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Lithiation of Benzyl Imidazoles and Their Addition to Select Electrophiles:
Exploration of Reactivity and Diastereoselectivity.

Mohamed El—Mansy,a=b Ankan Ghosh,? Paul Ha-Yeon Cheong? and Rich Carter®”

4Chemistry Department, Oregon State University, 2900 Southwest Campus Way,

Corvallis, 97331, OR, US; bOrganometallic and Organometalloid Chemistry
Department, National Research Centre, 33-El Buhouth St., Dokki, 12311, Cairo, Egypt

ABSTRACT

Benzyl imidazole was successfully lithiated using n-BuLi at -78°C and verified by deuterium
incorporation. The chemical reaction of the lithiated benzimidazole was explored with a
series of different electrophiles. This approach was utilized to synthesize new anti and syn
diphenyl organocatalysts for trans diol functionalization.

Keywords: benzimidazole, lithiation, organocatalysis, diol fuctionalization

Graphical Abstract

Different

N Li lectrophiles
E \: _ n-Buli_ [ \> ( e p \> < >—§
N\ Ph \ MeO
Y\)Ai—Pr
Regioselective 0

lithiation New catalyst for trans-diol
functionalization

Introduction

Imidazole derivatives are significant compounds that possess a wide array of biological
activities such as antibacterial'* , anti-inflammatory and analgesic **“, anti tubercular’, anti-
depressant’, anti-cancer®’ and anti-viral activity.® In addition, these scaffolds have been shown
to have application in organocatalysis by Tan and co-workers for the desymmetrization cis 1,2-
diols,” ! which is an attractive approach over the traditional methods for mono protection of
diols.!>!* where in Tan’s catalyst system, an aza-orthoformate moiety acts as substrate
binding site tethered to the imidazole moiety which act as a base for deprotonation.

A variety of synthetic approaches have been developed to access biological and/or catalytically
relevant imidazole compounds — including lithiation of the benzylic position of the imidazole
moiety.!>"!” Herein, we report the selective lithiation of 1-methyl-2-benzyl imidazole and its
subsequent reactivity with bezaldehyde and an Elmann chiral sulfinimine for the purpose of
generating new catalysts for selective functionalization of trans 1,2-diols using scaffold
catalysis.’

Results and Discussion

We first set out to confirm the effectiveness of selective lithiation on our key substrate 1
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(Scheme 1). Lithiation of 1-methyl-2-benzyl imidazole'® (1) was achieved by using n-BuLi
as a base at -78°C. The lithiated complex 2 was quenched with CD;OD to confirm the lithation
exclusively takes place at the benzylic methylene in compound 3 without having any reaction
at C-5 position. In this study, 87% deuterium incorporation was observed as measured by
integration of the residual benzyl protons in the '"H NMR spectrum.
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Scheme 1. Regioselective lithiation of (1) and deuterium incorporation product (3).

To explore the electrophilic addition to the generated lithium complex 2, benzaldehyde (4)
was added at -78°C allowing to warm gradually to room temperature (Scheme 2). The
reaction proceeded diastercoselectively to give the syn alcohol 5 and anti alcohol 6 products
as the minor and major stereoisomers respectively. The relative stereochemistries of both §
and 6 were determined by X-ray crystallographic analysis (Figure 1).
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Scheme 2. Addition of benzaldehyde to lithiated complex 2.
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Figure 1. ORTEP of 5 and 6.

With this newfound understandings of the fundamental reactivity and
diastereoselectivity of this carbanion 2, we became intrigued about the possibility of
apply this technology to expand the Tan catalyst systems’!!. These new scaffolds would
contain an additional stereogenic center and carbon spacer between the imidazole and
the orthoaminoformate (e.g. compound 10) (Scheme 3). This additional stereochemistry
and spacer found in compound 10 showed preliminary computational evidence of
expanded catalytic activity in the Tan desymmetrization / deracemization of polyols.
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74 Scheme 3. Tan’s catalyst and our modified version.
75
76 Initial attempt to synthesize catalyst 10 were made through addition of lithiated
77 compound 2 to imine 11 (Scheme 4). Previously, imine 11 has been used for
78 diastereoselective additions.'®??> A variety of different conditions were screened —
79 including the use of Lewis acids such as TiCl4 and BF3*Et,O. Unfortunately, we did not
80 observe successful coupling under any of these conditions — instead the imine 11 was
81 recovered intact. One possible explanation for this problematic reactivity is the steric
82 hinderance caused by the branching on the nitrogen atom of imine 11. We speculated that
83 placement of an electron withdrawing moiety on the imine might increase its overall
84 reactivity and circumvent this reactivity issue.
85
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87  Scheme 4. Unsuccessful route.
88
89 The successful application of the Elmann sulfinimine.?*"%’ (tert-(S)-butylsulfinimine 13)
90 to the diastereoselective addition of the lithiated imidazole 2 is shown in Scheme 5. Two
91 two chromatographically separable diastereomers 14 and 15 (1:1 dr) were observed in
92 this transformation — with a single stereochemistry at the benzylic amine position
93 attached to the chiral sulfinamine (denoted with an o notation on the structure) and an
94 equal mixture at the benzylic imidazole position (denoted with a f notation on the
95 structure) . These diastereomers 14 and 15 were assigned based on single crystal X-ray
96 crystallographic analysis (Figure 3). Hydrolysis of 14 and 15 in methanolic
97 hydrochloride solution gave the corresponding amine compounds 16 and 17 (Scheme 5).
98 The coupling constants for the two adjacent benzylic protons in the trans-diphenyl amine

