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Motivated by problems in data clustering, we establish general condi-
tions under which families of nonparametric mixture models are identifiable
by introducing a novel framework involving clustering overfitted parametric
(i.e., misspecified) mixture models. These identifiability conditions general-
ize existing conditions in the literature and are flexible enough to include, for
example, mixtures of infinite Gaussian mixtures. In contrast to the recent lit-
erature, we allow for general nonparametric mixture components and instead
impose regularity assumptions on the underlying mixing measure. As our
primary application we apply these results to partition-based clustering, gen-
eralizing the notion of a Bayes optimal partition from classical parametric
model-based clustering to nonparametric settings. Furthermore, this frame-
work is constructive, so that it yields a practical algorithm for learning iden-
tified mixtures, which is illustrated through several examples on real data.
The key conceptual device in the analysis is the convex, metric geometry of
probability measures on metric spaces and its connection to the Wasserstein
convergence of mixing measures. The result is a flexible framework for non-
parametric clustering with formal consistency guarantees.

1. Introduction. In data clustering we provide a grouping of a set of data points, or
more generally, a partition of the input space from which the data points are drawn [34].
The many approaches to formalize the learning of such a partition from data include mode
clustering [21], density clustering [57, 62, 64, 65], spectral clustering [53, 60, 77], K-means
[50, 51, 63], stochastic blockmodels [3, 27, 40, 59] and hierarchical clustering [19, 35, 72],
among others. In this paper we are interested in so-called, model-based clustering where the
data points are drawn i.i.d. from some distribution, the most canonical instance of which is,
arguably, Gaussian model-based clustering in which points are drawn from a Gaussian mix-
ture model [8, 25]. This mixture model can then be used to specify a natural partition over
the input space, specifically into regions where each of the Gaussian mixture components is
most likely. When the Gaussian mixture model is appropriate, this provides a simple, well-
defined partition and has been extended to various parametric and semiparametric models
[12, 28, 75]. However, the extension of this methodology to general nonparametric settings
has remained elusive. This is largely due to the extreme nonidentifiability of nonparametric
mixture models, a problem which is well studied but for which existing results require strong
assumptions [16, 42, 45, 71]. It has been a significant open problem to generalize these as-
sumptions to a more flexible class of nonparametric mixture models.

Unfortunately, without the identifiability of the mixture components we cannot extend the
notion of the input space partition used in Gaussian mixture model clustering. Nonetheless,
there are many practical clustering algorithms used in practice, such as K-means and spectral
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techniques, that do estimate a partition even when the data arises from ostensibly unidentifi-
able nonparametric mixture models, such as mixtures of sub-Gaussian or log-concave distri-
butions [1, 46, 52, 61]. A crucial motivation for this paper is in addressing this gap between
theory and practice. This entails demonstrating that nonparametric mixture models might ac-
tually be identifiable given additional side information, such as the number of clusters K
and the separation between the mixture components, used for instance by algorithms such as
K -means.

Let us set the stage for this problem in some generality. Suppose I' is a probability measure
over some metric space X and that I" can be written as a finite mixture model

K K
(1) F'=> vk, >0 and > =1,
k=1 k=1

where y; are also probability measures over X. The y, represent distinct subpopulations
belonging to the overall heterogeneous population I'. Given observations from I", we are in-
terested in classifying each observation into one of these K subpopulations without labels.
When the mixture components y; and their weights A, are identifiable, we can expect to learn
the model (1) from this unlabeled data and then obtain a partition of X into regions where
one of the mixture components is most likely. This can also be cast as using Bayes’ rule to
classify each observation, thus defining a target partition that we call the Bayes optimal par-
tition (see Section 5 for formal details). Thus, in studying these partitions, a key question is,
“When is the mixture model (1) identifiable?” Motivated by the aforementioned applications
to clustering, this question is the focus of this paper. Under parametric assumptions such as
Gaussianity of the yy, it is well known that the representation (1) is unique and, hence, iden-
tifiable [9, 41, 70]. These results mostly follow from an early line of work on the general
identification problem [2, 69, 70, 76].

Such parametric assumptions rarely hold in practice, however, and thus it is of interest to
study nonparametric mixture models of the form (1), that is, for which each 4 comes from
a flexible, nonparametric family of probability measures. In the literature on nonparametric
mixture models, a common assumption is that the component measures, yj, are multivari-
ate with independent marginals [24, 32, 33, 47, 71] which is particularly useful for statistical
problems involving repeated measurements [14, 37]. This model also has deep connections
to the algebraic properties of latent structure models [4, 13]. Various other structural assump-
tions have been considered including symmetry [16, 42], tail conditions [45] and transla-
tion invariance [29]. The identification problem in discrete mixture models is also a central
problem in topic models which are popular in machine learning [5, 6, 67]. Most notably,
this existing literature imposes structural assumptions on the components, yx (e.g., indepen-
dence, symmetry), which are difficult to satisfy in clustering problems. Are there reasonable
constraints that ensure the uniqueness of (1) while avoiding restrictive assumptions on the
Vi?

In this paper we establish a series of positive results in this direction, and, as a bonus that
arises naturally from our theoretical results, we develop a practical algorithm for nonpara-
metric clustering. In contrast to the existing literature, we allow each y; to be an arbitrary
probability measure over X. We propose a novel framework for reconstructing nonparamet-
ric mixing measures by using simple, overfitted mixtures (e.g., Gaussian mixtures) as mixture
density estimators and then using clustering algorithms to partition the resulting estimators.
This construction implies a set of regularity conditions on the mixing measure that suffice to
ensure that a mixture model is identifiable. As our main application of interest, we apply this
to problems in nonparametric clustering.

In the remainder of this section, we outline our major contributions and present a high-
level geometric overview of our method. Section 2 covers the necessary background required
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for our abstract framework. In Section 3 we introduce two important concepts, regularity
and clusterability, that are crucial to our identifiability results along with several examples.
In Section 4 we show how these concepts are sufficient to ensure identifiability of a non-
parametric mixture model and consistency of a minimum distance estimator. In Section 5
we apply these results to the problem of clustering and prove a consistency theorem for this
problem. Section 6 introduces a simple algorithm for nonparametric clustering along with
some experiments, and Section 7 concludes the paper with some discussion and extensions.
All proofs are deferred to the Supplementary Material [7].

