

1 Implications of sea level rise for bee communities in rural eastern Virginia coastal habitats

2 By:

3 Jessie Thuma¹, T'ai Roulston^{1,2}, and Linda Blum¹

4

5

6

7 ¹Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22904-

8 4123, USA

9 ²Blandy Experimental Farm, University of Virginia, Charlottesville, VA 22620, USA

10

11 Corresponding author:

12 Jessie Thuma

13 P.O. Box 400123

14 Department of Environmental Sciences

15 University of Virginia

16 Charlottesville, VA 22904-4123, USA

17 Phone: 617-429-7870

18 Email: jat7jw@virgin

19 **ABSTRACT:** In the coastal mid-Atlantic region of the USA, landscapes are a mosaic of

20 upland habitats (woodland, grassland, old fields and farmland) and low-lying coastal salt marsh.

21 Flooding and salinization of coastal areas due to sea-level rise results in the conversion of upland

22 habitats to salt marsh, and changes the relative proportion of habitat types surrounding coastal

23 farmland. This has the potential to influence population sizes of organisms living in this area and

24 could alter the ecosystem services, such as pollination, that these habitats provide. To examine

25 the potential outcome of these habitat conversions, we used blue vane traps at 14 sites along the

26 Eastern Shore of Virginia (USA) to compare the bee communities of salt marsh, old fields and

27 agricultural fields. Although there was no difference among habitat types for total bee abundance

28 per site, we found that the coastal marsh is depauperate in bee species relative to old fields and

29 agricultural fields, and that the bee species using the marsh habitat tend to be specialists of plant

30 families that are common in the marsh (Asteraceae and Malvaceae) but are relatively uncommon

31 in local agriculture. Thus, the transition of upland areas to marsh not only has the potential to

32 impact agricultural productivity directly through salt water intrusion, ultimately it may also may

33 reduce the species richness of native bees available to provide pollination services to coastal

34 agriculture.

35

36 **Keywords:** sea level rise, bees, salt marsh, agriculture, bee habitat, land cover change,

37 abundance

38

39

40

41

43 In the coastal mid-Atlantic region of the USA, landscapes are a mosaic of upland habitats
44 (woodland, grassland, old fields and farmland) and low-lying coastal salt marsh, which together
45 provide habitat for wildlife, including pollinators. This habitat mosaic, however, is undergoing
46 rapid change. In this region, sea-level rise rates are 4.28-5.37 mm yr⁻¹ (Mariotti *et al.* 2010,
47 NOAA 2019), more rapid than anywhere along the US coastline except the Gulf Coast (2.13-
48 9.65 mm y⁻¹, NOAA 2019). As a consequence of sea-level rise, mid-Atlantic upland habitats are
49 converted to salt marsh vegetation when soils are flooded and salinized (Nicholls and
50 Leatherman, 1995). In the Chesapeake Bay region, 400 km² have been converted from upland
51 habitat to salt marsh since the beginning of the 19th century (Schieder *et al.*, 2018). Globally,
52 agricultural lands are disproportionately exposed to projected sea-level rise effects (Feng *et al.*,
53 2018). For instance, on the Eastern Shore of Virginia in Accomack County, 20 ha of cropland is
54 salinized and taken from cultivation each year to become old fields or high salt marsh (Titus *et*
55 *al.*, 2009). Similar habitat conversions from farmland to old field or salt marsh are reported in
56 coastal Maryland, USA (Epanchin-Niell *et al.*, 2016). The result is a proportional shift in habitat
57 and soil types surrounding the coastal agricultural areas that remain, and this is likely to affect
58 the populations of organisms living in those habitats, including some that contribute to
59 agricultural productivity.

60 Wild bees contribute greatly to agriculture through pollination (Garibaldi *et al.*, 2011;
61 Winfree *et al.* 2008), but their populations frequently rely on quality habitat adjacent to
62 agricultural lands rather than the agricultural lands themselves (Benjamin *et al.*, 2014; Carvell *et*
63 *al.*, 2006; Kremen *et al.*, 2007; Winfree *et al.*, 2008). In light of recent declines in native bee
64 populations, it is imperative to document their abundance and species richness in a variety of

65 habitats to understand their current distribution across space and time and predict how their
66 populations may change as habitats change (Harrison *et al.* 2018).

67 The increase in saltmarsh habitat due to sea level rise is likely to affect bee populations
68 through a reduction in both floral resources and suitable nesting sites (Harrison *et al.* 2018). The
69 saltmarsh plant community is dominated by five wind-pollinated grass species (Silberhorn and
70 Harris, 1977) that likely provide little food to pollinators. Only a small, albeit persistent,
71 proportion of the marsh community is composed of insect-pollinated plants, including *Aster*
72 *tenuifolius* Nesom, *Sabatia stellaris* Pursh, *Limonium carolinianum* Britton, *Hibiscus*
73 *moscheutos* L., *Kosteletzkya pentacarpos* Ledeb, and to a lesser extent *Atriplex patula* L. and
74 *Atriplex arenaria* Nutt (Christian and Blum, 2017) (Table 1). While proportionally sparse, these
75 plant species provide resources across the entire growing season. Like food resources, nesting
76 opportunities may also be reduced in marsh habitat relative to upland. Periodic inundation with
77 saline water (Elsey-Quirk *et al.*, 2011) is likely to prevent bees from successfully nesting in
78 either the ground or plant stems unless the bees are adapted to live and forage in wet
79 environments (Cane 1991; Cane *et al.*, 1996). Thus, the abundance and diversity of native bees
80 in salt marshes may be less than in nearby old fields and agricultural fields where floral resources
81 may be more diverse and suitable nesting sites more abundant.

82 Few studies have been carried out on native bees in saltmarsh habitats. Pojar (1973)
83 examined pollination by *Bombus terricola occidentalis* (Grne) of saltmarsh plants in Vancouver
84 Island, Canada. Zarillo and Stoner (2019) compared bee species richness of saltmarsh, beach
85 dune and scrub habitat in an estuarine preserve in coastal Connecticut (USA), and found the
86 saltmarsh relatively depauperate. In that study the fauna of the saltmarsh was only 78% as rich as
87 the scrub and 63% as rich as the dune habitats.

88 The current study seeks to answer the question: How well does coastal marsh support
89 native bee abundance and diversity relative to old fields and agricultural fields? We selected
90 these three landcover (habitat) types because farmland (560 km²) and salt marshes (460 km²)
91 represent the two largest landcover types in coastal Virginia's Accomack and Northampton
92 counties (<https://coast.noaa.gov/ccapatlas/>), and because old fields (56 km²) have more diverse
93 plant communities than other land cover types (Table 1). The motivation for asking this question
94 is that reduction in bee abundance and diversity during conversion of old fields to salt marsh
95 might be detrimental to maintenance of bee species diversity in local upland habitat and to the
96 productivity of nearby farmland that relies on native bees for pollination (Kremen and
97 M'Gonigle, 2015). We hypothesized that native bee abundance and diversity would be lowest in
98 high salt marsh habitat compared to agricultural fields or old fields. We further hypothesized that
99 the abundance and diversity of native bees will be greater in old fields than in agricultural fields.

10

101 Materials and methods

102

103 *Study Sites and Sampling Methods*

We carried out sampling from July 11th to August 5th, 2016. The study included 14 field sites along the Eastern Shore of Virginia, USA. Potential field sites were identified first on a map of the peninsula, selected based on accessibility and having a land cover type classified as either agricultural, old field, or high marsh. All sites were at least 600 m apart, which limited the possibility of the same bees moving between study sites (Greenleaf *et al.*, 2007). In the end, five high marsh sites, five old field sites, and four agricultural sites, including corn, tomato, melon, and soybean fields, were selected within a 100-kilometer stretch of land (Fig. 1).

