hand, Theorem 3 follows from the strong convergence ofL(α,β)
N toL(α,β)∞ ,

Theorem 2, and the definition of the filled Julia set of U . On the other hand, we are
unable to prove Conjecture 1.7 at the moment, given the complicated dynamics of the
3-parameter non-rational map U . For instance, we do not know the answer to this basic
question: If (α, β, z) ∈ J (U), is the union of its backward iterates,

⋃∞
k=0 U◦−k(α, β, z),

everywhere dense in J (U)?3 If the answer is affirmative, then Conjecture 1.7 may be
proved in the same way as [38, Theorem 5.8(3)] or [10, Theorem 11] using input from
Theorem 2.

In any case, this is our best quantitative answer to Bellissard’s question, concerning
the relationship between the dynamical spectrumand the actual spectrum.To summarize:
While part of themagnetic spectrum is recursively generated, there are exceptional values
which do not arise via this mechanism and carry infinite multiplicity (cf. Theorem 2).

Let us specialize Theorem 3 to the case α = β. Figure 6 showsK(U)∩{(α, α)×R),
which resembles a butterflywhosewings have self-similar patterns. This is the Sierpinski
gasket counterpart to the Hofstadter butterfly obtained originally on the square lattice
[25]; for a lack of better name, we shall call it the Hofstadter–Sierpinski butterfly. To
the best of the authors’ knowledge, previous attempts at solving theHofstatder-Sierpinski
butterfly were all based on numerical computations on finite-level gasket graphs, cf. [4,
Figure 2], [50], and [5, Figure 2(d)].

Meanwhile, we would like to correct an inaccurate statement made in the physics
literature. Consider the 2-parameter map U2 : (α, λ) �→ (4α, R(α, α, λ)), whose filled
Julia set is shown in Fig. 7, and was presented as [21, Figure 2]. The authors of [21]
claimed that this 2-parameter map produce a good approximation of σ(L(α,α)∞ ). In the
same paper they also provided data from superconductivitymeasurements showing good
agreement between theory and experiment. By comparing Figs. 6 and 7, it is safe to
conclude that this is not the case. In fact, Fig. 7 produces the correct approximation of
σ(L(α,α)∞ ) only when α ∈ {0, 1

2 }, the reason being thatR � λ �→ �(α, α, λ) isR-valued
at these flux values. Once α /∈ {0, 1

2 }, R � λ �→ �(α, α, λ) is in general C-valued, and
its argument θ = arg� must be taken into account when deducing the magnetic fluxes.

The reason for this discrepancy will become clear when we prove Proposition 3.3
below.But here is the take-awaymessage: If the flux through every upright and downright
cell equals α, then upon decimation, it is false that the flux through a next upright (or
downright) cell equal 4α, despite the fact that the flux through a rhombus (formed by
adjoining an upright cell to a downright one) always equals 8α. More importantly, the
post-decimation fluxes through each triangle depend on the spectral parameter λ.

From a technical standpoint, the new aspect of our spectral decimation analysis is that
the function R(α, β, ·) in (1.7) is not rational, due to the appearance of |�(α, β, ·)| in the
denominator. All previous mathematical works on spectral decimation [3,6,10,20,38,
44,45,48] involve R rational. While it may seem an unavoidable nuisance to deal with
non-rational functions, we nevertheless can carry out spectral decimation after applying
some care.

Organization for the rest of the paper In Sect. 2 we discuss the general mechanics of
spectral decimation. In Sect. 3we demonstrate the spectral self-similarity of themagnetic
Laplacian on SG, furnished with all the necessary computations. These two sections lay
the technical groundwork from which we solve the magnetic spectrum on SG in Sect.

3 The answer is yes for 1-parameter rational functions on Ĉ of degree ≥ 2 [40, Corollary 4.13]. This
provides an algorithm for numerically generating pictures of the Julia set of a rational function.
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Fig. 7. The filled Julia set of the 2-parameter map U2 : (α, λ) �→ (4α, R(α, α, λ)), as was used to generate

[21, Figure 2]. This gives the correct approximation of σ(L(α,α)∞ ) only when α ∈ {0, 1
2 }

4, proving Theorems 1 and 2, Proposition 1.5, Corollary 1.6, and Theorem 3. Finally,
in Sect. 5 we provide a combinatorial application of Theorem 1, establishing formulae
for the magnetic Laplacian determinants (Theorem 4) and the corresponding asymptotic
complexities (Corollary 5.3).

2. Mechanics of Spectral Decimation

In this section we give a general account of Schur complementation and the spectral
decimation procedure. While the essential ideas can be found in [3], the methods therein
apply only to spectral decimation functions R which are rational. Thus we use this
opportunity to explain not only the adaptation to non-rational functions, but also a number
of subtleties in the spectral decimation procedure.

2.1. Schur complement & functional identities. We start with an elementary matrix
identity. Observe that A − B D−1C is the Schur complement of the block matrix with
respect to the D block.

Proposition 2.1. Suppose

[
A B
C D

]

is a square block matrix with the square block D

invertible. Then
[

A B
C D

]

=
[

A − B D−1C B D−1

0 I

] [
I 0
C D

]

. (2.1)
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Furthermore, the block matrix is invertible with inverse
[

A B
C D

]−1

=
[

I 0
−D−1C D−1

] [
(A − B D−1C)−1 −(A − B D−1C)−1B D−1

0 I

]

=
[
0 0
0 D−1

]

+

[
I

−D−1C

]

(A − B D−1C)−1 [I −B D−1
]
.

(2.2)

Observe that (2.1) implies the determinant identity det

[
A B
C D

]

= det(A−B D−1C) det D.

Let V be a countable set, μ be a nonnegative measure on V , and L2(V, μ) be the
Hilbert spaceofC-valued functions onV with inner product 〈 f, g〉 =∑x∈V f̄ (x)g(x)μ(x).
Let M : L2(V, μ) → L2(V, μ); equivalently, we may regard M as a square matrix of
size |V | with entries Mi j = 〈δi , Mδ j 〉.

Suppose V = V‖ � V⊥. Naturally, we can project functions in L2(V, μ) to L2(V‖, μ)

and L2(V⊥, μ), respectively, and denote the corresponding projection operators by P‖
and P⊥. Their conjugates are

P∗
b : L2(Vb, μ) → L2(V, μ), (P∗

b f )(x) = f (x)1{x∈Vb}, b ∈ {‖,⊥}
Note that Pb P∗

b = Ib, the identity on L2(Vb, μ).
Combining the preceding facts, we see that Proposition 2.1 implies the following.

Suppose M can be expressed in the “block form”

A = P‖M P∗‖ , B = P‖M P∗⊥, C = P⊥M P∗‖ , D = P⊥M P∗⊥,

with D invertible. Then (2.2) says that

M−1 = P∗⊥ D−1P⊥ +
(

P∗‖ − P∗⊥ D−1C
) (

A − B D−1C
)−1 (

P‖ − B D−1P⊥
)

.

For spectral analysis it is more pertinent to consider the resolvent (M − x I )−1, x ∈ C.
In this case, assuming that D − x I⊥ is invertible, we have

(M − x I )−1 = P∗⊥(D − x I⊥)−1P⊥

+
(

P∗‖ − P∗⊥(D − x I⊥)−1C
) (

(A − x I‖) − B(D − x I⊥)−1C
)−1

(
P‖ − B(D − x I⊥)−1P⊥

)
. (2.3)

(From this point on we drop the notation I‖ or I⊥, unless the context demands its
presence.)

Finally, recall the functional calculus f (M) =∑λ∈σ(M) f (λ)Eλ(M),where Eλ(M) :
L2(V, μ) → L2(V, μ) is the eigenprojector of M associated with eigenvalue λ. It is
then direct to verify that

Eλ(M) = lim
x→λ

(λ − x)(M − x)−1. (2.4)

We will be especially interested in expressing the eigenprojector in terms of A, B, C ,
and D, using the RHS of (2.4) in conjunction with the formula (2.3). Of course we will
need to justify the limit as x → λ ∈ σ(M), which will be done on a case-by-case basis.

Remark 2.2. In the above discussion, there is no loss of generality replacing L2(V, μ)

by 
2(V ). That said, we will soon assume that M is a self-adjoint operator on a Hilbert
space, and this will require invocation of the measure μ.
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2.2. Spectral decimation for the non-exceptional values. Let us introduce the following
condition which will be in force for the rest of the section.

Definition 2.3 (Spectral similarity). Let V‖ ⊂ V . We say that two self-adjoint operators
M : L2(V, μ) → L2(V, μ) and L : L2(V‖, μ) → L2(V‖, μ) are spectrally similar if
there exist scalar-valued functions φ and R which map R to R such that

(A − x) − B(D − x)−1C = φ(x)(L − R(x)) (2.5)

for all x ∈ C. It follows that

P‖(M − x)−1P∗‖

(

=
(2.3)

(
(A − x) − B(D − x)−1C

)−1
)

= [φ(x)]−1(L − R(x))−1

(2.6)

for all x ∈ C whenever the RHS is defined.

Remark 2.4. In Definition 2.3, no assumption is made on the dependence of M or L on
the spectral parameter x . (In the example of Corollary 3.2-(Case 2), L = L�

N−1 depends
on x .) Also we do not specify extra conditions (such as continuity or differentiability)
on φ and R at the moment.

In order for (2.5) and (2.6) to make sense as they are, D − x should be invertible,
and φ(x) �= 0. Any x that fails either condition is said to be exceptional, and we refer
to the set of all such x as the exceptional set for spectral decimation, denoted

E = {x ∈ C : x ∈ σ(D) orφ(x) = 0}. (2.7)

Since M is self-adjoint on L2(V, μ), our goal is to determine which λ ∈ R belongs
to the spectrum σ(M). The following result is the spectral decimation identity when
λ ∈ R is not exceptional, which mirrors [3, Proposition 4.1].

Lemma 2.5 (Spectral decimation for the non-exceptional values). Suppose λ ∈ R is

such that λ /∈ E , and moreover lim
R�x→λ

φ(x)
R(λ) − R(x)

λ − x
exists and does not equal 0.

Then

Eλ(M) =
(

lim
R�x→λ

1

φ(x)

λ − x

R(λ) − R(x)

)

×
(

P∗‖ − P∗⊥(D − λ)−1C
)

ER(λ)(L)
(

P‖ − B(D − λ)−1P⊥
)

. (2.8)

Consequently, λ ∈ σ(M) if and only if R(λ) ∈ σ(L), and there is a one-to-one corre-
spondence between eigenfunctions of L with eigenvalue R(λ) and eigenfunctions of M
with eigenvalue λ, given by

Image
(
ER(λ)(L)

) � f �→
(

P∗‖ − P∗⊥(D − λ)−1C
)

f ∈ Image (Eλ(M)) .

In particular, mult(M, λ) = mult(L , R(λ)).
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Proof. Combining (2.3) and (2.6) we find

(λ − x)(M − x)−1 = P∗⊥(λ − x)(D − x)−1P⊥
+
(

P∗‖ − P∗⊥(D − x)−1C
)
(λ − x)[φ(x)]−1(L − R(x))−1

(
P‖ − B(D − x)−1P⊥

)
.

(2.9)

According to (2.4) it suffices to take the limit of (2.9) as R � x → λ. Based on the
assumptions, the quantities in blue (resp. purple) remain bounded (resp. vanish) in the
limit, and in particular the first term on the RHS tends to 0. To unravel the second term on
the RHS, we insert the identity I‖ = ER(λ)(L)+ (I‖ − ER(λ)(L)) between (L − R(x))−1

and P‖ − B(D − x)−1P⊥, resulting in the following expression:

(
P∗‖ − P∗⊥(D − x)−1C

)
(λ − x)[φ(x)]−1(L − R(x))−1ER(λ)(L)

(
P‖ − B(D − x)−1P⊥

)

(2.10)

+
(

P∗‖ − P∗⊥(D − x)−1C
)
(λ − x)[φ(x)]−1(L − R(x))−1(I‖

−ER(λ)(L))
(

P‖ − B(D − x)−1P⊥
)

. (2.11)

Observe that in (2.11), the image of I‖ − ER(λ)(L) is the orthogonal complement of
the eigenspace of L with eigenvalue R(λ), and L − R(λ) is invertible on this space.
Therefore (2.11) vanishes in the limit x → λ. As for (2.10), we are in the eigenspace
of L with eigenvalues R(λ), and L − R(λ) is not invertible. That said, we can multiply
and divide (2.10) by R(λ) − R(x),

(
P∗‖ − P∗⊥(D − x)−1C

) λ − x

R(λ) − R(x)
[φ(x)]−1(R(λ)

− R(x))(L − R(x))−1ER(λ)(L)
(

P‖ − B(D − x)−1P⊥
)
. (2.12)

By functional calculus again, lim
x→λ

(R(λ) − R(x))(L − R(x))−1 = ER(λ)(L). So the

proof is complete provided that
1

φ(x)

λ − x

R(λ) − R(x)
has a nonsingular limit as x → λ. ��

Actually (2.8) says more. Since the LHS of (2.8) is a bounded operator, if

limR�x→λ

∣
∣
∣ 1
φ(x)

λ−x
R(λ)−R(x)

∣
∣
∣ = ∞, then (2.8) holds only if ER(λ)(L) = 0. In turn

Eλ(M) = 0. In what follows, we will encounter similar situations where the scalar
prefactor diverges, and we may argue using this rationale that this divergence should not
exist.

2.3. Spectral decimation for the exceptional values. If λ is exceptional, the spectral
decimation argument is suitably modified. Here are two items of note.

Lemma 2.6. Under Definition 2.3:

(1) If φ(λ) �= 0, then (D − λ)−1 is bounded on the image of ER(λ)(L).
(2) If both φ and φR are bounded in a neighborhood of λ, then B Eλ(D)C = 0.
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Proof. (1): If φ(λ) �= 0, we use (2.5) to find that whenever f is an eigenfunction of L
with eigenvalue R(λ), then

(
(A − λ) − B(D − λ)−1C

)
f = φ(λ)(L − R(λ)) f = 0. (2.13)

Given that A − λ, B, and C are all bounded, it follows that (D − λ)−1 must be bounded
on the image of ER(λ)(L).

(2): Multiply (2.5) on both sides by (λ − x) to get

(λ − x)(A − x) − B(λ − x)(D − x)−1C = (λ − x)φ(x)(L − R(x)).

Noting that both A − x and φ(x)(L − R(x)) remain bounded as x → λ, we take the
limit on the above equation to find −B Eλ(D)C = 0. ��

With the above in mind, we continue to use (2.3), (2.4), and (2.6) altogether to derive
an expression for the eigenprojector Eλ(M). The general strategy proceeds as follows:
first decide whether λ ∈ σ(D) (which determines the invertibility of D −λ), then insert
the identity I‖ = ER(λ)(L) + (I‖ − ER(λ)(L)) in the expression for (λ − x)(M − x)−1

à la (2.10) and (2.11), and finally identify conditions which ensure the existence of the
limits as R � x → λ.

