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A B S T R A C T

Implementing the phase-field model at finite strains is usually considered unattainable through the spectral
method, largely because of the nonlinearity in the transformation-induced microelasticity. Here we present
a phase-field microelasticity (PFM) theory at finite strains with a representation in the reference configura-
tion, allowing the spectral method to be readily incorporated. Following the spirit of Khachaturyan’s PFM
theory at small strains, the elastic energy is formulated as a functional of microstructure (order parameters)
solely, which should automatically satisfy the mechanical equilibrium. Thermodynamic consistency of the
current theory under multiplicative decomposition of the total deformation gradient (into elastic and inelas-
tic parts) and in conjunction with hyperelasticity and the time-dependent Ginzburg-Landau equation is
shown rigorously. The new theory is first applied to the classical Eshelby’s inclusion problem, where shear-
dilation coupling due to geometric nonlinearity is shown and a convergence study between small strain and
finite strain theories is also carried out. The effects of geometric nonlinearity on the co-evolution of microme-
chanics and microstructure is further studied through modeling the growth of f1 0 1 2g h1 0 1 1 i deforma-
tion twins in magnesium. The simulation results suggest significant differences in terms of the shape of and
the stress field around the deformation twin. In particular, the current finite strain PFM theory predicts a
deviation of the twin boundary plane from the theoretical K1 plane, which is not captured in the small strain
theory nor in the crystallographic theory. A parametric study further reveals that the observed deviation is
caused by the tip effect of the finite-sized twin plate when the aspect ratio is relatively small. The symmetry
of the stress field distribution around the twin tip is also found to be drastically different between the small
strain and finite strain based phase-field modeling. The sharp twin tip observed in experiments is also shown
to be likely related to the anisotropy in twin/matrix interface mobility.

© 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Alloy design is largely concerned with microstructure design that
requires the ability to predict the evolution of microstructure in an
alloy during processing and in service. For structural materials, the
efforts have been focused on controlling certain microstructural
attributes to regulate dislocation activities, grain boundary migration,
crack initiation/propagation, etc., and thus to tailor the microstruc-
ture-property relationship. The microstructure of an alloy is defined
by a collection of chemical and structural non-uniformities, including
concentration variation, impurity segregation, dislocations, homo/
hetero-phase interfaces, surfaces, cracks, and voids. These non-uni-
formities are described in the phase-field (PF) method by order
parameters (OPs), representing non-mechanical variables apart from
the stress and strain.

In situations where the variation of external (mechanical and/or
thermal) loads can be considered static or quasi-static as compared to
the propagation of elastic waves, the mechanical variables may reach an
equilibrium much faster than these non-mechanical ones. This inherent
time scale separation implies that it is no longer necessary to treat the
mechanical and non-mechanical variables on the same footing. Instead,
the latter can be considered as “fixed” at an instant of (simulation) time
and the resulting stress and displacement then become “slave” varia-
bles, which are determined by directly solving the mechanical equilib-
rium without explicitly considering their time evolution. This is the
fundamental idea behind Khachaturyan’s seminal phase-field microe-
lasticity (PFM) theory [1], which has been continuously developed in
the past few decades as a foundation for studying microstructure evolu-
tion during phase transformations and deformation in solids [2,3].
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Fig. 1. Schematics of the multiplicative decomposition of the total deformation gradi-
ent F into an inelastic deformation Fi and elastic deformation Fe; which bring the ref-
erence configuration successively into the intermediate and current configurations.
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However, the resulting models mainly adopt the original small strain
formulation and thus ignore the geometric nonlinearity involved in
phase transformations and plastic deformation, which can be critical in
cases such as martensite transformation, deformation twinning, and
plastic deformation.

PF models incorporating the finite strain theory have been devel-
oped since the past decade. For example, [4�6] developed PF models
for displacive transformations and [7] developed a PF model coupled
with crystal plasticity at finite strains for deformation twinning. [8]
also developed a finite strain PF model to address the inertia effect
during martensite transformation. However, these models are formu-
lated for and implemented in the conventional finite-element or
finite-difference methods, which are well known to be orders of mag-
nitude slower than the spectral method [9], as demonstrated, in par-
ticular, in the application to micromechanics of solids [10,11]. In a
different approach, [12] divided the finite strain into a series of small
deformation processes and then used a hypoelasticity model, allow-
ing solutions from the geometrically linearized problem to be used
with a spectral method based implementation. While this method
guarantees high numerical efficiency, the use of hypoelasticity
implies that it is not consistent with thermodynamics.

In addition, the existing finite strain models incorporatingmicrostruc-
tures mainly follow the classical idea by starting with the fundamental
balance laws and thermodynamics, which lead to a set of rate equations
describing the time evolution of both mechanical and non-mechanical
variables [4,6,8,13�15]. A common feature of these models is that an
elastic energy density is directly used to derive a completely localized driv-
ing force for the microstructure evolution. However, it is well known that
the elastic energy in a heterogeneously transformed solid contains self-
interaction [1] and is essentially a convolution integral owing to the
underlying non-local nature. Although in certain cases the derivative of
the integral elastic energy with respect to a parameter may be localized
[16], this is not a general law and thus a rigorous derivation is still needed
for the given problem. As a result, the use of an elastic energy density
rather than the integral elastic energy is not justified. In fact, since the
stress satisfying the mechanical equilibrium is a functional of the OP in PF
theory [1], the integral elastic energy thus becomes a functional of a func-
tional and the resulting functional derivative with respect to the OP
should in general adopt an integral form as shown in Appendix A.

The purpose of the current paper is twofold: (i) to develop a phase-
field microelasticity theory at finite strains with a representation in the
reference configuration, allowing the spectral method based microme-
chanical solvers to be readily incorporated; (ii) to benchmark the effect
of geometric nonlinearity using examples that are simple but represen-
tative to modeling the micromechanical and microstructural evolution
in solids. In particular, the development of our new theory follows the
spirit of [1] to take the advantage of time scale separation between
mechanical and microstructural variables as discussed previously. Two
benchmark problems, i.e., Eshelby’s inclusion and deformation twin-
ning, are solved using both the small strain and finite strain models. The
former problem involves solving the static micromechanical field of a
given microstructure, whereas the latter one represents the co-evolution
of micromechanical and microstructural variables typically found in
many thermal-mechanical processes of solids.

2. Theory

2.1. Kinematics under multiplicative decomposition

We start with a function of motion, x Xð Þ : B0 ! R3; which maps
any point X (material point) of the body in the reference (initial) con-
figuration B0 to a spatial (current configuration) point x in the 3D
Euclidean space R3. The total deformation gradient is defined as

F � @x
@X

¼ r Xx: ð1Þ
F is then assumed to follow themultiplicative decomposition

F ¼ FeFi;

je � det Fe > 0; ji � det Fi > 0;
ð2Þ

where Fi is the net effect due to all the inelastic deformation modes
and Fe is the elastic deformation. In specific applications, Fi can be
either plastic deformation Fi ¼ Fp [17] or structural transformation
Fi ¼ Ft [18], or a combination of both Fi ¼ FtFp [6]. Eq. (2) introdu-
ces an intermediate configuration that connects the reference and
current configurations, as illustrated in Fig. 1. The positive determi-
nants in Eq. (2) imply that Fe and Fi are invertible and physically
admissible.

In finite strain theory, the deformation can be measured in any
one of the configurations involved, i.e., the reference, intermediate,
and current configurations in Fig. 1, which have been summarized in
Table 1. While these different measures describe the same kinemat-
ics, the choice matters to the numerical implementation, e.g., “Total
Lagrangian” vs. “Updated Lagrangian” formulations in nonlinear
finite-element analysis. A primary goal of the current finite strain
PFM theory is to develop the formalism in the reference configura-
tion, which enables the usage of Fourier spectral method on a fixed
regular grid throughout the entire deformation analysis. This requires
that the final representation of our theory must be in terms of quanti-
ties all defined in the reference configuration.