Contributions. Our main results can be divided into three main theorems:

1. Nonparametric identifiability (Section 4.1). We formulate a general set of assumptions
that guarantee a family of nonparametric mixtures will be identifiable (Theorem 4.1), based
on two properties introduced in Section 3: regularity (Definition 3.1) and clusterability (Def-
inition 3.3).

2. Estimation and consistency (Section 4.2). We show that a simple clustering procedure
will correctly identify the mixing measure that generates I" as long as the yj are sufficiently
well separated, and this procedure defines an estimator that consistently recovers the non-
parametric clusters given i.i.d. observations from I" (Theorem 4.3).

3. Application to nonparametric clustering (Section 5). We extend the notion of a Bayes
optimal partition (Definition 5.1) to general nonparametric settings and prove a consistency
theorem for recovering such partitions when they are identified (Theorem 5.2).

Each of these contributions builds on the previous one and provides an overall narrative
that strengthens the well-known connections between identifiability in mixture models, clus-
ter analysis, and nonparametric density estimation. We conclude our study by applying these
results to construct an intuitive algorithm for nonparametric clustering which is investigated
in Section 6.

Overview. Before outlining the formal details, we present an intuitive geometric picture of
our approach in Figure 1. This same example is developed in more detail in the experiments
(see Section 6, Figure 4(iv)). At a high level, our strategy for identifying the mixture distri-
bution (1) is the following:

(1) Approximate I with an overfitted mixture of L > K Gaussians (Figure 1(b));

(2) Cluster these L Gaussian components into K groups such that each group roughly
approximates some yy (Figure 1(c));

(3) Use this clustering to define a new mixing measure (Figure 1(d));

(4) Show that this new mixing measure converges to the true mixing measure A as L —
Q.

Of course, this construction is not guaranteed to succeed for arbitrary mixing measures
A which will be illustrated by the examples in Section 2.2. This is a surprisingly subtle
problem and requires careful consideration of the various spaces involved. Thus, a key aspect
of our analysis will be to provide assumptions that ensure the success of this construction.
Intuitively, it should be clear that as long as the y; are well separated, the corresponding
mixture approximation will consist of Gaussian components that are also well separated.
Unfortunately, this is not quite enough to imply identifiability, as illustrated by Example 5.
This highlights some of the subtleties inherent in this construction. Furthermore, although
we have used mixtures of Gaussians to approximate I" in this example, our main results will
apply to any properly chosen family of base measures.
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(a) Original mixture I' = m(A) = (b) Approximate mixture of Gaussians
Dok Ak and K = 3. QF=m(Q) =, wiq;-

Qila)  (a) Qs(a)

(c) Components ¢; grouped by clustering. (d) Final approximate nonparametric
mixing measure Q(a).

F1G. 1. Overview of the method.

2. Preliminaries. Our approach is general and built on the theory of abstract measures
on metric spaces [55]. In this section we introduce this abstract setting, outline our notation
and discuss the general problem of identifiability in mixture models. For a more thorough
introduction to the general topic of mixture models in statistics, see Lindsay [49], Ritter [58],
Titterington et al. [73].

2.1. Nonparametric mixture models. Let (X,d) be a metric space and (P(X), p) de-
note the space of regular Borel probability measures on X with finite th moments (r > 1)
metrized by a metric p. Common choices for p include the Hellinger and variational metrics,
however, our results will apply to any metric on P(X). Define P?(X) = P(P(X)), the space
of (infinite) mixing measures over P(X). In this paper we study finite mixture models, that
is, mixtures with a finite number of atoms. To this end, define for s € {1, 2, ...}

P2X) = {A e PX(X): [supp(A)| <5}, PEX) = PHX).

s=1

We treat P%(X) as a metric space by endowing it with the L,-Wasserstein metric W, (r > 1).
When A € P2(X) and A’ € 7712(,(X ), this is given by the optimal value of the transport
problem

1/r
Wr(A,A/): inf{[ZO’ij,Or()/i,)/]{)] IOSGZ'J'SL
)

ZU,']’ = 1,20’,']' ZK;,ZO’U’ ZKi},
i,J i J

2)
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where the infimum is taken over all couplings o, that is, probability measures on P(X) x
P(X) with marginals A and A’. For more on Wasserstein distances and their importance in
mixture models, see Nguyen [54].

Given A € 778 (X), define a new probability measure m(-; A) € P(X) by

K
3 (A0 = [y dAG) = Y (4, K =|supp(A)],
k=1
where yy, ..., yk are the mixture components (i.e., a particular enumeration of supp(A)) and
Al, ..., Ak are the corresponding weights. Formally, for any Borel set A C X we have a func-

tion h4 : P(X) — R, defined by ha(y) = y(A) and m(A; A) = [y(A)dA(y) = [hadA.
This uniquely defines a measure called a mixture distribution over X. In a slight abuse of
notation, we will write m(A) as shorthand for m(-; A) when there is no confusion between
the arguments. An element y, of supp(A) is called a mixture component. Given a Borel set
£ C P%(X), define in analogy with PSZ (X) the subsets of finite mixtures by

4) 2, =L£NPAHX)
and
5) M(L) :={m(A): A € £},

that is, the family of mixture distributions over X induced by £ which can be regarded as a
formal representation of a statistical mixture model.

REMARK 2.1. This abstract presentation of mixture models is needed for two reasons:
(i) To emphasize that A is the statistical parameter of interest, in contrast to the usual
parametrization in terms of atoms and weights, and (ii) To emphasize that our approach
works for general measures on metric spaces. This will have benefits in the sequel, albeit
at the cost of some extra abstraction here at the onset. For the most part, we will work with
finite mixtures, that is, Pg(X ), a space which should be contrasted with the more complex
space of infinite measures P?(X), although some of the examples and proofs will invoke
infinite mixtures.