The next result generalizes [3, Proposition 4.1], in the sense that we only require
the existence of R-limits (as opposed to C-limits) of the various functions that arise
naturally in the eigenprojector expression. For the sake of easy reference, we keep the
same numbering of the cases as in [3, Proposition 4.1].

Lemma 2.7. Suppose λ ∈ R.

(ii) Ifλ /∈ σ(D),φ(λ) = 0, and moreover lim
R�x→λ

φ(x)

λ − x
�= 0and lim

R�x→λ
φ(x)

R(λ) − R(x)

λ − x�= 0, then

Eλ(M) =
(

P∗‖ − P∗⊥(D − λ)−1C
)(

lim
R�x→λ

(λ − x)[φ(x)]−1

R(λ) − R(x)

)

ER(λ)(L)
(

P‖ − B(D − λ)−1P⊥
)

+
(

P∗‖ − P∗⊥(D − λ)−1C
)(

lim
R�x→λ

λ − x

φ(x)

)

(L − R(λ))−1 (I‖

−ER(λ)(L)
) (

P‖ − B(D − λ)−1P⊥
)

.

(2.14)

In particular, mult(M, λ) = |V‖|.
(iii) If λ ∈ σ(D), lim

R�x→λ
[φ(x)]−1 = 0, and moreover lim

R�x→λ
φ(x)(λ − x) �= 0 and

∣
∣
∣
∣

λ − x

R(λ) − R(x)

∣
∣
∣
∣ is bounded in a neighborhood of λ, then

Eλ(M) = P∗⊥Eλ(D)P⊥ + P∗⊥Eλ(D)C

(

lim
R�x→λ

1

φ(x)(λ − x)

)

(L

− R(λ))−1(I‖ − ER(λ)(L))B Eλ(D)P⊥. (2.15)

In particular, Eλ(M)(P∗⊥Eλ(D)P⊥) = Eλ(M), so any eigenfunction of M with
eigenvalueλ vanishes on V‖, andmult(M, λ) = mult(D, λ)−(|V‖| − mult(L , R(λ))

)
.
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(iv) If λ ∈ σ(D), both φ and φR are bounded in a neighborhood of λ, φ(λ) �= 0, and

moreover lim
R�x→λ

φ(x)
R(λ) − R(x)

λ − x
�= 0, then

Eλ(M) = P∗⊥Eλ(D)P⊥

+
(

P∗‖ − P∗⊥(D − λ)−1C
)(

lim
R�x→λ

1

φ(x)

λ − x

R(λ) − R(x)

)

ER(λ)(L)
(

P‖ − B(D − λ)−1P⊥
)

.

(2.16)

In particular, Eλ(M)(P∗⊥Eλ(D)P⊥) = P∗⊥Eλ(D)P⊥, the two components on the
RHS of (2.16) are mutually orthogonal in L2(V, μ), and mult(M, λ) = mult(D, λ)+
mult(L , R(λ)).

(vi) If λ ∈ σ(D), lim
R�x→λ

[φ(x)]−1 = 0, and moreover lim
R�x→λ

φ(x)(λ − x) �= 0 and

lim
R�x→λ

1

φ(x)

λ − x

R(λ) − R(x)
�= 0, then

Eλ(M) = P∗⊥Eλ(D)P⊥ + P∗⊥Eλ(D)C

(

lim
R�x→λ

1

φ(x)(λ − x)

)

(L

− R(λ))−1(I‖ − ER(λ)(L))B Eλ(D)P⊥

+
(

P∗‖ − P∗⊥(D − λ)−1C
)(

lim
R�x→λ

1

φ(x)

λ − x

R(λ) − R(x)

)

ER(λ)(L)
(
P‖

−B(D − λ)−1P⊥
)

(2.17)

which implies generally that mult(M, λ) = mult(D, λ) − |V‖| + 2mult(L , R(λ)). If
none of the corresponding eigenfunctions vanishes on V‖, then the first two terms on
the RHS of (2.17) vanish, and mult(M, λ) = mult(L , R(λ)).

(vii) If λ /∈ σ(D), φ(λ) = 0, lim
R�x→λ

[R(x)]−1 = 0, and moreover x �→ (λ − x)[φ(x)]−1

is bounded in a neighborhood of λ, then Eλ(M) = 0, i.e., mult(M, λ) = 0.

Proof. Our starting point is the combination of (2.3) and (2.6). Let us note right away
that

λ /∈ σ(D) implies lim
x→λ

P∗⊥(λ − x)(D − x)−1P⊥ = 0,

λ ∈ σ(D) implies lim
x→λ

P∗⊥(λ − x)(D − x)−1P⊥ = P∗⊥Eλ(D)P⊥.

So this reduces our analysis to the second term on the RHS of (2.9), namely:
(

P∗‖ − P∗⊥(D − x)−1C
)

(λ − x)[φ(x)]−1(L − R(x))−1(I‖ − ER(λ)(L))
(

P‖ − B(D − x)−1P⊥
)

. (2.18)

As in the proof of Lemma 2.5, terms which stay bounded (resp. vanish) as R � x → λ

are highlighted in blue (resp. purple).
(ii): By the assumptions, (2.18) reads
(

P∗‖ − P∗⊥(D − x)−1C
)
(λ − x)[φ(x)]−1(L − R(x))−1

(
P‖ − B(D − x)−1P⊥

)
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=
(

P∗‖ − P∗⊥(D − x)−1C
) (λ − x)[φ(x)]−1

R(λ) − R(x)
(R(λ)

− R(x))(L − R(x))−1ER(λ)(L)
(

P‖ − B(D − x)−1P⊥
)

+
(

P∗‖ − P∗⊥(D − x)−1C
)
(λ − x)[φ(x)]−1

(L − R(x))−1 (I‖ − ER(λ)(L)
) (

P‖ − B(D − x)−1P⊥
)
.

(iii): By the assumptions, (2.18) reads

(
P∗‖ − P∗⊥(D − x)−1C

) (λ − x)[φ(x)]−1

R(λ) − R(x)
(R(λ)

− R(x))(L − R(x))−1ER(λ)(L)
(

P‖ − B(D − x)−1P⊥
)

+
(

P∗‖ − P∗⊥(D − x)−1C
)

(λ

− x)[φ(x)]−1(L − R(x))−1 (I‖ − ER(λ)(L)
) (

P‖ − B(D − x)−1P⊥
)

.

For the first term, the boundedness of (D − λ)−1 follows from Lemma 2.6-(1).
We further note that limx→λ(R(λ) − R(x))(L − R(x))−1 = ER(λ)(L) by the func-
tional calculus, and [φ(λ)]−1 = 0 by assumption. In fact, we would like to show that

limx→λ
λ−x

R(λ)−R(x)
[φ(x)]−1 = 0, and it suffices to have

∣
∣
∣ λ−x

R(λ)−R(x)

∣
∣
∣ to be bounded in a

neighborhood of λ. Consequently the first term vanishes in the limit.
The second term requires more care, as we do not know a priori that D − λ is

invertible. So we expand it as the sum of four terms

P∗‖ (λ − x)[φ(x)]−1(L − R(x))−1(I‖ − ER(λ)(L))P‖
− P∗⊥(λ − x)(D − x)−1C[φ(x)]−1(L − R(x))−1(I‖ − ER(λ)(L))P‖
− P∗‖ [φ(x)]−1(L − R(x))−1(I‖ − ER(λ)(L))B(λ − x)(D − x)−1P⊥
+ P∗⊥(λ − x)(D − x)−1C[φ(x)(λ − x)]−1(L − R(x))−1(I‖
−ER(λ)(L))B(λ − x)(D − x)−1P⊥.

It can be seen readily that the first three lines vanish in the limit, whereas the fourth line
converges to

P∗⊥Eλ(D)C

(

lim
R�x→λ

1

φ(x)(λ − x)

)

(L − R(λ))−1(I‖ − ER(λ)(L))B Eλ(D)P⊥

given the assumptions. The eigenprojector formula (2.15) follows.
Observe that the image of Eλ(M) is contained in the image of P∗⊥Eλ(D)P⊥. More

specifically,

rank(P∗⊥Eλ(D)P⊥) − rank(Eλ(M)) = rank(I‖ − ER(λ)(L)),

from which the multiplicity formula follows.
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(iv): By the assumptions and Lemma 2.6-(1), (2.18) reads

(
P∗‖ − P∗⊥(D − x)−1C

) (λ − x)[φ(x)]−1

R(λ) − R(x)
(R(λ) − R(x))(L

− R(x))−1ER(λ)(L)
(

P‖ − B(D − x)−1P⊥
)

+
(

P∗‖ − P∗⊥(D − x)−1C
)

(λ

− x)[φ(x)]−1(L − R(x))−1 (I‖ − ER(λ)(L)
) (

P‖ − B(D − x)−1P⊥
)

.

The first term tends to

(
P∗‖ − P∗⊥(D − λ)−1C

)(

lim
R�x→λ

1

φ(x)

λ − x

R(λ) − R(x)

)

ER(λ)(L)
(
P‖ − B(D − λ)−1P⊥

)
.

The second term is again trickier, being the sum of

P∗‖ (λ − x)[φ(x)]−1(L − R(x))−1(I‖ − ER(λ)(L))P‖
− P∗⊥(λ − x)(D − x)−1C[φ(x)]−1(L − R(x))−1(I‖ − ER(λ)(L))P‖
− P∗‖ [φ(x)]−1(L − R(x))−1(I‖ − ER(λ)(L))B(λ − x)(D − x)−1P⊥
+ P∗⊥(D − x)−1C[φ(x)]−1(L − R(x))−1(I‖ − ER(λ)(L))B(λ − x)(D − x)−1P⊥,

where the vanishing purple terms in the last 3 lines are due to Lemma 2.6-(2). Altogether
the entire sum vanishes in the limit. This proves (2.16). Observe that the two terms on
the RHS of (2.16) are mutually orthogonal, from which the remaining claims follow.

(vi): This is a straightforward extension of (iii). In particular, if none of the corre-
sponding eigenfunctions vanishes on V‖, then by (iii), the first two terms on the RHS of
(2.17) vanishes.

(vii): Since the spectrum of an operator is compact, (L−R(x))−1 remains bounded—
in fact tends to 0—as R(x) → R(λ) = ∞. Thus (2.18) reads

(P∗‖ − P∗⊥(D − x)−1C)(λ − x)[φ(x)]−1(L − R(x))−1(P‖ − B(D − x)−1P⊥)

which vanishes in the limit. ��

3. Spectral Self-similarity of the Magnetic Laplacian

3.1. Schur complement computation. Let G N = (VN , EN ) be the level-N Sierpinski
gasket graph. Following (1.4), the magnetic Laplacian Lω

N on G N endowed with U (1)
connection ω is an operator on 
2(VN ), and can be represented in the standard basis by
the |VN |-by-|VN | matrix

Lω
N (x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if x = y,

− 1
2ωxy, if x ∈ V0, y ∼ x,

− 1
4ωxy, if x ∈ VN \ V0, y ∼ x,

0, else.

(3.1)

Recall that Lω
N is self-adjoint on L2(VN , degG N

).
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We express the resolvent in block matrix form

Lω
N − λI =

[
A − λI B

C D − λI

]

, λ ∈ C, (3.2)

where the rows and columns are arranged such that

A : 
2(VN−1) → 
2(VN−1), B : 
2(VN \ VN−1) → 
2(VN−1),

C : 
2(VN−1) → 
2(VN \ VN−1), D : 
2(VN \ VN−1) → 
2(VN \ VN−1),

where I is the identity matrix of an appropriate size, and 
2(S) = C
S .

Assuming that D−λI is invertible for themoment, we define the Schur complement
of Lω

N − λI with respect to the minor D − λI as

Sω
N (λ) := (A − λI ) − B(D − λI )−1C, (3.3)

which acts on 
2(VN−1). To find the entries of Sω
N (λ), we label the vertices in VN−1 by

ai , and vertices in VN \ VN−1 by bi . Then for ai , a j ∈ VN−1 we have

Sω
N (λ)(ai , a j ) = (A − λI )(ai , a j ) −

∑

bk ,bl∈VN \VN−1

B(ai , bk)(D − λI )−1(bk , bl)C(bl , a j ).

(3.4)

Recall (3.1). Observe that (A − λI )(ai , a j ) = (1 − λ)δai a j ; B(ai , bk) = − 1
2ωai bk

if ai ∈ V0 and ai ∼ bk , − 1
4ωai bk if ai ∈ VN \ V0 and ai ∼ bk , and 0 otherwise;

C(bl , a j ) = − 1
4ωbl a j if bl ∼ a j , and 0 otherwise; and (D − λI )−1 is zero whenever

bk �∼ bl . By the nested structure of SG, (D−λI )−1 is a block diagonal matrix consisting
of 3-by-3 Hermitian matrices, each of which is supported on the inner vertices of a level-
(N − 1) cell, and has the same structure. To be concrete, we denote the cell by 
, and
its three inner vertices by b0, b1, b2. Then

(D − λI )|
 (bi , b j ) =
{
1 − λ, if bi = b j ,

− 1
4ωbi b j , if bi �= b j .

(3.5)

Using Cramer’s formula for the matrix inverse, we get

(D − λI )|−1

 (bi , b j ) = 1

det( (D − λI )|
)
adj( (D − λI )|
) (3.6)

where

det( (D − λI )|
) = (1 − λ)3 − 3

16
(1 − λ) − 1

32
Re(ωb0b1ωb1b2ωb2b0), (3.7)

adj( (D − λI )|
)(bi , bi ) = (1 − λ)2 − 1

16
, i ∈ {0, 1, 2}, (3.8)

adj( (D − λI )|
)(bi , b j ) = 1

4
(1 − λ)ωbi b j +

1

16
ωbi bk ωbk b j , if i �= j, (3.9)

and k = k(i, j) is the third index in {0, 1, 2} \ {i, j}.
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In light of the difference between the diagonal and off-diagonal entries of the adjugate
matrix, (3.8) and (3.9), we shall rewrite the second term on the RHS of (3.4) by splitting
the case bl = bk and the case bl �= bk ; namely, if ai ∈ VN \ V0, we have

∑

bk ,bl

B(ai , bk)(D − λI )−1(bk , bl)C(bl , a j )

= 1

16

∑

bk∼{ai ,a j }

1

det( (D − λI )|
(bk ))

(

(1 − λ)2 − 1

16

)

ωai bk ωbk a j

+
1

16

∑

bk∼ai

∑

bl∼a j
bl �=bk

1

det( (D − λI )|
(bk ,bl ))
ωai bk

(
1

4
(1 − λ)ωbk bl +

1

16
ωbk bm ωbm bl

)

ωbl a j ,

(3.10)

where
(b1, b2, . . .)denotes the level-(N−1) cellwhich contains the verticesb1, b2, . . .,
and {bk, bl , bm} ⊂ VN \ VN−1 form the 3 inner vertices of 
(bk, bl). If ai ∈ V0, replace
the prefactor 1

16 in the formula (3.10) by 1
8 .