It also needs to be pointed out that the additive decomposition
relations listed in Table 1 are derived solely from the multiplicative
decomposition (see Appendix B for the detailed derivation). In each of
these relations, apart from two strain tensors that are defined in the
usual Green-Lagrange and/or Euler-Almansi way in a given configura-
tion, the third one is related to a strain tensor in a different configura-
tion via appropriate push-forward and/or pull-back operations. As a
result, they are different from the Green-Naghdi decomposition [19],
which is a direct assumption in total analogy with the decomposition
of total strain into elastic and plastic parts in the small strain theory.
2.2. Phase-field microelasticity at finite strains

At the highest level, the total Helmholtz free energy is partitioned
into elastic and inelastic contributions

C � Ce þCi ð3Þ
where the elastic part Ce depends explicitly on Fe (or equivalently
Ee) and the inelastic part Ci depends on measures of the inelastic
state described by the OP field in PF theory. In general, Ci is explic-
itly formulated as a functional of both OP and the gradient of OP,
whereas Ce is by definition a functional of Fe and thus depends on
OP implicitly via the coupling between OP and Fi. In the following,
we first present the constitutive equations commonly used to
describe the elastic and inelastic behaviors of solids and then show
their thermodynamic consistency.



Table 1
Deformation measures in different configurations.

Configuration Reference Intermediate Current

Right Cauchy-Green deformation tensor C ¼ FTF Ce ¼ FT
eFe

Ci ¼ FT
iFi

Left Cauchy-Green deformation tensor bi ¼ FiF
T
i b ¼ FFT

be ¼ FeF
T
e

Green-Lagrange strain tensor E ¼ 1
2 C�Ið Þ Ee ¼ 1

2 Ce�I
� �

Ei ¼ 1
2 Ci�Ið Þ

Euler-Almansi strain tensor ei ¼ 1
2 I�b

�1
i

� �
e ¼ 1

2 I�b�1
� �

ee ¼ 1
2 I�b�1e
� �

Additive decomposition Ee ¼ E�Ei E ¼ ei þ Ee ei ¼ e�ee

Ee � FT
iEeFi E � F�Ti EF�1i ei � F�TEiF

�1

Ee � FTeeF E � FT
eeFe ei � F�Te eiFe

�1
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2.2.1. Elastic constitutive equations
Denotingce as the elastic strain energy density per unit mass, the

elastic energyCe in Eq. (3) is formally written as

Ce ¼
Z
V0

r0cedV0 ¼
Z
V
rcedV ð4Þ

where V and V0 represent the volume of the space domain occupied
by the current and reference configurations, respectively, and r and
r0 are the mass density in the corresponding configurations. Owing
to the multiplicative decomposition of Eq. (2), the intermediate con-
figuration is taken as the undeformed (“stress-free”) state, in which
we formulatece using the hyperelasticity theory as

rce ¼ 1
2
Ee : C : Ee; S ¼ r

@ce

@Ee
¼ C : Ee ð5Þ

where C is the elastic stiffness tensor and S is the 2nd Piola-Kirchhoff
(P-K) stress tensor defined in the intermediate configuration. Eq. (5)
employs strain and stress measures associated with the intermediate
configuration and their representations in the reference configuration
are derived from the additive decomposition in Table 1, which leads to

r0ce ¼ ji
2

F�Ti EeF
�1
i

� �
: C : F�Ti EeF

�1
i

� �
S � r0

@ce
@Ee

¼ jiF
�1
i ¢ C : F�Ti EeF

�1
i

� �� � ¢F�Ti ¼ jiF
�1
i SF�Ti ;

ð6Þ

where we have defined a symmetric stress tensor S that can be con-
sidered as the pull-back of S to the reference configuration. Since the
2nd P-K stress is related to the Cauchy stress s by S ¼ jeF�1e sF

�T
e ; we

can further obtain

S ¼ jijeF
�1
i F�1e sF

�T
e F�Ti ¼ jF�1sF�T ð7Þ

where j ¼ det F ¼ jije. Eq. (7) confirms that even under the multipli-
cative decomposition of Eq. (2), the stress measures defined above
still exhibit formally the same relationship as in a pure elastic defor-
mation. Note that in the above derivation, we ignore the deformation
dependence of the elastic stiffness tensor, which is a common prac-
tice and considered reasonable as long as the defects population (i.e.,
vacancies) introduced by deformation is not significant enough to
degrade the elastic modulus.

2.2.2. Inelastic constitutive equations
The definition of OP in finite strain PF theory should be configura-

tion-dependent. We use h0 andh to denote the OP field defined in
the reference and current configurations, respectively. The connec-
tion between these quantities is derived based on the physical mean-
ing of the OP. For instance, if the OP represents a conserved quantity,
the connection should be similar to that between mass densities
defined in different configurations. For a non-conserved OP of current
interest, we require that the volume fraction of the underlying
“ordering”, measured by the OP value, is independent of the
configuration, that is,

1
V0

Z
V0

h0 Xð ÞdV0 ¼ 1
V

Z
V
h xð ÞdV : ð8Þ

This implies that the overall transformation kinetics should be invari-
ant under a configuration change. From Eq. (8) we have h0=V0 ¼ detð
FÞðh=VÞ ¼ ðr0hÞ=ðrVÞ; where the quantity h0/V0 and h/V represent
the volume density (associated with the transformed material) in the
reference and current configurations, respectively. In addition, we
assume that the spatial variation of density functions r0 and r are
small enough such that they can be considered as constant, which is
generally valid in plasticity and phase transformations in solids when
little voids and/or volume change are involved and leads to
rV ¼ r0V0. Under these conditions, we obtain

h0 Xð Þ ¼ h xðXÞð Þ; ð9Þ
which should be expected as how the kinematics is measured should
not change the physical sate (OP value) of the material. Once the OP
is rigorously defined, we can proceed to formulate the inelastic
energyCi in Eq. (3), which consists of two contributions, namely,

Ci ¼ Cc
i þCg

i: ð10Þ
In Eq. (10), Cc

i, the chemical free energy, is an integral of a local free
energy density per unit masscc

Cc
i ¼

Z
V0

r0c
cdV0 ¼

Z
V
rccdV ; ð11Þ

andCg
i; the gradient energy, is formulated as

Cg
i ¼

Z
V0

k0 : r Xh0 � r Xh0ð ÞdV0 ¼
Z
V
k : r xh� r xhð ÞdV ; ð12Þ

where k0 and k are second-rank tensors related to interfacial energies
measured in the reference and current configurations, respectively.
Eq. (12) requires that the total gradient energy must be invariant
under a configuration change, which, combined with Eq. (9), leads to

k ¼ 1
j
Fk0F

T: ð13Þ

The experimentally measured interfacial energies are normally in the
current configuration and can only be used to construct k. Eq. (13)
then serves as the pull-back from k to obtain k0. Note that if k is sym-
metric, Eq. (13) ensures that k0 remains symmetric. However, if we
have k ¼ kI; representing an interface with isotropic interfacial
energy, Eq. (13) leads to

k ¼ kI; k0 ¼ jkC�1: ð14Þ
An important consequence of Eq. (14) is that even though physically (in
the current configuration) we have an interface with isotropic interfacial
energy, an apparent interfacial anisotropymay still arise when formulat-
ing the gradient energy in the reference configuration. This is



1 The Fourier transform of a real space function f(X) is defined as
~f ðgÞ ¼ R f ðXÞexp�iX ¢ gð Þd3X. The inverse transform gives
f ðXÞ ¼ ð2pÞ�3 R ~f ðgÞexp iX ¢ gð Þd3g.
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understandable because anisotropic stretching along different directions
may lead to non-zero off-diagonal components of C in Eq. (14).

2.2.3. Time evolution of the order parameter
The time-dependent Ginzburg-Landau kinetic equation used by

[20] is currently adopted and formulated in the reference configura-
tion at finite strains, which gives the time evolution equation for a
non-conserved OP

_h0 ¼ �M
dC
dh0

¼ �M
dCe

dh0
þ dCi

dh0

� �
ð15Þ

where M (>0) is a mobility constant. Note that Eq. (15) is considered
here because a case study involving the non-conserved OP field will
be carried out later in Section 4. For conserved OP fields, coupling the
current PFM theory with Cahn-Hilliard equation can follow the simi-
lar way straightforwardly.