REMARK 2.2. As a convention, we will use upper case letters for mixture distributions
(e.g., I', Q) and mixing measures (e.g., A, €2), and lower case letters for mixture components

(e.g., ¥k, qx) and weights (e.g., Ag, wk).
We conclude this subsection with some examples.

EXAMPLE 1 (Parametric mixtures). Let Q = {gp : 6 € ®} be a family of measures
parametrized by 6. Then, any mixing measure whose support is contained in O defines a
parametric mixture distribution. For example, let & C P?(R?) denote the subset of mixing
measures whose support is contained in the family of p-dimensional Gaussian measures.
Then, M (®) is the family of Gaussian mixtures, and M (&) is the family of finite Gaussian
mixtures. It is well known that M (&) is identifiable [69, 70]. Other examples include cer-
tain exponential family mixtures [9] and translation families [69] (i.e., gg (A) = u(A — 0) for
some known measure p € P(R%)).

EXAMPLE 2 (Sub-Gaussian mixtures). Let /C be the collection sub-Gaussian measures
on R, that is,

K={yeP®) :y({x:|x|>1t}) < e/ for some ¢ > 0 and all £ > 0},
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and & C P%(R) be the subset of mixing measures whose support is a subset of K. Then,
M(R) is the family of sub-Gaussian mixture models, and M (Ky) is the family of finite sub-
Gaussian mixtures. Since the base measures K do not belong to a parametric family, this is a
nonparametric mixture model. Extensions to sub-Gaussian measures on R” are natural.

Our definition of mixtures over subsets of mixing measures—as opposed to over families
of component distributions—makes it easy to encode additional constraints, as in the follow-
ing example:

EXAMPLE 3 (Constrained mixtures). Continuing the previous examples, suppose we
wish to impose additional constraints on the family of mixture distributions. For exam-
ple, in Example 1 we might be interested in Gaussian mixtures whose means are con-
tained within some set A C R?, whose covariance matrices are contained within another
set V C PD(p) and where PD(p) is the set of p x p positive-definite matrices. Define
GA,V):={N(a,v):acA,ve V}and

(6) B(A, V) :={A e P*(X) :supp(A) C G(A, V)}.

Then, M(&(A, V)) is the desired family of mixture models. A special case of interestis V =
{v} for some fixed v € PD(p), which we denote by &(A, v), also known as a convolutional
(Gaussian) mixture model. Finite mixtures from these families are denoted by M (&g (A, V))
and M(B¢(A, v)).

EXAMPLE 4 (Mixture of regressions). Suppose P(Y|Z) = [y(Z)dA(y) is a mixture
model depending on some covariates Z. We assume here that (Z, Y) € W x X where (W, dw)
and (X, dx) are metric spaces. This is a nonparametric extension of the usual mixed linear
regression model. To recover the mixed regression model, assume A has, at most, K atoms
and v (Z) ~ N ((6k, Z), ?), so that

K
PIYIZ) = [ y(Z)dAG) = 3 N 6k, Z). ).
k=1

By further allowing the mixing measure A = A(Z) to depend on the covariates, we obtain
the nonparametric generalization of a mixture of experts model [15, 43, 44].

2.2. Identifiability in mixture models. A mixture model M (L) is identifiable if the map
m: £ — M(L) that sends A +— m(A) is injective. For an overview of this problem, see
Hunter et al. [42] and Allman et al. [4]. The main purpose of this section is to highlight some
of the known subtleties in identifying nonparametric mixture models.

Unsurprisingly, whether or not a specific mixture m(A) is identified depends on the choice
of £. If we allow £ to be all of P%(X), then it is easy to see that M (L) is not identifiable,
and this continues to be true even if the number of components K is known in advance (i.e.,
£= 73[2( (X)). Indeed, for any partition {Ak},f=1 of X and any Borel set B C X, we can write

K I'(BNA K
) I'(B) =Y T(A)- (F y k) = T (B),
k=1 R ( ) k=1
Xk Yk

and thus there cannot be a unique decomposition of the measure I'" into the sum (1). Al-
though this example allows for arbitrary, pathological decompositions of I" into conditional
measures, the following concrete example shows that solving the nonidentifiability issue is
more complicated than simply avoiding certain pathological partitions of the input space.
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ai as

F1G. 2. (Top) Mixture of three Gaussians. (Bottom) Different representations of a mixture of Gaussians as a
mixture of two sub-Gaussians. Different fill patterns and colours represent different assignments of mixture com-
ponents.

EXAMPLE 5 (Sub-Gaussian mixtures are not identifiable). Consider the mixture of three
Gaussians, m(A), in Figure 2. We can write m(A) as a mixture in four ways: In the top panel,
m(A) is represented uniquely as a mixture of three Gaussians. If we allow sub-Gaussian com-
ponents, however, then the bottom panel shows three equally valid representations of m(A)
as a mixture of rwo sub-Gaussians. Indeed, even if we assume the number of components K
is known and the component means are well separated, m(A) is nonidentifiable as a mixture
of sub-Gaussians: Just take K =2, |a; — az| > 0 and move a3 arbitrarily far to the right.

Much of the existing literature makes assumptions on the structure of the allowed y; which
is evidently equivalent to restricting the supports of the mixing measures in £ (e.g., Exam-
ple 1). Our focus, by contrast, will be to allow the components to take on essentially any shape
while imposing regularity assumptions on the mixing measures A € £. In this sense we shift
the focus from the properties of the “local” mixture components to the “global” properties of
the mixture itself.

3. Regularity and clusterability. Fix an integer K, and let £ C 7312( (X) be a family of
mixing measures. In particular, we assume that K—the number of nonparametric mixtures—
is known; in Section 7 we discuss the case where K is unknown. In this section we study con-
ditions that guarantee the injectivity of the embedding m : £ — M (L), using the procedure
described in Section 1. Throughout this section it will be helpful to keep Figure 1 in mind for
intuition.

3.1. Projections. Let {Q1}77 , be an indexed collection of families of mixing measures
that satisfies the following:

(Al) Q1 C P#(X) foreach L;
(A2) {9} is monotonic, thatis, Q7 C Qr11;
(A3) M(y) is identifiable for each L.