If ai = a j ∈ VN \ V0 : We have

∑

bk ,bl

B(ai , bk)(D − λI )−1(bk , bl)C(bl , ai )

= 1

16

∑

bk∼ai

1

det( (D − λI )|
(bk ))

(

(1 − λ)2 − 1

16

)

+
1

16

∑

bk∼ai

∑

bl∼ai
bl �=bk

1

det( (D − λI )|
(bk ,bl )
)
ωai bk

(
1

4
(1 − λ)ωbk bl +

1

16
ωbk bm ωbm bl

)

ωbl ai .

(3.11)

Observe that if ai is contained in two level-(N − 1) cells. We need to pick {bk, bl} ∼ ai
from the same cell to produce a nonzero summand in the second sum.

If ai = a j ∈ V0: The formula (3.11) holds with the prefactor 1
16 replaced by

1
8 . Also,

ai is contained in a unique level-(N − 1) cell.
If ai �= a j : In (3.10) note that ai , a j , bk, bl must belong to the same level-(N − 1)

cell to produce a nonzero summand. Therefore once we fix ai and a j , both sums are
localized to the cell 
(ai , a j ).

3.2. Diagrammatic analysis. Tomake the results (3.10) and (3.11) more transparent, we
introduce a diagrammatic bookkeeping device. Given a path P = {x0, x1, . . . , xm}, we
represent the product of the parallel transports along P ,ωx0x1ωx1x2 · · · ωxm−1xm =: ω(P),
by the diagram

x0 x1

x2

x3xm

If ai = a j ∈ VN \ V0 : Consider (3.11) and the diagram in Fig. 8a. We find that there
are 4 identical terms in the first summand because deg(ai ) = 4, and there are 8 terms in
the second summand. A diagrammatic representation of (3.11) becomes
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b1

b0 b2

ai = aj b′
1

b′
0b′

2

(A)

b0

b2 b1

ai = aj

(B)

b0

b2

b1

ai aj

(C)

Fig. 8. The unit cells for diagrammatic analysis used in Sect. 3.2

∑

bk ,bl

B(ai , bk)(D − λI )−1(bk, bl)C(bl , ai )

= 1

D(β, λ)
· 4

16

(

(1 − λ)2 − 1

16

)

+
1

16
· 1

D(β, λ)

⎛

⎜
⎜
⎜
⎜
⎝

1

4
(1 − λ) ·

b1 ai

b2

+
1

16
·

b1 ai

b2b0

⎞

⎟
⎟
⎟
⎟
⎠

+
1

16
· 1

D(β, λ)

⎛

⎜
⎜
⎜
⎜
⎝

1

4
(1 − λ) ·

b1 ai

b2

+
1

16
·

b1 ai

b2b0

⎞

⎟
⎟
⎟
⎟
⎠

+
1

16
· 1

D(β, λ)

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1

4
(1 − λ) ·

b′
1ai

b′
2

+
1

16
·

b′
1ai

b′
2 b′

0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

+
1

16
· 1

D(β, λ)

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1

4
(1 − λ) ·

b′
1ai

b′
2

+
1

16
·

b′
1ai

b′
2 b′

0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(3.12)
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where

D(β, λ) = det

(

(D − λI )|

(b(′)

0 ,b(′)
1 ,b(′)

2 )

)

= (1 − λ)3 − 3

16
(1 − λ) − 1

64

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

b(′)
1

b(′)
2 b(′)

0

+

b(′)
1

b(′)
2 b(′)

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(3.13)

If ai = a j ∈ V0 : See Fig. 8b. Formula (3.11) becomes

∑

bk ,bl

B(ai , bk)(D − λI )−1(bk, bl)C(bl , ai )

= 2

8
· 1

D(β, λ)

(

(1 − λ)2 − 1

16

)

+
1

8
· 1

D(β, λ)
·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

4
· (1 − λ) ·

b1

ai

b2

+
1

16
· b2

b0

b1

ai

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

+
1

8
· 1

D(β, λ)
·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

4
· (1 − λ) ·

b1

ai

b2

+
1

16
· b2

b0

b1

ai

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(3.14)

If ai �= a j and ai ∈ VN \ V0 : See Fig. 8c. Formula (3.10) becomes
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∑

bk ,bl

B(ai , bk)(D − λI )−1(bk , bl )C(bl , a j )

= 1

16
· 1

D(β, λ)

(

(1 − λ)2 − 1

16

)

·
⎛

⎝
ai b2 a j

⎞

⎠

+
1

16
· 1

D(β, λ)
· 1
4
(1 − λ) ·

⎛

⎜
⎜
⎜
⎝ ai

b2
a j

b1
+

ai

b0

a j

b1
+

ai

b0

a j
b2

⎞

⎟
⎟
⎟
⎠

+
1

16
· 1

D(β, λ)
· 1

16
·

⎛

⎜
⎜
⎜
⎝ ai

b0

a j
b2

b1
+

ai

b0

a j
b2

b1
+

ai

b0

a j
b2

b1
⎞

⎟
⎟
⎟
⎠

= 1

16
· 1

D(β, λ)
·
⎛

⎝
ai b2 a j

⎞

⎠ ·
(

(1 − λ)2 − 1

16

)

+
1 − λ

64D(β, λ)
·
⎛

⎝
ai b2 a j

⎞

⎠ ·

⎛

⎜
⎜
⎜
⎝ ai b2

b1
+

ai
b2

b1 b0

a j

+

b2 a j

b0
⎞

⎟
⎟
⎟
⎠

+
1

256D(β, λ)
·
⎛

⎝
ai b2 a j

⎞

⎠ ·

⎛

⎜
⎜
⎜
⎝ ai

b2

b1 b0

a j

+
ai b2

b1 b0
+

a j
b2

b1 b0
⎞

⎟
⎟
⎟
⎠

.

(3.15)

If ai �= a j and ai ∈ V0 : ∑bk ,bl
B(ai , bk)(D − λI )−1(bk, bl)C(bl , ai ) is half of

equation (3.15).

3.3. Establishing spectral self-similarity. Using Definition 1.2 we simplify the expres-
sions for the Schur complements. Note the following equivalent holonomy diagrams.

≡ ≡

Therefore we can reexpress (3.12), (3.13), and (3.14) to get

Sω
N (α, β, λ)(ai , ai ) = 1 − λ − A(α, β, λ)

64D(β, λ)
(3.16)

where

A(α, β, λ) = 16λ2 − (32 + 4 cos(2πα))λ + 15 + 4 cos(2πα) + cos(2π(α + β)),

(3.17)
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D(β, λ) = −λ3 + 3λ2 − 45

16
λ +

13

16
− 1

32
cos(2πβ). (3.18)

Similarly, due to the equivalent holonomy diagrams

≡ ≡

we can rewrite (3.15) to get

Sω
N (α, β, λ)(ai , a j ) = −�(α, β, λ)ωai b2ωb2a j

16D(β, λ)
, (3.19)

where

�(α, β, λ) = (1 − λ)2 − 1

16
+
1 − λ

4
(2e−2π iα + e−2π i(2α+β))

+
1

16
(e−4π iα + 2e−2π i(α+β)). (3.20)

Note that the exponents of (3.20) all carry a negative sign since the orientation of the
edge ai a j is counterclockwise, while the diagrams in (3.15) have clockwise orientation.
If the orientation of ai a j is clockwise, replace all the exponents in Sω

N (ai , a j ) with a
positive sign.

We summarize the preceding arguments as follows.

Proposition 3.1. Let 	ai a j be the upright triangle that the edge ai a j belongs to, and b2
be the midpoint of ai and a j . We have

Sω
N (α, β, λ)(ai , a j )

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − λ − A(α, β, λ)

64D(β, λ)
if ai = a j ,

−�(α, β, λ)ωai b2ωb2a j

16D(β, λ)
if ai �= a j , ai ∈ VN \ V0, and 	ai a j is traversed CCW,

−�(α, β, λ)ωai b2ωb2a j

8D(β, λ)
if ai �= a j , ai ∈ V0, and 	ai a j is traversed CCW,

−�(α, β, λ)ωai b2ωb2a j

16D(β, λ)
if ai �= a j , ai ∈ VN \ V0, and 	ai a j is traversed CW,

−�(α, β, λ)ωai b2ωb2a j

8D(β, λ)
if ai �= a j , ai ∈ V0, and 	ai a j is traversed CW,

(3.21)

where A(α, β, λ), D(β, λ), and �(α, β, λ) were defined respectively in (3.17), (3.18),
and (3.20).

Corollary 3.2. (Spectral decimation identity). The Schur complement in Proposition 3.1
can be reexpressed as

Sω
N (α, β, λ) = φ(α, β, λ)(L�

N−1 − R(α, β, λ)) (λ ∈ R) (3.22)

where L�
N−1 is the magnetic Laplacian on VN−1 with U (1) connection �, a self-adjoint

operator on L2(VN−1, degG N−1
), and R(α, β, λ) is the spectral decimation function.

Specifically:
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(Case 1): If R � λ �→ �(α, β, λ) is R-valued, then

φ(α, β, λ) = �(α, β, λ)

4D(β, λ)
, (3.23)

R(α, β, λ) = 1 +
A(α, β, λ) − 64D(β, λ)(1 − λ)

16�(α, β, λ)
, (3.24)

�ab(α, β) = ωacωcb. (3.25)

(Case 2): If R � λ �→ �(α, β, λ) is C-valued, then

φ(α, β, λ) = |�(α, β, λ)|
4D(β, λ)

, (3.26)

R(α, β, λ) = 1 +
A(α, β, λ) − 64D(β, λ)(1 − λ)

16|�(α, β, λ)| , (3.27)

θ(α, β, λ) = arg �(α, β, λ)

2π
(arg : C → [0, 2π)), (3.28)

�ab(α, β, λ) = ωacωcbe2π iθ(α,β,λ). (3.29)

In both cases, a ∼ c ∼ b, and the upright cell to which the edge ab belongs is traversed
counterclockwise.

Two important remarks are in order. First, A(α, β, λ),D(β, λ), and�(α, β, λ) are all
independent of the level N , and therefore so is R(α, β, λ). This is the essence of spectral
self-similarity and what allows us to characterize the spectrum recursively. Second, in
Corollary 3.2-(Case 1), the connection � is manifestly independent of λ, whereas in
Corollary 3.2-(Case 2), � receives an extra “twist” by a unit complex number e2π iθ ,
which depends on λ in general. There does not seem to be an easy way to eliminate this
twist via gauge transformations.

The following was first noted by [1] and invoked later in [4,21].

Proposition 3.3. (Evolution of the magnetic flux under spectral decimation). Let the
magnetic flux going through every upright triangle on level N be αN , and downright
triangle, βN . Then

αN−1 = α↓(αN , βN , λ) = 3αN + βN + 3θ(αN , βN , λ), (3.30)

βN−1 = β↓(αN , βN , λ) = 3βN + αN − 3θ(αN , βN , λ), (3.31)

so αN−1 + βN−1 = 4(αN + βN ). Specifically, in the setting of Corollary 3.2-(Case 1),
θ ≡ 0.

Proof. By (3.25) or (3.29), �a1a2(α, β, λ) = ωa1b0ωb0a2e2π iθ(α,β,λ); see the diagram
below.

αN αN

αN

βN

αN

βN

βN βN

a1 a2b0

b2 b1

a0 a3

b3

b4

αN−1

βN−1

a0

a1 a2

a3
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By Definition 1.2,

e2π iαN−1 = �a1a2�a2a0�a0a1 = ωa1b0ωb0a2ωa2b1ωb1a0ωa0b2ωb2a1e2π i(3θ(α,β,λ))

= e2π i(3αN+βN )e2π i(3θ(αN ,βN ,λ)) = e2π i(3αN+βN+3θ(αN ,βN ,λ)),

and similarly for e2π iβN−1 . This implies (3.30) and (3.31). ��

4. Recursive Characterization of the Magnetic Spectrum

In this section we explicitly characterize the spectrum σ(Lω
N ) under Definition 1.2,

thereby proving Theorems 1 and 2. Our approach is to specialize the results from Sect.
2 to

V = VN , V‖ = VN−1, V⊥ = V \ V‖, M = Lω
N , L = L�

N−1,

and involve all the functions referenced in Corollary 3.2.
As a first step, we distinguish the case where the fluxes α, β ∈ {0, 1

2 } from the other
cases. This is made not just for convenience, but actually reflects the dichotomy between
(Case 1) and (Case 2) in Corollary 3.2.

Proposition 4.1. The function R � λ �→ �(α, β, λ) is R-valued if and only if α, β ∈
{0, 1

2 }.
Proof. From (3.20) we have

Im(�(α, β, λ)) = (2 sin(2πα) + sin(2π(2α + β)))
1 − λ

4

+
1

16
(sin(4πα) + 2 sin(2π(α + β))),

which is identically zero for all λ ∈ R if and only if

2 sin(2πα) + sin(2π(2α + β)) = 0 and sin(4πα) + 2 sin(2π(α + β)) = 0.

Using the shorthands X = cos(2πα) and Y = cos(2πβ), and applying several trig
identities (double-angle formula, sum-to-product formula), we rewrite the last condition
as

(2 + 2XY )
√
1 − X2 = (1 − 2X2)

√
1 − Y 2, (4.1)

and (X + Y )
√
1 − X2 = −X

√
1 − Y 2. (4.2)

Now square both sides of (4.1) and (4.2) and simplify to get

(4X4 + 8X3Y − 8XY ) − Y 2 − 4X2(Y 2 − 1) + 4X (Y 2 − 1) − 3 = 0, (4.3)

X4 + 2X3Y − 2XY = Y 2. (4.4)

Using (4.4)we replace 4X4+8X3Y−8XY by4Y 2 in (4.3),which can thenbe simplified to
yield (4X2−4X+3)(Y 2−1) = 0. So X = cos(2πα) = − 1

2 or
3
2 (the latter is impossible),

or Y = cos(2πβ) = ±1. In addition, by substituting − 1
2 for X in (4.1), we see that

Y = 3±i
√
2

2 is C-valued, so X cannot be − 1
2 . Thus it must be that cos(2πβ) = ±1, so

β = 0 or 1
2 . In turn cos(2πα) has to be ±1, i.e., α = 0 or 1

2 . ��
We shall refer to the case α, β ∈ {0, 1

2 } as Case I.
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Table 1. Case I. The red number is a double zero of D(β, ·)
α β �(α, β, x) R-valued zeros of �(α, β, ·)
0 0 (1 − x)2 + 3

4 (1 − x) + 1
8

5
4 ,

3
2

0 1
2 (1 − x)2 + 1

4 (1 − x) − 1
8

3
4 ,

3
2

1
2 0 (1 − x)2 − 1

4 (1 − x) − 1
8

1
2 ,

5
4

1
2

1
2 (1 − x)2 − 3

4 (1 − x) + 1
8

1
2 ,

3
4

Table 2. Case II. The red number is a double zero of D(β, ·)
α β �(α, β, x) R-valued zero of �(α, β, ·)
0 /∈ {0, 1

2 }
(
(1 − x) + 1

2

) (
(1 − x) + 1

4 e−2π iβ
)

3
2

/∈ {0, 1
2 } 1

2

(
(1 − x) − 1

4

) (
(1 − x) − 1

4 e−4π iα + 1
2 e−2π iα + 1

4

)
3
4

1
2 /∈ {0, 1

2 }
(
(1 − x) − 1

2

) (
(1 − x) + 1

4 e−2π iβ
)

1
2

/∈ {0, 1
2 } 0

(
(1 − x) + 1

4

) (
(1 − x) + 1

4 e−4π iα + 1
2 e−2π iα − 1

4

)
5
4

4.1. Case-by-case analysis of the exceptional set. In this subsection we systemati-
cally identify the exceptional set for spectral decimation of Lω

N , cf. (2.7). In fact, since
σ(Lω

N ) ⊂ R, it suffices to only consider real numbers in this set, namely:

E(α, β) = {x ∈ R : D(β, x) = 0 or φ(α, β, x) = 0}. (4.5)

Recalling the cubic polynomial (3.18), which is the characteristic polynomial of a Her-
mitian 3× 3 matrix, we see that the three zeros ofD(β, ·) (which does not depend on α)
belong to E(α, β). For reasons to be made clear later, we shall determine if any of the
zeros appears multiple times.