99 16 (J/=9.5 Hz) and cis-diphenyl amine 17 (J= 7.5 Hz) is consistent with the X-ray results
100 for 14 and 15.
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105 Figure 2. ORTEP of 14 and 15.
106
107 With the new amino imidazoles 16 and 17 now accessible, we shifted our focus to the
108 remainder of the scaffold needed for the potential catalyst 10 (Scheme 6). Synthesis of
109 the required precursor began with the known alkene 18?° by dihydroxylation to provide
110 aldehyde 19. Grignard addition of iso-propylmagnesium bromide to aldehyde 19
111 followed by oxidation of the secondary alcohol cleanly provided the desired ketone 20.
112
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114
115  Scheme 6. Synthesis of TBS protected ketone 20.
116
117 Combination of the amino imidazoles 16 / 17 with ketone 20 is shown in Scheme 7.
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Reductive amination of ketone 20 with amine 16 followed by silyl deprotection resulted
in two separable alcohols 21 and 22 in an equal (1:1 dr) mixture. In a similar fashion,
reductive amination of ketone 20 with epimeric amine 17 followed by silyl deprotection
gave the corresponding alcohols 23 and 24 (1:1 dr). The identity of the newly form
stereocenter in compounds 21-24 from this addition was not determined. Introduction of
the aza-orthoformate moiety by reaction of these alcohols 21-24 with DMF-DMA gave
the corresponding catalysts 25-28. As was found in Tan’s work, these compounds proved
unstable when exposed to small amounts of moisture (even air) which hydrolyzed the
aza-orthoformate moiety. Consequently, the catalysts were used crude in the kinetic
resolution of frans-diols.
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Scheme 5. Synthesis of oxazolidine catalysts 25-28.

These generated catalysts were evaluated in the selective frans-diol functionalization'!
as shown in Table 1. We first explored a selective silylation using TBSCI. We confirmed
that no appreciable yield was observed in the absence of catalysts 25-28 at 4°C (Entries
1-2). A similar behavior was observed for the 5-membered diol 7 at room temperature
(Entry 3); however, the corresponding six-membered diol 29 did provide 72% yield of
the mono-protected product 30 (Entry 4). Acylation proved too reactive on either diol, as
the blank reaction proceeded easily at 4°C (Entries 5-6). With this knowledge, we
focused our catalyst screening on the silylation at 4°C with the 5-membered diol 7.
Interestingly, catalyst (26) showed a diferential reactivity for trans-cyclopentanediol 7
over the 6-memberd trans-diol 29 with 47% yield (Entry 8). No enantioselectivity was
observed in this transformation based on derivatization with Mosher’s acid. Similar
analysis of the product from the 6-membered diol 30 shown no enantioselectivity (Entries
11 and 12).
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7:n=0
R 8:n=0
29:n=1 30:n=1

Table 1. Preliminary Exploration of Catalytic Activity of Compounds 25-28.

Entry# n R Cat.Load % Temp (°C) Yield ee %

1 0 TBS 0 4 6

2 1 TBS 0 4 25

3 0 TBS 0 rt 6

4 1 TBS 0 rt 72

5 0 Ac O 91

6 1 Ac O 86

7 0 TBS 10 mol % 25 rt 4 ND

8 0 TBS 10 mol % 26 rt 47 0

9 0 TBS 10 mol % 27 rt 3 ND

10 0 TBS 10 mol % 28 rt 5 ND

11 1 TBS 10 mol % 25 4 18 0

12 1 TBS 10 mol % 26 4 22 0

13 1 TBS 10 mol % 27 4 21 ND

14 1 TBS 10 mol % 28 4 24 ND
Conclusion

In summary, preliminary exploration into the fundamental reactivity of lithiated
benzyl imidazoles has been disclosed. Selective lithiation takes place using n-BuLi at
-78°C in dry THF. The electrophilic addition to benzaldehyde proceeds in low
diastereoselectivity (circa 2:1 dr) favoring the anti-addition product. Addition to an imine
required additional activation by a sulfinimine function. Derivatization of the imidazole-
containing amines into Tan-like catalysts was accomplished. Modest catalytic activity was
realized for selective protection for the trans-cyclopentanediol; however, no
enantioselectivity was observed.

Experimental Details

General: Infrared spectra were recorded neat unless otherwise indicated and are
reported in cm™'. 'H NMR spectra were recorded in deuterated solvents and are
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reported in ppm relative to tetramethylsilane and referenced internally to the residually
protonated solvent. '3C NMR spectra were recorded in deuterated solvents and are
reported in ppm relative to tetramethylsilane and referenced internally to the residually
protonated solvent. Routine monitoring of reactions was performed using EM Science
DC-Alufolien silica gel, aluminum-backed TLC plates. Flash chromatography was
performed with the indicated eluents on EM Science Gedurian 230-400 mesh silica
gel. Air and/or moisture sensitive reactions were performed under usual inert
atmosphere conditions. Reactions requiring anhydrous conditions were performed
under a blanket of argon, in glassware dried in an oven at 120°C or by flame, then
cooled under argon. Dry THF and DCM were obtained via a solvent purification
system. All other solvents and commercially available reagents were either purified via
literature procedures or used without further purification.

N N D
Ly Y

N Ph N Ph

\ \

1 3

Deuterated benzylimidazole 3: To a stirred solution of benzylimidazole 1 (25 mg, 0.145
mmol) in THF (0.95 mL) at -78°C was added sequentially »-BuLi (0.07 mL, 0.174 mmol, 2.5 M
in hexanes). After 1h was added and CD3;OD (0.006 mL, 5.8 mg, 0.291 mmol). After 2 h, the cold
bath was removed and the reaction mixture was stirred at room temperature. The reaction mixture
was concentrated in vacuo and the % deuterium incorporation was determined using crude 'H
NMR to be 87%.

Supporting Information: Full experimental detail, 'H and '3C NMR spectra. This
material can be found via the “Supplementary Content” section of this article’s webpage.
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