The purpose of {2} is to approximate I" with a sequence of mixture distributions of
increasing complexity, as quantified by the maximum number of atoms L, which will be
taken to be much larger than K. Although our results apply to generic collections satisfying
Conditions (A1)—(A3), in the sequel we will consider the collection induced by a single subset
9 C P?(X) and defined by Q; = QN 73% (X) (cf. (4)). We make the following assumption
on :

(A) The collection {Q;}7% |, defined by Q; =QN ’Pi (X), satisfies Condition (A3) for
the family Q c P2(X).
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If  satisfies Condition (A), then {£2; } automatically satisfies Conditions (A1)—(A3). Ex-
amples of families that satisfy Condition (A) include exponential family mixture models
under certain conditions [9], for example, Gaussian or Gamma mixtures [70].

Unless otherwise mentioned, we will assume £ satisfies Condition (A), with £; as defined
therein. Define the usual p-projection by

®) ;T ={0 e M(©1): p(Q.T) < p(P,T) ¥P € M(Qp)}.

As long as £ is compact, the projection 7. T is nonempty. Furthermore, Condition (A3) im-
plies that there exists a well-defined map, M, : M () — £y, that sends a mixture distribu-
tion to its mixing measure. With some abuse of notation, we will write M I" for My (T T'),
that is,

9 M T ={QeQr:m(Q)eT.T}.
Thus, for any Q* € T,.I", we can unambiguously define
L
(10) 0" =) wiq; =m(Q*) and Q" =M (Q").
=1

An example of the measure Q* and its mixing measure Q* is depicted in Figure 1(b).

REMARK 3.1. We do not assume that 7 I" is unique, that is, there may be more than
one projection. This is because M (£ ) is a nonconvex set. We present our results in this
setting, however, it may be simpler on a first reading to consider the special case where the
projection is unique, that is, 7, I" = Q* for each L. In this case, many of the definitions
simplify; consider, for example, Definition 3.1 and (18) in the sequel.

REMARK 3.2. The number of overfitted mixture components L will play an important
but largely unheralded role in the sequel. For the most part, we will suppress the dependence
of various quantities (e.g., Q*, Q%) on L for notational simplicity. In Section 4.2 we discuss
how to choose L given the sample size n; see Corollary 4.4.

3.2. Assignment functions. Any projection Q* = m(Q*) = Zéﬁzl w;q;, as defined in
(10), is the best approximation to I' from M (£} ), however, it contains many more com-
ponents L than the true number of nonparametric components K. The next step is to find a
way to “cluster” the components of Q* into K subgroups in such a way that each subgroup
approximates some Y. This is the second step (2) in our construction from Section 1. To
formalize this, we introduce the notion of assignment functions.

Denote the set of all maps « : [L] — [K] by A;_, k; a function o € Aj_, ¢ represents
a particular assignment of L mixture components into K subgroups. Thus, we will call «
an assignment function in the sequel and a sequence {« } of assignment functions such that
ar € Ap_, g will be called an assignment sequence. The set of all assignment sequences is
denoted by A¥. For any Q € Q;,, write Q =m(2) = ZeLzl weqe. Given some o € Ay g,
define normalizing constants by

(11) o)=Y o, k=1,....K.
tea~(k)
Denote the point mass concentrated at g; by d,,, and define

1
(12) Q) :=—— > widy, Or (@) :=m(Qu(a)).

@i (@) Lea—1(k)
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These quantities define a single, aggregate K -mixture by

K K
(13) Q) =) D@, Q@) :=m(Q@) =) mi(@) Q).
k=1 k=1
Since Qk(x) € M(£p), (@) is an atomic mixing measure whose atoms come from M ().
Informally, we hope that Q () is able to approximate y4 in a sense that will be made precise
in the next section.

3.3. Regular mixtures. Given a nonparametric mixture m(A), its p-proj-ection Q* =
Zﬁzl w;q; and an assignment function o, define @ () as in (11) and Q; () and 2 (a) as
in (12). We’d like Qj (o) to approximate yj, but this is certainly not guaranteed for any . A
key step in our construction is to find such an assignment. Before finding such an assignment,
however, we must first ask whether or not such an assignment exists. The following notion of
regularity encodes this assumption:

DEFINITION 3.1 (Regularity). Suppose A € 79,2( (X) and I' = m(A). The mixing mea-
sure A is called Q-regular if:

(a) There exists Ly > 0 such that 7. I" # @ for each L > Lo and lim; ., Q* =T for
every Q* e TrT';
(b) There exists an assignment sequence {a; } € A such that

lim Qf(ar)=yx and lim @] (ar) =i Vk,VQ*€T.T.
L—o0 L—o0

When A is Q-regular, we will also call m(A) Q-regular.

DEFINITION 3.2 (Regular assignment sequences). Given a regular mixing measure A,
denote a set of all assignment sequences {c7 } such that Definition 3.1(b) holds by A% (A). An
arbitrary assignment sequence {o;} € A¥ (A) will be called a regular assignment sequence,
or A-regular, when we wish to emphasize the underlying mixing measure.

Whether or not a mixing measure is regular depends on both £ and p, although the depen-
dence on p will typically be suppressed. When we wish to emphasize this dependence, we
will say A is Q-regular under p. Clearly, A is Q-regular under the Hellinger metric if and
only if it is Q-regular under the variational metric.

The following examples construct several families of regular mixing measures, as well as
an example where regularity fails. Proofs of these claims can be found in Appendix B of the
Supplementary Material.

EXAMPLE 6 (Disjoint components). Let X = R. Assume each y; has a density f; with
respect to some dominating measure ¢, and there exist disjoint intervals Ey := [bg, cx] C R
such that supp( fx) € Ei. Then, the resulting mixing measure A is &-regular under both the
Hellinger and variational metrics (Lemma B.1 in the Supplementary Material). Furthermore,
this example can be generalized to measures on R? whose supports are contained in disjoint
convex sets.