The elastic driving force dCe=dh0 in Eq. (15) can be expressed in
terms of the OP field together with some micromechanical variables,
leading to the following formulation for general purposes

dCe

dh0ðXÞ
¼ �F�Ti CS :

dFi

dh0
: ð16Þ

The derivation of Eq. (16) starts with the integral elastic energy and
inevitably involves the use of the chain rule of a functional of a func-
tional (Appendix A). (A rigorous derivation of Eq. (16) can be found in
Appendix C.) Because of the geometric nonlinearity and material non-
uniformity, it is likely impossible to obtain closed-form expressions
associated with the mechanical fields at mechanical equilibrium, which
only exist in the small strain version of PFM [1]. As a result, Eq. (16)
essentially provides a simple expression in the reference configuration
and the inherent long-range nature of elasticity is encapsulated in C and
S; which should be obtained from solving the mechanical equilibrium.
A spectral method for obtaining the equilibrium micromechanical fields
required for Eq. (16) will be discussed in Section 3.1.

The inelastic driving force dCi=dh0 in Eq. (15) generally contains
the contributions of both the local chemical free energy (dCc

i=dh0) and
the non-local gradient energy term (dCg

i=dh0) according to Eq. (10).
Their actual forms depend on the specific problem in question and thus
do no possess general expressions. Nevertheless, it will be shown next
that the use of the Ginzburg-Landau equation (Eq. (15)) together with
Eq. (16) always ensures the thermodynamic consistency.

2.2.4. Thermodynamic consistency
For purely mechanical scenarios where the temperature is con-

stant and homogeneous, the dissipation rate per unit mass, D; in the
reference configuration adopts

D ¼ 1
r0

P : _F�@c
@t

ð17Þ

where P ¼ FS is the 1st P-K stress tensor, _F ¼ dF=dt; andc is the spe-
cific quantity (per unit mass) of the total Helmholtz free energy C in
Eq. (3). Plugging into Eq. (17) the multiplicative decomposition (Eq.
(2)), together with the elastic and inelastic constitutive equations and
the OP evolution equation discussed previously, it can be shown that

D ¼ M
r0

���� F�Ti CS�dCi

dFi

� �
:
dFi

dh

����
2

� 0: ð18Þ

The non-negative dissipation rate suggests that the current finite
strain PFM theory is consistent with the Clausius-Duhem inequality
and hence thermodynamically consistent.

3. Model implementation and benchmark

The key to implementing the current PFM theory is to obtain the
stress field satisfying the mechanical equilibrium for a given
microstructure. In previous finite strain PF models [4�6,8], the
mechanical equilibrium is solved using finite-element or finite-differ-
ence methods. These traditional numerical solvers are known to be
computationally expensive with lower accuracy as compared to the
Fourier spectral method, which is shown by fundamental mathemati-
cal analysis [9] and also demonstrated in recent micromechanical
simulations [10,11]. In the following, we will first present the key
equations of Fourier spectral method by [10] for solving the mechani-
cal equilibrium and then solve the micromechanical fields of a spheri-
cal Eshelby’s inclusion at finite strains as a benchmark problem.

3.1. Spectral method solution of static equilibrium at finite strains

The micromechanical fields used in Eq. (16) are solutions of the
static equilibrium plus a constitutive model

r X ¢P Xð Þ ¼ 0;

P Xð Þ ¼ P F Xð Þ; v Xð Þð Þ; ð19Þ

where v is a vector field containing all the relevant internal variables.
The spectral method for solving Eq. (19) starts with the decomposition

x Xð Þ ¼ FXþ z; with h z i ¼ 0 ð20Þ
where F is the macroscopic (volume-average) deformation gradient,
z represents a periodic fluctuation and ⟨ ¢ ⟩ means the volume-aver-
age operator. This leads to the decomposition of the total deforma-
tion gradient

F ¼ F þ dF; with dF � r zð ÞX: ð21Þ
Following the work of [21], we write the (generally nonlinear) consti-
tutive model as

PðXÞ ¼ AFðXÞ þ tðXÞ ð22Þ
where the first term represents the stress of a linear reference
medium with a homogeneous stiffness A and the second term char-
acterizes the stress difference between the reference and the actual
media, often called the “polarization field”. Substituting Eqs. (20)-
(22) into the static equilibrium of Eq. (19) and using the Fourier trans-
form1, we arrive at

~GðgÞ ¢ ~zðgÞ ¼ i~tðgÞ ¢ g ð23Þ
where ~ means the Fourier transform, i ¼

ffiffiffiffiffi
�1

p
; and g is the recipro-

cal vector. The second-rank tensor G is defined in Fourier space as
~Gmn � Amtnsgtgs. Eq. (23) is the static equilibrium of Eq. (19) con-
verted into the reciprocal space with the help of a linear reference
medium (Eq. (22)). Being a set of algebraic equations, the solution of
Eq. (23) can be simply written as

~zðgÞ ¼ 0 for g ¼ 0

i~G
�1 ¢ ~t ¢ g for g 6¼ 0

(
ð24Þ

where the solution for g ¼ 0 is given by the requirement of h z i ¼ 0.
Then the periodic fluctuation of the deformation gradient is given in
the reciprocal space as

~dFðgÞ ¼ 0 for g ¼ 0

~G~t for g 6¼ 0

(
ð25Þ

where a fourth-rank tensor operator is defined in Fourier space as
~Gmnpq ��~G�1

mpgngq. Note that G is in fact the Green’s function operator
that relates the stress field (t) to a deformation field (dF). Since t
depends on the stress field P (Eq. (22)), which again depends on the
deformation gradient field, Eq. (25) can only be solved in an iterative
manner. In our current implementation, we adopt the basic scheme



Fig. 2. (a) Predicted sxx along a probe line parallel to x-axis and across the center of the inclusion for the case of a ¼ 0:2;g ¼ 0. (b) Predicted diagonal stress components sii along a
probe line parallel to i-axis, where i ¼ x; y; z; for the case of a ¼ 0:2;g ¼ 0:2.
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presented in [10], where more details about the numerical aspects can
be found. The significant computational advantage of the spectral
method originates from the simple algebraic nature of the mechanical
equilibrium equation in the reciprocal space (Eq. (23)) together with
the O(NlogN) efficiency offered by the fast Fourier transform algorithm.

3.2. A spherical Eshelby’s inclusion as a benchmark

While the effect of geometric nonlinearity has been explored in
some models, e.g., [8] and [4], the drastic difference between the
results of the small strain theory (SST) and finite strain theory (FST)
presented in these complex problems still urges applications to some
simple but representative problems that can serve as a benchmark
purpose. In addition, it is expected that SST and FST results should
become indistinguishable to each other when the strain and rotation
are sufficiently small. However, such convergence study is missing in
these existing works. To these ends, we consider the classical Eshel-
by’s inclusion problem [22], owing to its crucial role in motivating
the development of PFM as well as its wide applications in microme-
chanics of defects [21]. In particular, we consider a spherical inclusion
that undergoes an inelastic (eigen) deformation, described by FST and
SST as, respectively,

Fi ¼
1þ a=3 g 0

0 1þ a=3 0
0 0 1þ a=3

2
4

3
5

e0 ¼
a=3 g=2 0
g=2 a=3 0
0 0 a=3

2
4

3
5

ð26Þ

which represents a combined motion of a simple shear g and an iso-
tropic dilation a. Note that the infinitesimal strain tensor e0 clearly
ignores the rotation associated with the simple shear in Fi. For
numerical implementation, a 128£ 128£ 128 (regular) computa-
tional grid is used where a spherical inclusion with a normalized
radius of 0.1 is placed in the center. (The interface is made slightly
diffuse to avoid the Gibbs phenomenon.) Isotropic elasticity, with a
shear modulus of 1000MPa and a Poisson’s ratio of 0.3, is used for
both the inclusion and matrix, which implies a homogeneous elastic
medium leading to analytical solutions in the framework of SST.
Using a fully clamped boundary condition with different values of a
and g in Eq. (26), we can solve the micromechanical fields to reveal
the quantitative difference between SST and FST.

3.2.1. Shear-dilation coupling
A particular geometrically nonlinear effect to explore here is the

shear-dilation coupling, i.e., the scenario of a 6¼ 0 and g 6¼ 0 in Eq. (26).
We first consider the scenario of pure dilation, i.e., a> 0 and g ¼ 0.
Figure 2(a) shows the sxx values along a probe line parallel to x-axis
and across the center of the inclusion, together with the analytical
solution of SST [23]. It is seen that for this pure dilation case, the SST
and FST give rise to very similar results even for a 20% dilation. This
agreement has actually been reported previously in [24], where the
analytical solution from SST and the finite-element solution from FST
show virtually identical stresses inside a spherical inclusion with an
eigen dilation of 10%.