Lemma 4.2. The cubic polynomial D(β, ·), (3.18), has a multiple zero only if:

• β = 0, in which case the zeros are 5
4 (double) and 1

2 ;
• β = 1

2 , in which case the zeros are 3
4 (double) and 3

2 .

Proof. It is easy to see that for any β, D(β, ·) cannot have a triple zero, since there
is no c ∈ R such that D(β, x) = −(x − c)3. To exhibit the double zeros, we find
c, c′ ∈ R such that D(β, x) = −(x − c)2(x − c′). The RHS can be expanded to give
−x3 + (c′ + 2c)x2 − c(2c′ + c)x + c′c2. Equating the coefficients on both sides leads to
the system of equations c′ +2c = 3, c(2c′ + c) = 45

16 , and c′c2 = 13
16 − 1

32 cos(2πβ). The
claim follows. ��

So it remains to identify theR-valued zeros of φ(α, β, ·), cf. (3.23) or (3.26). Actually
we shall identify the R-valued zeros of �(α, β, ·), and check if any of them happens
also to be a zero of D(β, ·).

In Case I, we indicate in Table 1 the quadratic polynomial � and its R-valued zeros.
Beyond Case I we must apply Corollary 3.2-(Case 2). The next natural scenario is

when exactly one of α and β belongs to {0, 1
2 }. We call this Case II. In this case there is

only one R-valued zero of �(α, β, ·), see Table 2.
Nowwe consider α, β /∈ {0, 1

2 }. It turns out that there is a line in the (α, β)-parameter
space on which �(α, β, ·) has an R-valued zero. This line corresponds to having half-
integer fluxes through all the upright triangles of side length 2 in the graph distance.
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Proposition 4.3. Suppose α, β /∈ {0, 1
2

}
. Then �(α, β, ·) has an R-valued zero if and

only if 3α +β = 1
2 (mod 1). If so, this zero is unique, equals 1 + 1

2 cos(2πα), and is not
a zero of D(β, ·).
Proof. We solve Re(�(α, β, x)) = 0 and Im(�(α, β, x)) = 0 simultaneously. Let us
mention that the assumption α, β /∈ {0, 1

2 } implies that sin(2πα) �= 0 and sin(2πβ) �= 0.
Denoting η = 1 − x , we have

Re(�(α, β, λ)) = η2 +
η

4
(2 cos(2πα) + cos(2π(2α + β)))

+
1

16
(cos(4πα) + 2 cos(2π(α + β)) − 1) ,

Im(�(α, β, λ)) = η

4
(2 sin(2πα) + sin(2π(2α + β)))

+
1

16
(sin(4πα) + 2 sin(2π(α + β))).

Then Im(�) = 0 is equivalent to

η = −1

4
· sin(4πα) + 2 sin(2π(α + β))

2 sin(2πα) + sin(2π(2α + β))
. (4.6)

Substitute this into Re(�) = 0 to get

(sin(4πα) + 2 sin(2π(α + β)))2

(2 sin(2πα) + sin(2π(2α + β)))2

− (2 cos(2πα) + cos(2π(2α + β)))(sin(4πα) + 2 sin(2π(α + β)))

2 sin(2πα) + sin(2π(2α + β))

+ (cos(4πα) + 2 cos(2π(α + β)) − 1) = 0.

Now multiply both sides by [2 sin(2πα)+ sin(2π(2α +β))]2, a nonzero quantity, to get
[sin(4πα) + 2 sin(2π(α + β))]2 − [2 sin(2πα) + sin(2π(2α + β))]2

− (2 sin(2πα) + sin(2π(2α + β))) × [(2 cos(2πα)

+ cos(2π(2α + β)))((sin(4πα) + 2 sin(2π(α + β)))

− (cos(4πα) + 2 cos(2π(α + β)))(2 sin(2πα) + sin(2π(2α + β)))] = 0.

Combining the appropriate terms in the last square bracket and using the sum-to-
difference formulas for sine, we can simplify the last equation to

[sin(4πα) + sin(2π(2α + β)) + 2 sin(2π(α + β)) + 2 sin(2πα)]
× [sin(4πα) − sin(2π(2α + β))

+ 2 sin(2π(α + β)) − 2 sin(2πα)]
− 3 sin(2πβ)(2 sin(2πα) + sin(2π(2α + β))) = 0.

(4.7)

Another application of the sum-to-product formulas on the sine functions reduces the
expressions in the square brackets of (4.7), giving rise to

2 cos(πβ) · [2 sin(π(2α + β)) + sin(π(4α + β))]
× 2 sin(πβ) · [2 cos(π(2α + β)) − cos(π(4α + β))]
− 3 sin(2πβ)(2 sin(2πα) + sin(2π(2α + β))) = 0.
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Table 3. .

Condition Value to be added to E(α, β)

α = 0 3
2

α = 1
2

1
2

3α + β = 1
2 (mod 1) 1 + 1

2 cos(2πα)

We then divide both sides by 2 sin(2πβ) = 2 cos(πβ) sin(πβ) to get

[2 sin(π(2α + β)) + sin(π(4α + β))][2 cos(π(2α + β)) − cos(π(4α + β))]
− 3

2
(2 sin(2πα) + sin(2π(2α + β))) = 0.

(4.8)

Now we expand the first term on the LHS of (4.8), and use the double-angle formula
and the sum-to-difference formulas for sine to simplify (4.8) to

1

2
(sin(2π(2α + β)) − sin(2π(4α + β))) − sin(2πα) = 0. (4.9)

Applying again the sum-to-product formula to the first term on the LHS of (4.9), we get

sin(2πα)(cos(2π(3α + β)) + 1) = 0.

Since sin(2πα) �= 0, it must be that cos(2π(3α+β))+1 = 0, i.e., 3α+β = 1
2 (mod 1).

Finally, substitute this back into (4.6) leads to the conclusion that 1 + 1
2 cos(2πα) is the

only zero of �(α, β, ·). ��
In a nutshell, we have established four cases from which the exceptional set for

spectral decimation is analyzed. They are:

Case I: α, β ∈ {0, 1
2 }.

Case II:Only one ofα andβ is in {0, 1
2 }. There is only oneR-valued zero of�(α, β, ·),

which may or may not be a (double) zero of D(β, ·).
Case III: 3α + β = 1

2 (mod 1), excluding flux values already discussed in Cases I &
II. There is only one R-valued zero of �(α, β, ·), and it is not a zero of D(β, ·).
Case IV: The remaining case. There are no R-valued zeros of �(α, β, ·).

These are indicated in the flux parameter space in Fig. 9, and we summarize our main
findings as follows.

Proposition 4.4. (Exceptional set for spectral decimation of Lω
N ). The exceptional set

E(α, β) consists of:

• The three zeros of D(β, ·); and
• The corresponding values x in Table 3 if any of the conditions in the first column is
met.

4.2. Spectrum under fluxes α, β ∈ {0, 1
2 }. In this subsection we solve σ(Lω

N ) in Case I,
thereby proving Theorem 1. Here we use Corollary 3.2-(Case 1), where all the func-
tions are explicit polynomial or rational functions. This allows us to carry out spectral
decimation of Lω

N all the way to L(0,0)
0 , as Fig. 4 indicates.
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1
2

α

β

1
2

1

0 1
6

5
6 1

Fig. 9. The four cases in the analysis of the exceptional set for spectral decimation of Lω
N , indicated in the

flux parameter space (α, β) ∈ [0, 1)2: Case I, Case II, Case III, and Case IV (the white region in [0, 1)2 that
is not colored)

4.2.1. α = β = 0 This case corresponds to spectral decimation of the usual graph
Laplacian, which has been solved in [48, Section 3] (see also [3, Section 5]). We include
the full analysis here since it will be referred to in the other cases below. The relevant
functions are

�(0, 0, λ) =
(

λ − 3

2

)(

λ − 5

4

)

, D(0, λ) = − 1

32
(2λ − 1)(4λ − 5)2,

φ(0, 0, λ) = − λ − 3
2

(λ − 1
2 )(4λ − 5)

, R(0, 0, λ) = λ(5 − 4λ), E(0, 0) =
{
1

2
,
5

4
,
3

2

}

.

The enumeration of σ(L(0,0)
N ) proceeds in 5 steps. The first three steps are obtained

by first observing that 1 is an eigenvalue on level 0, and then using Lemma 2.5 and the
appropriate cases in Lemma 2.7. For the last two steps, we observe that the eigenval-
ues 3

4 and 5
4 first appear on level 1 and level 2, respectively, which then lead to their

corresponding 3
4 -series and

5
4 -series. To wit:

(1) mult
(
L(0,0)

N , 0
)

= 1 by induction on N and Lemma 2.5. This result is consistent

with the Perron-Frobenius theorem.

(2) 3
2 ∈ E(0, 0), and mult

(

L(0,0)
N ,

3

2

)

= 3N + 3

2
by Lemma 2.7-(ii).

(3) 1
2 ∈ E(0, 0), and mult

(

L(0,0)
N ,

1

2

)

= 0 by Lemma 2.7-(iii).

(4) 3
4 -series, which contains 3

4 and any number of preimages of 3
4 under R(0, 0, ·):

For k ∈ {0, 1, . . . , N−1},mult

(

L(0,0)
N , (R(0, 0, ·))−k

(
3

4

))

= 3N−k−1 + 3

2
byLemma

2.5 and Lemma 2.7-(iii).
(5) 5

4 -series, which contains 5
4 and any number of preimages of 5

4 under R(0, 0, ·):
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For k ∈ {0, 1, . . . , N − 2}, mult

(

L(0,0)
N , (R(0, 0, ·))−k

(
5

4

))

= 3N−k−1 − 1

2
by

Lemma2.5 andLemma2.7-(iii).Note thatmult

(

L(0,0)
N , (R(0, 0, ·))−(N−1)

(
5

4

))

=
0.

As an aside, note that the preimage of R+ under R(0, 0, ·) is [0, 5
4 ]. It is then direct

to see that σ(L(0,0)
N ) is contained in [0, 5

4 ] ∪ { 32 }.

4.2.2. α = β = 1
2 The relevant functions are

�

(
1

2
,
1

2
, λ

)

=
(

λ − 1

2

)(

λ − 3

4

)

, D
(
1

2
, λ

)

= − 1

32
(2λ − 3)(4λ − 3)2,

φ

(
1

2
,
1

2
, λ

)

= − λ − 1
2

(λ − 3
2 )(4λ − 3)

, R

(
1

2
,
1

2
, λ

)

= −(λ − 2)(4λ − 3), E
(
1

2
,
1

2

)

=
{
1

2
,
3

4
,
3

2

}

.

Since α↓( 12 ,
1
2 , λ) = 0 and β↓( 12 ,

1
2 , λ) = 0, many of the eigenvalues in σ(L( 12 , 12 )

N ) are

preimages of σ(L(0,0)
N1

) under R( 12 ,
1
2 , ·). The enumeration of σ(L( 12 , 12 )

N ) proceeds in 6
steps.

(1) Since 0 ∈ σ(L(0,0)
N−1), we consider its preimages under R( 12 ,

1
2 , ·), which are 2 and 3

4
(exceptional). Since φ( 12 ,

1
2 , 2) �= 0 and D( 12 , 2) �= 0, we can apply Lemma 2.5 to

get

mult

(

L
(
1
2 , 12

)

N , 2

)

= mult
(
L(0,0)

N−1, 0
)

= 1.

Next we treat each of the three exceptional values.

(2) We see that D( 12 ,
1
2 ) �= 0 and φ

( 1
2 ,

1
2 ,

1
2

) = 0. So Lemma 2.7-(ii) applies and

mult

(

L
(
1
2 , 12

)

N ,
1

2

)

= 3N + 3

2
.

(3) Since D( 12 ,
3
4 ) = 0, φ( 12 ,

1
2 , ·) has a pole at 3

4 , and R
( 1
2 ,

1
2 ,

3
4

) = 0, Lemma 2.7-(iii)
applies and

mult

(

L
(
1
2 , 12

)

N ,
3

4

)

= 3N−1 · 2 − 3N + 3

2
+ mult

(
L(0,0)

N−1, 0
)

= 3N−1 − 1

2
.

(4) The last exceptional value 3
2 satisfies the same conditions as 3

4 , and R
( 1
2 ,

1
2 ,

3
2

) = 3
2 ,

so Lemma 2.7-(iii) applies and

mult

(

L
(
1
2 , 12

)

N ,
3

2

)

= 3N−1 − 3N + 3

2
+ mult

(

L(0,0)
N−1,

3

2

)

= 0.
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(5) We need to consider the other preimage of 3
2 under R

( 1
2 ,

1
2 , ·
)
, which is 5

4 . Given
that D( 12 ,

5
4 ) �= 0 and φ( 12 ,

1
2 ,

5
4 ) �= 0, Lemma 2.5 applies and

mult

(

L
(
1
2 , 12

)

N ,
5

4

)

= mult

(

L(0,0)
N−1,

3

2

)

= 3N−1 + 3

2
.

(6) From the previous case α = β = 0, we saw that all the eigenvalues in σ
(
L(0,0)

N−1

)
\

{0, 3
2 } belong to the 3

4 -series or the
5
4 -series, and lie in

[
0, 3

2

]
. Since R( 12 ,

1
2 , λ) =

−4(λ − 11
8 )2 + 25

16 , each eigenvalue of the
3
4 -series and the

5
4 -series has two positive

real preimages under R( 12 ,
1
2 , ·). So by Lemma 2.5 we have

mult

(

L( 12 , 12 )

N ,

(

R

(
1

2
,
1

2
, ·
))−1

◦ (R(0, 0, ·))−k
(
3

4

))

= 3N−k−2 + 3

2
, k ∈ {0, 1, . . . , N − 2},

mult

(

L( 12 , 12 )

N ,

(

R

(
1

2
,
1

2
, ·
))−1

◦ (R(0, 0, ·))−k
(
5

4

))

= 3N−k−2 − 1

2
, k ∈ {0, 1, . . . , N − 3}.

