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Abstract: Change in the coastal zone is accelerating with external forcing by sea-level rise,
nutrient loading, drought, and over-harvest, leading to significant stress on the foundation plant
species of coastal salt marshes. The rapid evolution of marsh state induced by these drivers makes the
ability to detect stressors prior to marsh loss important. However, field work in coastal salt marshes
can be challenging due to limited access and their fragile nature. Thus, remote sensing approaches
hold promise for rapid and accurate determination of marsh state across multiple spatial scales.
In this study, we evaluated the use of remote sensing tools to detect three dominant stressors on
Spartina alterniflora. We took advantage of a barrier island salt marsh chronosequence in Virginia, USA,
where marshes of different ages and level of stressor exist side by side. We collected hyperspectral
imagery of plants along with salinity, sediment redox potential, and foliar nitrogen content in the
field. We also conducted a greenhouse study where we manipulated environmental conditions.
We found that models developed for stressors based on plant spectral response correlated well with
salinity and foliar nitrogen within the greenhouse and field data, but were not transferable from lab
to field, likely due to the limited range of conditions explored within the greenhouse experiments
and the coincidence of multiple stressors in the field. This study is an important step towards
the development of a remote sensing tool for tracking of ecosystem development, marsh health,
and future ecosystem services.

Keywords: salt marsh; Spartina alterniflora; sea level rise; climate change; hyperspectral imaging;
stressors

1. Introduction

Salt marshes are a rapidly changing environment and are vulnerable to a variety of anthropogenic
impacts including human manipulation, land conversion, invasive species, water-borne pollution,
and global climate change, especially increased temperatures, changing precipitation patterns, and sea
level rise [1-4]. In recent decades, acute marsh die-off has increased, likely related to climate
change-induced stressors and changes in trophic structure [2,5,6]. Coastal wetlands provide the greatest
number of ecological services of any coastal environment, including support for coastal fisheries,
important habitat, protection from storm surges, and reduction of nutrient loading to coastal
water [7-10]. Additionally, salt marshes sequester carbon at high rates, and there has recently been
much interest in ‘Blue Carbon,” the stock of carbon in seagrasses and coastal wetlands, including salt
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marshes, and the potential for salt marshes to offset human greenhouse gas emissions [11-14].
Marshes are very heterogeneous, however, leading to great uncertainty in both quantitative estimates
of carbon sequestration [13] and the long term viability of marshes in the face of rapid environmental
change. Spartina alterniflora, the dominant and foundation plant species in salt marshes of the Western
Atlantic, has been significantly threatened in recent decades.

Although salt marsh vegetation self-regulates elevation by accumulating organic matter
and trapping sediment, increasing rates of sea level rise may threaten marsh submergence [1].
With enhanced submergence, hypoxia is exacerbated, further stressing plants and leading to reduced
production, ultimately threatening marsh persistence [12]. Eutrophication can also be a driver of salt
marsh loss, as nitrogen (N)-enriched S. alterniflora allocates more production to aboveground biomass,
resulting in fewer roots that stabilize sediment [15]. This can result in edge erosion, marsh loss,
and decreased organic matter accumulation, ultimately leading to loss of marsh elevation [15-17].
Changes in precipitation events (e.g., drought) also have implications for salt marsh health as
evapotranspiration occurs during times of reduced rainfall, increasing salinity. While S. alterniflora
is generally salt-tolerant, high salinity can decrease the productivity of marsh plants and is lethal at
very high salinities [18,19]. Drought conditions also exacerbate the effect of salinity [20]. Field-based
methods utilized to detect these issues can be disruptive, labor intensive, and impractical due to
inaccessibility and high heterogeneity, especially at varying spatial scales. Remote sensing techniques
such as satellite or airborne imagery and light detection and ranging (LIDAR) are increasingly
important in determining the sustainability and permanence of salt marshes and may be used to
ascertain the future of essential ecosystem services [12].

High spectral resolution (hyperspectral) data can be used to detect spectral variations which result
from biophysical properties [21]. Remote sensing has been used to map the extent, land cover, biomass,
and species composition in coastal wetlands [21-29], as well as to detect areas of marsh die off [30-34].
However, due to the high spatial heterogeneity in salt marshes, traditional remote sensing techniques
such as airborne or satellite-based imagery, with a spatial resolution on the order of meters to tens
of meters, may not have sufficient spatial resolution to determine plant characteristics and stressors
at the scale at which they may occur (often at a sub-meter scale). High-resolution (sub-centimeter
to centimeter scale) hyperspectral imagery can provide a level of detail that matches the scale of
heterogeneity within the marsh, where heterogeneity may occur at a patch size of less than one meter,
and has been used to predict properties such as above-ground biomass and leaf area index [35,36].
Prior research regarding leaf optical properties in salt marsh die-off zones [30,33,34] demonstrated
that vegetation indices such as the ratio vegetation index (RVI) are capable of detecting the onset
and progression of marsh die off. Ramsey and Rangoonwala [30] detected leaf optical changes that
correlated with distance from die off locations and demonstrated that RVI indicated late-stage marsh
die-off but was not sensitive to the onset of die-off. A ratio of near infra-red (NIR) to green detected the
initial die-off progression and subsequent recovery. Miller et al. [34] used the normalized difference
vegetation index (NDVI) to detect change in satellite imagery between years to map the extent of
marsh die-off. However, little work has been conducted on detecting specific stressors, particularly
edaphic factors that may ultimately lead to marsh collapse, within salt marsh ecosystems using remote
sensing techniques.