We then add a simple shear to the eigen deformation of the inclu-
sion, i.e., a> 0 and g > 0. The small strain analytical solution of this
case is simply a linear superposition of the individual solution of the
pure dilation and pure shear cases, which turn out to be independent
of each other. As a result, introducing a non-zero g to e0 in Eq. (26)
should not change the solutions of diagonal stress components as
predicted by SST. This is indeed confirmed by our numerical calcula-
tion. However, our calculation using FST predicts a quite different
result, as shown in Fig. 2(b). It is seen that by adding a simple
shear to the eigen deformation, the symmetry of the stress, namely,
sxx ¼ syy ¼ szz in the previous pure dilation scenario, is clearly bro-
ken, leading to a shear-dilation coupling. This result is obviously a
manifestation of the geometric nonlinearity in the FST based micro-
mechanics and may have some significant physical implications. For
instance, it suggests that a simple shear may actually modify the dif-
fusion potential (depending mainly on the diagonal stress compo-
nents) of point defects, challenging the conventional idea that
diffusion is mainly controlled by the hydrostatic pressure.
3.2.2. Convergence study
A series of calculations for different values of the eigen-strain (with

a ¼ g) are further carried out as a convergence analysis. In particular,
we plot the predicted sxx at the center of the inclusion against the
eigen-strain value in Fig. 3(a), which shows that a linear relationship
between the stress and strain is predicted by SST but a nonlinear one
by FST (owing to the shear-dilation coupling presented previously).
The relative difference is further plotted against the eigen-strain value
in Fig. 3(b), which suggests that the relative error (due to the small
strain assumption) shows roughly a linear dependence on the eigen-
strain value. Note that when the eigen-strain value is small enough,
the shear-dilation coupling effect becomes negligible as well.
4. Model application to microstructure evolution: Deformation
twinning

We choose deformation twinning (DT) as an example to demon-
strate the application of the current PFM theory to modeling the
dynamic coupling between micromechanical and microstructural
evolution. While several PF models of DT have been developed



Fig. 3. (a) Predicted sxx value at the center of the inclusion versus the eigen-strain value (a ¼ g). (b) Relative error of the small strain micromechanical solver with respect to the
finite strain solver.
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previously [25�28], they all used SST and were mainly limited to the
study of DT in 2D. [29] developed a PF model of DT at finite strains,
but the numerical implementation was still limited to 2D and the
error due to SST was not studied. [7] recently developed an inte-
grated PF model with crystal plasticity to study DT in magnesium,
but the focus was again on 2D implementation. In fact, most experi-
mental and theoretical/modeling studies on DT so far are limited to
2D and the underlying 3D features have just been started to resolve
recently [30�34]. Nevertheless, the typically ultra-fast growth kinet-
ics of DT is still a significant challenge for the experimental study.

While the DT can involve complex atomistic mechanisms [35,36],
the overall shape of the growing twins, from a mesoscopic energy
perspective, may be effectively determined by the competition
between the elastic and interfacial energies. So long as the elastic
strain fields associated with the twinning shear is largely maintained
before significant recovery and hence the loss of coherency stress of
DT, it is expected that the 3D shape of DT should be such that it mini-
mizes the total internal energy consisting of mainly the elastic and
interfacial energies. In addition, a recent high-resolution digital
image correlation (DIC) study in magnesium has shown clearly that
DT can occur in regions both with and without prior slips and sug-
gested the important role played by the local stress states on DT [37].
Thus a DT model containing only the elastic and interfacial energies
without plasticity can still bear some physical significance. In what
follows, we present 3D simulations of the growth of f1 0 1 2g h1 0 1
1 i DT in magnesium, focusing on (i) the 3D shape of the twin at early
growth stages and (ii) the difference between using SST and FST
based PF models.

4.1. Constitutive equations

In the PF model, a single crystal undergoing DT is described by the
OP field h0, which is equal to 0 inside the matrix, 1 inside the twin,
and between 0 and 1 at interface. Since only the reference configura-
tion is involved in the following model development, in what follows
we will ignore the subscript “0” of variables as long as the context is
clear. In addition to the general constitutive equations (Section 2.2.1)
associated with the current PFM theory, the inelastic deformation Fi
needs to be specified for DT,

Fi ¼ 1�
XNv

p
fðhpÞ

 !
Iþ

XNv

p
fðhpÞFðpÞ

i ;

F
ðpÞ
i ¼ Iþ gdtsp �mp;

ð27Þ

where sp and mp are unit vectors of, respectively, the twinning shear
direction (h1 direction) and twinning plane (K1 plane) normal of the
p-th twin variant, FðpÞ
i is the deformation gradient associated with

the twinning shear, and Nv is the total number of twin variants. The
interpolation function f(h) takes the form fðhÞ ¼ 3h2�2h3 following
[29] and the characteristic shear gdt for f1 0 1 2g h1 0 1 1 i DT is
given as [38]

gdt ¼
ffiffiffi
3

p
a

c
� cffiffiffi

3
p

a
ð28Þ

where c and a are the lattice constants of the HCP structure of magne-
sium. In the current study, we use c ¼ 0:521nm and a ¼ 0:321nm,
which gives gdt ¼ 0:1301. Note that Eq. (27) provides the coupling
between Fi and the OP, which is required in the diffuse-interface
model. The linear coupling of Eq. (27) is a simple (and commonly
used) form that ensures that Fi becomes the eigen deformation F

ðpÞ
i

inside the DT. If the actual transformation strain pathway is deter-
mined by atomistic calculations, nonlinear coupling forms may be
needed as shown in [39]. Nevertheless, it needs to be pointed out
that Eq. (27) does not impair the geometric nonlinearity of the cur-
rent model, which is inherited from the finite deformation frame-
work used in Section 2.1. To complete the constitutive description,
the inelastic Helmholtz free energy of Eq. (10) needs to be specified
for DT, which is given as (an extension of [29])

Ci ¼ Cc
i þCg

i

¼
Z
V0

X
p

A1h
2
pð1�hpÞ2 þ

X
q6¼p

A2h
2
ph

2
q

 !
dV0 þ

Z
V0

X
p
kðpÞ

: r hp � r hp

� �
dV0 ð29Þ

where A1 and A2 are two constants and k(p) is a second-rank tensor
related to anisotropic interfacial energies. In the integrand ofCc

i; the
first term is a double-well potential, which represents the equal inter-
nal energy states (i.e., h ¼ 0 and h ¼ 1) occupied by the parent and
twin crystals, separated by an energy penalty associated with the
interface; the second term is an energy penalty to prevent different
variants from occupying the same space other than the interfaces. In
principle, A1 and k(p) are determined by the equilibrium interfacial
energy L and thickness l of an unstressed matrix/twin interface.
(Note that for simplicity we restrict the formulation of gradient
energy term in the reference configuration to avoid the configuration
change as discussed in Section 2.2.2.) Following the treatment
of [29], with the isotropic approximation we have A1 ¼ 12L

l and
k ¼ 3Ll

4 . A2 is related to the unstressed interface between twin var-
iants, the property of which are not commonly reported. Neverthe-
less, the primary focus of the current study is the growth of a single
variant and the term related to A2 is thus irrelevant.
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4.2. Model parameters and dimensionless forms

To completely determine the model parameters for numerical
implementation of the constitutive equation Eq. (29), the physical
length of the computational grid must be specified. Given the incre-
ment of one grid point corresponding to l0 (assuming the grid is
evenly spaced along all three Cartesian axes), we can write the
dimensionless form of Eq. (29) as

C�
i ¼ Ci

A1l30

¼
Z
V�
0

X
p

A�
1h

2
pð1�hpÞ2 þ

X
q 6¼p

A�
2h

2
ph

2
q

 !
þ
X
p
kðpÞ� : r �hp � r �hp

� �" #
dV�

0

ð30Þ
where the dimensionless quantities (denoted by a superscript *) are
defined in Table 2. Using the experimentally measured twin bound-
ary energy L ¼ 0:117J=m2 [40] and a twin boundary thickness
l ¼ 1nm, we obtain A1 ¼ 1:404GPa. To fully determine the dimen-
sionless quantities in Table 2, the grid spacing l0 needs to be specified
as well. Note that a characteristic length lc �

ffiffiffiffiffiffiffiffiffiffiffi
k=A1

p ¼ l=4 can be
defined such that the dimensionless gradient energy coefficient
becomes k� ¼ ðlc=l0Þ2. Since lc is only 0.25nm if the equilibrium twin
boundary thickness is 1nm, the choice of l0 is then limited to nano-
meter scale as well. The elastic constants are taken as c11 ¼ 66:6GPa,
c12 ¼ 28:0GPa, and c44 ¼ 19:3GPa by assuming isotropic elasticity, for
single crystal magnesium is nearly elastically isotropic [29].