These give rise to

2

(

dimN−1 −mult

(

L(0,0)
N−1,

3

2

)

− mult
(
L(0,0)

N−1, 0
))

= 2

(

dimN−1 −3N−1 + 3

2
− 1

)

= 2(3N−1 − 1)

many eigenvalues.

The total count of eigenvalues from the 6 steps above is

1 +
3N + 3

2
+
3N−1 − 1

2
+ 0 +

3N−1 + 3

2
+ 2(3N−1 − 1) = 3N+1 + 3

2
= dimN ,

as desired.
As an aside, note that the eigenvalues in the first 5 items do not fall into the interval

( 12 ,
3
4 ). Also, the eigenvalues in Step (6), which are preimages of R( 12 ,

1
2 , ·), are in [ 34 , 2],

also outside of ( 12 ,
3
4 ). This is consistent with the gap ( 12 ,

3
4 ) in the butterfly spectrum

(Fig. 6).

4.2.3. α = 1
2 , β = 0 The relevant functions are

�

(
1

2
, 0, λ

)

=
(

λ − 1

2

)(

λ − 5

4

)

, D(0, λ) = − 1

32
(2λ − 1)(4λ − 5)2,

φ

(
1

2
, 0, λ

)

= − 1

4λ − 5
, R

(
1

2
, 0, λ

)

= −4λ2 + 9λ − 3, E
(
1

2
, 0

)

=
{
1

2
,
5

4

}

.

Since α↓( 12 , 0, λ) = 1
2 and β↓( 12 , 0, λ) = 1

2 , many of the eigenvalues in σ(L( 12 ,0)
N ) are

preimages of σ(L( 12 , 12 )

N−1 ) under R( 12 , 0, ·). We enumerate σ(L( 12 ,0)
N ) in five steps.

First consider the two values in the exceptional set.
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(1) The first exceptional value 1
2 satisfies D(0, 1

2 ) = 0 and φ( 12 , 0,
1
2 ) �= 0. Moreover,

both φ and φR are bounded in a neighborhood of 1
2 , and ∂λ R( 12 , 0,

1
2 ) �= 0. Also

R( 12 , 0,
1
2 ) = 1

2 . Therefore Lemma 2.7-(iv) applies and

mult

(

L
(
1
2 ,0
)

N ,
1

2

)

= 3N−1 + mult

(

L
(
1
2 , 12

)

N−1 ,
1

2

)

= 3N−1 +
3N−1 + 3

2
= 3N + 3

2
.

(2) The second exceptional value 5
4 satisfies all the conditions in Lemma 2.7-(iii). We

also know that R
(
1
2 , 0,

5
4

)
= 2. So we get

mult

(

L
(
1
2 ,0
)

N ,
5

4

)

= 3N−1 · 2 − 3N + 3

2
+ mult

(

L
(
1
2 , 12

)

N−1 , 2

)

= 3N−1 − 1

2
.

The next two steps deal with the other preimages of 1
2 and 2, which appeared in the

first two steps and belong to σ(L
(
1
2 , 12

)

N−1 ).

(3) 7
4 is the other preimage of 1

2 under R
( 1
2 , 0, ·

)
. Lemma 2.5 applies and

mult

(

L
(
1
2 ,0
)

N ,
7

4

)

= mult

(

L
(
1
2 , 12

)

N−1 ,
1

2

)

= 3N−1 + 3

2
.

(4) 1 is the other preimage of 2 under R
( 1
2 , 0, ·

)
. Lemma 2.5 applies and

mult

(

L
(
1
2 ,0
)

N , 1

)

= mult

(

L
(
1
2 , 12

)

N−1 , 2

)

= 1.

(5) Finally, we apply Lemma 2.5 to all eigenvalues of σ(L( 12 , 12 )

N−1 )\{ 12 , 2}. First, we would
like to investigate 3

4 and 3
2 , which are the remaining two values in E( 12 ,

1
2 ). Since

3
2 /∈ σ(L( 12 , 12 )

N−1 ), we can ignore it. As for 3
4 , its preimages do not lie in E ( 12 , 0

)
, so

Lemma 2.5 applies. Moreover, all eigenvalues in σ(L( 12 , 12 )

N−1 ) \ { 12 , 2} are in [ 34 , 2] and
R( 12 , 0, λ) = −4(λ − 9

8 )
2 + 33

16 , so Lemma 2.5 applies and they all have two positive

real preimages under R( 12 , 0, ·). So in total they contribute to σ(L( 12 ,0)
N )

2

(

dimN−1 −mult

(

L
(
1
2 , 12

)

N−1 , 2

)

− mult

(

L
(
1
2 , 12

)

N−1 ,
1

2

))

= 2 · 3N − 2 · 3N−1 − 4

2

eigenvalues.

The total count of eigenvalues is indeed

3N + 3

2
+
3N−1 − 1

2
+
3N−1 + 3

2
+ 1 +

2 · 3N − 2 · 3N−1 − 4

2
= 3N+1 + 3

2
= dimN .
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4.2.4. α = 0, β = 1
2 The relevant functions are

�

(

0,
1

2
, λ

)

=
(

λ − 3

4

)(

λ − 3

2

)

, D
(
1

2
, λ

)

= − 1

32
(2λ − 3)(4λ − 3)2,

φ

(

0,
1

2
, λ

)

= − 1

4λ − 3
, R

(

0,
1

2
, λ

)

= −4λ2 + 7λ − 1, E
(

0,
1

2

)

=
{
3

4
,
3

2

}

.

Since α↓(0, 1
2 , λ) = 1

2 and β↓(0, 1
2 , λ) = 1

2 , most of the eigenvalues in σ(L(0, 12 )

N ) are

preimages of σ(L( 12 , 12 )

N−1 ) under R(0, 1
2 , ·). The following five-step analysis is similar to

that of the last case α = 1
2 , β = 0.

We consider the two values in the exceptional set first.

(1) The first value 3
2 is in σ(D), and φ

(
0, 1

2 , λ
)
is neither 0 at 3

2 nor has a pole at 3
2 . We

also know that R
(
0, 1

2 ,
3
2

) = 1
2 . Therefore, we shall apply Lemma 2.7-(iv) to get

mult

(

L
(
0, 12

)

N ,
3

2

)

= 3N−1 + mult

(

L
(
1
2 , 12

)

N−1 ,
1

2

)

= 3N−1 +
3N−1 + 3

2
= 3N + 3

2
.

(2) The second value in the exceptional set 3
4 is also in σ(D), and satisfies the rest of the

conditions in Lemma 2.7-(iii). We also know that R
(
0, 1

2 ,
3
4

) = 2. So we get

mult

(

L
(
0, 12

)

N ,
3

4

)

= 3N−1 · 2 − 3N + 3

2
+ mult

(

L
(
1
2 , 12

)

N−1 , 2

)

= 3N−1 − 1

2
.

The next two items deal with the other preimages of 1
2 and 2 under R

(
0, 1

2 , ·
)
.

(3) 1
4 is the other preimage of 1

2 under R
( 1
2 , 0, ·

)
, so we use Lemma 2.5 to get

mult

(

L
(
0, 12

)

N ,
1

4

)

= mult

(

L
(
1
2 , 12

)

N−1 ,
1

2

)

= 3N−1 + 3

2
.

(4) 1 is the other preimage of 2 under R
( 1
2 , 0, ·

)
, so we use Lemma 2.5 to get

mult

(

L
(
1
2 ,0
)

N , 1

)

= mult

(

L
(
1
2 , 12

)

N−1 , 2

)

= 1.

(5) Finally, by the same argument in step (5) of the previous case, all eigenvalues in

σ(L( 12 , 12 )

N−1 ) \ { 12 , 2} are in [ 34 , 2] and R(0, 1
2 , λ) = −4(λ − 7

8 )
2 + 33

16 , so Lemma 2.5

applies and they all have two positive real preimages under R(0, 1
2 , ·). So in total

they contribute to σ(L(0, 12 )

N )

2 · 3N − 2 · 3N−1 − 4

2
eigenvalues.

The total count of eigenvalues is indeed

3N + 3

2
+
3N−1 − 1

2
+
3N−1 + 3

2
+ 1 +

2 · 3N − 2 · 3N−1 − 4

2
= 3N+1 + 3

2
= dimN .
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4.3. Spectrum when not both of the fluxes α, β are in {0, 1
2 }. In this subsection we

characterize σ(Lω
N ) in Cases II, III, and IV, thereby proving Theorem 2. Recall from

Proposition 4.1 that R � λ �→ �(α, β, λ) is C-valued, so we use Corollary 3.2-(Case
2). In particular the reduced magnetic Laplacian L�

N−1 receives a “twist” in the form of
a multiplier e2π iθ(α,β,λ), θ(α, β, λ) = (2π)−1arg�(α, β, λ). The decimation diagram
takes the form

L(αN ,βN )
N L(αN−1,βN−1)

N−1 −→ · · · −→ L(α0,β0)
0 ,

R(αN ,βN ,·)

where for eachn ∈ {1, 2, . . . , N },αn−1(λ) = α↓(αn, βn, λ) andβn−1(λ) = β↓(αn, βn, λ),
cf. Proposition 3.3. We emphasize again the dependence of the magnetic Laplacians and
fluxes on the spectral parameter λ under decimation. That said, to avoid an overcharged
notation, we will suppress the flux symbols αN and βN in this subsection unless the
context requires their presence.

The order of our analysis starts with the case �(λ) �= 0, followed by the case
�(λ) = 0.

4.3.1. �(λ) �= 0

Proposition 4.5. In any of Cases II, III, and IV, suppose �(λ) �= 0.

G1 If D(λ) �= 0, then

Eλ(Lω
N ) =

(

lim
R�x→λ

φ(x)
R(λ) − R(x)

λ − x

)−1 (
P∗‖

−P∗⊥(D − λ)−1C
)

ER(λ)(L�
N−1)

(
P‖ − B(D − λ)−1P⊥

)
. (4.10)

In particular, mult(Lω
N , λ) = mult

(L�
N−1, R(λ)

)
.

G2 If D(λ) = 0, then λ is a simple zero of D.

On the one hand, suppose lim
R�x→λ

1

|�(x)|
D(x)(λ − x)

R(λ) − R(x)
= 0. Then

Eλ(Lω
N ) = P∗⊥Eλ(D)P⊥ +

(

lim
R�x→λ

4D(x)

(λ − x)|�(x)|
)

P∗⊥Eλ(D)C
(L�

N−1 − R(λ)
)−1

(
I‖ − ER(λ)(L�

N−1)
)

B Eλ(D)P⊥.

In particular, Eλ(Lω
N )(P∗⊥Eλ(D)P⊥) = Eλ(Lω

N ),

mult(Lω
N , λ) = 3N−1 − dimN−1 + mult

(L�
N−1, R(λ)

)

= −3N−1 + 3

2
+ mult

(L�
N−1, R(λ)

)
,

and the corresponding eigenfunction vanishes on VN−1.
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On the other hand, suppose lim
R�x→λ

1

|�(x)|
D(x)(λ − x)

R(λ) − R(x)
�= 0. Then

Eλ(Lω
N ) = P∗⊥Eλ(D)P⊥

+

(

lim
R�x→λ

4D(x)

(λ − x)|�(x)|
)

P∗⊥Eλ(D)C
(L�

N−1 − R(λ)
)−1 (

I‖

−ER(λ)(L�
N−1)

)
B Eλ(D)P⊥

+
(

P∗‖ − P∗⊥(D − λ)−1C
)(

lim
R�x→λ

1

φ(x)

λ − x

R(λ) − R(x)

)

ER(λ)(L�
N−1)

(
P‖

−B(D − λ)−1P⊥
)

,

(4.11)

and in general

mult(Lω
N , λ) = 3N−1 − dimN−1 + 2mult(L�

N−1, R(λ)) = − 3N−1+3
2

+2mult(L�
N−1, R(λ)).

That said, if none of the corresponding eigenfunctions vanishes on VN−1, then the first
two terms on the RHS of (4.11) vanish, and mult(Lω

N , λ) = mult(L�
N−1, R(λ)).

Proof. (G1):We are in the setting of Lemma 2.5. The only thing to justify is the existence
of the limit on the RHS of (4.10). Indeed, from (3.26) and (3.27) we get

φ(x)
R(λ) − R(x)

λ − x
= |�(x)|

4D(x)

1

λ − x

(
A(λ) − 64D(λ)(1 − λ)

16|�(λ)| − A(x) − 64D(x)(1 − x)

16|�(x)|
)

= 1

64D(x)

1

λ − x

( |�(x)|
|�(λ)| (A(λ) − 64D(λ)(1 − λ)) − (A(x) − 64D(x)(1 − x))

)

= 1

64D(x)

(
F(λ) − F(x)

λ − x
+

|�(x)| − |�(λ)|
λ − x

· F(λ)

|�(λ)|
)

where F(x) = A(x) − 64D(x)(1− x), which is analytic. On the other hand, |�(x)|2 is
a quadratic polynomial in x ∈ R. Therefore |�(x)| = √|�(x)|2 is differentiable on R

so long as �(x) �= 0. The claim now follows from the given assumptions.
(G2): By Lemma 4.2, a multiple zero λ of D occurs only if β = 0 or β = 1

2 , i.e.,
under Case II. Moreover, by Table 2, λ is also a zero of �. Therefore under the stated
conditions λ can only be a simple zero of D.

Since� is continuous,�(λ) �= 0, andD(λ) = 0, it follows that limR�x→λ[φ(x)]−1 =
0. Thus we are in the setting of either Lemma 2.7-(iii) or Lemma 2.7-(vi), provided that
the following two limits exist:

lim
R�x→λ

1

φ(x)(λ − x)
and lim

R�x→λ

1

φ(x)

λ − x

R(λ) − R(x)
. (4.12)

For the first ratio in (4.12), since λ is a simple zero of D, and �(λ) �= 0,

1

φ(x)(λ − x)
= 4D(x)

|�(x)|(λ − x)
= − 4

|�(x)| (x − r1)(x − r2) for some r1, r2 �= λ.

This has a well-defined nonzero limit as x → λ. For the second ratio in (4.12),

1

φ(x)

λ − x

R(λ) − R(x)
= 4

|�(x)|
D(x)(λ − x)

R(λ) − R(x)
, (4.13)
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the existence of the limit as x → λ is clear. If this limit is zero (resp. nonzero), Lemma
2.7-(iii) (resp. Lemma 2.7-(vi)) applies. ��

Given our knowledge of the functions D, �, and A, it would be more satisfying to
give concrete criteria for whether the limit of (4.13) is zero. Below is our best attempt
using elementary analysis.

By assumption we may write D(x) = −(x − λ)(x − a)(x − b), a, b �= λ being the
two other zeros of D. Also, since D(λ) = 0 and �(λ) �= 0,

R(λ) − R(x) = A(λ)

16|�(λ)| − A(x) − 64D(x)(1 − x)

16|�(x)|
= 1

16|�(x)| (A(λ) − A(x) + 64D(x)(1 − x)) +
A(λ)

16

(
1

|�(λ)| − 1

|�(x)|
)

.

Therefore (4.13) rewrites as

64(x − a)(x − b)

[
(λ − x)2

A(λ) − A(x) + 64D(x)(1 − x)
+

|�(λ)|
A(λ)

(λ − x)2

|�(x)| − |�(λ)|
]

.