111 In each field, one blue vane trap (SpringStar Inc., Woodinville, WA, USA) was hung
112 from PVC pipe at vegetation height (approximately 45-63cm above soil), and filled with a 1:1
113 (vol:vol) mixture of water and propylene glycol (Buchanan *et al.*, 2017). The traps were placed
114 as far from wooded areas, roads, and walkways as possible. Each blue vane trap was sampled
115 every seven days for four weeks (once each in the weeks of July 11th, July 18th, July 25th, and
116 August 1st), resulting in a total of four samples from each site. The content of the blue vane traps
117 was strained and placed in whirl pack plastic bags with 70% ethanol solution, and placed on ice
118 for return to the laboratory. In the laboratory, samples were frozen at -20 °C until they were
119 processed. Processing comprised straining the contents of each sample bag through a fine mesh
120 strainer, washing the contents with warm water and soap to remove residual propylene glycol
121 and ethanol, and rinsing thoroughly with tap water. A blow dryer was used to dry specimens for
122 pinning and identification. Of all bee specimens captured, 6026 were identified to species, 211
123 *Lasioglossum* (subgenus *Dialictus*, Family Halictidae) individuals were identified to subgenus,
124 and 35 specimens of *Andrena*, *Ceratina*, *Melissodes*, *Agapostemon*, and *Megachile* were in too
125 poor a condition to identify beyond genus. An additional 67 specimens could not be identified to
126 genus. Reference specimens for the study are deposited in the insect collection of the University
127 of Virginia's field station at Blandy Experimental Farm.

128

129 *Statistical Analysis*

130 The four weekly samples per site were pooled and treated as a single collection for
131 analyses. For all analyses except total bee abundance, data were limited to specimens identified
132 to species. Spatial autocorrelation in community composition was tested using a mantel test
133 comparing the Pearson correlation coefficient of the community dissimilarity matrix for all sites

134 with a site by distance matrix using the function *mantel* in the VEGAN package in R (Oksanen *et*
135 *al.*, 2018). Finding no spatial autocorrelation ($p=0.796$), analysis of variance was used to
136 compare the mean number of specimens among habitats (species abundance), diversity
137 (Shannon's H'), and equitability (Shannon's E_H) among the three habitat types. When a
138 difference was found, a post-hoc Tukey's test was run to determine which habitat types differed
139 from each other. Because bee species richness was not normally distributed, a Kruskal Wallis
140 one-way ANOVA test on ranks was run, followed by a Dunn's post-hoc test to determine habitat
141 main effects.

142 Species diversity for each sample location was calculated as:

$$143 \quad H' = - \sum_{S=1}^S p_i \cdot \ln p_i$$

144 Where H' = species diversity; S = total number of species, i = proportion of total number of
145 species; and p_i = total number of species. This index, Shannon's H , accounts for both abundance
146 and evenness of the species present (Pielou, 1984; Beals *et al.*, 1999).

147 Species equitability (evenness) for each sample location was calculated as:

$$148 \quad E_H = \frac{H'}{\ln(S)}$$

149 Where E_H = equitability, H' = Shannon's diversity, and S = total number of species (i.e., H_{max}),
150 and equitability assumes a value between 0 and 1 with 1 being complete evenness (Pielou, 1984;
151 Beals *et al.* 1999).

152 In addition to comparing realized species richness among habitats using the pooled
153 samples within sites, we compared species accumulation curves for the habitats. Species
154 accumulation curves were drawn using the 'specaccum' function in the R package VEGAN. The

155 "random" method was used for choosing the order in which replicates were drawn. The sites of
156 each habitat type were treated as replicates for habitat type in drawing the accumulation curve.

157 Non-metric multidimensional scaling was used to compare species composition among
158 habitat types. We used the 'metaMDS' function in the R package VEGAN to plot Bray-Curtis
159 dissimilarities among communities. Based on stress values for goodness of fit, we reduced the
160 overall dataset to 3 dimensions for representation (stress value=0.115). The degree of separation
161 among community types was estimated using the function 'vegdist' to calculate a community
162 dissimilarity matrix and the function 'anosim' to test for a significant difference among
163 community types.

164 The proportion of all individuals captured in each habitat that were pollen specialists was
165 compared using a one-way analysis of variance following confirmation of data normality. This
166 test was carried out because the main floral sources used by pollinators in the marsh belong to
167 two plant families (Asteraceae and Malvaceae) that are known to be visited extensively by
168 specialist bee species and could host a disproportionately specialist insect fauna. Specialization
169 was determined for all identified species using Krombein *et al.* (1979) and checked with
170 ecological literature on individual species (Rust, 1980; Cane 2017; LaBerge 1961). The
171 proportion of individuals that were stem nesters in each habitat was compared using a one-way
172 analysis of variance following a log transformation to normalize the dependent variable. This test
173 was carried out because the nesting substrate in the marsh least likely to be affected by
174 inundation is the upper portion of plant stems. Nesting habit was determined for all identified
175 species following Krombein (1967), Michener (2000), and McCrary *et al.* (2019).

176

177

179 In four weeks of sampling, 6339 specimens (6026 identified to species) were collected in
180 blue vane traps across the 14 field sites (Table 2). The marsh samples contained a total of 28 bee
181 species from 1480 specimens, while farms and old fields contained 37 and 39 species from 2457
182 and 2402 specimens, respectively. Bee species richness was lower in marsh sites than farm field
183 sites (Kruskal-Wallace statistic $H=2.851$, $p=0.013$), but there were no detectable significant
184 difference among habitats in abundance, diversity, or evenness (Fig. 2).

185 Using species accumulation curves rather than simple comparisons of detected species,
186 the marsh habitats added species at a much slower rate than the farm and old field habitats and
187 showed some evidence of reaching a plateau after only five sites (Figure 3). The 95% confidence
188 levels were distinct between the marsh habitat and the other habitats after only three collections,
189 while there was no separation in species accumulation curves between the farm and old field
190 habitats. No attempt was made to extrapolate total species richness per habitat type given the
191 lack of a plateau in accumulation rates in the farm and old field samples.

192 Species composition by site clustered significantly by habitat type (anosim statistic
193 $R=0.289$, $p=0.028$), with the old field community overlapping both (Figure 4). The most
194 dominant species in the farm fields were *Agapostemon virescens* Fabricius (821 specimens),
195 *Ptilothrix bombiformis* Cresson (562), *Melissodes bimaculatus* Lepeletier (395), *Bombus*
196 *impatiens* Cresson (111), and *Bombus griseocollis* DeGeer (68). The dominant species in the old
197 fields were *A. virescens* (625), *P. bombiformis* (616), *M. bimaculatus* (386), *Ceratina dupla* Say
198 (177), and *Svastra obliqua* Say (99). The dominant species in the marshes were *P. bombiformis*
199 (971), *M. bimaculatus* (83), *Melissodes comptoides* Robertson (82), *C. dupla* (41), *B. impatiens*
200 (34), and *Svastra obliqua* Say (51).

The proportion of each community that consisted of individuals from specialist species varied across habitat types ($F=4.119$, $p=0.046$). More than two thirds of the individuals sampled from high marsh sites were specialist species, while just a third of individuals collected from agricultural and old field sites were specialists (Fig. 5). The most abundant specialist species overall was *P. bombiformis*, which collects pollen only from Malvaceae (Rust, 1980). It accounted for nearly 70% of all samples in high marsh sites, 23% of agricultural field samples, and 27% of old field samples. Other prominent specialists included two that specialize on Asteraceae (*Svastra obliqua* and *Melissodes trinodis* Robertson) which together accounted for 4.8% of marsh individuals, 4.9% of old field individuals and 1.1% of farm individuals. The only other prominent specialist was the *Cucurbita* specialist *Peponapis pruinosa* Say, which occurred almost exclusively on farm and old field sites. There was not a significant difference among habitats in the proportion of stem nesting individuals ($F=1.946$, $p=0.189$, Fig. 6). Stem nesting individuals comprised three species of the genus *Ceratina* (*C. calcarata* Robertson, *C. dupla* and *C. floridana* Mitchell), as well as *Hylaeus ornatus* Mitchell. Over 97% of bees captured in each habitat nest primarily in the ground, either as ground excavators or ground cavity nesters (bumble bees).