Finally the correspondence between the 3D computational grid
and the crystallographic direction must be specified. We choose the
following correspondence x̂ k h1210 i (h1 � K1), ŷ k h1011 i (h1), ẑ
k h1012 i (K1), such that the inelastic deformations F

ðpÞ
i associated

with the two DT variants are

F
ð1Þ
i ¼

1 0 0
0 1 0:1301
0 0 1

2
4

3
5;

F
ð2Þ
i ¼ RF

ð1Þ
i RT ¼

1 0 0
0 0:9916 0:0005
0 �0:1295 1:0084

2
4

3
5;

ð31Þ

where R is given by (see Fig. 1 of [28] for the relevant crystallography)

R ¼
1 0 0
0 cosv sinv
0 �sinv cosv

2
4

3
5; v ¼�2arctan cffiffiffi

3
p

a

� �
: ð32Þ

The corresponding gradient energy coefficient tensors are

kð1Þ� ¼ k�
1 0 0
0 1 0
0 0 0:25

2
4

3
5;

kð2Þ� ¼ Rkð1Þ�RT ¼ k�
1 0 0
0 0:2532 0:0486
0 0:0486 0:9968

2
4

3
5:

ð33Þ
Table 2
Physical quantities and their dimensionless forms used in the curr

Physical quantity [unit] Dimensionless form

X [m] X� ¼ X=l0
r [1/m] r � ¼ r � l0
A1 [J/m3] A1

� ¼ 1
A2 [J/m3] A2

� ¼ 10
k [J/m] k� ¼ k=ðA1l20Þ
C [J/m3] C� ¼ C=A1

Ce [J] C�
e ¼Ce=ðA1l30Þ

Ci [J] C�
i ¼Ci=ðA1l30Þ
4.3. Results

We use a 128£ 128£ 128 computational grid with l0 ¼ 0:5nm
(leading to k� ¼ 0:25), which implies a physical size of
64nm£ 64nm£ 64nm that is comparable with the typical size of
twins at the early growth stage [37,41]. We ignore the complexity
related to twin nucleation and simply introduce a small ellipsoidal
region of DT in the initial configuration of the simulation as a stable
nucleus. Under a constant applied shear stress t ¼ 2:5GPa along the
h1 direction, the twin nucleus is continuously growing in the 3D sim-
ulation. Note that the »GPa level applied stress should be inter-
preted as the local stress (over a volume of » 105nm3) that is
necessary in order to drive the nanoscale twin to grow, which has
also been shown in atomistic simulations [42] and is similar to the
stress needed for homogeneous nucleation of dislocation loops. In
reality, such high local stresses may be reasonably achieved in the
vicinity of structural defects such as dislocations and grain bound-
aries.

Figure 4 presents the simulation results using FST based PF simu-
lations, where snapshots in both 3D and 2D representations are
shown. (For the purpose of comparing with the results of SST, the ref-
erence configuration is used to plot the OP field in Fig. 4.) Another PF
simulation using SST is also carried out and the results are shown in
Fig. 5 as a comparison with Fig. 4.

It is shown that the predicted DT processes are roughly the same
for both SST and FST based PF simulations, especially in terms of the
size and the overall morphological features of the twin. Both show
that the twin initially adopts a roughly circular plate shape with the
broad face closely parallel to K1, gradually develops into a roughly
ellipsoidal plate with two unequal elliptic radii in K1, and eventually
forms an infinite flat twin plate rigorously parallel to K1 due to the
usage of periodic boundary condition (PBC). A closer inspection sug-
gests that before an infinite plate is formed, the broad face of the
twin plate predicted by FST is not exactly aligned with K1 whereas
the broad face predicted by SST remains perfectly parallel to K1 dur-
ing the entire growth simulation. (Note that since the twin plate has
varying thicknesses across K1, we define the broad face plane as the
central plane.) This deviation from K1 is particularly indicated by the
snapshots of FST at t� ¼ 120 in Figs. 4(a) and 4(b), which exhibit
ridges at the boundaries as the impingement due to PBC takes place.
In contrast, no ridge is formed in the case of SST (Fig. 5), suggesting a
perfect alignment of the broad face with K1. The presence of ridges is
further demonstrated by the resulting significant local elastic distor-
tion, which is shown by the elastic energy density fields plotted in
Fig. 6. It is also interesting to compare the transformation kinetics
predicted by SST and FST, which is shown in Fig. 7(a). Apparently
there is little difference in terms of the evolution of DT volume frac-
tion, which suggests that SST based PF simulations may still give an
accurate prediction of the growth kinetics of DT (and likely other
structural transformations such as martensitic transformation [39]).

A more detailed analysis of the shape of the twin and the compari-
son between results of SST and FST are shown in Fig. 8. The twin shows
an overall lens-like shape, with one cross-section having a shape of
ent phase-field model.

Definition

Material point vector
Gradient operator
Chemical free energy parameter
Chemical free energy parameter
Isotropic gradient term coefficient
Elastic stiffness tensor
Elastic part of Helmholtz free energy
Inelastic part of Helmholtz free energy



Fig. 4. Simulation snapshots in (a) 3D and (b-c) 2D representations showing the growth of a deformation twin (green region) using FST, where t* indicates the reduced time in the PF sim-
ulations and the plots are in the current configuration. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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parallelogram with rounded corners and the other two cross-sections
having ellipse shapes. This confirms that the speculated twin shape in
[32] may indeed be physical. In addition, our PF simulation shows more
detailed features of twin morphology. As shown by the 2D contour plots
in Fig. 8, a lenticular shape is obtained when the twin is projected on to
the plane normal to h1;which is referred to as the “dark side” of twin in
[32] (because it cannot be resolved using conventional experimental
techniques). The top view (cross-section normal to K1) of the twin is
predicted to be an ellipse and predictions from SST and FST are quite
similar to each other. However, the “bright side” (cross-section normal
to h1 � K1) of the twin, which corresponds to the typical 2D experimen-
tal characterization, only shows a lenticular-like plate but with blunt
tips for both SST and FST. However, experimental images of deformation
twins terminated inside grains do show sharp tips [43�45], and we will
discuss this discrepancy in more details later in Section 4.4. Neverthe-
less, it is obvious that the central plane of the twin plate (on the bright
side) predicted by FST deviates from that predicted by SST; the latter is
perfectly aligned with K1 whereas the former deviates from K1 by some
angle u. This is a subtle but critical feature that cannot be obtained using
SST simulations and its physical origin will be explored next.
4.4. Discussion
4.4.1. Deviation of twin boundary from K1

The angle u between K1 and the central plane of the twin plate is
identified quantitatively in Fig. 9 (where owing to the viewing angle
being precisely along K1 � h1; the central planes appear as lines),
which turns out to be 3.72B for FST and zero for SST.
We further carry out large-scale 2D simulations using a
1024£ 1024 computational grid parallel to f1210g plane (normal to
h1 � K1), with exactly the same input parameters as those in the pre-
vious 3D simulations. The results from both SST and FST simulations
are shown in Fig. 10. Owing to the much larger computational grid,
the twin plate can grow without impingement (nor coalescence) up
to t� ¼ 400 (twice as long as the previous 3D simulations). Because of
the removal of finite size effect along the h1210 i (normal to the 2D
computational grid), there is a slight difference in terms of the
growth kinetics predicted by 2D and 3D simulations, as shown in
Fig. 7(b). However, the twin shape predicted from the 2D simulation
is essentially the same as that obtained from cross-sectioning the 3D
result through the same plane. In particular, the deviation angle u
from K1 in 2D FST simulation is again confirmed to be » 3.72B, and
remains the same during the entire simulation as shown in Fig. 10(b).