EXAMPLE 7 (Mixtures of finite mixtures). Fix Q C P2(X) satisfying Condition (A),
and assume y, = m(Py) for each k, where P, € o, that is, Pj is a finite mixture model,
but note that no upper bound is imposed on the number of components in each Py. Define
By := supp(Px), and assume that By, ..., Bg are disjoint. Then, A is Q-regular under any
metric p (Lemma B.2 in the Supplementary Material).
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EXAMPLE 8 (Mixtures of infinite mixtures). In fact, the previous example can be gen-
eralized quite substantially. Let Q C P?(X) be compact and identifiable. Assume that
vk = m(Py) for each k, where Py € . For example, y; could be a potentially infinite
convolutional mixture (see [54] for details), such as an infinite mixture of Gaussians with
P € (A, v) (Example 3). Define By := supp(Px), and assume that (a) By, ..., Bk are dis-
joint, compact sets and (b) each By is a P-continuity set where P := ) ; At Px. Then, A is
$-regular in both the Hellinger and variational metrics (Lemma B.4 in the Supplementary
Material).

EXAMPLE 9 (Failure of regularity). Let g+ ~ N (%a, 1) and G ~ N(0, 6?) where 02 >
0, and, define for some 0 < B < Br <1, ' = %yl + %yz, yix (1 —pB1—pBag+ + %G
and y» x Brg— + %G. In this example, K = 2. If ; = &, then for any L > 3, Q* =T,
and there is no way to cluster the three components into two mixtures of Gaussians that
approximate the yj. The problem here is that y; and y» “share” the same Gaussian component
G which, evidently, cannot be assigned to both y; and y».

We conclude by pointing out that, in addition to the concrete examples discussed above,
in general the set of regular mixing measures is quite large:

LEMMA 3.1. Let ptv be the variational distance on P(RP?), and let W, be the induced
Wasserstein metric on 7312< (RP). Then, for any A € 7312< (R?) and ¢ > 0, there exists a &-
regular mixing measure A' € 7712( (RP) such that W,(A', A) < &. In particular, the set of
B-regular mixing measures is dense in 73[2{ (RP).

In fact, the proof is constructive. The family defined in Example 7 with Q = & is dense in
Pz (RP).

3.4. Clusterable families. 1f a mixing measure A is £-regular, then the p-projections
of m(A) can always be grouped in such a way that each group approximates the nonpara-
metric component Y, and its mixing weight A;. We have not said anything yet about ~ow one
might find such an assignment, only that it exists. The following condition asserts that regular
assignments can be determined from the projections Q7 :

DEFINITION 3.3 (Clusterable family). A family of mixing measures £ C P?(X) is
called a Q-clusterable family, or just a clusterable family, if:

(a) A is Q-regular for all A € £;
(b) There exists a function x; : M7 (£) — A g such that {x; (%)} € AP (A) for every
A e L.

The resulting mixture model M (L) is called a clusterable mixture model. If A belongs to
a clusterable family, we shall call both A and I' = m(A) clusterable measures.

As with regularity, clusterability depends on both £ and p. When we wish to emphasize
this dependence, we will say A is Q-clusterable under p. The terminology “clusterable” is
intended to provoke the reader into imagining y; as a cluster function that “clusters” the L
components and L weights of Q* together in such a way that Q*(«) approximates A. More
precisely, Definition 3.3(b) means that for every A € £, if we let Q* = M (T; (m(A))), then
ar = xr(2¥) defines a regular assignment sequence (Definition 3.2).
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3.5. Separation and clusterability. 1In this section we construct an explicit cluster func-
tion y; via single-linkage clustering.
Given Q2 € Q; with atoms gy, define the p-diameter of 2 by

A(Q) :=sup{p(q.q) : q.q" € conv(supp(£))}.

where conv(-) is the convex hull in P(X). Recalling (13), define for any « € Aj

(14) n(R2(a)) = sup A(Qk () + sgpp(yk, Ok (@)).

We will be interested in the special case Q = Q*: A(2}(«)) quantifies how “compact” the
mixture component Q7 («) is and n(2*(«)) is a measure of separation between the mixture
components . Finally, define the p-distance matrix by

(15) D(Q) = (p(gi-q); ;-

Our goal is to show that if the atoms of A are sufficiently well separated, then the clus-
ter assignment « can be reconstructed by clustering the distance matrix D* = D(Q*) =
(o(q], q}k))f =1 (hence the choice of terminology clusterable). More precisely, we make
the following definition:

DEFINITION 3.4 (Separation). A mixing measure A € Pg(X ) is called §-separated if
inf;+; p(y;, y;j) > & for some § > 0.

It turns out that separation of the order n(2*(«)) (cf. (14)) is sufficient to define a cluster
function:

PROPOSITION 3.2. Let A € 731% (X). Let Q* € T.T" be a p-projection of T for some
L > K. Then, for any o € A _, g such that A is 4n(Q*(a))-separated:

(16) ai)=a(j) <= plq q7) = n(Q" @),
(17) a@#a(j) = plg q7) = 2n(Q"(@).

Moreover, a can be recovered by single-linkage clustering on D*.

Thus, the assignment « can be recovered by single-linkage clustering of D* without know-
ing the optimal threshold n(2* (a)).
Now, suppose A is a regular mixing measure, and let {cty } € AF (A). Define

(18) n(A) :=limsup sup sup (% (ar)).
L—oo Q*eMT {ar}eAF (A)

As a consequence of regularity, the second term in (14) tends to zero as L — oo, so that n(A)
can be interpreted as a measure of the asymptotic diameter of the approximating mixtures
Q7 (ay). For example, when the p-projection Q* is unique (Remark 3.1), the definition in
(18) simplifies to n(A) = limsup; sup, A(2;(cez)). The following corollary, which is an
immediate consequence of Proposition 3.2, shows that control over n(A) is sufficient for £
to be clusterable:

COROLLARY 3.3. Suppose £ C 7312( (X) is a family of regular mixing measures such
that for every A € £ there exists & > 0 such that A is (4 + &)n(A)-separated. Then, £ is
clusterable.
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Thus, we have a practical separation condition under which a regular mixture model be-
comes identifiable:

(19) l,i;lgp()/i, vj) > @+ &EnA).