217

Discussion

219 The summer bee fauna of the high salt marsh of eastern Virginia is depauperate relative
220 to old field and agricultural areas (Fig. 2 & Fig. 3). Its composition is also distinct from that of
221 agricultural areas (Fig. 4), a difference generated primarily by abundant specialist species that
222 find their host plants among marsh vegetation. The most abundant bee in the marsh habitat,
223 *Ptilothrix bombiformis*, is a specialist pollen collector of plants in the Malvaceae. Although it has

224 a prominent floral host in the marsh (the seaside mallow, *Kosteletzkyia pentacarpos*), it has few
225 common hosts in old fields or agricultural land. The only agricultural plants in that family grown
226 commonly in North America are cotton and okra, both of which are grown commercially, but not
227 widely, in this region (<https://www.nass.usda.gov/AgCensus/FAQ/2017/index.php>). However,
228 cotton was grown adjacent to the tomato field sampled in this study. Because *P. bombiformis*
229 builds its nests underground, its prominence in collections from the old field and agricultural
230 sites where cotton is not grown likely reflects its foraging commute from inland nesting areas to
231 foraging areas in the marsh. The other prominent specialist bee species in the marsh, (*Melissodes*
232 *trinodis* and *Svastra obliqua*) collect pollen primarily from Asteraceae. The Asteraceae are well
233 represented in old field habitat but are not commonly cultivated as crop plants in this area (Table
234 1). These bees also are ground-nesting species that are likely nesting inland and foraging in the
235 marshes. Thus, rather than the natural habitat of the marsh subsidizing pollinator services of
236 coastal agricultural areas, it may be that old fields and undisturbed areas within agriculture are
237 subsidizing marsh pollination by providing dry nesting substrate in upland areas. If plants such
238 as cotton and sunflowers were commonly grown as crops in the region, then the specialist
239 pollinators found in the marsh would likely play a stronger role in local agriculture.

240 Coastal marsh is likely a poor habitat for pollinators to overwinter in the soil, due to
241 winter-time flooding during which standing water is always present. There may be potential for
242 emergent plant stems in the marsh to serve as reliable nesting substrate if they remain above the
243 level of the water year-round. In this study, however, there was not a disproportionate amount (as
244 proportion or simple abundance) of stem nesting bees in the marsh habitat relative to old fields
245 and agricultural sites. If the bees foraging in the marsh primarily nested there as well, then we
246 should have detected an overabundance of stem nesters.

247 Our finding that bee species richness is lower in saltmarsh than in adjacent habitats is
248 similar to Zarrillo and Stoner (2019), who compared saltmarsh to beach dune and scrub habitats.
249 Although that study captured more species in saltmarsh (40) than were found in the current study
250 (28), that study took place over two years instead of one and over a longer portion of the growing
251 season (April - September) than the current study (July - August). It also used two capture
252 methods (pan traps and targeted net collecting), which are known to be complementary (Wilson
253 *et al.*, 2008), instead of the one used in this study. A distinct difference between the two studies
254 is that pollen specialists were rarely encountered by Zarrillo and Stoner (representing 3 out of
255 3928 individuals), while they represented between one third and two thirds of all specimens
256 collected in the current study, depending on habitat. Two of the most prominent specialists in the
257 current study (*P. bombiformis* and *Svastra obliqua*) have distributions primarily south of
258 Connecticut (Mitchell, 1962) and those species were not encountered in that study. The one
259 specialist encountered in both studies, *Melissodes trinodis*, was not prominent in the other study
260 but it also was not considered a specialist in that study, despite it being considered one by
261 Laberge (1961).

262 Sea level rise will likely change the relationship between land cover types as coastal
263 systems are forced to move inland or be submerged when the ecosystem can no longer adapt to
264 increased inundation (Schieder *et al.*, 2018). As agricultural land is abandoned to old field and,
265 in turn, old fields transition to high salt marsh, the boundaries between habitat types and the
266 proportion of upland to marsh area will change. Changes in land cover patterns are contextual
267 and difficult to predict, but marsh extent has persisted over the last century in the Chesapeake
268 Bay, as upland farm fields, old fields, and forests transition to salt marsh (Schieder *et al.*, 2018).
269 These changes in land cover patterns have the potential to reduce plant diversity at marsh-upland

270 boundaries as marsh plants replace upland vegetation due to soil salinization and inundation
271 (Fagherazzi *et al.*, 2019) thereby reducing the proportion of land suitable for ground nesting
272 bees.

273 Our focus on native bee abundance and diversity is a first step towards understanding
274 how potential changes in the coastal landscape influence the relationship between habitat types
275 in providing agricultural pollination services in the mid-Atlantic region and how changes in
276 native bee communities might impact local economies. Various studies have shown that
277 unmanaged native bees frequently make important contributions to agriculture, as they can be
278 both more numerous than honey bees in agricultural fields and more effective as pollinators of
279 certain crops (Garibaldi *et al.*, 2011; Julier and Roulston, 2009; Winfree *et al.* 2008).

280 Environments that offer diverse floral resources and abundant high-quality nesting sites are
281 associated with high native bee abundance and species richness (Kremen *et al.*, 2007), and farm
282 fields closer to more natural habitat cover tend to receive more pollination services, indicating
283 that the surrounding habitats provide essential resources to native pollinators (Benjamin *et al.*,
284 2014; Winfree *et al.*, 2008). Not all unmanaged habitats, however, are likely to contribute
285 equally to maintaining pollinator populations that contribute to agriculture. Habitats supporting
286 highly specialized, low diversity, low abundance bee communities may be less likely to provide
287 suitable pollinators to agricultural crops. For instance, extensive deciduous forests in eastern
288 North America support less diverse and abundant bee populations than agricultural, suburban
289 and urban landscapes (Winfree *et al.*, 2007a), and may make smaller agricultural contributions as
290 they occupy larger proportions of the landscape. We find that saltmarsh, which forms an
291 extensive habitat type in coastal regions, may similarly support a relatively narrow portion of the
292 regional bee fauna.

293 Overall, our study indicates that in the coastal region of eastern Virginia, in areas where
294 sea level rise results in the conversion of old field and agricultural habitats into high salt marsh,
295 the availability of pollinators to the adjacent, unconverted habitats will likely be reduced due to a
296 reduction in nesting substrate and by the presence of forage that serves mainly to attract bees that
297 are scant contributors to agricultural systems.

298

299 Acknowledgements

300 We gratefully acknowledge the assistance of Sam Droege for help with bee identification, and
301 Amber Slatosky and Donna Fauber for technical assistance. The Virginia Coast Reserve of the
302 Nature Conservancy, the Virginia Department of Conservation and Recreation, Kemper
303 Goffigon, Susan and Phil Harris, Bill Jardine, W.T. Nottingham, and David Long provided
304 access to study sites. This material is based in part upon work supported by the National Science
305 Foundation under Grants No. DEB-1832221 to the Virginia Coast Reserve Long Term
306 Ecological Research Program.

307

308

Literature Cited

309 Beals, M., L. Gross, and S. Harrell. 1999. *Diversity indices: Simpson's D and E.*
310 <http://www.tiem.utk.edu/~gross/bioed/bealsmodules/simpsonDI.html>. Accessed 20 Oct. 2019.

311 Benjamin, F. E., J. R. Reilly, and R. Winfree. 2014. Pollinator body size mediates the scale at
312 which land use drives crop pollination services. *Journal of Applied Ecology* 51: 440-449.

313 Buchanan, A. L., J. Gibbs, L. Komondy, and Z. Szendrei. 2017. Bee community of commercial
314 potato fields in Michigan and *Bombus impatiens* visitation to neonicotinoid-treated potato plants.
315 *Insects* 8: 30

316 Cane, J. H. 1991. Soils of ground-nesting bees (Hymenoptera: Apoidea): Texture, moisture, cell
317 depth and climate. *Journal of the Kansas Entomological Society* 64: 406-413.

318 Cane, J. H. 2017. Specialist bees collect Asteraceae pollen by distinctive abdominal drumming
319 (Osmia) or tapping (Melissodes, Svastra). *Arthropod-Plant Interactions* 11: 257–261.

320 Cane, J. H., D. Schifhauer, and L. J. Kervin. 1996. Pollination, foraging, and nesting ecology of
321 the leaf-cutting bee *Megachile* (*Delomegachile*) addenda (Hymenoptera: Megachilidae) on
322 cranberry beds. *Annals of the Entomological Society of America* 89: 361–367.

323 Carvell, C., P. Westrich, W. R. Meek, R. F. Pywell, and M. Nowakowski. 2006. Assessing the
324 value of annual and perennial forage mixtures for bumblebees by direct observation and pollen
325 analysis. *Apidologie* 37: 326-340.

326 Christian, R. R. and L. K. Blum. 2017. *End of Year Biomass in Marshes of the Virginia Coast*
327 *Reserve 1999-2017*. Virginia Coast Reserve Long-Term Ecological Research Project Data
328 Publication knb-lter-vcr.167.24 doi:10.6073/pasta/4e6386585111be523136bab0131ef68a.
329 Accessed 3 Mar. 2017.