(4.14)

assuming A(λ) �= 0. (If A(λ) = 0, then only the first term inside the square bracket in
(4.14) survives.)

Let us note the elementary identity

1

|�(x)| − |�(λ)| = |�(x)| + |�(λ)|
|�(x)|2 − |�(λ)|2 .

By Taylor approximation, |�(·)|2 − |�(λ)|2 has a multiple zero at λ if and only if
d

dx |�(x)|2|x=λ = 0. Therefore the second term in the square bracket in (4.14) converges
to 0 as R � x → λ if and only if d

dx |�(x)|2|x=λ �= 0.
The same reasoning applies to the first term in the square bracket in (4.14). By

construction, the polynomial in the denominator must contain at least one factor of
(x − λ). If it contains multiple factors of (x − λ), then the first term converges to a
nonzero limit. Luckily we can derive an explicit criterion.

Lemma 4.6. Assume λ is a zero of D(β, ·). Set

H(α, β, x) := A(α, β, λ) − A(α, β, x) + 64D(β, x)(1 − x).

Then λ is a multiple zero of H(α, β, ·) if and only if

8(λ − 1)

(

1 − 2

(

λ2 − 2λ(3 − λ) +
45

16

))

= cos(2πα). (4.15)

Remark 4.7. Lemma 4.6 is not vacuous. It is easy to see that (4.15) holdswithα ∈ { 14 , 3
4 },

β ∈ { 14 , 3
4 }, and λ = 1. More generally, observe that the LHS of (4.15) depends only

on β, whereas the RHS depends only on α. So long as the LHS has modulus ≤ 1, there
exists α for which (4.15) holds.
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Table 4. Criterion table for Proposition 4.5-(G2)

d
dx |�(x)|2|x=λ = 0 (4.15) holds lim

R�x→λ

1

|�(x)|
D(x)(λ − x)

R(λ) − R(x)

F F 0
T F Nonzero
F T Nonzero
T T 0 (If cancellation occurs) or nonzero

Proof of Lemma 4.6. Using (3.17) for A(α, β, ·), as well as the factorizationD(β, x) =
−(x − λ)(x − a)(x − b), we get

H(α, β, x) = 16(λ2 − x2) − (32 + 4 cos(2πα))(λ − x)

+ 64(λ − x)(x − a)(x − b)(1 − x)

= 4(λ − x) [4(λ + x) − 8 − cos(2πα) + 16(x − a)(x − b)(1 − x)] .

Thus λ is a multiple zero ofH(α, β, ·) if and only if the expression in the square bracket
vanishes when x = λ, i.e.,

8(λ − 1) (1 − 2(λ − a)(λ − b)) = cos(2πα).

We can then replace a + b and ab in terms of λ and coefficients of the cubic polynomial
D(β, ·) to obtain (4.15). ��

We summarize the above discussions in the following Table 4.

4.3.2. �(λ) = 0 Recall that in Case IV, �(λ) �= 0 for any λ ∈ R, so Proposition 4.5
settles the spectral decimation problem in this case. It remains to treat the exceptional
values λ in Cases II and III where �(λ) = 0. These are established in the next two
propositions. We begin with the (much) more straightfoward case.

Proposition 4.8. In Case III, if λ = 1 + 1
2 cos(2παN ), then mult(Lω

N , λ) = 0.

Proof. In this case �(λ) = 0 and D(λ) �= 0, so φ(λ) = 0, limR�x→λ[R(x)]−1 = 0,
and (λ − x)[φ(x)]−1 stays bounded as x → λ. Thus we are in the setting of Lemma
2.7-(vii). ��

Now we come to the subtler case. Since �(x) = (x − λ)(x − a) for some a ∈ C,
a �= λ, it follows that

lim
x↑λ

ei(arg�(x)) = − lim
x↓λ

ei(arg�(x)),

and this implies that the connection �(x) in the reduced Laplacian L�
N−1 differs by an

overall sign when x ↑ λ compared to when x ↓ λ. Precisely we have the identity

lim
x↑λ

sgn(λ − x)(L�
N−1 − 1)

= lim
x↓λ

sgn(λ − x)(L�
N−1 − 1). (4.16)

With this in mind we can now state and prove the last remaining case.

Proposition 4.9. In Case II:
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(II.1) If either αN = 0, βN /∈ {0, 1
2 }, and λ = 3

2 , or αN = 1
2 , βN /∈ {0, 1

2 }, and λ = 1
2 ,

then

Eλ(Lω
N ) =

(
P∗‖ − P∗⊥(D − λ)−1C

)(

lim
R�x→λ

1

χ0(x)
(L�

N−1 − R(x))−1
)

(
P‖ − B(D − λ)−1P⊥

)
,

where χ0(x) = 4(λ − x)D(x)

|�(x)| . In particular, mult(Lω
N , λ) = dimN−1 = 3N+3

2 .

(II.2) If λ is a double zero of D—that is, either βN = 0, αN /∈ {0, 1
2 }, and λ = 5

4 , or
βN = 1

2 , αN /∈ {0, 1
2 }, and λ = 3

4 — then the following dichotomy holds.

On the one hand, if αN ∈ { 16 , 5
6 } in the case βN = 0 and λ = 5

4 , or αN ∈ { 13 , 2
3 } in

the case βN = 1
2 and λ = 3

4 , then

Eλ(Lω
N ) = P∗⊥Eλ(D)P⊥

+ P∗⊥Eλ(D)C

(

lim
R�x→λ

1

ψ0(x)

(L�
N−1 − R(x)

)−1
)
(
I‖ − ER(λ)(L�

N−1)
)

B Eλ(D)P⊥

+
(

P∗‖ − P∗⊥(D − λ)−1C
)(

lim
R�x→λ

1

φ(x)

λ − x

R(λ) − R(x)
ER(x)(L�

N−1)

)
(
P‖

−B(D − λ)−1P⊥
)

, (4.17)

where ψ0(x) = (λ − x)|�(x)|
4D(x)

. In general,

mult(Lω
N , λ) = 2 · 3N−1 − dimN−1 + 2mult(L�

N−1, R(λ))

= 3N−1 − 3

2
+ 2mult(L�

N−1, R(λ)).

That said, if none of the corresponding eigenfunctions vanishes on VN−1, then the
first two terms on the RHS of (4.17) vanish, and mult(Lω

N , λ) = mult(L�
N−1, R(λ)).

On the other hand, for all other scenarios

Eλ(Lω
N ) = P∗⊥Eλ(D)P⊥

+ P∗⊥Eλ(D)C

(

lim
R�x→λ

1

ψ0(x)

(L�
N−1 − R(x)

)−1
)
(
I‖ − ER(λ)(L�

N−1)
)

B Eλ(D)P⊥,

In particular, Eλ(Lω
N )(P∗⊥Eλ(D)P⊥) = Eλ(Lω

N ),

mult(Lω
N , λ) = 2 · 3N−1 − dimN−1 + mult

(L�
N−1, R(λ)

)

= 3N−1 − 3

2
+ mult

(L�
N−1, R(λ)

)
,

and the corresponding eigenfunction vanishes on VN−1.
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Proof. (II.1): We have �(λ) = 0, D(λ) �= 0, and thus φ(λ) = 0. Nominally this would
fall under the scenario of Lemma 2.7-(ii), but we need to address the connection sign
change at λ. First we carry out a tedious but elementary computation to get

R(0, β, x) = 1 +
x − 3

2

|x − 3
2 |

−32x3 + 80x2 − 58x + 11 − cos(2πβ)

2|4x − 4 − e−2π iβ | , if α = 0, β /∈
{

0,
1

2

}

, λ = 3

2
;

R

(
1

2
, β, x

)

= 1 +
x − 1

2

|x − 1
2 |

−32x3 + 112x2 − 122x + 41 − cos(2πβ)

2|4x − 4 − e−2π iβ | , if α = 1

2
, β /∈

{

0,
1

2

}

, λ = 1

2
.

In either case we find

R(x) − 1 = λ − x

|λ − x |F(x) (4.18)

where F is bounded in an R-neighborhood of λ. Consequently,

λ − x

φ(x)
(L�

N−1 − R(x))−1 = 4D(x)
λ − x

|�(x)|
(
(L�

N−1 − 1) − (R(x) − 1)
)−1

= 4D(x)

|x − a|
λ − x

|λ − x |
(

(L�
N−1 − 1) − λ − x

|λ − x |F(x)

)−1

= 4D(x)

|x − a|
(
sgn(λ − x)(L�

N−1 − 1) − F(x)
)−1

,

which has a well-defined nonzero limit as R � x → λ by (4.16).
(II.2): Since�(λ) = 0, and λ is a double zero ofD, we have limR�x→λ[φ(x)]−1 = 0.

This suggests that we are in the setting of either Lemma 2.7-(iii) or Lemma 2.7-(vi),
though again we need to account for the connection sign change at λ. A tedious but
elementary computation shows that

R(α, 0, x) = 1 +
x − 5

4

|x − 5
4 |

(4x − 3 − cos(2πα)) + 2(2x − 1)(4x − 5)(1 − x)

|4x − 3 − e−4π iα − 2e−2π iα | , if β = 0, α /∈
{

0,
1

2

}

, λ = 5

4
;

R

(

α,
1

2
, x

)

= 1 +
x − 3

4

|x − 3
4 |

(4x − 5 − cos(2πα)) + 2(2x − 3)(4x − 3)(1 − x)

|4x − 5 + e−4π iα − 2e−2π iα | , if β = 1

2
, α /∈

{

0,
1

2

}

, λ = 3

4
.

So once again R(x) − 1 has the form (4.18). Consequently, the limit as R � x → λ of

1

φ(x)(λ − x)
(L�

N−1 − R(x))−1 = 4

|x − a|
D(x)

(λ − x)2

(
sgn(λ − x)(L�

N−1 − 1) − F(x)
)−1

exists and is nonzero on the image of I‖ − ER(λ)(L�
N−1). The other quantity to analyze

is

λ − x

φ(x)
(L�

N−1 − R(x))−1 = 4D(x)

|x − a| (sgn(λ − x)(L�
N−1 − 1) − F(x))−1

= 4(x − r3)

|x − a|
(λ − x)2

F(λ) − F(x)
(F(λ) − F(x))(sgn(λ − x)(L�

N−1 − 1) − F(x))−1,

where r3 is the third zero of D. Since this term acts on the image of ER(λ)(L�
N−1), it

remains to determine whether

lim
R�x→λ

(λ − x)2

F(λ) − F(x)
(4.19)
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is nonzero, i.e., whether F(λ) − F(·) has a multiple zero at λ. A direct computation

shows that the limit (4.19) is nonzero iff: α ∈
{
1
6 ,

5
6

}
in the case β = 0 and λ = 5

4 ; or

α ∈ { 13 , 2
3

}
in the case β = 1

2 and λ = 3
4 . In these scenarios we are in the setting of

Lemma 2.7-(vi); otherwise, Lemma 2.7-(iii). ��
We now complete the proofs of the main results stated in Sect. 1.

Proof of Theorem 2. Combine Propositions 4.5, 4.8, and 4.9 to obtain (1.14). ��
Proof of Proposition 1.5. Proposition 4.5-(G2) and Proposition 4.9-(II.2) implies Item
(1) and Item (2), respectively. ��
Proof of Corollary 1.6. By assumption there is no λ which is a double zero of D(β, ·).
Incorporating Proposition 1.5 into Theorem 2 yields (1.19). Now recall from Proposition
4.3 that if α, β /∈ {0, 1

2 }, then �(α, β, ·) has a R-valued zero iff 3α + β = 1
2 (mod 1).

By Proposition 4.8 this zero is not in the spectrum. This allows us to deduce (1.20) from
(1.14) and (1.19). ��
Proof of Theorem 3. Recall that for a normal operator T on a Hilbert space H , the
spectral radius of T is equal to the operator norm of T . This applies to the self-adjoint
operatorLω∞ on L2(V (G∞), degG∞). Since G∞ is a bounded degree graph, and theωxy
are unit complex numbers, it is direct to verify that the operator norm of Lω∞ is bounded
uniformly for all choices of ω.

We now prove that S∞
1 (α, β) ⊂ K(U) × ((α, β) × R). Suppose z ∈ σ(L(α,β)∞ ) \

E(α, β). ByTheorem2,wehave that R(α, β, z) ∈ σ(L(α↓(α,β,z),β↓(α,β,z))
∞ ), i.e.,U(α, β, z) ∈

T
2×⋃(α′,β ′)∈T2 σ(L(α′,β ′)∞ ). Iterating this forward, we deduce that

⋃∞
k=0 U◦k(α, β, z) ⊂

T
2 ×⋃(α′,β ′)∈T2 σ(L(α′,β ′)∞ ). Since the latter set is a bounded subset of T2 ×C, we con-

clude that
⋃∞

k=0 U◦k(α, β, z) is bounded, whence (α, β, z) ∈ K(U). ��

5. Magnetic Laplacian Determinants and Asymptotic Complexities

5.1. Magnetic Laplacian determinants and cycle-rooted spanning forests. Using The-
orem 1 we can compute the magnetic Laplacian determinant in the case α, β ∈ {0, 1

2 }.
Recall that the determinant det is the product of all eigenvalues. If 0 is an eigenvalue,
then we define det′ to be the product of all nonzero eigenvalues.

The classic Kirchhoff’s matrix-tree theorem states that on a finite graph G, the
number of spanning trees τ(G) on G equals 1

|V (G)|det
′(	G), or equivalently, the cofactor

of 	G obtained by removing any one row and any one column (up to an overall sign).
Since we use the probabilistic Laplacian LG = D−1

G 	G , it is useful to know that

τ(G) = ψ(G)det′(LG), where ψ(G) =
(∏

v∈V (G) deg(v)
)

(∑
v∈V (G) deg(v)

) . (5.1)

This follows frommatching the coefficient of t in the identity det(LG+t I ) = (det DG)−1

det(	G + t DG) using the cofactor expansion, and the aforementioned matrix-tree theo-
rem.
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Enumeration of spanning trees on SG has already been studied. Set

ψ(G N ) :=
(∏

v∈VN
deg(v)

)

(∑
v∈VN

deg(v)
) = 1

2

23
N+1

3N+1 .

It was shown in [8,49] via a combinatorial approach, and in [2] via spectral decimation
and (5.1), that

τ(G N ) = ψ(G N )det′(L(0,0)
N ) = 2

3N
2 − 1

2 · 33N+1
4 + N

2 +
1
4 · 53N

4 − N
2 − 1

4 . (5.2)

By placing a uniform probability measure on the set of all spanning trees, a.k.a. consid-
ering uniform spanning trees (USTs), we obtain a determinantal point process on the
edge set with kernel K = dGd∗, where G is the Green’s function for random walks.
The matrix K is known as the transfer impedance matrix [7]. For more properties of
USTs on SG and scaling limit questions, see [46].

Our next theorem gives the determinant formulae for the three magnetic Laplacians.
The normalization prefactor ψ(G N ) is used for the same reason as described in (5.1)
above.