In agricultural systems and freshwater wetlands, remote sensing has been used to detect various
plant properties such as foliar N content (e.g., [37-40]). Vegetation indices have also been used to
detect leaf water content and the effects of porewater salinity and redox potential on plant distribution
and growth in a salt marsh dominated by Salicornia [41] and waterlogging stress in terrestrial plant
species [42,43]. These efforts provide promise for application of similar techniques in order to determine
edaphic factors in salt marshes based on canopy reflectance. The ability to predict marsh stressors may
be an important tool for determining the vulnerability of marshes and could aid in conservation efforts
by identifying the most essential locations for conservation and assist in evaluating how stressors
impact critical ecosystem services such as Blue Carbon potential.
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Our objective was to create predictive models of three stressors (excess nitrogen, porewater salinity,
and porewater oxidation-reduction potential (ORP)) using hyperspectral imagery. To isolate individual
stress responses, we grew S. alterniflora, in a controlled greenhouse environment and subjected
plants to varying salinity, water level, and N availability. We used a similar analysis across a marsh
environment with natural varying salinity, oxidation-reduction potential (ORP), and N availability.
We developed predictive models of stress using the spectral and biophysical responses from the
greenhouse experiment and from field plots and applied these models to hyperspectral imagery of a
series of marsh chronosequence sites within a barrier-island setting that range in age and degree of
stressor impact.

2. Methods
2.1. Greenhouse Experiment

2.1.1. Experimental Design

We conducted a greenhouse experiment to determine spectral responses of S. alterniflora to abiotic
stressors such as salinity, nutrient availability, and hypoxia in a controlled environment. We acquired
S. alterniflora seedlings from Pinelands Nursery, Columbus, NJ, USA. In April 2018 we planted three
plugs (4-11 total culms; 0.5-32 cm in height per pot) in individual pots (16.5 cm diameter and 18 cm
high) containing a 4:1 mixture of sand and Jiffy Mix potting soil [44], housed in a microcosm tidal
simulator [45]. Tidal simulation was semidiurnal and consisted of flooding to approximately 2.5 cm
above the sediment surface and a ‘low tide” with water depths at approximately 2.5 cm from the
bottom of the pot (total tidal excursion approximately 18 cm). Treatments varied salinity, N availability,
and water level (n = 4). For salinity treatments, we added artificial seawater (Instant Ocean) to tap
water to achieve either 20, 30, 40, or 50 ppt. During the course of the growing period, we compensated
for high salinity levels due to evaporation (measured with a refractometer) by adding fresh water.
N availability consisted of three treatments: 0, 10, and 100 uM, achieved by adding ammonium chloride
bi-weekly to the water [46]. For the waterlogged (“flooded”) treatment we maintained the water level
at 2.5 cm above the sediment surface. We replaced water bi-weekly by emptying buckets and re-filling
to achieve the appropriate salinity and ammonium chloride concentrations.

To determine porewater salinity, ORP, and ammonium, we extracted porewater from 10 cm
depth using stainless steel probes [47]. We determined salinity with a refractometer and ORP with a
Hach MTC-101 ORP probe, corrected to a standard hydrogen electrode. For porewater ammonium,
we filtered (0.45 pm) and froze samples until analysis using the phenolhypochlorite method [48].

Following the imaging measurements described below, we clipped all aboveground plant material
and obtained subsamples using a holepunch of known area for tissue chlorophyll analysis that were
immediately frozen at —80 ° C until analysis. We ground the sample using a mortar and pestle with
liquid nitrogen, then added acetone and further ground the mixture in a tissue grinder. Following a
24 h extraction period at —20 °C, we centrifuged the samples and measured the absorbance of the
supernatant at 663.6 nm and 646.6 nm with a Shimadzu 1800 dual beam spectrophotometer, using the
equations of Lichtenhaler and Wellburn [49] to calculate chlorophyll concentration.

We dried the remaining aboveground plant material at 60 °C for 24 h and weighed this residual
sample to obtain aboveground biomass, assuming the removed portion was of negligible weight and
consistent across replicates. To obtain a homogeneous sample for elemental analysis, we ground the
dried plants and then analyzed the prepared samples for N content measurement on a Perkin Elmer
2400 Elemental Analyzer. We washed the remaining sediment through a 1 mm sieve and extracted the
roots to assess belowground biomass as described for aboveground biomass.
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2.1.2. Statistics

To analyze differences in biophysical response variables among treatments for the greenhouse
experiment, we employed a one-way analysis of variance (ANOVA) followed by a post-hoc Tukey
Honestly Significant Difference (HSD) test when significant main effects were discovered [50].
Individual linear regressions were developed between S. alterniflora aboveground biomass and
foliar %N, salinity, and ORP, and we calculated Pearson correlation coefficients.

2.1.3. Greenhouse Imagery Collection

Five months after the initiation of experimental treatments, we collected hyperspectral imagery of
all culms within each pot using a Headwall VNIR Micro-hyperspec High Efficiency E-series pushbroom
system providing spectral measurements from 400 to 1000 nm with 371 spectral bands and 1600
across-track spatial pixels [51]. We collected the images over a two-day period in a laboratory setting
with a 300 W illumination source with Fresnel lens, designed to provide uniform illumination over the
measurement area. We positioned the source at a 20° zenith angle. Imagery taken in the laboratory
included Spectralon™ white reference panels, which were used in the reflectance calculations.
The final pixel size for these images was approximately 1.2 mm [51].