It is also interesting to carry out parametric studies to explore the
influence of some model parameters on the value of u. In particular,
we are interested in the anisotropic ratio of interfacial energy,
defined as ξ � k�

33=k
�
11 in the principal coordinates (here using the

gradient coefficient tensor for the first variant in Eq. (33)) and is set
to be 0.25 in the previous 2D and 3D simulations. Since the simulated
twin plate shape is a result of the competition between elastic and
interfacial energies, changing the interfacial energy anisotropy is
expected to significantly alter the twin plate shape when the elastic
modulus is kept constant as a material property.

We use different values of ξ (1, 1/4, 1/8, and 1/16) to carry out a
series of 2D simulations using both SST and FST, and the simulated
twin shapes are compared in Fig. 11. Contour lines representing the
shapes of the twins from SST and FST are superimposed upon each



Fig. 5. Similar illustrations as in Fig. 4, but for the SST based PF simulations.

P. Zhao et al. / Acta Materialia 191 (2020) 253�269 261
other in Fig. 11 for better comparison. In both cases, the aspect ratio
of the twin plates show significant dependence on ξ , as summarized
in Fig. 12(a). (Note that for a given ξ , the aspect ratio is confirmed to
remain approximately constant with less than » 3% variation during
the simulation, and is virtually the same for both SST and FST simula-
tions.) As expected, a smaller ξ (i.e., higher interfacial energy anisot-
ropy) leads to a larger aspect ratio of the twin plate; in the case of
isotropic interfacial energy (ξ ¼ 1), an aspect ratio of 1 is obtained. In
addition, it is obvious that the resulting aspect ratio can significantly
influence u for the FST simulations, as summarized in Fig. 12(b). (In
contrast, no deviation from K1 is observed in SST simulations
Fig. 6. Elastic energy density fields at t� ¼ 120 predicted from (a) SST and (b) FST simu
regardless of the aspect ratio of the twin plate.) As the aspect ratio
increases, u decreases and reaches zero when the twin plate adopts a
sufficiently large aspect ratio, as shown in the case of ξ ¼ 1=16 in
Fig. 11. A finite-sized twin plate with a smaller aspect ratio, i.e., a
“thicker” twin, will possess a higher area fraction of the (blunt) twin
tip. Since the twin tip interface cannot be an invariant plane and thus
causes significant elastic distortions, the observed deviation u from
K1 must be attributed to the tip effect. Indeed, as the aspect ratio
increases, the twin becomes thinner and thinner, and thus possesses
a lower area fraction of the twin tip, leading to a smaller and smaller
and eventually vanishing u.
lations. The colorbars have the same scale range and are in units of A1 (1.404GPa).



Fig. 7. Evolution of (a) DT volume fraction predicted from 3D simulations using SST and FST, and (b) DT thickness predicted from 2D and 3D simulations using SST.
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4.4.2. Stress field asymmetry
Since themicrostructural evolution of the DT is essentially controlled

by the local stress field, the distinctive deviation from K1 should be
closely related to the different stress fields predicted by SST and FST.
We compare the stress fields around the (finite-sized) twin plate pre-
dicted by 3D PF simulations using SST and FST. Figures 13 and 14 corre-
spond to the 3D twin plate at t� ¼ 60 in Section 4.3. (Note that the 2nd
P-K stress is used here for comparison with the SST result.) Under the
applied boundary condition, only four components, i.e., sxx, syy, szz, and
syz are non-zero for both SST and FST simulations. Comparing Figs. 13
and 14, the differences are readily seen.

First, even though both SST and FST predict that the maximum and
minimum values of each stress components appear to be at the blunt
tips of the twin, the distributed regions of these extreme values exhibit
clearly different shapes. For sxx, syy, and szz predicted by SST, the max-
imum and minimum values simply equal in magnitude and differ by
the sign, and their distributed regions show mirror symmetries about
K1 and the plane normal to h1 as shown in Fig. 13. In contrast, sxx, syy,
and szz predicted by FST show asymmetric magnitudes of the maxi-
mum and minimum values, and their distributed regions are clearly
asymmetric without any mirror symmetry as shown in Fig. 14. It is
interesting to point out that for these diagonal stress components
around the deformation twin, FST predicts that the tensile states are
higher in magnitude but more locally distributed, whereas the com-
pressive states are lower in magnitude but more broadly distributed.
This result is consistent with the fact that the volume average of sxx,
syy, and szz must equal to zero, and may lead to some interesting
physical implications such as asymmetric twin boundary structure
development and different solute segregation at twin boundaries [46].

For the predictions of syz, which is the only non-zero stress compo-
nent applied externally, the qualitative difference in terms of the distrib-
uted symmetry of the extreme values is still seen in Figs. 13 and 14. To
Fig. 8. 3D shape of a simulated deformation twin at the early growth stage using FST, togeth
ing the boundary of twins (contour lines of order parameter equal to 0.5) on different cross-s
end, the reader is referred to the web version of this article.)
bemore quantitative, we plot syz values along the two probe lines (solid
and dashed) shown in Fig. 13 and 14, and the results are shown in
Fig. 15. When the probe line is across the center of the twin plate, pre-
dictions of syz from both SST and FST are close to each other as shown
in Fig. 15(a). Note that the stress inside the twin plate is not constant as
in the case of an ellipsoidal Eshelby’s inclusion [22], but shows some
variations in both SST and FST. This should be expected, because the
simulated twin plate does not adopt an exact ellipsoidal shape.

As the probe line moves away from the twin plate, more significant
differences between the predictions of syz are present, as shown in
Fig. 15(b). In particular, SST yields a symmetric variation of the syz along
the dashed probe line, whereas FST yields an asymmetric one, leading
to a difference in the local values of syz around the twin plate. In a
recent experimental work by [47], it was shown that the stress field
across a twin plate was indeed distributed asymmetrically; in addition,
the plastic deformation was also found asymmetric across the twin
plate, which was expected to be closely related to the stress asymmetry.
The current DT model using FST allows to explore these asymmetries
that may lead to asymmetric twin growth when plasticity is considered.

4.4.3. Effect of anisotropy in interface mobility
As we have pointed out earlier, the simulated twin plate, when

projected on the bright side, always shows blunt tips (using both FST
and SST). This is in contrast to the experimental characterization that
always shows sharp tips when the twin is terminated inside a grain
[43�45]. One critical assumption in the previous simulations is the
usage of isotropic interface mobility (i.e., a constant M in Eq. (15)),
which has also been used in all the previous PF models of DT
[7,25�29,48]. However, numerous experimental observations have
suggested that the lengthwise growth (i.e., along h1) of deformation
twins should occur much faster than the twin thickening (i.e., normal
to K1 plane). As a result, we hypothesize that the tapering of the
er with the comparison between results from SST (red lines) and FST (blue lines) show-
ection planes as indicated. For interpretation of the references to color in this figure leg-



Fig. 9. Central planes (red lines) of the simulated twin plate using (a) SST and (b) FST. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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deformation twin tip may be due to the anisotropy in the twin interface
mobility. The underlying physical basis is related to the twin bound-
ary migration mechanisms and hence to the twin boundary struc-
tures. In terms of twin dislocation theory, the thickening process
requires a production of additional twin dislocations at the twin
interface, whereas the lengthwise growth is mainly controlled by the
mobility of twin dislocations [49]. The dynamic theory associated
with DT growth in magnesium is so far still an open question and cur-
rently under active studies [50�52]. To test our hypothesis, we intro-
duce anisotropy in the interface mobility by making M in Eq. (15)
location-dependent. More specifically, we propose the following
mathematical expression for (reduced) interface mobility

M� ¼ M�ðXÞ ¼ M1 þM2j cosbjn ð34Þ
where M1 and M2 are two (non-negative) constants, b is the angle
between the twin/matrix interface normal and h1; and n is a positive
Fig. 10. Snapshots from 2D simulations using (a) SST and (b) FST, showing the growth of a
figure legend, the reader is referred to the web version of this article.)
integer characterizing the variation of the b-dependent mobility.
Obviously, the lengthwise growth along h1 (i.e., b ¼ 0B or 180B) is
associated with the largest mobility of M1 þM2; the twin thickening
(i.e., b ¼ 90B or 270B) is associated with the smallest mobility of M1,
and in between the mobility varies continuously. In principle, the
value forM1 andM1 þM2 can be obtained from atomistic simulations
of the corresponding interface mobility, and the actual functional
form for M*(X) can be constructed with calculations for more special
interfaces instead of using the proposed Eq. (34). Here we focus on
the hypothesis testing in a qualitative manner by assuming n ¼ 2 and
assigning different sets of values for M1 and M2. The sets of parame-
ters used in the subsequent 2D simulations are listed in Table 3.