Theorem 4. We have

det(L( 12 , 12 )

N ) = 1

ψ(G N )
· 2 3N

2 + 3
2 · 33N−1

2 −N− 3
2 · 53N−1

2 + 3
2

×
⎡

⎣
N−2∏

k=0

(

H(k) +
1

2

) 3N−k−2+3
2

⎤

⎦

⎡

⎣
N−3∏

k=0

(

H(k) +
5

2

) 3N−k−2−1
2

⎤

⎦ ,

(5.3)

where H(0) = 26.5, and for k ≥ 1, H(k) = [H(k − 1)]2 − 15
4 ;

det(L( 12 ,0)
N ) = 1

ψ(G N )
· 2 13

6 3N−1− 5
2 · 33N−2

2 −N− 3
2 · 5 5

2 3
N−2−1 · 73N−1

2 + 3
2 · 173N−2

2 + 3
2

×
⎡

⎣
N−3∏

k=0

(

H̃(k) +
1

2

) 3N−k−3+3
2

⎤

⎦

⎡

⎣
N−4∏

k=0

(

H̃(k) +
5

2

) 3N−k−3−1
2

⎤

⎦ ,

(5.4)

where H̃(0) = 302.5, and for k ≥ 1, H̃(k) = [H̃(k − 1)]2 − 15
4 ; and

det(L(0, 12 )

N ) = 1

ψ(G N )
· 2 13

6 3N−1− 5
2 · 37

3 3
N−1−N+3 · 73N−2

2 − 1
2

×
⎡

⎣
N−3∏

k=0

(

Ĥ(k) +
1

2

) 3N−k−3+3
2

⎤

⎦

⎡

⎣
N−4∏

k=0

(

Ĥ(k) +
5

2

) 3N−k−3−1
2

⎤

⎦ ,

(5.5)

where Ĥ(0) = 86.5, and for k ≥ 1, Ĥ(k) = [Ĥ(k − 1)]2 − 15
4 .
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Fig. 10. An instance of a cycle-rooted spanning forest on the level-3 gasket graph, generated via the sampling
algorithm of Kassel and Kenyon [27, p. 938] based on loop-erased random walks. Image courtesy of Quan Vu

The proof of Theorem 4 is postponed till Sect. 5.3.
There is an analog of thematrix-tree theorem for themagnetic Laplacian determinant,

established by Forman [17] and Kenyon [31]. To explain this, we recall some definitions
from [27,31], and refer the reader to these papers for more details. A cycle-rooted tree,
or unicycle, is a tree plus an extra edge to form a single cycle. A cycle-rooted spanning
forest (CRSF) is a spanning forest whose connected components are unicycles. See Fig.
10 for an illustration.

Fix a connected graph G, a directed edge conductance function c on {±E}, and a line
bundle connection ω on G. We would like to assign a probability measure on the set of
all CRSFs thereon. Declare that each oriented CRSF (OCRSF) occurs with probability
proportional to

∏
e∈bushes c(e)

∏
γ∈cycles C(γ )(1 − ω(γ )), where the first product runs

over all edges in the bushes (that is, not in the cycles), the second product runs over all
cycles,C(γ ) is the product of the semiconductances4 along γ , andω(γ ) is the holonomy
of γ . The following proposition says that det(Lω

(G,c)) gives the partition function which
makes the said CRSF measure a probability measure.

Proposition 5.1. (Matrix-CRSF theorem [31, Theorem 6]). LetLω
(G,c) be the line bundle

Laplacian (1.1). Then

det
(
Lω

(G,c)

)
=

∑

OCRSFs

∏

e∈bushes
c(e)

∏

γ∈cycles
C(γ ) (1 − ω(γ )) . (5.6)

Remark 5.2. Note that if cxy = cyx for all xy ∈ E , then (5.6) may be written as a sum
over unoriented CRSFs:

det
(
Lω

(G,c)

)
=
∑

CRSFs

∏

e

c(e)
∏

γ∈cycles

(

2 − ω(γ ) − 1

ω(γ )

)

,

where the first product is over all edges in the CRSF [31, Theorem 5].

Like the UST process, the CRSF process is also a determinantal point process on

the edge set, with kernel d
(
Lω

(G,c)

)−1
d∗ [31, Theorem 2]. In [27, p. 938] Kassel and

4 The semiconductance of an undirected edge with end vertices x and y is defined as 1
2 (cxy + cyx ).
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Kenyon gave an elementary sampling algorithm for CRSFs based on loop-erased random
walks (LERWs) and cycle popping à la Wilson [51], valid for any holonomy e2π iγ

with γ ∈ [− 1
4 ,

1
4 ]. Using this algorithm, in combination with facts from LERWs and

Brownian loop soups [34], they proved convergence to a loop measure on an oriented
Riemannian surface from the CRSF processes on discretizations of the said surface [27,
Theorem 20].

5.2. Asymptotic complexity and a large deviations result. It is an open problem to study
local properties and scaling limits of theCRSFmeasures on SG. That said,we can use our
results on the magnetic Laplacian determinant (Theorem 4) to quantify the asymptotic
complexity of the CRSF measures.

Let G∞ be an infinite connected graph which can be exhausted by a sequence of
finite connected graphs {G N }N . We define the asymptotic complexity associated with
Lω∞ on G∞ by

h(G∞,Lω∞) := lim
N→∞

log
(
ψ(G N )det′(Lω

N )
)

|VN | (5.7)

provided that the RHS limit exists.
The formula (5.7) is classical for the graph Laplacian, i.e., for the enumeration of

spanning trees. In [35,36] R. Lyons introduced the notion of tree entropy on G∞, gave
several equivalent formulations—one of which is the logarithm of a Fuglede-Kadison
determinant [19] of the “continuum” Laplacian—and proved that his tree entropy equals
(5.7).56 For old and new results on tree entropy for various graphs, see [2,11,35,36].
As an example, from (5.2) it is direct to show that the tree entropy on SG equals (cf. [2,
Corollary 5.2])7

h(SG,L(0,0)∞ ) = log 2

3
+
log 3

2
+
log 5

6
= 1.04859 . . . . (5.8)

Our next result gives the asymptotic complexity of each of the three magnetic Lapla-
cians on SG.

Corollary 5.3. (Asymptotic complexity of the CRSF measures).

h(SG,L( 12 , 12 )
∞ ) = log 2

3
+
log 3

9
+
log 5

9

+
2

9
· 1
3

∞∑

k=0

(
2

3

)k log(H(k) + 1
2 )

2k+1 +
2

9
· 1
3

∞∑

k=0

(
2

3

)k log(H(k) + 5
2 )

2k+1 ,

5 If G∞ has bounded degree, the proof in [35, Theorem 4.1] suffices. If G∞ has unbounded degree, then
the proof proceeds according to [36, Theorem 3.1], which is based on von Neumann algebras.

6 The limit of USTs on an infinite connected graph is a spanning forest. On Zd the limit is a tree iff d ≤ 4
[41].

7 In (5.8) the weights associated to the logarithmic factors are probability weights. This is merely co-
incidental: for the graphical (d − 1)-dimensional Sierpinski simplex, the tree entropy equals d−2

d log 2 +
d−2
d−1 log d + d−2

d(d−1) log(d + 2) [11, Corollary 4.1].
More generally, the tree entropy of a unimodular random infinite connected weighted graph can take values
in [−∞,∞). For an example of a unimodular random graph with tree entropy equal to −∞, see [36, pp.
308-309].
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h(SG,L( 12 ,0)
∞ ) = 13

27
log 2 +

log 3

27
+

5

27
log 5 +

log 7

9
+
log 17

27

+
2

27
· 1
3

∞∑

k=0

(
2

3

)k log(H̃(k) + 1
2 )

2k+1 +
2

27
· 1
3

∞∑

k=0

(
2

3

)k log(H̃(k) + 5
2 )

2k+1 ,

h(SG,L(0, 12 )
∞ ) = 13

27
log 2 +

14

27
log 3 +

log 7

27

+
2

27
· 1
3

∞∑

k=0

(
2

3

)k log(Ĥ(k) + 1
2 )

2k+1 +
2

27
· 1
3

∞∑

k=0

(
2

3

)k log(Ĥ(k) + 5
2 )

2k+1 ,

where H(k), H̃(k), and Ĥ(k) were defined in Theorem 4.

These follow from Theorem 4 via a computation that is briefly described in Sect.
5.3. If we replace each infinite sum by the corresponding partial sum up to k = 40, the
following lower bounds are obtained:

h(SG,L( 12 , 12 )
∞ ) ≥ 1.26388, h(SG,L( 12 ,0)

∞ ) ≥ 1.41685, h(SG,L(0, 12 )
∞ ) ≥ 1.30625.

Thus each of the three asymptotic complexities is larger than the tree entropy (5.8).
The CRSF asymptotic complexity has a probabilistic interpretation which we explain

now. Let G be a finite connected graph, and B be a subset of V (G) which we declare
as the boundary set. An essential CRSF on (G, B) is a spanning subgraph of G, each
of whose connected components is either a unicycle not containing any vertex in B, or
a tree containing a unique vertex in B. The corresponding matrix-CRSF theorem is the
analog of Proposition 5.1, where on the LHS the Laplacian carries Dirichlet boundary
condition on B,

(Lω
(G,B,c)u)(x) =

∑

y∼x

cxy(u(x) − ωxyu(y)), u ∈ C
V \B, (5.9)

the sum being over the neighbors y of x (y can be in B); and on the RHS the sum
runs over all oriented essential CRSFs. Let us denote the essential CRSF measure on
(G, B, c, ω) by Pω

(G,B,c). Since the conductance will not play a role in the remainder of
this discussion, we will suppress the subscript c in what follows.

LetLId
(G,B) be the magnetic Laplacian on (G, B)with the trivial connection. It is easy

to see from the definition of the CRSF measure that

P
ω
(G,B)[no loops] =

det
(
LId

(G,B)

)

det
(
Lω

(G,B)

) . (5.10)

We simplify further to get

1

|V (G)| logP
ω
(G,B)[no loops] =

log
(
w(G) det

(
LId

(G,B)

))

|V (G)| −
log
(
w(G) det

(
Lω

(G,B)

))

|V (G)| .

(5.11)

cf. [28, Proposition 3.6 and Corollary 3.7].
Suppose we have an increasing sequence of graphs with boundary {(G N , BN )}N

tending to G∞ with |BN |
|V (G N )| → 0. Furthermore, suppose that the essential tree entropy
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and the essential CRSF asymptotic complexity exist. Then (5.11) says that the difference
of the two asymptotic complexities gives the rate of exponential decay in the probability
of observing no loops under Pω

(G N ,BN ) as N → ∞; that is, we may define

hloop(G∞,Lω∞) := h(G∞,Lω∞) − h(G∞,LId∞). (5.12)

Then from (5.11) we obtain

lim
N→∞

1

|V (G N )| logP
ω
(G N ,BN )[no loops] = −hloop(G∞,Lω∞). (5.13)

Let us apply this principle to SG. Recall that in defining the magnetic Laplacians on
SG, we did not impose any boundary condition. That said, we can add a single point b
and connect it to the origin by an edge of conductance c, and regard G N ∪ {b} as the
graph with boundary B = {b}. This one-point modification introduces correction terms
on the RHS of (5.13) that vanish as c ↓ 0 for every N . As a result, we can apply (5.8)
and Corollary 5.3 to obtain the following asymptotic result.

Corollary 5.4. Let P(α,β)
N ,c be the essential CRSF measure on G N ∪ {b} where an edge

of conductance c connects o and b, and with fluxes α and β as before. For (α, β) ∈{
(0, 1

2 ), (
1
2 , 0), (

1
2 ,

1
2 )
}
,

lim
N→∞ lim

c↓0
1

|VN | logP
(α,β)
N ,c

[
no loops

] = −hloop(SG,L(α,β)∞ ), (5.14)

where hloop(SG,L(α,β)∞ ) = h(SG,L(α,β)∞ ) − h(SG,L(0,0)∞ ), and each term on the RHS
was defined in Corollary 5.3 and (5.8), respectively.

5.3. Proofs of Theorem 4 and Corollary 5.3. First let us recall some simple identities.
Let P(x) = ad xd + ad−1xd−1 + · · · + a0 be a polynomial of degree d. Then

{z : z ∈ P−1(α)} =
{

z : α = ad zd + ad−1zd−1 + · · · + a0
}

=
{

z : ad zd + ad−1zd−1 + · · · + (a0 − α) = 0
}

.

It follows that
∑

z∈P−1(α)

z = −ad−1

ad
and

∏

z∈P−1(α)

z = (−1)d a0 − α

ad
. (5.15)

Assume R(x) = b2x2 + b1x is a quadratic polynomial function with the property that
R(0) = 0. Using (5.15) and induction on n, it is easy to deduce that

∏

z∈R−n(α)

z = −α
b2

(b2)2
n . (5.16)

See [2, Lemma 3.3] for a more general version where R is a rational function satisfying
R(0) = 0. Let us note that the computation of det′(L(0,0)

N ) uses (5.16) to treat the
preimages R(0, 0, ·)−k(α), α ∈ { 34 , 5

4 }. For details we refer the reader to [2, Theorem
5.1].

For the computation of det(L(α,β)
N ) where (α, β) ∈ {( 12 , 0), (0, 1

2 ), (
1
2 ,

1
2 )}, we need

to involve two additional quadratic polynomials P and Q, without the requirement that
P(0) = 0 or Q(0) = 0.
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Lemma 5.5. Let P(x) = a2x2 + a1x + a0 and R(x) = b2x2 + b1x. Then

F(n, α) :=
∏

z∈P−1(R−n(α))

z = cn,1α + cn,0,

where cn,1 = − b2
(a2b2)2

n , cn,0 = 1

(a2b2)2
n

(

H(n) − b1
2

)

, and H(n) satisfies the re-

currence relation

H(0) = a0b2 +
b1
2

, and for n ≥ 1, H(n) = [H(n − 1)]2 + b1(2 − b1)

4
. (5.17)

Proof. We prove this by induction on n. When n = 0, we have by (5.15) that F(0, α) =
a0−α

a2
. Now suppose F(n, α) = cn,1α + cn,0 holds. Then denoting the two preimages of

R by R−1
(1) and R−1

(2) , we have

F(n + 1, α) =
∏{

P−1(R−(n+1)(w)) : w = α
}

=
∏{

P−1(R−n(w)) : w ∈ R−1(α)
}

= F(n, R−1
(1) (α))F(n, R−1

(2) (α))

= c2n,1

(
R−1

(1) (α)R−1
(2) (α)

)
+ cn,0cn,1

(
R−1

(1) (α) + R−1
(2) (α)

)
+ c2n,0 (induction hypothesis)

= c2n,1

(−α

b2

)

+ cn,0cn,1

(

−b1
b2

)

+ c2n,0 (by (5.15))

=
(

−c2n,1

b2

)

α +

[

c2n,0 − b1
b2

cn,0cn,1

]

.