2.2. Field Campaign

2.2.1. Site Description

In July of 2017 and 2018, we conducted field campaigns at a low-lying back-barrier marsh on Hog
Island, located in the Virginia Coast Reserve Long Term Ecological Research (VCR LTER) site on the
Delmarva Peninsula, one of the most pristine stretches of coastline on the Atlantic seaboard. The island
is 11.3 km in length with an average width of 0.8 km [52] and is a highly dynamic system, with frequent
disturbances due to wind, waves, storm surges, and tides [53]. The Ash Wednesday storm of 1962
deposited approximately 1 m of sand over the back-barrier marshes at the southern end of Hog
Island with other more minor events adding sand sporadically. Since the storm, the fringing marshes
gradually have grown back with new marshes ranging in age from 5 to 43 year at the time of this study.
We define marsh age by the date at which S. alterniflora first appears in aerial imagery [54,55]. The oldest
marsh at this site was not affected by the major storm and is at least 170 year old. These marshes
that vary in ecological age and degree of stressor impact afford the ideal location to develop scalable
estimates of marsh state from hyperspectral imaging. The three marshes used in this study have
establishment dates of 1845, 1974, and 1989 (Figure 1).

2.2.2. Field Imagery Collection

During the field campaigns, we collected hyperspectral imagery using the Headwall system
described above mounted on a telescopic mast [51] . We placed SpectralonTM reference panels in the
field of view and used these to convert hyperspectral imagery to reflectance. The pixel size obtained
ranged from 0.2 to 3.0 cm, depending on the height of the mast and the distance of the plants from
the imaging system [51]. We ensured that ground-truth plots lay within the field of view, and took
biophysical measurements (as detailed below) contemporaneously at each site. Our imagery was taken
from four mast locations located within the three different aged marshes (Figure 1). For validation,
we used a total of 36 — 1 m? ground truth plots for porewater variables and 34 — 1 m? for foliar %N
(Figure 1). We measured porewater salinity and ORP at each plot as described previously. Within 0.5 m
of each plot, we clipped three culms and pooled the samples for foliar %N analysis after freeze-drying
and homogenization on a Wiley Mill and analysis as above. We determined biomass in each plot by
measuring culm density and plant height, and applying allometric equations developed separately for
each age of marsh [56].
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Figure 1. (a) Location of study site in Virginia, USA, (b) location of Hog Island, (c) locations of plots and
hyperspectral imaging system within the Hog Island chronosequence. Color indicates the initiation
year of the marsh. For this study, groundtruth plots were established in the marshes initiated in
approximately 1845, 1974 and 1989.

2.3. Imagery Analysis

Diagrams summarizing the workflow for the laboratory and field imagery appear in Figure 2.
For the laboratory images, we used only the reflectance between 475 and 950 nm (293 total bands)
in the analysis due to lower signal-to-noise (SNR) ratio at the shortest and longest wavelengths
where SNR is typically lower for silicon detectors commonly used in hyperspectral imagers designed
for the visible and near infra-red (VNIR). In order to isolate only pure plant pixels, for each plant,
we manually selected approximately 200-300 pixels arbitrarily from each image at the center of the leaf.
From these pixels, we computed the average reflectance for each plant. For field imagery, we applied a
Savitzky-Golay smoothing filter [57] using ENVI™ and then isolated vegetation pixels by calculating
the NDV1 for each pixel and masking out all pixels with NDVI < 0.5, in order to remove extraneous
soil and water pixels. While other vegetation indices were evaluated as a mask-criterion, we found the
best performance with NDVI based on visual inspection of images before and after masking. Within the
plots visible in the image, we selected approximately 100 pixels for calculating the average reflectance.
We applied previously published vegetation indices (Table 1) to both greenhouse and field imagery in
order to examine their relationship with porewater salinity, porewater redox potential and foliar N
(as a proxy for sediment nutrient status). We employed stepwise regression models, implemented in
JMP Pro 14, with all potential indices and used the Akaike Information Criterion (AIC) validation [58]
to select the best model. We noted, however, that these indices might not include wavelengths that
would serve as the best predictors. As a result, we also explored additional wavelengths and 1st and
2nd derivatives that were potentially good predictors using an elastic net generalized regression [59].
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Figure 2. Diagrams showing (a) the workflow for the analysis of the greenhouse experiment data,
application to field imagery, and validation and (b) the workflow for the analysis for the field imagery.

Table 1. Vegetation indices applied in this study.

60f 21

Vegetation Index Definition Use Source
40 Rgz0+R780 _R
Red edge position 700 + —R2 R - Chlorophyll concentration [60]
linear interpolation (REP)
Normalized Difference m Green biomass, [61]
Vegetation Index (NDVI) chlorophyll concentration
Water Index (WI) % Leaf water [62]
content
Optimized Soil Adjusted (1+0.16) % Green biomass [63]
Vegetation Index (OSAVI)
Optimized Soil Adjusted (1+0.16) % Green biomass [64]
Vegetation Index 2 (OSAVI2) ‘ ‘
Modified Chlorophyll Absorption  ((Rypo — Rey0) — 0.2(Rz00 — Rss0) ) ﬁ:‘;g Chlorophyll concentration, [65]
Reflectance Index (MCARI) leaf area index
Red Edge Symmetry (RES) % Chlorophyll concentration [66]
Photochemical Reflectance % Light-use efficiency, [67,68]
Index (PRI) . plant stress
Ratio Vegetation Index (RVI) % Green biomass [69]
Green-Red Vegetation Index (GRVI) % Green biomass [70]
Modified Soil Adjusted 2Rgoo + 1 — \/(ZRB"“H)Z728*(1{8“07&8“) Green biomass [71]
Vegetation Index 2 (MSAVI2)
Wide Dynamic Range % Green biomass [72]
Normalized Difference Vegetation
Index (WDR NDVI)

The elastic net regression method is a shrinkage, or regularization, technique that can be used
as a feature selection method when the number of predictors is much greater than the number
of observations. This method constrains the number of predictor variables by adding a penalty
term for the number of variables. Model coefficients that do not explain significant variance are
driven toward zero and ultimately removed from the regression while regularizing the remaining

coefficients [59].