330 Elsey-Quirk, T., D. M. Seliskar, C. K. Somerfield, and J. L. Gallagher. 2011. Salt marsh carbon
331 pool distribution in a mid-Atlantic lagoon, USA: sea level rise implications. *Wetlands* 31: 87-99.

332 Epanchin-Niell, R., C. Kousky, A. Thompson, and M. Walls. 2016. Threatened protection: Sea
333 level rise and coastal protected lands of the eastern United States. *Ocean and Coastal
334 Management* 137: 118-130.

335 Fagherazzi, S., S. C. Anisfeld, L. K. Blum, E. V. Long, R.A. Feagin, A. F., W.S. Kearney, and
336 K. Williams. 2019. Sea level rise and the dynamics of the marsh-upland boundary. *Frontiers in
337 Environmental Sciences; Fresh Water* 7: 25.

338 Feng, A., J. Gao, S. Wu, L. Liu, Y. Li , and X. Yue. 2018. Assessing the inundation risk resulting
339 from extreme water levels under sea-level rise: a case study of Rongcheng, China. *Geomatics,
340 Natural Hazards and Risk* 9: 456-470.

341 Garibaldi, L. A., I. Steffan-Dewenter, C. Kremen, J. M. Morales, R. Bommarco, S. A.
342 Cunningham, L. G. Carvalheiro, N. P. Chacoff, J. H. Dudenhoffer, S. S. Greenleaf, A.
343 Holzschuh, R. Isaacs, K. Krewenka, Y. Mandelik, M. M. Mayfield, L. A. Morandin, S. G. Potts,
344 T. H. Ricketts, H. Szentgyorgyi, B. F. Viana, C. Westphal, R. Winfree, and A. M. Klein. 2011.
345 Stability of pollination services decreases with isolation from natural areas despite honey bee
346 visits. *Ecology Letters* 14: 1062-1072.

347 Greenleaf, S. S., N. M. Williams, R. Winfree, and C. Kremen. 2007. Bee foraging ranges and
348 their relationship to body size. *Oecologia* 153: 589-596.

349 Hanley, N., T. D. Breeze, C. Ellis, and D. Goulson. 2015. Measuring the economic value of
350 pollination services: Principles, evidence and knowledge gaps. *Ecosystem Services* 14: 124-132.

351 Harrison, S. P., M. L. LaForgia, and A. M. Latimer. 2018. Climate-driven diversity change in
352 annual grasslands: drought plus deluge does not equal normal. *Global Change Biology* 24:1782-
353 1792.

354 Julier, H. E., and T. H. Roulston. 2009. Wild bee abundance and pollination service in cultivated
355 pumpkins: farm management, nesting behavior and landscape effects. *Journal of Economic
356 Entomology* 102: 563–573.

357 Kremen, C., and L. K. M'Gonigle. 2015. Small-scale restoration in intensive agricultural
358 landscapes supports more specialized and less mobile pollinator species. *Journal of Applied
359 Ecology* 52: 602-610.

360 Kremen, C., N. M. Williams, M. A. Aizen, B. Gemmill-Herren, G. LeBuhn, R. L. Minckley, L.
361 Packer, S. G. Potts, T. H. Roulston, I. Steffan-Dewenter, D. P. Vazquez, R. Winfree, L. Adams,
362 E. E. Crone, S. S. Greenleaf, T. H. Keitt, A. M. Klein, J. Regetz, and T. H. Ricketts. 2007.
363 Pollination and other ecosystem services produced by mobile organisms: a conceptual
364 framework for the effects of land-use change. *Ecology Letters* 10: 299–314.

365 Krombein, K. V. 1967. Trap-Nesting Wasps and Bees: Life Histories, Nests and Associates.
366 Washington, DC, U.S.A.: Smithsonian Press. 570 pp.

367 Krombein, K. V, Hurd, P.D.Jr., Smith, D.R., and Burks, B.D. 1979. *Catalog of Hymenoptera in
368 America North of Mexico. Volume 2. Apocrita (Aculeata)*. Smithsonian Institution Press,
369 Washington D.C. 2209 pp.

370 LaBerge, W.E. 1961. A revision of the bees of the genus *Melissodes* in North and Central
371 America, Part III (Hymenoptera: Apidae). *University of Kansas Science Bulletin* 42: 283–663.

372 Mariotti, G., S. Fagherazzi, P. L. Wiberg, K. J. McGlathery, L. Carniello, and A. Defina. 2010.

373 Influence of storm surges and sea level on shallow tidal basin erosive processes. *Journal of*
374 *Geophysical Research* 115: C11012.

375 McCravy, K. W., Geroff, R. K., and Gibbs, J. 2019. Bee (Hymenoptera: Apoidea: Anthophila)
376 functional traits in relation to sampling methodology in a restored tallgrass prairie. *Florida*
377 *Entomologist* 102: 134–140.

378 Michener, C.D. 2000. *Bees of the World*. The Johns Hopkins University Press. Baltimore, MD.
379 pp. 953.

380 Mitchell, T. B. 1962. *Bees of the Eastern United States (Vol. 2)*. North Carolina Agricultural
381 Experiment Station. 557 pp.

382 Nicholls, R. J., and S. P. Leatherman. 1995. The implications of accelerated sea-level rise for
383 developing countries: a discussion. *Journal of Coastal Research* 14: 303-323.

384 National Oceanographic and Atmospheric Administration. 2019. *Tides and Currents: Sea-Level*
385 *Trends*. https://tidesandcurrents.noaa.gov/sltrends/sltrends_us.html. Accessed 21 Oct, 2019.

386 Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R.
387 B. O'Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs and H. Wagner. 2018.
388 Vegan: Community Ecology Package. R package version 2.5-2.

389 Orr, R. 2010. Preliminary list of the bees (Hymenoptera: Apoidea) of Assateague Island National
390 Seashore, Worcester County, Maryland. *The Maryland Entomologist* 5: 41:50.

391 Pielou, E. C. 1984. *The Interpretation of Ecological Data*. John Wiley & Sons, New York, NY.

392 Pojar, J. 1973. Pollination of typically anemophilous salt marsh plants by bumble bees, *Bombus*
393 *terricola occidentalis* Grne. *The American Midland Naturalist* 89: 448-451.

394 Rust, R.W. 1980. The biology of *Ptilothrix bombiformis* (Hymenoptera: Anthophoridae).
395 *Journal of the Kansas Entomological Society* 53: 427–436.

396 Schieder, N. W., D. C. Walters, and M. L. Kirwan. 2018. Massive upland to wetland conversion
397 compensated for historical marsh loss in Chesapeake Bay, USA. *Estuaries and Coasts* 41: 940-
398 951

399 Silberhorn, G. M. and A. F. Harris. 1977. Accomack County tidal marsh inventory. Special
400 Report in Applied Marine Science and Ocean Engineering No.138. Virginia Institute of Marine
401 Science, College of William and Mary. Gloucester Point, VA.
402 <https://doi.org/10.21220/V5NH8G>. Accessed 2 Apr. 2018.

403 Titus, J. G., K. E. Anderson, D. R. Cahoon, D. B. Gesch, S. K. Gill, B. T. Gutierrez, E. R.
404 Thieler, and S. J. Williams. 2009. Coastal sensitivity to sea-level rise: a focus on the mid-Atlantic
405 region. Synthesis and Assessment Product 4.1; U.S. Climate Change Science Program and the
406 Subcommittee on Global Change Research. US-EPA. Washington, D.C.; xvi + 298 pp.

407 Wilson, J. S., Griswold, T., and O. J. Messinger. 2008. Sampling bee communities
408 (Hymenoptera : Apiformes) in a desert landscape: Are pan traps sufficient? *Journal of the*
409 *Kansas Entomological Society* 81: 288–300.

410 Winfree, R., R. Aguilar, D. P. Vázquez, G. LeBuhn, and M. A. Aizen. 2009. A meta-analysis of
411 bees' responses to anthropogenic disturbance. *Ecology* 90: 2068-2076.

412 Winfree, R., T. Griswold, and C. Kremen. 2007 a. Effect of human disturbance on bee
413 communities in a forested ecosystem. *Conservation Biology* 21: 213–223.