We have thus obtained a system of quadratic recurrence relations

cn+1,1 = − 1

b2
c2n,1, cn+1,0 = c2n,0 − b1

b2
cn,0cn,1

with initial condition c0,1 = − 1
a2

and c0,0 = a0
a2
. It readily follows that cn,1 =

−b2/(a2b2)2
n
and

cn+1,0 = c2n,0 +
b1

(a2b2)2
n cn,0.

To better see the latter relation, we perform a change of variables g(n) = cn,0 + 1
2

b1
(a2b2)2

n

to obtain

g(n + 1) = [g(n)]2 + 1

4

b1(2 − b1)

(a2b2)2
n+1 .

Making another change of variables to H(n) = g(n)(a2b2)2
n
, we deduce (5.17). ��

In general the quadratic recurrence (5.17) cannot be solved in closed form, unless the
constant term on the RHS is either 0 or −2 [15], or under special initial conditions. To
give an example of a special initial condition: if a0 = 0, then G(n) = b1

2 —and hence
cn,0 = 0—for all n.
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Lemma 5.6. Let P and R be as in Lemma 5.5, and Q(x) = q2x2 + q1x + q0. Then

F̃(n, α) :=
∏

z∈Q−1◦P−1(R−n(α))

z = c̃n,1α + c̃n,0,

where c̃n,1 = − b2
(q2

2a2b2)2
n , c̃n,0 = 1

(q2
2a2b2)2

n

(

H̃(n) − b1
2

)

, and H̃(n) satisfies the

recurrence relation

H̃(0) = a2b2

(

q2
0 + q0

a1
a2

+
a0
a2

)

+
b1
2

, and for n ≥ 1, H̃(n) = [H̃(n − 1)]2 + b1(2 − b1)

4
.

(5.18)

Proof. We focus on the initial step n = 0:

F̃(0, α) =
(

Q−1
(1)(P−1

(1) (α))Q−1
(2)(P−1

(1) (α))
) (

Q−1
(1)(P−1

(2) (α))Q−1
(2)(P−1

(2) (α))
)

=
(

q0 − P−1
(1) (α)

q2

)(
q0 − P−1

(2) (α)

q2

)

(by (5.15))

= 1

q2
2

(
q2
0 − q0(P−1

(1) (α) + P−1
(2) (α)) + P−1

(1) (α)P−1
(2) (α)

)

=
(

− 1

q2
2a2

)

α +
1

q2
2

(

q2
0 + q0

a1
a2

+
a0
a2

)

(by (5.15)).

The induction step is the same as in the proof of Lemma 5.5, except for the changes
triggered by the initial conditions. The details are therefore omitted. ��

Proof of Theorem 4. Recall Theorem 1. For det(L( 12 , 12 )

N ), we use Lemma 5.5 to treat the
preimages R( 12 ,

1
2 , . . .)

−1 ◦ R(0, 0, ·)−k(α), α ∈ { 34 , 5
4 }. Taking into account multiplic-

ities we obtain

det(L( 12 , 12 )

N ) =
(
1

2

) 3N +3
2
(
3

4

) 3N−1−1
2

(
5

4

) 3N−1+3
2 · 2

×
⎡

⎣
N−2∏

k=0

((

4 · 3
4
+ H(k) − 5

2

)
1

162k

) 3N−k−2+3
2

⎤

⎦

⎡

⎣
N−3∏

k=0

((

4 · 5
4
+ H(k) − 5

2

)
1

162k

) 3N−k−2−1
2

⎤

⎦ ,

where H(0) = 26.5, and for k ≥ 1, H(k) = [H(k − 1)]2 − 15
4 .

For the other two determinants, we apply Lemma 5.6 to treat the preimages and obtain

det(L(0, 12 )

N ) =
(
1

2

) 3N +3
2
(
5

4

) 3N−1−1
2

(
7

4

) 3N−1+3
2 ·

(
3 + 3

4

4

) 3N−2−1
2

(
3 + 5

4

4

) 3N−2+3
2

×
⎡

⎣
N−3∏

k=0

((

4 · 3
4
+ H̃(k) − 5

2

)
1

642k

) 3N−k−3+3
2

⎤

⎦

⎡

⎣
N−4∏

k=0

((

4 · 5
4
+ H̃(k) − 5

2

)
1

642k

) 3N−k−3−1
2

⎤

⎦ ,
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where H̃(0) = 302.5, and for k ≥ 1, H̃(k) = [H̃(k − 1)]2 − 15
4 .

det(L( 12 ,0)
N ) =

(
1

4

) 3N−1+3
2

(
3

4

) 3N−1−1
2

(
3

2

) 3N +3
2 ·

(
1 + 3

4

4

) 3N−2−1
2

(
1 + 5

4

4

) 3N−2+3
2

×
⎡

⎣
N−3∏

k=0

((

4 · 3
4
+ Ĥ(k) − 5

2

)
1

642k

) 3N−k−3+3
2

⎤

⎦

⎡

⎣
N−4∏

k=0

((

4 · 5
4
+ Ĥ(k) − 5

2

)
1

642k

) 3N−k−3−1
2

⎤

⎦ ,

where Ĥ(0) = 86.5, and for k ≥ 1, Ĥ(k) = [Ĥ(k − 1)]2 − 15
4 . ��

Proof of Corollary 5.3. We present the proof of h(SG,L( 12 , 12 )
∞ ) only, the other two being

similar. In particular, we only demonstrate the contribution to the asymptotic complexity
from one of the inhomogeneous products, say,

1

|VN | log
⎡

⎣
N−2∏

k=0

(

4 · 3
4
+ H(k) − 5

2

) 3N−k−2+3
2

⎤

⎦ = 2

3N+1 + 3

N−2∑

k=0

3N−k−2 + 3

2
log

(

H(k) +
1

2

)

= 2

9
· 1
3

N−2∑

k=0

(
3−k

2
+ �(3−N )

)

log

(

H(k) +
1

2

)

.

(5.19)

Let us observe that if there exists a fixed constant C such that H(k) = [H(k − 1)]2 + C
for all k ≥ 1, then

log H(k) = 2 log H(k − 1) + log

(

1 +
C

[H(k − 1)]2
)

,

or

log H(k)

2k
− log H(k − 1)

2k−1 = 1

2k
log

(

1 +
C

|H(k − 1)|2
)

≤ 1

2k

C

|H(k − 1)|2 .

where we used the inequality 1 + x ≤ ex . Since
∑

k
1

2k |H(k−1)|2 is summable, it follows

that limk→∞ 2−k log H(k) exists. By the same rationale, ξk := 2−k log(H(k) + 1
2 )

converges as k → ∞. Thus we can rewrite the RHS of (5.19) as

2

9
· 1
3

N−2∑

k=0

(
3−k2k

2
+ �(3−N )2k

)

ξk = 2

9
· 1
3

N−2∑

k=0

(
2

3

)k
ξk

2
+ �

((
2

3

)N
)

,

with the intention of collecting terms of order unity. (Above we used the identity
1
3

∑∞
k=0

( 2
3

)k = 1. Also, roughly speaking, the reason for the factor 2 in ξk/2 is to
account for the double preimages under R( 12 ,

1
2 , ·).) ��

6. Open Questions

We end this paper with several open questions.
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Spectral questions. In this paper we focused almost exclusively on the eigenvalues of
Lω

N , without going into details the structure of the eigenfunctions. Looking back at the
proofs, we saw that the eigenfunctions associated to some, but not all, exceptional values
in σ(Lω

N ) vanish on VN−1. A more careful analysis will show that these eigenfunctions
are localized with finite support. The open question is whether the magnetic Laplacian
eigenfunctions with finite support are complete, as was the case for the graph Laplacian
[48]. (See also [42] which considered Dirichlet boundary condition at the origin.) It
seems that the answer should be affirmative at least in the case α, β ∈ {0, 1

2 }.
A related problem is to obtain the magnetic spectrum on the compact gasket K =

⋃∞
N=0 GN , rather than on the infinite lattice G∞. While in the latter case we used that

λ ∈ σ(L(α,β)
N ) iff R(α, β, λ) ∈ σ(L(α↓,β↓)

N−1 ) for the non-exceptional values λ, now we
find, in the former case, a family of scaling parameters {
(α, β) > 0 : (α, β) ∈ T

2}
such that for each (α, β) ∈ T

2, the limit limN→∞[
(α, β)]NU◦−N (α, β,w) exists for
w in a finite subset of R. The difficulty lies in our lack of explicit understanding of the
backward dynamics of U .

Point processes induced by the magnetic Laplacian determinants. To the best of the
authors’ knowledge, this is the first time CRSFs have been considered in a setting outside
of discrete approximations of Euclidean spaces orRiemannianmanifolds. Recall that key
results on the properties of the CRSFmeasure were obtained byKassel andKenyon [27],
in the context of compact Riemannian surfaces approximated conformally by graphs.
More recently, Finski [16] established convergence of the CRSF measures for a rank-2
vector bundle on a class of flat surfaces which can be tiled by squares of equal sizes.

Thanks to the explicit characterization of σ(L(α,β)
N ) in the case α, β ∈ {0, 1

2 }, we
were able to compute the probability of observing no cycles under the CRSF measure
on SG. However this is only one aspect of the CRSFmeasure. For instance, the following
question remains open:

Open Question 1. Characterize the limit point(s) of the sequence of CRSF measures on
finite approximations of SG.

This question may be solved if one can find the zeta-regularized determinant (also
known as the analytic torsion) on the compact limit space K =⋃∞

N=0 GN (as opposed
to G∞), and derive a renormalized logarithm of this determinant. For vector bundle
Laplacians we mention the following results: rank-1 or rank-2 bundles on Euclidean or
Riemannian surfaces, see [27, Theorem 17] and [16, Theorem 1.8]; rank-1 bundles on
the d-dimensional tori, see [18]. While the problem is open for rank-1 bundles on SG,
we mention that in [11], the zeta-regularized determinant for the graph Laplacian, and
its renormalized logarithm, were computed on SG and several other self-similar fractals.
There it was crucial to derive a functional equation involving the spectral decimation
function R, and invoke analytic properties of spectral zeta functions. We are optimistic
that this can be done for the magnetic Laplacians in the case α, β ∈ {0, 1

2 }.
Local statistics of loops under the CRSF measure on SG is also an open question.

Based on numerical simulations, we observe a hierarchy in the distribution of unicycle
lengths (peaks centered around 3 j , j ∈ N), reflecting the spatial self-similarity of SG.

Open Question 2. Characterize the spectrum of the twisted Laplacian on SG endowed
with a rank-2 Hermitian vector bundle with a SL2(C) connection.
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Finally we believe that studying the magnetic Laplacian and the induced CRSF loop
measures may shed light on properties of the abelian sandpile model under stationarity.
Recall the well-known bijective correspondence between the sandpile group and span-
ning trees [37]. Kassel and Kenyon [27, §6, Question 9] have asked if the loop measures
may lead to a better understanding of waves of sandpile avalanches. On SG we have two
specific questions: to prove that the sandpile avalanches exhibit a power law modulated
by log-periodic oscillations, which was numerically observed in [12,13,33];8 and to find
the sandpile height distributions (or their moments, such as the sandpile density).9

Experimental realization of the butterfly. Last but not least, thanks to advances in scan-
ning electron microscopy and nanoscale engineering over the past 3 decades, there
has been impressive progress on measurements of electronic band structures in various
(meta)materials, including finite approximations of SG. The most recent work we are
aware of is [30]. It would be satisfying to see the Hofstadter–Sierpinski butterfly (Fig.
6) come alive through a laboratory experiment.
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Appendix A: Numerical Approximation of the Filled Julia Set in Fig. 6

To numerically generate the filled Julia set of the map U , we initialize with a uniform
sample of pointsw = (α, λ) in the rectangle [0, 1]×[0, 2]. We then discard pointsw for
which |Uk(w)| exceeds a threshold (10) after k(= 20) iterations, and keep those points
which remain bounded within. Below is a working MATLAB code.

1 clear;clc
2

3 dpts =301;
4 lb=0;
5 ub=2;
6 th=10;
7 num_iter =20;
8

9 x=@(a,b,l) cos(2*pi*a);
10 xs=@(a,b,l) sin(2*pi*a);
11 y=@(a,b,l) cos(2*pi*b);
12 ys=@(a,b,l) sin(2*pi*b);
13 cosaplusb=@(a,b,l) x(a,b,l)*y(a,b,l)-xs(a,b,l)*ys(a,b,l);
14 cosa2plusb=@(a,b,l) (x(a,b,l)^2-xs(a,b,l)^2)*y(a,b,l) -2*xs(a,b,l)*x(

a,b,l)*ys(a,b,l);
15 sinaplusb=@(a,b,l) xs(a,b,l)*y(a,b,l)+x(a,b,l)*ys(a,b,l);
16 sina2plusb=@(a,b,l) 2*xs(a,b,l)*x(a,b,l)*y(a,b,l)+ys(a,b,l)*(x(a,b,l

)^2-xs(a,b,l)^2);
17 A=@(a,b,l) 16*l^2 -(32+4*x(a,b,l))*l+15+4*x(a,b,l)+cosaplusb(a,b,l);

8 A power law modulated by log-periodic oscillations was proved for the growth of deterministic single-
source abelian sandpile on SG [9].

9 See [39, Chapter 5] for the proof of sandpile height distributions on the Hanoi tower graphs, a variant
of SG. A nice exposition of the connection between sandpile density and the looping rate on periodic planar
graphs is [29].
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18 D=@(a,b,l) -l^3+3*l^2 -45/16*l+13/16 -y(a,b,l)/32;
19 re_psi=@(a,b,l) (1-l)^2 -1/16+(1 -l)/4*(2*x(a,b,l)+cosa2plusb(a,b,l))

...
20 +1/16*(x(a,b,l)^2-xs(a,b,l)^2+2* cosaplusb(a,b,l));
21 im_psi=@(a,b,l) -(1-l)/4*(2* xs(a,b,l)+sina2plusb(a,b,l)) -(1/16) *(2*x

(a,b,l)*xs(a,b,l)+2* sinaplusb(a,b,l));
22 R=@(a,b,l) 1+(A(a,b,l) -64*D(a,b,l)*(1-l))/(16* sqrt(re_psi(a,b,l)^2+

im_psi(a,b,l)^2));
23

24 aset=linspace(0,1,dpts);
25 lset=linspace(lb ,ub ,dpts);
26 figure
27 hold on
28

29 for i=1: dpts
30 for j=1: dpts
31 al=aset(i);
32 be=aset(i);
33 lmd=lset(j);
34 count =0;
35 while abs(lmd)<th
36 count=count +1;
37 psi=re_psi(al ,be ,lmd)+1i*im_psi(al ,be ,lmd);
38 theta=angle(psi);
39 if count == num_iter
40 plot(aset(i),lset(j),’.’,’color ’,’k’)
41 break
42 end
43 lmd=R(al ,be ,lmd);
44 al_dummy=al;
45 be_dummy=be;
46 al=mod(3* al_dummy+be_dummy +3* theta /2/pi ,1);
47 be=mod(3* be_dummy+al_dummy -3* theta /2/pi ,1);
48 end
49 end
50 end
51 xlabel(’\alpha ’)
52 ylabel(’\lambda ’)
53 title(’Filled Julia set of U’)
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