Additionally, we calculated the continuum-removed reflectance between 475 and 950 nm to
compare normalized absorption features between treatments. To determine the wavelengths that best
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predict foliar %N, porewater salinity, and redox potential, we developed an elastic net generalized
regression for each response variable using the reflectance and first and second derivatives for
the greenhouse and field imagery separately, ultimately selecting the model with the lowest AIC.
We applied the equations generated from the greenhouse imagery to the field plots and then, using a
linear regression analysis, compared the estimated values to measured values obtained in the field
plots. We also developed an elastic net regression based on the smoothed reflectance and first and
second derivatives from the field imagery. For the field imagery, our linear regression was based on
dividing our samples into training (n = 28) and validation (n = 13) sets. We performed a bootstrap
analysis for all models developed for both the laboratory and field imagery, in each case using 1000
bootstrap trials in order to determine 95% confidence intervals for the coefficients, utilizing JMP Pro 14.

3. Results

3.1. Greenhouse Experiment

S. alterniflora survival rates for the high and low nutrient, low salinity, and waterlogged
treatments were 100% of pots, but were reduced to 75% and 50% of pots in the moderate and
high salinity treatments, respectively. Porewater salinity ranged from an average of 32 ppt in the
low salinity treatment to 56 ppt in the high salinity treatment (Table 2). Belowground biomass,
leaf chlorophyll, foliar %C, foliar %N, and ORP were not significantly different between treatments.
Aboveground biomass was highest in the low salinity treatment and lowest in the high salinity
treatment. The ratio of foliar %N to total chlorophyll was highest in the high nutrient treatment and
lowest in the low salinity treatment. Porewater salinity and foliar %N had a weak negative relationship
with aboveground biomass (Figure 3a,c, p = 0.017, R* = 0.27 and p = 0.0006, R?> = 0.47, respectively).
Porewater redox had no correlation with aboveground biomass (Figure 3b, p = 0.76, R? = 0.005).

Table 2. Mean (SE) S. alterniflora aboveground (AG) biomass (g), belowground (BG) biomass (g),
foliar %N, aerial N (g), chlorophyll a and b (Chl, mg m™2), chlorophyll a and b: foliar %N,
porewater salinity (ppt), ORP (mV), and porewater ammonium (NH} , uM) per treatment from
the greenhouse experiment. Unique superscripted letters indicate significant differences between
treatments found in one-way ANOVA. The degrees of freedom for all are 5.

F p Control High Low High Low Flooded
-Value Nutrient Nutrient Salinity Salinity
AG 32 0.04 0.25 0.23 0.44 0.03 0.97 0.46
Biomass (01 (o1 (o1 (021)F (028" (0.09) %
BG 064  0.67 3.31 3.71 33 2.81 415 3.57
Biomass (0.75) (0.45) (0.44) (0.04) (0.62) (0.37)
Foliar 275  0.06 3.26 4.45 2.71 5.03 2.19 2.62
%N (0.55) (0.95) (0.38) (0.64) (0.59) (0.36)
Aerial 263 007 0.72 1.0 0.99 0.14 1.65 1.16
N (0.17) (0.18) (0.36) (0.01) (0.36) (0.18)
Chl 095 095 38 31 33 51 40 29
(11) @) ) (19 (6) ®3)
N:Chl 307  0.04 0.09 0.15 0.09 0.11 0.06 0.09
0.02)%  (0.02)¢  (0.02)%  (0.03)% (0.02)? (0.02)%®
Salinity 623  0.003 47 47 45 56 32 40
(6) " (4) (3) b OF OF (2) "
ORP 257 008 —~120 —79 —~132 —154 —~114 —126
(45) (19) (6) (13) (10) 8)
NH} 07 063 9.6 13.6 8.7 17.1 9.9 8.6

(5.3) (2.8) 2.2) (10.8) 2.3) 1.7)
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Figure 3. Aboveground biomass versus (a) porewater salinity, (b) porewater ORP, (c) foliar %N.
Trendline shows linear regression and statistics when the relationship was significant.

Spectra display the typical vegetation curve [73], but with pronounced differences between
treatments (Figure 4a). This is particularly noticeable in the red edge slope (680-730 nm) and green
peak (520-560 nm) as well as the magnitude of the near infrared (NIR) region, which is reduced in
the high salinity treatment relative to the low salinity and low nutrient treatments. These differences
are also visible in the continuum-removed spectra (Figure 4b), primarily in the green peak region.
A summary of the R? values, associated errors, and predictive bands or vegetation indices for the
greenhouse experiment appear in Table 3. Models developed from the greenhouse experiment ranged
in R? values from 0.23 to 0.90 for the training data (Table 3; Figure 5a—c). Parameter estimates and 95%
confidence intervals for all models developed with the greenhouse imagery are available in Tables S1
and S2.