In the limit L — oo, the nonparametric components y, must be separated by a gap propor-
tional to the p-diameters of the approximating mixtures Q7 («z,). This highlights the issue in
Example 5, although the means can be arbitrarily separated, as we increase the separation,
the diameter of the components continues to increase as well. Thus, the y; cannot be chosen
in a haphazard way (see also Example 9). Crucially, however, we make no assumptions on
the shape of the mixture components.

EXAMPLE 10 (Example of separation). Take X = R, and let Q = &(A, v) be a fam-
ily of convolutional mixtures of Gaussians (Example 3). In Example 8 we claimed that as
long as the Py have disjoint supports, this family is & (A, v)-regular. To determine when a
mixing measure A is & (A, v)-clusterable, it suffices to check (19). For this, we bound the
p-diameters sup; A(27(ay)) for large L. If go ~ N(ag, v?) and qe ~N(ay, v?) are both in
supp(Px), then it is easy to check that as long as

lag — ap| < \/8v210g<1 I ) px = 1nf p(yi, v;),
4_,0* i#]

the separation condition (19) holds.

The separation condition (19) is quite weak, but no attempt has been made here to optimize
this lower bound. For example, a minor tweak to the proof can reduce the constant of 4 to any
constant b > 2. Although we expect that a more careful analysis can weaken this condition,
our main focus here is to present the main idea behind identifiability and its connection to
clusterability and separation, so we save such optimizations for future work. Further, although
Proposition 3.2 justifies the use of single-linkage clustering in order to group the components
{g;}, one can easily imagine using other clustering schemes. Indeed, since the distance ma-
trix D* is always well defined, we could have applied other clustering algorithms such as
complete-linkage hierarchical clustering, K-means or spectral clustering to D* to define an
assignment sequence {«y }. Any condition on D* that ensures a clustering algorithm will cor-
rectly reconstruct a regular assignment sequence then yields an identification condition in
the spirit of Proposition 3.2. For example, if the means of the overfitted components g are
always well separated, then simple algorithms, such as K-means, could suffice to identify
a regular assignment sequence. This highlights the advantage of our abstract viewpoint, in
which the specific forms of both the assignment sequence {« } and the cluster functions y,
are left unspecified.

4. Identifiability and estimation. We now turn our attention to the problem of identify-
ing and learning a mixing measure A from data.

4.1. Identifiability of nonparametric mixtures. According to the next theorem, cluster-
ability is sufficient to identify a nonparametric mixture model.

THEOREM 4.1. If £ is a Q-clusterable family, then the mixture model M (L) is identifi-
able.
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FiG. 3. lIllustrating Theorem 4.1 with Example 7. (left) The original mixture distribution (thick black line) is
a mixture of finite Gaussian mixtures. Each Gaussian component is coloured according to its membership in
different Py. (middle) The true distance matrix D*. (right) Results of single-linkage clustering on D*, cut to find
the correct number of clusters.

As illustrated by the cautionary tales from Examples 5 and 9, identification in nonparamet-
ric mixtures is a subtle problem, and this theorem thus provides a powerful general condition
for identifiability in nonparametric problems.

Two examples of Theorem 4.1 are illustrated in Figure 3. When the means are well sep-
arated, as in Figure 3(a), it is easy to see how single-linkage clustering is able to discover a
correct assignment. Since p-separation is a weaker criterion than mean separation, however,
Theorem 4.1 does not require that the mixture distributions in M (£) have components with
well-separated means. In fact, each y; could have identical means (but different variances)
and still be well separated. This is illustrated in Figure 3(b). This suggests that identifiabil-
ity in mixture models is more general than what is needed in typical clustering applications,
where a model such as Figure 3(b) would not be considered to have two distinct clusters. The
subtlety here lies in interpreting clustering in P(X) (i.e., of the g;) vs. clustering in X (i.e.,
of samples Z¥) ~ I), the latter of which is the interpretation used in data clustering.

4.2. Estimation of clusterable mixtures. We now discuss how to estimate A from data
A AD) Yr. Throughout this section we assume that Q* = Q} € M T is arbitrary.

For each L > K, let QL’H = ﬁL(Z(l), ...,Z(”)) be a W,-consistent estimator of Q7%,
where we have written Q L., and Q7 to emphasize the dependence on L and n. That is,
{ﬁ L’n} is a sequence of estimators, and, for each L, lim,,_, Wr(ﬁ Lo Qi) = 0. For exam-

ple, Q Lon could be the minimum Hellinger distance estimator (MHDE) from Beran [11] (see
Appendix D in the Supplementary Material for details). Since L is a known quantity, the cor-
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responding estimation problems are always well specified, that is, both Q L., and Q7 have the
same, known number of components. In the sequel we will omit the dependence of Q* Q7
onL and Q@ =Q L.n On L and n for brevity. Write

Without loss of generality, assume that the atoms are rearranged so that sup, p(q,,g;) — 0
(see Lemma C.3 in the Supplementary Material).

PROPOSITION 4.2. Let A € PI%(X). Let Q* € T.T" be a p-projection of T for some
L > K. Suppose further that L, o € Aj_, k, and n satisfy

2D 3 sz}pp@, q;) — ZSzpp(Qz(a), Vi) < sup A(Qf ().

Define
= ZSI;PP(@, qr) + sup A (S ().

If A is 4n(Q2* ())-separated, then p(q;, ’q\j) <7 ifand only if a(i) = a(j), and the assign-
ment function o can be recovered by single-linkage clustering on D=D(Q).

Proposition 4.2 is a finite sample result that holds as long as L and n satisfy (21) which is
guaranteed as long as A is Q-regular (i.e., since in this case the left side tends to zero).