The simulation results are shown in Fig. 16. It is obvious that the
anisotropy in interface mobility can significantly change the shape of
a growing twin for both SST and FST simulations. The tapering of the
twin tip is indeed observed for all three anisotropic cases in Table 3
deformation twin (green region). (For interpretation of the references to color in this



Fig. 11. Simulated deformation twin (green region) morphology using (a) SST and (b) FST with different interfacial energy anisotropy ξ , together with (c) the comparison between
the twin boundaries represented by contour lines (of order parameter equal to 0.5, red for SST and blue for FST). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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(i.e., Set 2 to 4) using both SST and FST. In addition, the twin tip
becomes sharper as the degree of anisotropy in the interface mobility
increases, which will diminish the deviation from K1 obtained in FST
simulations and hence reduce the discrepancy between the results of
Fig. 12. (a) Dependence of the twin plate aspect ratio on the interfacial energy anisotropy ra
plate aspect ratio.
SST and FST. As a result, our parametric study confirms that the
anisotropy in twin/matrix interface mobility can indeed produce very
sharp twin tips as observed in the experiments. Since the shape of
the DT is controlled by the asymmetry of the local stress field caused
tio ξ . (b) Dependence of the deviation angle u from K1 (in FST simulations) on the twin



Fig. 14. Stress (2nd P-K stress) fields around the deformation twin predicted using FST. Cross-sections normal to h1 � K1 are shown here and the unit of colorbar is A1 (1.404GPa).

Fig. 13. Stress fields around a deformation twin predicted using SST. Cross-sections normal to h1 � K1 are shown here and the unit of colorbar is A1 (1.404GPa).
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by the blunt tips, when the blunt tips are removed by the growth
anisotropy, the deviation of twin boundary from K1 vanishes. Thus,
for a quantitative simulation of DT at mesoscale, the anisotropy in
terms of both interface energy and mobility must be considered,
which can be provided by atomistic simulations.

5. Conclusions

A phase-field microelasticity theory at finite strains is devel-
oped following Khachaturyan’s classical work at small strains. The
new theory is further incorporated into the general phase-field
framework of modeling microstructure evolution in solids, with
the corresponding constitutive and evolution equations being rig-
orously derived following the thermodynamic consistency. Owing
to the representation in the reference configuration, the current
phase-field model at finite strains can be readily implemented
using the micromechanical solver based on Fourier spectral
method, which provides higher numerical efficiency as compared
to conventional finite-element method based models. The calcula-
tion of the micromechanical field associated with a spherical
Eshelby’s inclusion is carried out as a benchmark study. A shear-
dilation coupling owing to the geometric nonlinearity is revealed,



Fig. 15. syz values along the (a) solid and (b) dashed lines shown in Figs. 13 and 14.

Fig. 16. Simulated deformation twin (green region) morphology using (a) SST and (b) FST with different anisotropy in interface mobility, together with (c) the comparison between
the twin boundaries represented by contour lines (of order parameter equal to 0.5, red for SST and blue for FST). For each row, the images from left to right correspond to the param-
eter Set 1 to 4 in Table 3, with increasing the degree of anisotropy in interface mobility. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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Table 3
Different sets of parameters used for anisotropic interface mobility (Eq. (34)).

Set No. M1 M2 Ratio of mobility
between thickening
and lengthwise
growth

1 1.0 0.0 1.0 (isotropic case)
2 0.7 0.3 0.7
3 0.5 0.5 0.5
4 0.3 0.7 0.3
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together with a convergence study to quantitatively compare our
new theory with the conventional small strain theory.

The new theory is then applied to modeling the growth of
f1 0 1 2g h1 0 1 1 i deformation twins in magnesium, which offers
a rigorous and detailed comparison between small strain and
finite strain predictions on the co-evolution of microstructural
and micromechanical fields. A deviation of the twin/matrix
boundary from the K1 plane is predicted by the finite strain theory,
which is, however, absent in the prediction by the small strain
theory. Parametric studies are further carried out to confirm that
this deviation is due to the tip effect when the twin plate has a
finite size with a relatively low aspect ratio (corresponding to
early stages of growth). As the aspect ratio increases (due to, e.g.,
higher interfacial energy anisotropy or growth anisotropy), the
deviation decreases and eventually vanishes for an infinite twin
plate, which is consistent with the classical crystallography the-
ory. Asymmetric stress fields around the twin tip are also pre-
dicted by the finite strain phase-field simulations, whereas the
small strain based simulations always predict symmetric stress
field around the twin tip. The experimentally observed sharp twin
tip is shown to be likely due to the anisotroppy in the twin/matrix
interface mobility, which originates from differences in interface
structures and growth mechanisms and could be provided by
atomistic simulations and high-resolution electron microscopy
characterizations.
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Appendix A. General expression of the derivative of a functional
of a functional

Let F ½f� be a functional, i.e., a mapping from a normed linear
space of functions (a Banach space) M ¼ fðxÞ : x2Rf g to a field of
real or complex numbers, F : M!R or C. Now consider G F ½f�½ �;
which is a functional of a functional. In the scenario of PFM in
question, one can think of F as the stress field, G the total elastic
energy, and f the order parameter field. Then the driving force
used in formulating the rate equation of _f requires the functional
derivative dG=df; which should be computed through the follow-
ing chain rule
d
dfðxÞG F ½f�½ � ¼

Z
y
dy

dG½F �
dF fðyÞð Þ

dF ½f�
dfðxÞ : ðA:1Þ

Eq. (A.1) is clearly different from the chain rule of the ordinary
function of a function. To see why Eq. (A.1) holds, we may consider
a set of N discretized points in R; i.e., {x1, x2, ..., xN}, on which the
field variables f and F take the sets of values {f1, f2, ..., fN} and
{f1, f2, ..., fN}, respectively. We then consider a function of many
variables, g ¼ gðf1; f2; :::; fNÞ and each component fi; i ¼ 1:::N is again
a function of many variables, fi(f1, f2, ..., fN). Then according to
the chain rule of ordinary functions, we can compute the following
partial derivative

@g
@fi

¼
XN
j

@g
@fj

@fj
@fi

: ðA:2Þ

Taking the continuous limit of Eq. (A.2) by having N!1 and replac-
ing the summation with integration and the ordinary function with
its functional counterpart, one can obtain Eq. (A.1) (a rigorous deriva-
tion can be found in the Appendix A of [53]). It is also seen that if F is
a localized functional (i.e., an ordinary function) of f, then @fj=@fi ¼ 0
for all j 6¼ i in Eq. (A.2), which leads to a special case of Eq. (A.1)

d
dfðxÞG F ½f�½ � ¼ dG½F �

dF fðxÞð Þ
dF ½f�
dfðxÞ : ðA:3Þ
Appendix B. Proof of additive decompositions in Table 1

We present here only the proof of one additive decomposition
relation, i.e., Ee � FT

iEeFi ¼ E�Ei; as the proof of others can follow
in a similar way. Starting with the definitions of three Green-
Lagrange strain tensors defined in different configurations

1
2

jdxj2�jdXj2
� �

¼ dX ¢E ¢ dX;
1
2

jdxj2�jdXj2
� �

¼ dX ¢Ei ¢ dX;
1
2

jdxj2�jdxj2
� �

¼ dx ¢Ee ¢ dx;

ðB:1Þ

we have

dX ¢E ¢ dX ¼ 1
2

jdxj2�jdXj2
� �

¼ 1
2

jdxj2�jdxj2 þ jdxj2�jdXj2
� �

¼ dx ¢Ee ¢ dx þ dX ¢Ei ¢dX
¼ FidXð Þ ¢Ee ¢ FidXð Þ þ dX ¢Ei ¢ dX ðusing dx ¼ FidXÞ
¼ dX ¢ FT

iEeFi
� � ¢dXþ dX ¢Ei ¢ dX

¼ dX ¢ FT
iEeFi þ Ei

� � ¢ dX:
ðB:2Þ

In the derivation above, the use of dx ¼ FidX is based on the exis-
tence of the intermediate configuration as suggested by [17]. Clearly,
by defining Ee � FT

iEeFi we have the following additive decomposi-
tion

E ¼ Ee þ Ei: ðB:3Þ
Appendix C. Mathematical proof of Eq. (16)