02 ¢ Control

(a) ~——Flooded
——High Nutrient 57~ "<eccr___

———High Salinity -
===-Low Nutrient
~==-Low Salinity

Reflectance
o
-

Wavelength Wavelength

Figure 4. (a) Average reflectance of selected leaves by treatment for the greenhouse experiment,
(b) continuum removed average reflectance of selected leaves by treatment for the greenhouse
experiment, (c) Spectra from field plots, (d) continuum removed spectra from field plots.
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Table 3. Results of the elastic net regressions using reflectance and 1st (‘) and 2nd (“) derivative
and stepwise regression of vegetation indices for the greenhouse imagery. Validation results report
greenhouse regressions applied to field imagery. * indicates significant predictor at p < 0.05, ** indicates
significant predictor at p < 0.01. Factors are the significant spectral bands (nm) for the elastic net or
vegetation indices for the stepwise regression.

9o0f21

Variable ~ BIC AICc RMSE R? RMSE R? Factors
Training Training Validation Validation
. FPoliar%N 545 558 0.5 0.85 3.7 0.39 76517, 672" **,
3 775" 880", 948"
% Salinity 151 149.8 6.1 0.46 3.3 <0.1 7478, 6227, 842"
tE“ Redox 169.5 171.8 9.9 0.9 71.8 <01 "573",755",
8307, 909”7, 918"”
o Foliar %N  66.1 66.4 0.9 0.7 1.3 <0.1 "OSAVI2 **, PRI %,
§ RVI**, GRVI **
2 Salinity 1522 1534 72 0.4 11.6 0.15 "REP **, WL %,
@ OSAVI2 **
Redox 1979 1994 29.8 0.23 16.2 <0.1 WI *
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Figure 5. Predicted versus measured values for models developed using greenhouse imagery and
validated using field imagery for the elastic net models of salinity (ppt) ((a) training (d) validation),
oxidation-reduction potential (ORP, mv) ((b) training, (e) validation), and foliar %N ((c) training,
(f) validation) and for stepwise regression models of salinity (ppt) ((g) training (j) validation),
oxidation-reduction potential (ORP, mv) ((h) training, (k) validation), and foliar %N ((i) training,
(1) validation). Solid lines indicate best fit linear regression for the training set, while dashed lines
indicate the regression for the validation set.
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3.2. Field

Field biomass ranged from 7.8 to 569.9 g m 2 across all sites (Table 4). Porewater salinity values
from field plots ranged from 33 to 58 ppt; redox potential ranged from —222 to +162 mV; and foliar N
ranged from 0.91% to 2.05% (Table 4). Field spectra exhibited a high degree of variability across sites
and plots (Figure 4c) that remained even upon continuum removal (Figure 4d).

When we applied models that we developed using the greenhouse experiment imagery to the
field imagery as validation, R? values were poor, ranging from <0.1-0.39 (Table 5) ((Figure 5d-f).
In contrast, models trained on a subset of field plots had higher R? values for both training and
validation sets: R? values for training sets ranged from 0.96 to 0.97 (elastic net on reflectance and
1st and 2nd derivatives; Figure 6d—f)) and 0.20 to 0.76 (stepwise regression on vegetation indices;
Figure 6j-1)) (Table 5), while validation R? values ranged between 0.22 and 0.74 (elastic net) and 0.1
and 0.99 (stepwise). The foliar %N models had the highest R? value when applied to the validation set
with respectively R?> = 0.74 for the elastic net and 0.99 for the stepwise N model. In stepwise models,
WI, OSAVI, GRVI, and MSAVI2 were the best predictors of salinity, explaining 60% of the variation in
the training data and 61% in the validation data. The models for porewater redox potential consistently
had the lowest R? values and highest RMSE. Parameter estimates and 95% confidence intervals for all
models developed with the field appear in Tables S3 and S4. Models developed and tested using field

imagery and applied back to original imagery display the characteristic heterogeneity found in such
marshes (Figure 7).
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Figure 6. Predicted versus measured values for models developed and validated using field imagery
for the elastic net models of salinity (ppt) ((a) training (d) validation), oxidation-reduction potential
(ORP, mv) ((b) training, (e) validation), and foliar %N ((c) training, (f) validation) and for stepwise
regression models of salinity (ppt) ((g) training (j) validation), oxidation-reduction potential (ORP, mv)
((h) training, (k) validation), and foliar %N ((i) training, (1) validation). Solid lines indicate best fit
linear regression for the training set, while dashed lines indicate the regression for the validation set.
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Stepwise Regression

Elastic Net

Salinity

Figure 7. Field prediction equations applied to field imagery: (a) elastic net regression for foliar
%N, (b) stepwise VI regression for foliar %N, (c) elastic net regression for salinity, (d) stepwise VI
regression for salinity, (e) elastic net regression for ORP, (f) stepwise regression for ORP, (g) original
image. Scale bars beneath each image represent foliar %N (panels a and b), salinity in ppt (panels c and
d), and oxidation-reduction potential (ORP) in mv (panels e and f).
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Table 4. Average+ standard deviation [minimum-maximum] for biomass (g m2), height (cm),
density (culms m~2), foliar %N, ORP (mV), and salinity (ppt) of field validation plots across three
different aged marshes.

Initiation Date Biomass Height Density %N ORP Salinity
1989 1354 £218 33.6+24 403+7 n.d. —-19+£32 42+1
[76.4-213.3] [27.2-412] [15-57] [-104-69]  [40-45]

1974 1041+294 282+£29 157+20 1.61+£0.03 —99 £ 38 42 +1
[17.5-243.2] [20.1-42.5] [88-248] [1.5-1.76] [-177-162] [36-47]

1845 1304 £271 36+28 103+29 1324007 —192+£6 39+1

[7.8-569.9] [14.9-68.7] [5-484] [0.91-2.05] [-222-131] [33-58]

Table 5. Results of the elastic net regressions using reflectance and 1st (‘) and 2nd (“) derivative and
stepwise regression on vegetation indices for the field imagery. Regressions used a subset of field
imagery points, with validation data consisting of the remainder of the plots from the field imagery.
* indicates significant predictor at p < 0.05, ** indicates significant predictor at p < 0.01. Factors are the
significant spectral bands (nm) for the elastic net or vegetation indices for the stepwise regression.