For each L and n, let @ = dr , € A;_ g denote the assignment map defined in Propo-
sition 4.2. With this notation, another way to phrase this result is that under (21), we have
a = «. In other words, single-linkage clustering of D yields the same clusters as the assign-
ment «. This suggests we use Q(@) as an estimator of A. More precisely:

1. Choose L > K sufficiently large;

2. Estimate Q = Q(Z(l), o, ZMy;

3. Define@ =a(ZW, ..., Z™) by single-linkage clustering on D;
4. Return Q(@).

In order for this to be an estimator, we must have a precise rule for selecting L = L,; see
Corollary 4.4 below and its discussion for details.
The following theorem provides conditions under which (&) consistently estimates A:

THEOREM 4.3. Suppose A is a regular mixing measure such that A is (4 + &)n(A)-
separated for some & > 0. Then,
(22) lim lim W, (SZ (@), A) =

L—oon—0a0

In particular, (22) implies that
Jim lim p(Qk(@), ) =0 and Jim Tim | (@) — Ar| =0

Thus, we have a Wasserstein consistent estimate of A and p-consistent estimates of the com-
ponent measures Y. As stated, Theorem 4.3 has an important drawback: Without a rule for
choosing L = L,, as a function of the sample size n, Q@) isnota proper estimator. This is
the cost of abstraction that allows us to state such a theorem for general metric spaces and
probability measures. Fortunately, in special cases we can make the dependence on n explicit.
Recall the convolutional mixture model described in Example 3. We have already shown that
this family is both regular (Example 8) and clusterable (Example 10). Combining these re-
sults with a rule for choosing L = L,, the following corollary provides a practical setting in
which all of the assumptions laid out in Theorem 4.3 are satisfied:
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COROLLARY 4.4. Let A = Z,{;l M Px be as in Example 8 with P, € &(A, v) for each
k. Define By := supp(Py), and assume that (a) By, ..., Bg are disjoint, compact sets and (b)
Each By is a P-continuity set where P :=) ; Ay Py. Define py :=inf+; p(m(P;), m(P;)),
and assume further that

Px
— Px

sup Ege — Eqp| < \/81}2 log(l + ) ) Sforall k.

q¢,9¢ €supp(Pr)
Then, taking L, = n*/3/1log!/? n, we have
(23) lim W, (Q@y,..). A) =0.
n—oo

The proof follows immediately from Theorem 2 in Nguyen [54] and the results (e.g.,
Theorem 5) in Genovese and Wasserman [30].

Finally, in applications it will often be useful to strengthen p-convergence to uniform con-
vergence of the densities (assuming they exist). When the families £; are equicontinuous,
this is guaranteed by Theorem 1 of Sweeting [66]. We store this corollary away here for future
use:

COROLLARY 4.5. Let Gi(@) be the density of Qk(&) and fi be the density of yy.
If the families Q1 are equicontinuous for all L and Q (&) converges weakly to vy, then
limy s 5o limy, s oo Gk (@) = fi, where the limits are understood both pointwise and uniformly
over compact subsets of X .

The assumption that O (@) converges weakly to y restricts the choice of p, although it
allows most reasonable metrics including Hellinger, variational and Wasserstein, for example.
Moreover, even weaker assumptions than equicontinuity are possible [23].

5. Bayes optimal clustering. As an application of the theory developed in Sections 3
and 4, we extend model-based clustering [12, 28] to the nonparametric setting. Given samples
from A, we seek to partition these samples into K clusters. More generally, A defines a
partition of the input space X, which can be formalized as a function ¢ : X — [K], where K is
the number of partitions or “clusters”. First, let us recall the classical Gaussian mixture model
(GMM): If f1(-; a1, v1),..., fk(-;ak, vk) is a collection of Gaussian density functions, then
for any choice of A; > 0 such that ) ; Ay = 1 the combination

K
(24) F()=) Mfi(ziar, v); zeR?
k=1

is a GMM. The model (24) is, of course, equivalent to the integral (3) (see also Example 1),
and the Gaussian densities fx(z; ak, vx) can obviously be replaced with any family of para-
metric densities.

Intuitively, the density F' has K distinct clusters given by the K Gaussian densities f,
defining what we call the Bayes optimal partition over X into regions where each of the
Gaussian components i1s most likely. It should be obvious that as long as a mixture model
M(£L) is identifiable, the Bayes optimal partition will be well defined and has a unique inter-
pretation in terms of distinct clusters of the input space X. Thus, the theory developed in the
previous sections can be used to extend these ideas to the nonparametric setting. Since the
clustering literature is full of examples of datasets that are not well approximated by paramet-
ric mixtures (e.g., [53, 74]), there is significant interest in such an extension. In the remainder
of this section, we will apply our framework to this problem. First, we discuss identifiability
issues with the concept of a Bayes optimal partition (Section 5.1). Then, we provide condi-
tions under which a Bayes optimal partition can be learned from data (Section 5.2).
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5.1. Bayes optimal partitions. Throughout the rest of this section, we assume that X is
compact and all probability measures are absolutely continuous with respect to some base
measure ¢ and, hence, have density functions. Assume I is fixed, and write F' = FT for the
density of I" and f; for the density of yx. Thus, whenever I is a finite mixture, we can write

K
(25) F=[ fydne) =Y e
k=1

For any A € 73,2( (X), define the usual Bayes classifier (e.g., [26]):

(26) cA(x) ;= argmax Ag fx(x).
ke[K]

The classifier cp 1s only well defined up to a permutation of the labels (i.e., any labeling
of supp(A) defines an equivalent classifier). Furthermore, c (x) not properly defined when
Ai fi(x) = Aj fj(x) for i # j.To account for this, define an exceptional set

(27) Eo:=J{xe X 2ifitx)=2;fj0)}
i#]
In principle, Eg should be small—in fact it will typically have measure zero—hence we will
be content to partition X = X — Ey. Recall that a partition of a space X is a family of subsets
Ay C X such that Ay N Ay = @ for all k # k" and |, Ax = X. We denote the space of all
partitions of X by IT(X).
The following definition is standard (e.g., [18, 28]):

DEFINITION 5.1 (Bayes optimal partition). Define an equivalence relation on X by
declaring

(28) x~y < cp(x)=ca(y).

This relation induces a partition on Xy which we denote by m or w(A). This partition is
known as the Bayes optimal partition.