414 Winfree, R., N. M. Williams, J. Dushoff, and C. Kremen. 2007 b. Native bees provide insurance
415 against ongoing honey bee losses. *Ecology Letters* 10: 1105–1113.

416 Winfree, R., N. M. Williams, H. Gaines, J. S. Ascher, and C. Kremen, 2008. Wild bee pollinators
417 provide the majority of crop visitation across land-use gradients in New Jersey and Pennsylvania,
418 USA. *Journal of Applied Ecology* 45: 793–802.

419 Zarrillo, T. A., and K. A. Stoner. 2019. The bee fauna of an Atlantic coastal plain tidal marsh
420 community in southern New England, USA. *Journal of Melittology* 86: 1–34.

421

422

423

424

425

426

427

428

429

430

431

432

433 Table 1. Plant species of farm fields, salt marshes, and old fields in Accomack and
 434 Northhampton counties on the Eastern Shore of Virginia. Species listed for a habitat type
 435 were not necessarily found in all replicates of that habitat type. *Distichlis spicata* (L.)
 436 Greene, *Juniperus virginiana* L., *Phragmites australis* (Cananilles) Trinius Ex Steudel, and
 437 *Sporobolus pumilus* (Roth) P.M. Peterson & Saarela were the only species that were
 438 common between the salt marsh and old field habitats. Superscripts indicate species with
 439 synonymous names. Weed species are not listed for the farm fields because suppression of
 440 weeds for these crops stringent (cultivation, pesticides, and black plastic mulch).

<u>Farm Field</u>	<u>Old Field</u>
<i>Cucurbita pepo</i> L.	<i>Acer rubrum</i> L.
<i>Glycine max</i> (L.) Merr.	<i>Ambrosia artemisiifolia</i> L.
<i>Gossypium</i> sp. L.	<i>Apocynum cannabinum</i> L.
<i>Solanum lycopersicum</i> L.	<i>Asclepias incarnata</i> L.
<i>Zea mays</i> L.	<i>Asclepias tuberosa</i> L.
<u>Salt Marsh</u>	
<i>Aster tenuifolius</i> L. ¹	<i>Aster pilosus</i> Willd. ⁷
<i>Atriplex arenaria</i> Nutt ²	<i>Baccharis halimifolia</i> L.
<i>Atriplex patula</i> L.	<i>Campsis radicans</i> L.
<i>Borrichia frutescens</i> (L.) A.P. deCandolle	<i>Celtis occidentalis</i> L.
<i>Cyperus esculentus</i> L.	<i>Chamaecrista fasciculata</i> (Fernald) C.F. Reed
<i>Distichlis spicata</i> (L.) Greene	<i>Distichlis spicata</i> (L.) Greene
<i>Fimbristylis spadicea</i> (L.) Vahl	<i>Diospyros virginiana</i> L.
<i>Hibiscus moscheutos</i> L.	<i>Duchesnea indica</i> (Andr.) Focke
<i>Iva frutescens</i> L.	<i>Eupatorium capillifolium</i> (Lamarck) Small
<i>Juncus gerardii</i> Loisel.	<i>Ilex opaca</i> Aiton
<i>Juncus roemerianus</i> Scheele	<i>Ipomoea hederacea</i> Jacq.
<i>Juniperus virginiana</i> L.	<i>Ipomoea lacunosa</i> L.
<i>Kostelzkyia pentacarpos</i> L.	<i>Juniperus virginiana</i> L.
<i>Limonium carolianum</i> (Walter) Britton	<i>Ligustrum sinense</i> (Loureiro)
<i>Myrica cerifera</i> L. ³	<i>Liquidambar styraciflua</i> L.
<i>Phragmites australis</i> (Cananilles) Trinius Ex Steudel	<i>Lonicera sempervirens</i> L.
<i>Pluchea odorata</i> (L.) Cassini	<i>Melothria pendula</i> L.
<i>Sabatia stellaris</i> Pursh	<i>Morus rubra</i> L.
<i>Salicornia bigelovii</i> Torrey	<i>Myrica cerifera</i> L. ³
	<i>Nyssa sylvatica</i> Marshall
	<i>Oxalis stricta</i> L.
	<i>Panicum virgatum</i> L.

<i>Salicornia virginica</i> L.	<i>Parthenocissus quinquefolia</i> (L.) Planch.
<i>Sarcocornia pacifica</i> Standl.	<i>Phragmites australis</i> (Cananilles) Trinius Ex Steudel
<i>Satativa stellaris</i> Pursh	<i>Phytolacca americana</i> L.
<i>Schoenoplectus americanus</i> Persoon	<i>Pinus taeda</i> L.
<i>Setaria geniculata</i> (Wild.) P. Beauv., nom. Illeg.	<i>Prunus serotina</i> Ehrhart
<i>Sporobolus alterniflorus</i> (Loisel.) P.M. Peterson & Saarela ⁵	<i>Quercus</i> sp. L.
<i>Sporobolus pumilus</i> (Roth) P.M. Peterson & Saarela ⁶	<i>Rosa multiflora</i> (Rehder & E.H. Wilson) L.H. Bailey ⁸
<i>Typha</i> sp.(L.)	<i>Rubus cuneifolius</i> Pursh
	<i>Rubus strigosus</i> (Michx.) Focke
	<i>Setaria parviflora</i> (Poir.) Kerguélen
	<i>Smilax rotundifolia</i> L.
	<i>Solidago</i> sp.L.
	<i>Sporobolus pumilus</i> (Roth) P.M. Peterson & Saarela ⁶
	<i>Toxicodendron radicans</i> L.
	<i>Traxacum officinale</i> F.H. Wigg
	<i>Vicia angustifolia</i> L. ex Reichard
	<i>Vitis rotundifolia</i> Michx,
	<i>Vitis</i> sp. L.
	<i>Xanthium strumarium</i> L.

441 ¹*Sympyotrichum tenuifolium* (L.) G.L. Nesom

442 ²*Atriplex mucronata* Raf

443 ³*Morella cerifera* L.

444 ⁴*Setaria parviflora* (Poir.) Kerguélen

445 ⁵*Spartina alterniflora* Loisel.

446 ⁶*Spartina patens* Roth

447 ⁷*Sympyotrichum pilosum* (Willd.) Nesom

448 ⁸*Rosa cathayensis* ((Rehder & E.H. Wilson) L.H. Bailey

Table 2. Identity and abundance of bee species captured in three habitats sampled.

Species	No. of Specimens		
	Farm Fields	Old Fields	Salt marshes
<i>Agapostemon sericeus</i> (Forster)	5	2	3
<i>Agapostemon splendens</i> (Lepeletier)	55	14	2
<i>Agapostemon virescens</i> (Fabricius)	821	625	21
<i>Apis mellifera</i> Linnaeus	39	7	3
<i>Augochlora pura</i> (Say)	3	3	5
<i>Augochlorella aurata</i> (Smith)	5	6	21
<i>Augochloropsis metallica metallica</i> (Fabricius)	0	0	1
<i>Bombus bimaculatus</i> Cresson	14	27	8
<i>Bombus fervidus</i> (Fabricius)	0	1	0
<i>Bombus griseocollis</i> (De Geer)	68	31	7
<i>Bombus impatiens</i> Cresson	111	56	34
<i>Bombus pensylvanicus</i> (De Geer)	5	13	6
<i>Ceratina calcarata</i> Robertson	8	53	25
<i>Ceratina dupla</i> Say	32	177	41
<i>Ceratina floridiana</i> Mitchell	1	4	1
<i>Halictus ligatus</i> Say	15	40	1
<i>Halictus parallelus</i> Say	1	1	0
<i>Halictus rubicundus</i> (Christ)	2	2	2
<i>Hylaeus ornatus</i> Mitchell	1	1	0
<i>Lasioglossum bruneri</i> (Crawford)	7	5	1
<i>Lasioglossum callidum</i> (Sandhouse)	0	2	2
<i>Lasioglossum forbesii</i> (Robertson)	4	11	0
<i>Lasioglossum hitchensi</i> Gibbs	0	1	0
<i>Lasioglossum imitatum</i> (Smith)	1	1	0
<i>Lasioglossum oblongum</i> (Lovell)	3	2	3
<i>Lasioglossum pectoral</i> (Smith)	1	1	0
<i>Lasioglossum pilosum</i> (Smith)	36	1	0
<i>Lasioglossum tegulare</i> (Robertson)	1	1	0
<i>Lasioglossum versatum</i> (Robertson)	1	0	0
<i>Lasioglossum zephyrum</i> (Smith)	0	1	0
<i>Megachile campanulae</i> (Robertson)	5	0	1
<i>Megachile exilis</i> Cresson	1	0	0
<i>Megachile mendica</i> Cresson	2	0	0
<i>Megachile sculpturalis</i> Smith	0	1	0
<i>Megachile texana</i> Cresson	0	1	0
<i>Melissodes bimaculatus</i> (Lepeletier)	395	386	83
<i>Melissodes comptoides</i> Robertson	55	40	82
<i>Melissodes nr communis</i>	4	0	0
<i>Melissodes trinodis</i> Robertson	12	18	20
<i>Peponapis pruinose</i> (Say)	36	21	3