Variable ~ BIC  AICc  RMSE R? RMSE R? Factors
Training Training Validation Validation
Foliar %N —275 —185 0.1 0.97 0.1 0.74 4157, 449" **, 624",

803”7, 825" *, 869" **,
908’, 907, 931"**”

5 Salinity 779 99 05 0.96 53 04 V4347 464" W, AT5 W,
< 598" **, 608" , 628",
: 6997, 803" **, 843" **,
% 849”7, 916"
Redox 2323 2534 13 0.97 120 0.22 74637 *, 4737 ¥, 795"
809" **, 830" **, 851",
857", 868", 884" *,
9557, 961" **"
Foliar %N —53 —89 0.2 0.76 0.1 0.99 "I *, OSAVI*,
9 GRVI *, MSAVI2 *”
£ Salinity 1594 1555 33 0.6 19 0.61 “NDVI *, WI,”
& WDR-NDVI *
Redox 3376 3346 872 0.2 395 <01 PRI *

4. Discussion

We successfully developed models for a range of salinity and foliar N content using both
vegetation indices and reflectance, but the models based on elastic net or stepwise regression did not
predict ORP well in laboratory or field validation (Figure 5). Models trained on the lab imagery were
generally poor predictors when applied to field validation points, likely due to a variety of factors
including differences in conditions between the field and laboratory settings, mixed pixels, as well
bi-directional reflectance distribution (BRDF) effects. However, models that we developed directly
from the field imagery did successfully predict foliar %N and salinity.

4.1. Spectral Response to Stress

Spectral detection of vegetation relies on several key absorption features that contribute to
a distinctive ‘vegetation curve’ (as seen in Figure 4). Within the visible spectrum, reflectance is
primarily dominated by leaf pigments in the palisade mesophyll such as chlorophyll 2 and b, carotenes,
or anthocyanins [74]. This region may also be useful as a measure of stress (or senescence) as
chlorophyll decreases and other pigments become visible [75]. The high reflectance typically observed
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in the near infrared region (NIR, approximately 700-1200 nm) may be an adaptation to prevent
overheating [73] with the steep increase between the red and the NIR (the 'red edge’) acting as another
metric of potential stress. While using vegetation indices seeks to minimize confounding factors and
heighten useful variation within the spectra, they are also limited to a narrow range of bands which
might not include wavelengths that could be better predictors of stress conditions. Consequently,
in this study, we used two approaches— the stepwise regression method to test existing indices, as well
as the elastic net regression, which extracted other predictor wavelengths. For the models developed
from the field imagery, stepwise regression proved a more significant predictor for foliar N and salinity.
Many vegetation indices have been developed to predict either foliar %N or leaf greenness, which tend
to be closely connected, and the predictive indices included in this model reflect this. Salinity and
redox potential have fewer established indices, primarily developed for upland, salt-sensitive plants,
so may not be as effective in this context.

4.2. Nitrogen

While detection of foliar N has been widely analyzed in agricultural and terrestrial systems,
there are relatively few studies in wetlands [76,77]. Field leaf %N (0.91 to 1.61%) was generally
much lower than the %N content in the greenhouse-grown plants (5.8% to 7.0%), providing little
overlap in values across datasets. It is likely that the potting mix enhanced N sufficiently that
there was little variation among treatments, with only marginally higher foliar %N in the high
salinity and high nutrient treatments (p = 0.06, Table 2). In high salinity conditions, the minimum
required tissue concentration of N increases, likely due to the production and accumulation of
the nitrogen-based osmoregulatory compounds proline and glycinebetaine, which promote salt
tolerance [44,78]. We observed the highest foliar %N in the high salinity treatment, and a significant
negative relationship between aboveground biomass and foliar %N, possibly driven by the interacting
impact of salinity and nitrogen (Figure 3). Differences in leaf physiology, such as the accumulation
of osmoregulatory compounds or pigments, may influence reflectance and be detectable as changes
in reflectance spectra. Foliar N is often correlated with chlorophyll content, and numerous studies
have linked chlorophyll absorption features and the red edge region with foliar N content [37,76,79].
The high observed N : chlorophyll ratio in the high N treatment suggests that additional N was
shunted towards compounds other than photosynthetic pigments; while the lower value in the low
salinity treatment was driven by moderate chlorophyll concentration and lower %N, perhaps diluted
by the additional tissue growth. Salicornia virginica fertilized with N demonstrated lower reflectance at
555 nm and 680 nm and steeper red-edge slopes, a shift detectable using vegetation indices including
PRI [76] and normalized difference indices using the first order derivatives at 1235 nm and 549 nm
have been shown to correlate with foliar N in Schoenoplectus acutus [77].