Based on Section 2.2.1, the total elastic strain energy in the refer-
ence configuration is formulated as

Ce ¼ R
V0
r0cedV0

¼ 1
2

Z
V0

Ee Eeð Þ : C : Ee Eeð ÞjidV0

¼ 1
2

Z
V0

F�Ti EeF
�1
i

� �
: C : F�Ti EeF

�1
i

� �
jidV0:

ðC:1Þ



Fig. C.1. Schematics of an Eshelby type inclusion.
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In Eq. (C.1) Ee Eeð Þ should be interpreted as the pull-back function
of the Ee as specified in Table 1, such that the integration is still
performed in the reference configuration. In addition, there is no
restriction on Ee (and hence Ee) yet. If Ee is obtained through
solving the stress equilibrium equation in a static equilibrium
problem, the corresponding Eq. C.1 gives the total elastic energy at
mechanical equilibrium.

Suppose that we have obtained the equilibrium Ee; which,
according to [1], is a functional of the OP field h(X). In the PF method
we will need to calculate the following functional derivative (which
drives the system towards equilibrium)

dCe

dhðXÞ ¼
Z
V0

d3Y
dCe

dEe Yð Þ :
dEe Yð Þ
dhðXÞ


 �

¼
Z
V0

d3Y jiðYÞS Yð Þ : dEe Yð Þ
dhðXÞ


 �
ðC:2Þ

where the chain rule of a functional of a functional in Appendix A
has been used. Note that we have ignored the dependence of ji on
Fi (or h), since compared with EeðhÞ; jiðhÞ can be considered as a
slow functional of h and hence a secondary effect to the functional
derivative. Physically this corresponds to the same assumption
made for deriving Eq. (9) in Section 2.2.2, where the spatial variation
of density function is small enough to be considered as constant.
This treatment is well justified for dislocation plasticity and defor-
mation twinning of metals where little voids and/or volume change
are involved. While the stress field SðXÞ can be obtained via numeri-
cal solutions of mechanical equilibrium, we still need an explicit
functional expression for Ee hðXÞ½ � in order to continue the deriva-
tion in Eq. (C.2). Using the expression of Ee ¼ F�Ti EeF

�1
i according to

Table 1, we have

dEe Yð Þ
dhðXÞ ¼ R

V0
d3Y0 dEe Yð Þ

dF�Ti Y0ð Þ :
dF�Ti Y0ð Þ
dhðXÞ þ dEe Yð Þ

dEe Y0ð Þ :
dEe Y0ð Þ
dhðXÞ þ dEe Yð Þ

dF�1i Y0ð Þ :
dF�1i Y0ð Þ
dhðXÞ

( )

¼ dF�Ti ðYÞ
dh

¢EeðYÞ ¢F�1i ðYÞ
 !

dðY�XÞ þ F�Ti Yð Þ ¢ dEe Yð Þ
dhðXÞ ¢F�1i Yð Þ

þ F�Ti ðYÞ ¢EeðYÞ ¢ dF
�1
i ðYÞ
dh

 !
dðY�XÞ

ðC:3Þ
where the coupling between h and Fi is assumed to be given as a
localized ordinary function as in the conventional PF methods.
Substituting Eq. (C.3) together with the additive decomposition in
Table 1 into Eq. (C.2), we have

dCe

dhðXÞ ¼ �2S :
dFT

i
dh

F�Ti Ee

 !
þ
Z
V0

d3Y S Yð Þ : dEe Yð Þ
dhðXÞ


 �
ðC:4Þ

where the dependence on X has been omitted so long as the context
is clear. Using the additive decomposition Ee ¼ E�Ei and definition
of Ei in Table 1, we have

dEe Yð Þ
dhðXÞ ¼ dE Yð Þ

dhðXÞ�
1
2

dFT
i

dh
FidðY�XÞ þ FT

i
dFi

dh
dðY�XÞ

 !
: ðC:5Þ

Substituting Eq. (C.5) in Eq. (C.4), we obtain

dCe

dhðXÞ ¼ �2S :
dFT

i
dh

F�Ti Ee

 !
�S :

dFT
i

dh
Fi

 !
þ RV0

d3Y S Yð Þ : dE Yð Þ
dhðXÞ


 �

¼ �2S :
dFT

i
dh

F�Ti ðE�EiÞ
 !

�S :
dFT

i
dh

Fi

 !
þ RV0

d3Y S Yð Þ : dE Yð Þ
dhðXÞ


 �

¼ �F�Ti CS :
dFi

dh
þ
Z
V0

d3Y S Yð Þ : dE Yð Þ
dhðXÞ


 �
:

ðC:6Þ
The first term appears local and can be easily evaluated once the
mechanical equilibrium is solved, physically corresponding to the
effect due to the change of the inelastic deformation field. The second
integral, at first glance, may likely be non-zero, as a local perturbation
in microstructure (dh) can in principle result in non-local changes in
the total displacement (and strain) and stress fields due to the long-
range nature of elastic interaction. It turns out that this integral will
be exactly zero when mechanical equilibrium is reached and the
proof is as follows.

The second integral in Eq. (C.6) actually resembles the (negative)
internal virtual work in the principle of virtual displacements, which,
under static equilibrium, is written in the reference configuration asZ
S0
T ¢ dxdS þ

Z
V0

B ¢ dxdV ¼
Z
V0

S : dEdV ðC:7Þ

where T is the traction applied on the surface S0, B is the body force
(per unit volume), dx and dE are the kinematically admissible virtual
displacement and strain fields, respectively. Note that we have taken
into account the difference between reference and intermediate con-
figurations due to the multiplicative decomposition of Eq. (2).

The principle of virtual displacements, however, cannot be
directly applied to the Eshelby’s inclusion type problem, which is a
paradigm of microstructural and micromechanical modeling, owing
to the discontinuity in the stress field at the surface of the inclusion.
As a result, we divide the whole configuration into two parts, V1 and
V2 as illustrated in Fig. C.1. On the surface S12 that connects the two
subbodies, V1 experiences a traction of T1 and V2 experiences a trac-
tion of T2. Obviously, stress and displacement fields are all continuous
in individual subbodies. We then apply Eq. (C.7) to both V1 and V2:R
S12

T1 ¢ dx1dS ¼ R
V1
S : dEdVR

S12
T2 ¢ dx2dS ¼ R

V2
S : dEdV

ðC:8Þ

where we have considered case with no body force prescribed and
the outer surface S0 at infinity is assumed stress-free. Since T1 and T2
must be equal and opposite by Newton’s Third Law, we can combine
the two equations intoZ
S12

T2 ¢ dx2�dx1ð ÞdS ¼
Z
V0

S : dEdV0: ðC:9Þ

It needs to be emphasized that E is the total strain associated with
the kinematically admissible displacement field. Eq. (C.9) suggests
that the quantity

R
VS: dEdV (negative internal virtual work) in an

Eshelby’s inclusion problem subject to a virtual displacement field
depends on the virtual displacement jump across the inclusion sur-
face. If the applied virtual displacement field is continuous, i.e., dx2 ¼
dx1; then we haveZ
V0

S : dEdV0 ¼ 0: ðC:10Þ

In PFM theory (Section 2.2), the total strain E is a functional of order
parameter h and a microstructure change dh will result in a variation
of total strain dE. By dividing dh on both sides of Eq. (C.10) and taking
the limit, we haveZ
V0

d3Y S Yð Þ : dE Yð Þ
dhðXÞ


 �
¼ 0 ðC:11Þ
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which leads to the desired Eq. (16). Therefore, so long as the displace-
ment at the inclusion/matrix interface maintains continuous (i.e., no
gap or sliding is allowed), the virtual displacements in Eq. (C.9) have
to satisfy dx2 ¼ dx1 due to the kinematic admissibility and conse-
quently Eq. (16) should be valid when the phase transformation and/
or plastic deformation do not trigger any failure mechanism.
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