<i>Ptilothrix bombiformis</i> Cresson	562	616	971
<i>Svastra atripes</i> (Cresson)	2	3	8
<i>Svastra obliqua</i> Say	15	99	51
<i>Xylocopa virginica</i> (Linnaeus)	4	7	6
TOTAL SPECIMENS	2337	2281	1412
TOTAL No. of SPECIES	37	39	28

List of Figures

452 Figure 1. Upland and marshes are shaded in grey in maps of the Eastern US Atlantic Coast
453 (upper left) and the Eastern Shore of Virginia. Three habitat types were sampled at fourteen
454 locations total, indicated on the map of the lower Delmarva Peninsula (Eastern Shore of
455 Virginia). A total of four agricultural sites, five old fields, and five high salt marsh sites along the
456 mainland of the Eastern Shore sampled in this study are shown by symbols; agricultural sites are
457 represented by stars, old fields by triangles, and marshes by circles.

458

459 Figure 2. Comparison of bee samples collected by blue vane trap across habitat types. A.
460 Number of specimens captured in each habitat type. B. Number of species collected in each
461 habitat type. Bars not sharing letters are statistically different from each other. C. Species
462 diversity in each habitat type. D. Equitability of bee species in each habitat type. Number of
463 replicates was four farm fields, and five marshes and old fields. Error bars are one standard error
464 of the mean.

465

466 Figure 3. Species accumulation curves for total species richness per habitat type in farm field (n
467 = 4 sites), old field (n = 5) and marsh (n = 5). Error bars are 95% confidence intervals.

468

469 Figure 4. NMDS plot showing bee community similarity across habitat types. Red crosses
470 represent individual species, circles represent individual sites, and ovals represent habitat
471 type.