Likewise, NDVI may correlate with foliar N in wheat [80]. We had similar success in predicting
foliar N in both lab and field studies, with significant predictor wavelengths falling near chlorophyll
absorption or fluorescence features (the first derivatives at 651 nm and 672 nm; greenhouse experiment,
elastic net); however, no wavelengths associated with the red edge were identified. These findings may
align with the variation in chlorophyll relative to other N-containing compounds in the mesophyll.
In contrast, for field-derived models, the second derivative at 415 nm was also a predictor of N content,
as previously shown by Read et al. [79], where decreased reflectance at 410 nm was associated with N
stress in cotton plants. The inability to apply greenhouse-derived models to the field may stem from
the lack of overlap in foliar N values for the training data and suggests perhaps a non-linearity in the
response over a larger range of N content. However, additional predictor wavelengths from the field
imagery were located in the NIR region (907, 908, and 803 nm based on elastic net; Table 5) and to
some extent were coincidental with those used to develop indices that were selected as significant
using the stepwise regression. These indices, including those commonly used to detect green biomass
(NDVI, MSAVI2, GRVI and OSAVI [63,70,72]), were significant predictors of foliar N. In the field leaf
%N model, the vegetation indices included WI (using wavelengths 900 and 970 nm), OSAVI (using
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wavelengths 800 and 670 nm), and MSAVI2 (using wavelengths 800 and 680 nm). These suggest a
common biophysical mechanism induced by variable N status that alters reflectance in this region.

4.3. Salinity

The range of porewater salinity found in the field (33-58 ppt) was replicated in the lab (31-57 ppt),
suggesting that any salinity-induced impacts to plants may be comparable. Likewise, the negative
relationship between salinity and biomass in the greenhouse experiment is consistent with prior
work [20,46,78]. High salinity can result in reduced stomatal conductance and CO, assimilation [81],
increased leaf respiration [82], and accumulation of osmoregulatory compounds in tissues [44].
Longstreth and Strain [83] found that increasing salinity resulted in higher leaf xylem pressure
and higher specific leaf weight, potentially due to increases in mesophyll thickness developed as
a mechanism for salt avoidance. Thicker mesophyll results in a greater internal leaf area where
gaseous exchange takes place, lowering resistance to CO; uptake and possibly compensating for
salinity-induced resistance to CO, uptake [84]. As scattering in the mesophyll contributes to NIR
reflectance [73], changes in leaf structure could be responsible for reduced NIR reflectance at higher
salinity (Figure 4).

In salt-sensitive plants, reflectance in the NIR region is lower with salinity stress, likely due
to cell structure damage [85]. However, in halophytes, while NIR reflectance may also decrease
at higher salinity due to cell structure damage, at moderate salinity, reflectance in this region may
increase [85]. Our results suggest that S. alterniflora may behave like a more salt-sensitive species, as we
observed a substantial decrease in NIR reflectance as the salinity increased from low to high (Figure 4),
although we note that the salinity in our study encompassed a greater range than in Zhang et al. who
found a relatively weak relationship between salinity and vegetation indices [85]. We also note that for
our field values, one relatively high salinity value (58 ppt) appears to have an inordinate impact on the
derived relationships. However, removal of this point still yields significant relationships, albeit with a
reduced R? (stepwise regression p = 0.0009, R? = 0.27; elastic net p = 0.0004, R? = 0.3). Additionally,
secreted salt crystalloids (e.g., [78]) were visible on leaves at higher salinity treatments and may have
influenced the spectra. In Avicennia germinans, Esteban et al. [86] found that the reflectance in the blue
(400-500 nm) and red (630-680 nm) regions increased when leaves were covered in salt crystalloids;
however, we observed the reverse in this study. Zhang et al. [85] found that the regions of 395410 nm,
483-507 nm, 632-697 nm, 731-762 nm, 812-868 nm, 884-909 nm, and 918-930 nm were the wavelengths
most sensitive to salt stress and suggests that photosynthetic pigments are highly affected by salt
stress. In this study, two of three, and five of eleven predictor wavelengths for salinity from the
greenhouse and field experiments respectively were in the visible range, but mostly outside of the
ranges indicated above. This could be due to differences in species and biological responses to salinity
stress; Zhang et al. [85] found that the spectral response to salinity was species dependent, and did
not investigate S. alterniflora specifically. In the greenhouse study, OSAVI2 appears as a significant
predictor in both the %N and salinity models, potentially illustrating the connection between salt
stress and nitrogen storage. In our field study, a combination of WI, NDVI, WDR-NDVI were the
best predictors of porewater salinity, each explaining about 60% of the variation in the field training
and validation sets. The stepwise field model for salinity used the vegetation indices NDVI (800
and 860 nm), WI (900 and 970 nm), and WDR NDVI (800 and 680 nm) while the elastic net model
selected similar wavelengths 803, 699, and 916 nm. These similarities highlight the importance of
absorption features centered around these wavelengths. The W1 is sensitive to leaf water content [62],
which responds to salt stress in S. alterniflora [83]. NDVI and WDR-NDVI are sensitive to leaf greenness
and chlorophyll concentrations [72], which may decrease with salinity stress as plants shunt available
N to organic compounds needed for osmoregulation.
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4.4. Waterlogging

S. alterniflora can tolerate substantially lower redox potentials than those achieved in our
greenhouse experiment (—167 mV to —43 mV), beginning to show symptoms of oxygen deficiency
only below —200 mV [87] and explaining the lack of an observed relationship between biomass
and redox (Figure 3b). However, the wider range of porewater redox potential in the field
(=222 mV—+161.5 mV) was likely sufficient to generate the hypoxic condition that limits essential
plant functions. Many wetland plants, adapted to the anaerobic conditions that occur in flooded soils,
contain aerenchyma to transport oxygen from aerial parts to flooded roots where it supports aerobic
root metabolism and oxidation of the rhizosphere [88]. In S. alterniflora, aerenchyma development
may be induced by low oxygen conditions [44,89,90]. However, in extremely waterlogged soils,
aerenchyma transport is not always sufficient for entirely aerobic metabolism in the roots [87,88] and
the metabolic pathway switches to fermentation where the enzyme alcohol dehydrogenase (ADH)
is used to reduce pyruvate to ethanol [87,91]. Low redox conditions also reduce root elongation
and a smaller root system that may be unable to support the shoot [88]. While many symptoms
of hypoxia take place belowground, ATP yield is increased at the expense of glucose consumption,
resulting in higher respiration and decreased overall growth [87] and reduced NH; uptake may
decrease photosynthesis and foliar N [88,92].

Combined, these physical and biochemical effects induce overall stress symptoms including
stomatal closure and limited gas exchange and photosynthesis [88] with a visible spectral response
previously observed only in terrestrial plants such as Acer rubrum and field crops [42,43]. These studies
found good correlation between redox and select wavelengths in the visible region, and a reduced red
edge shift towards longer wavelengths over time in waterlogged plants, possibly due to inhibition of
maturation and lower chlorophyll content in waterlogged plants [42,43]. In our greenhouse experiment,
the second derivatives at 573 and 755 nm, which are within or near these previously identified
regions [42,43], predicted porewater redox along with the derivative at 830 nm and the second
derivative at 918 and 909 nm. Both the WI, which uses wavelengths 900 and 970 nm, and the second
derivative at 909 nm from the elastic net model were selected and include features in the water
absorption region, suggesting similarities in response. However, this model did not translate well to
the field imagery (Table 3) probably due to the lack of overlap in values between lab and field ORP.

Models developed to detect ORP using our field imagery did not include wavelengths that had
been previously identified in the literature for other species. The second derivatives at 463, 473, 795,
809, 830, and 961 nm as well as the first derivative at 884 nm were predictive of porewater redox in
the field (R? = 0.97), but only explained 22% of the variation upon validation. PRI was developed as
an indication of photosynthetic efficiency, which is often correlated with plant stress [68] and while
this index emerged as the best VI to predict ORP, it was not successfully validated (Table 3). Often,
under stress conditions, photosynthetic capacity decreases and the amount of incoming radiation
is greater than is required for photosynthesis; in this case, under stress, excess energy is dissipated
through the xanthophyll cycle. PRI incorporates 531 nm, which is linked to the xanthophyll cycle,
and is inversely related to photosynthetic light use efficiency [67]. While PRI has not been used
previously to detect waterlogging stress, it has been used to detect salt stress in a coastal shrub [93],
and in the field, plants are subject to numerous stressors acting in tandem. Future studies could focus
on generating a wider range of redox potential in a controlled setting to further elucidate spectral
characteristics of this particular stress response.

4.5. Limitations of Models

Our inability to translate models developed in the lab to field imagery is likely due to a
combination of factors including differences in illumination and view angle, effects of canopy structure
and concomitant stressors, differences in scale, and potentially mixed pixels in the field imagery.
With regard to differences in scale, in the laboratory, pixel sizes were approximately 1.2 mm. In field
settings, pixel sizes varied over the image due to the oblique geometry of our imaging system.
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That geometry also varied with the height of our imaging system on the mast above the marsh surface.
Typical field plots were usually within 50 meters or less. As a result, typical marsh hyperspectral
imagery pixels in our study site were acquired at a spatial resolution ranging from 0.2 to 3 cm. A more
complete summary of the capabilities of our imaging system appears in [51]. This difference in pixel
size between the laboratory and the field may contribute to the lack of agreement between models,
as the laboratory measurements may pick up finer details of the leaf surface.

Other barriers to successfully translating models stemmed from issues associated with calibration
from the the white Spectralon reference panels, which are not perfectly Lambertian, and since the
illumination angle and viewing angle are different in the lab and the field, it likely influences
the conversion to reflectance. However, a correction for this can be carried out for future studies.
Additionally, view angle and canopy structure have strong influences on reflectance due to multiple
light scattering, leaf layering, and shading [73]. Future models could make use of radiative transfer
models in order to account for this geometry. We minimized mixed pixels in the laboratory setting
by hand-selecting areas of leaf, but in spite of the application of the NDVI filter to the field imagery
to isolate vegetation, mixed pixels containing some sediment are likely given the larger pixel size in
the field. This suggests that future refinements of these models must incorporate varying scales of
imagery to assess the potential impact of mixed pixels.

Further, in a field setting, multiple stressors are acting simultaneously, leading to a composite
impact that is harder to isolate using a model developed for a single response variable. For example,
as demonstrated for our laboratory experiment and by others (e.g., [94,95]), high salinity may cause
plants to accumulate nitrogen but at the same time stunt growth, leading to increased foliar N.
Likewise, waterlogging and high salinity will decrease plant growth, leading to lower biomass and
plant allometric relationships, in turn impacting the spectral response. Future work to incorporate
plant biomass, allometry and external stressors will be useful to further untangle these relationships
and their synergistic influence on reflectance.

5. Conclusions

This study was the first step in developing indicators of salt marsh health using remote sensing.
Overall, models were successful for predicting a range of salinity and leaf N content in both the
laboratory and the greenhouse individually. Generally, models developed from previously published
vegetation indices were more successful at predicting salinity and foliar %N than models developed
from an elastic net regression approach. The failure to develop adequate models for ORP suggests
the need for additional study to better isolate this stressor and understand how the plant physiologic
and structural responses translate to the spectral reflectance. Although models developed from a
controlled greenhouse experiment did not translate well to field imagery, likely due to a combination of
factors including differences in environmental conditions, mixed pixels in the field imagery, and BRDF
effects, future experiments could better correct for these factors. Further development of these spectral
models may provide an efficient way to evaluate marsh states and stressors in the field at a large scale,
which can inform marsh management decisions.
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