472

473 Figure 5. Proportion of bee communities that are specialists, by habitat type

474

475

476

477

478

479

480

481

482

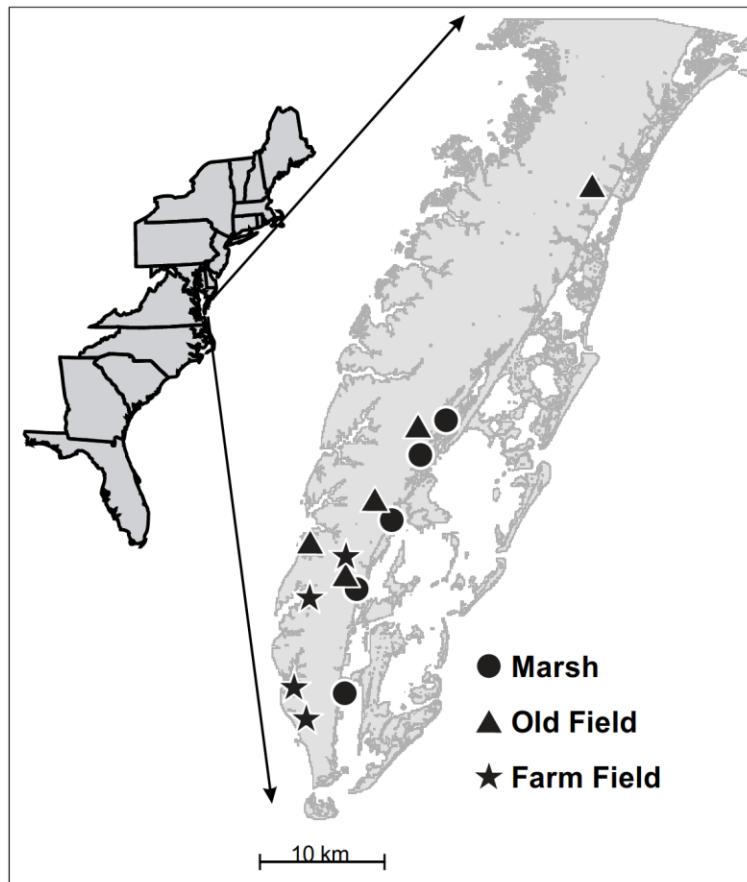
483

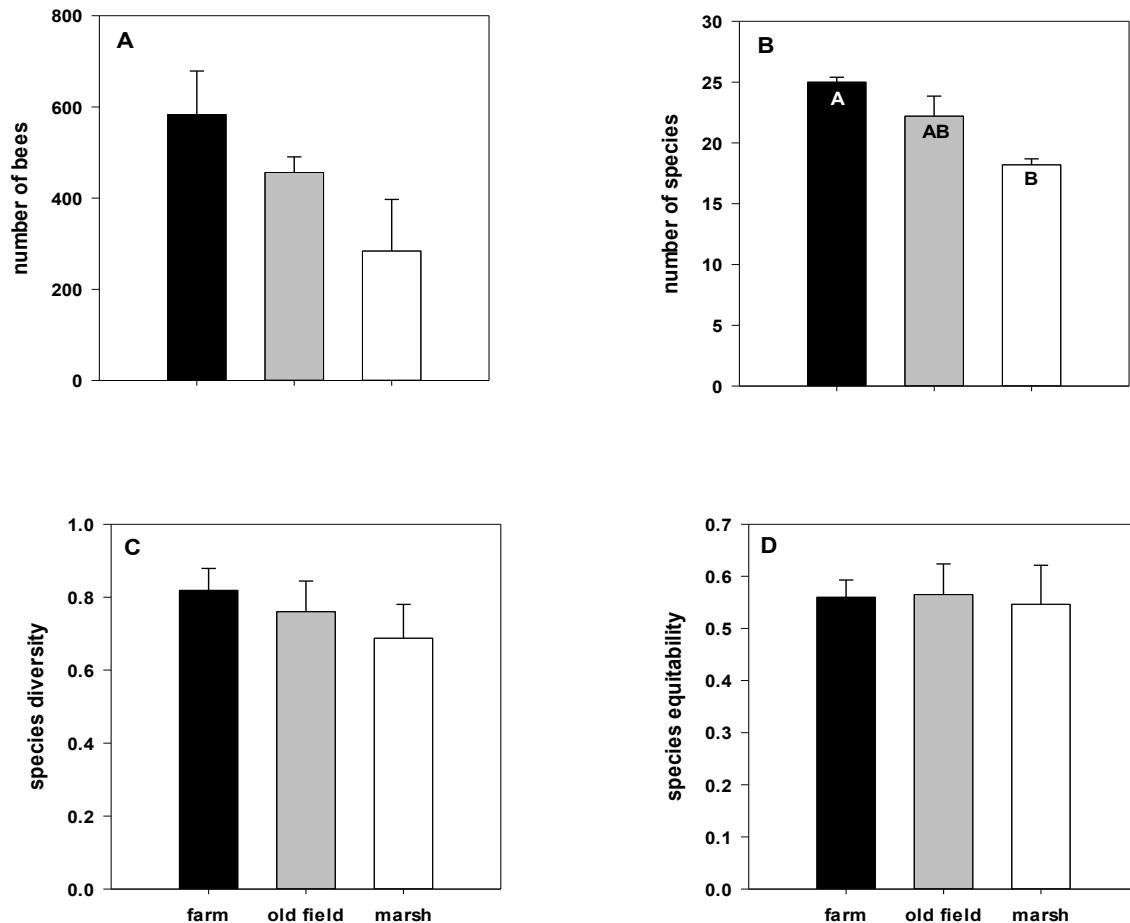
484

485

486

487

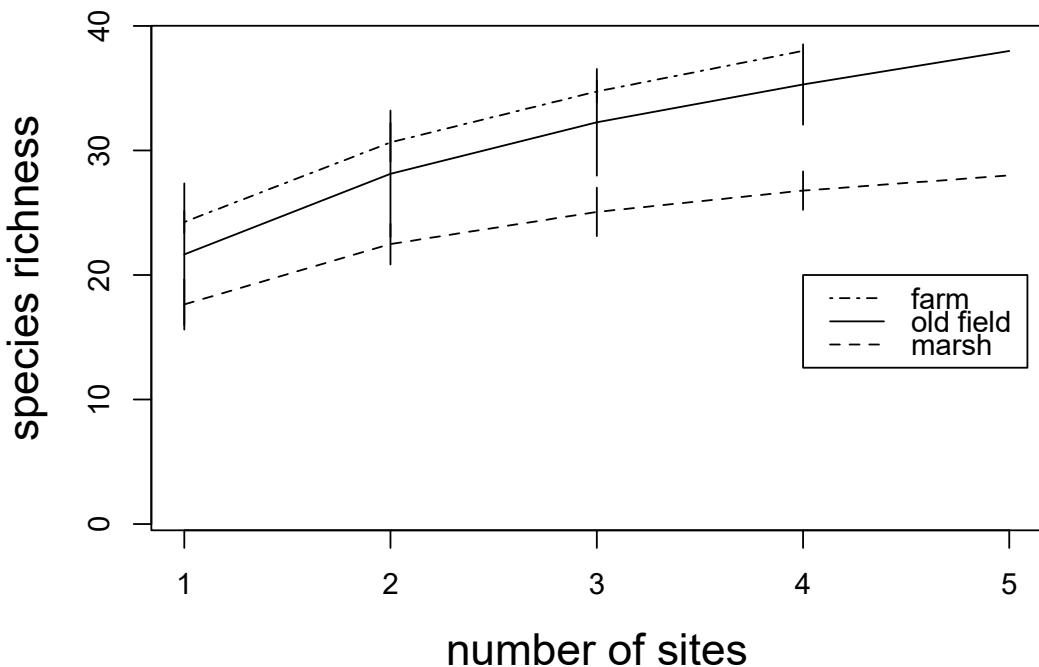

488


489

490 Figure 1. Upland and marshes are shaded in grey in maps of the Eastern US Atlantic Coast
491 (upper left) and the Eastern Shore of Virginia. Three habitat types were sampled at fourteen
492 locations total, indicated on the map of the lower Delmarva Peninsula (Eastern Shore of
493 Virginia). A total of four agricultural sites, five old fields, and five high salt marsh sites along the
494 mainland of the Eastern Shore sampled in this study are shown by symbols; agricultural sites are
495 represented by stars, old fields by triangles, and marshes by circles.

496

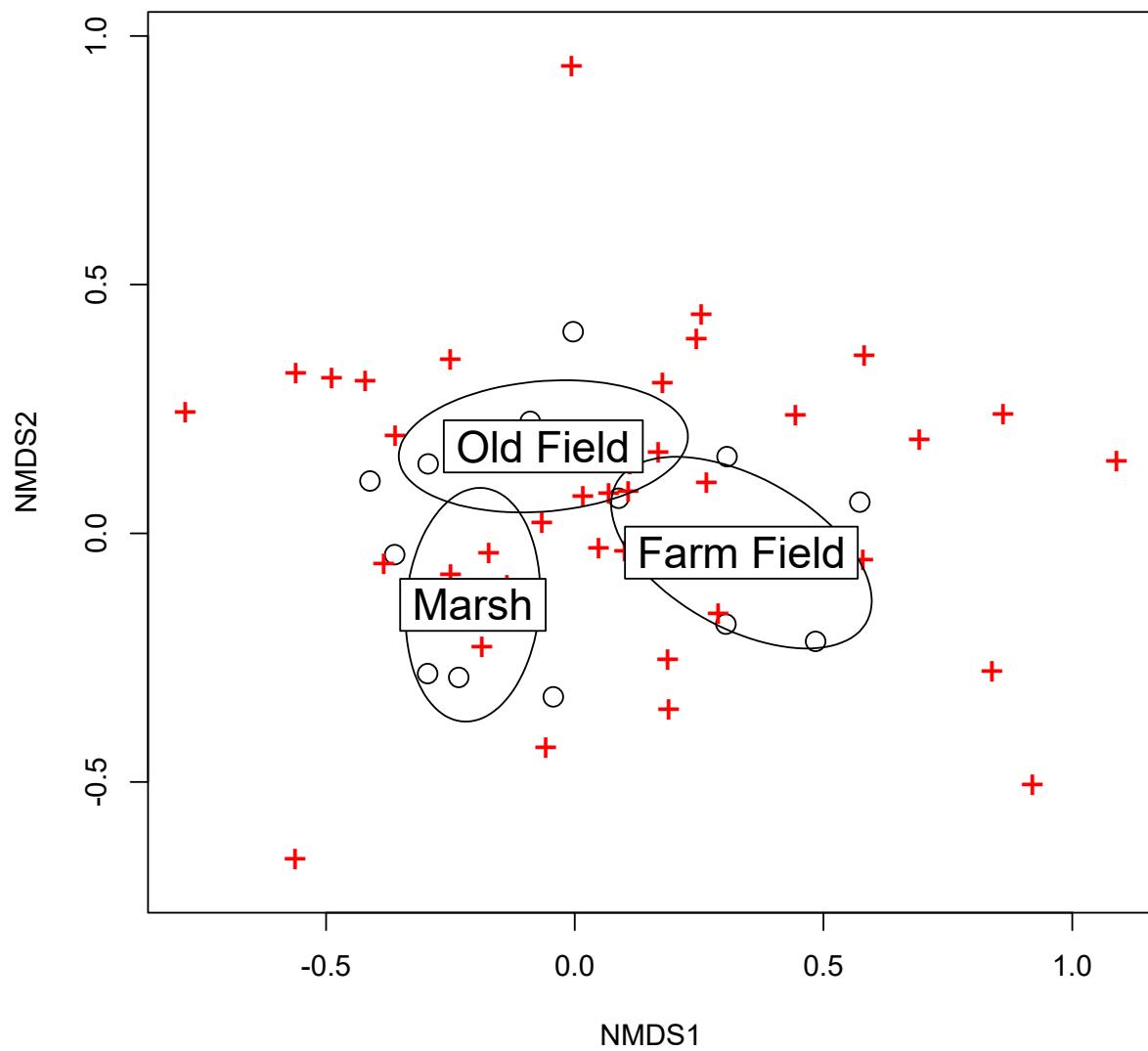
497



498 Figure 2. Comparison of bee samples collected by blue vane trap across habitat types. A.
499 Number of specimens captured in each habitat type. B. Number of species collected in each
500 habitat type. Bars not sharing letters are statistically different from each other. C. Species
501 diversity in each habitat type. D. Equitability of bee species in each habitat type. Number of
502 replicates was four farm fields, and five marshes and old fields. Error bars are one standard error
503 of the mean.

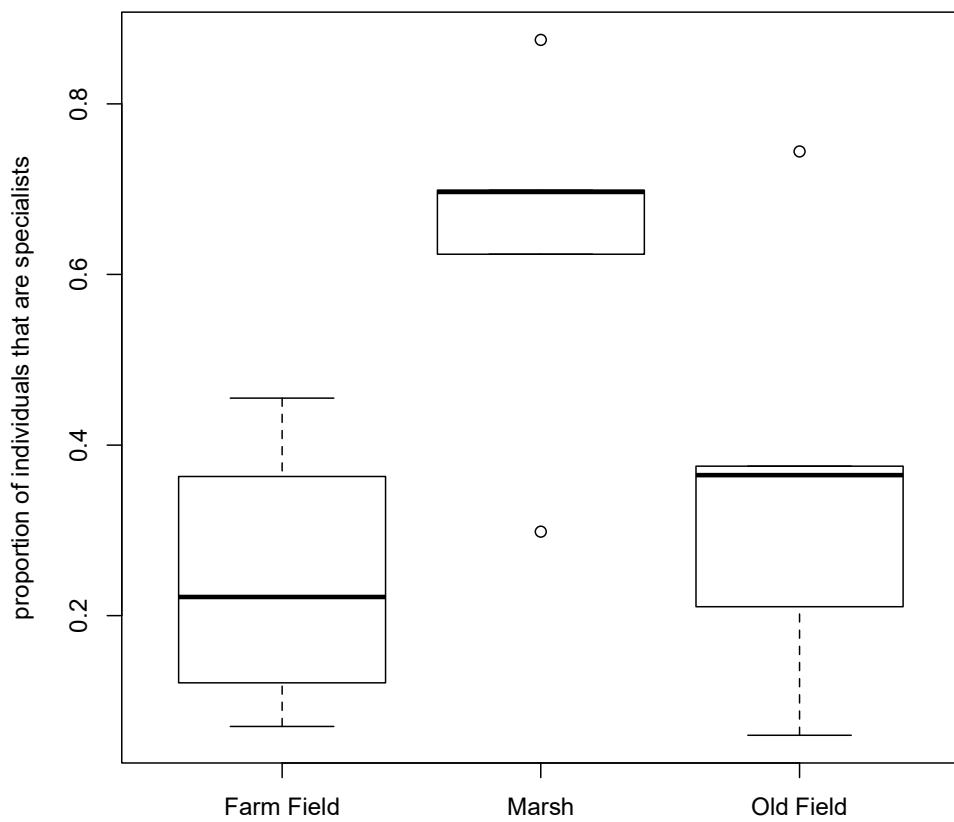
504

505



506

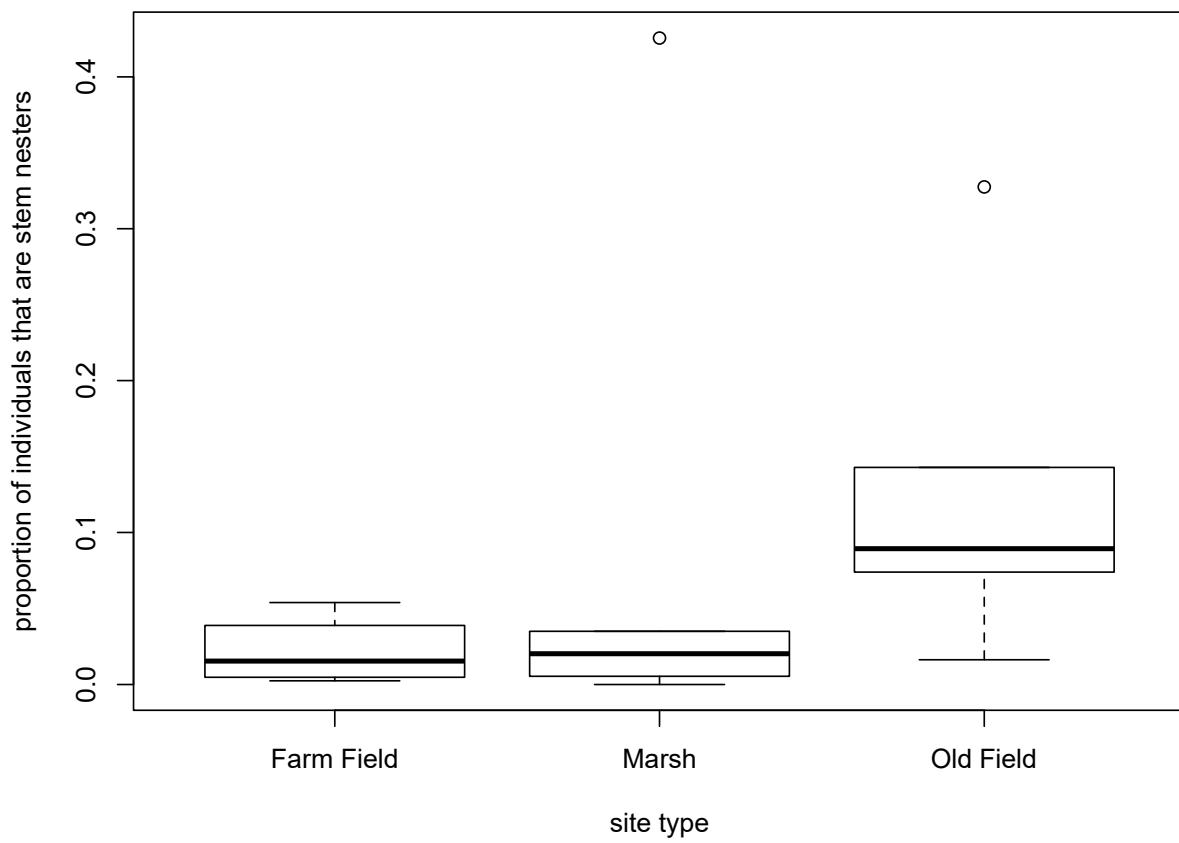
507 Figure 3. Species accumulation curves for total species richness per habitat type in farm field (n
508 = 4 sites), old field (n = 5) and marsh (n = 5). Error bars are 95% confidence intervals.


509

510

511

512 Figure 4. NMDS plot showing bee community similarity across habitat types. Red crosses
513 represent individual species, circles represent individual sites, and ovals represent habitat
514 type.

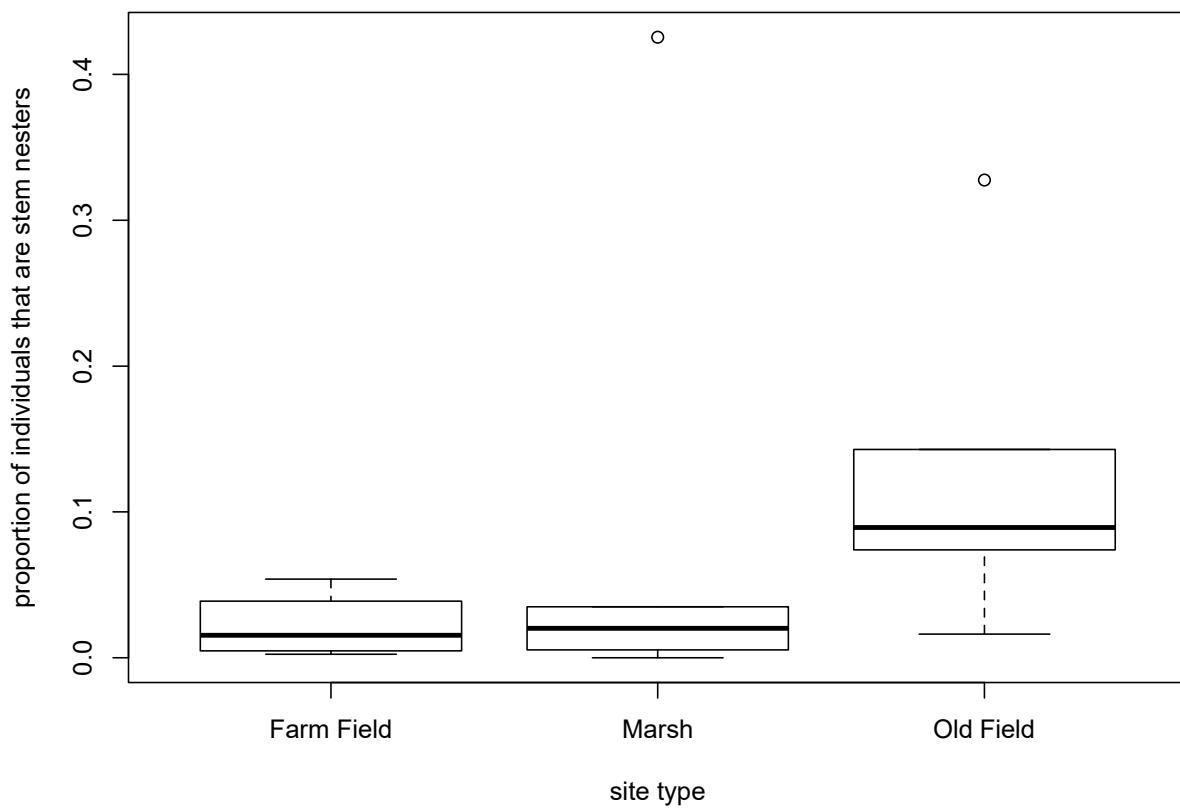


515

516

Figure 5. Proportion of bee communities that are specialists, by habitat type

517



518

519

Figure 6. Proportion of bee communities that nest in herbaceous stems.

520

521

522

523 Figure 6. Proportion of bee communities that nest in herbaceous stems by habitat type

524