REMARK 5.1.  Although the function c, is only unique up to a permutation, the partition
defined by (28) is always well defined and independent of the permutation used to label the

Vk -

Given samples from the mixture distribution I' = m(A), we wish to learn the Bayes opti-
mal partition 75 . Unfortunately, there is—yet again—an identifiability issue. If there is more
than one mixture measure A that represents I', the Bayes optimal partition is not well defined.

EXAMPLE 11 (Nonidentifiability of Bayes optimal partition). In Example 5 and Fig-
ure 2, we have four valid representations of I" as a mixture of sub-Gaussians. In all four
cases each representation leads to a different Bayes optimal partition, even though they each
represent the same mixture distribution.

Clearly, if A is identifiable, then the Bayes optimal partition is automatically well defined.
Thus, Theorem 4.1 immediately implies the following:

COROLLARY 5.1.  If M(L) is a clusterable mixture model, then there is a well-defined
Bayes optimal partition wr for any T’ € M(£).
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In particular, whenever M (L) is clusterable, it makes sense to write cr and 7zt instead
of cp and mp, respectively. This provides a useful framework for discussing and analyzing
partition-based clustering in nonparametric settings. As discussed previously, a K -clustering
of X is equivalent to a function that assigns each x € X an integer from 1 to K, where K is
the number of clusters. Clearly, up to the exceptional set Eg, (26) is one such function. Thus,
the Bayes optimal partition 7 can be interpreted as a valid K -clustering.

5.2. Learning partitions from data. Write I' = m(A), and assume that A is identifiable

from I'. Suppose we are given i.i.d. samples Z1, . Z(”) ~ I" and that we seek the Bayes
optimal partition i = 7. Our strategy will be the followmg.

1. Use a consistent estimator € to learn Q* for some L > K ;

2. Theorem 4.3 guarantees that we can learn a cluster assignment & such that Q@) con-
sistently estimates A;

3. Use 1(Q@)) to approximate w = 7.

The hope is, of course, that n(ﬁ(&)) — 7r. Tllere are, however, complications: What do
we mean by convergence of partitions? Does 7 (2(@)) even converge, let alone converge to
T r"

Instead of working dlrectly with the partitions n(Q(a)) we will work with the Bayes
classifier (26). Write gy and G for the densities of g, g, and Q respectively, and

(29) Gr@) :=— Y B8 m@:= Y. .

Keot_l(k) tea—1(k)

Then, G (@) is the density of O« (@), where here and above we have suppressed the depen-
dence on @. Now, define the estimated classifier (cf. (26))

(30) C(x) := cgg)(x) = argmax wk[Gk(a)](x)
kelK]

By considering classification functions, as opposed to the partitions themselves, we may con-
sider ordinary convergence of the function ¢ to crr which gives us a convenient notion of con-
sistency for this problem. Furthermore, we can compare partitions by comparing the Bayes
optimal equlvalence classes Ay :=c~ (k) = {x € X : c(x) =k} to the estimated equivalence
classes Ay 4 = ! (k) by controlling AyAA; i, where AAB = (A — B) U (A — B) is
the usual symmetric difference of two sets. Specifically, we’d like to show that the difference
AkAZ L.n.k 1s small. To this end, define a fattening of E( by

(31) Eot):=J{xe X [Lifit) = A fix0)| <t}, t>0.

i#]
Then, of course, Eg = E((0). When the boundaries between classes are sharp, this set will
be small, however, if two classes have substantial overlap, then Eo(¢) can be large even if
t is small. In the latter case the equivalence classes Ay (and hence the clusters) are less
meaningful. The purpose of E(¢) is to account for sampling error in the estimated partition.

THEOREM 5.2. Assume that limy _ o0 lim;, s oo ék(&) = fr uniformly on X, and v is
any measure on X. Then, there exists a sequence ty, , — 0 such that ¢(x) = c(x) for all
xeX —Eo(t, n) and

K
(32) U(U AkAA\L,n,k) = U(EO(IL,n)) — v(Ep).
k=1
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As in Corollary 4.4, under the same assumptions we may take L = L, =< n*/3/1log!/*n in
Theorem 5.2 when £ = B¢(A, v).

The uniform convergence assumption in Theorem 5.2 may seem strong, however, recall
Corollary 4.5 which guarantees uniform convergence whenever £Q; is equicontinuous. For
example, recalling Examples 1 and 3, it is straightforward to show the following:

COROLLARY 5.3.  Suppose X C R?, Q is a compact subset of &, and v is any measure
on X. If A is Q-clusterable measure under the Hellinger or variational metric, then there
exists a sequence ty, , — 0 such that ¢(x) = cp (x) forall x € X — Eo(tr ») and

K
(33) U(U AkAA\L,n,k) = U(EO(ZL,n)) - U(EO)-
k=1

We can interpret Theorem 5.2 as follows: As long as we take L and n large enough and the
boundaries between each pair of classes is sharp (in the sense that v(Eo(zz ,)) is small), the
difference between the true Bayes optimal partition and the estimated partition becomes neg-
ligible. In fact, it follows trivially from Theorem 5.2 that ¢ — ¢ uniformly on X — E(¢) for
any fixed ¢ > 0. Thus, Theorem 5.2 gives rigourous justification to the approximation heuris-
tic outlined above and establishes precise conditions under which nonparametric clusterings
can be learned from data.

REMARK 5.2. The sequence 17, is essentially the rate of convergence of @k — Y. Itis
an interesting question to quantify this convergence rate more precisely, which we have left
to future work.

6. Experiments. The theory developed so far suggests an intuitive meta-algorithm for
nonparametric clustering. This algorithm can be implemented in just a few lines of code,
making it a convenient alternative to more complicated algorithms in the literature. The pur-
pose of this section is merely to illustrate how our theory can be translated into a simple
and effective meta-algorithm for nonparametric clustering which should be understood as a
complement to and not a replacement for existing methods that work well in practice.

As in Section 5, we assume we have i.i.d. samples zM o zm g I' =m(A). Given
these samples, we propose the following meta-algorithm:

1. Estimate an overfited GMM Q with L > K components;

2. Define an estimated assignment function & by using single-linkage clustering to group
the components of 0 together;

3. Use this clustering to define K mixture components Qk (@);

4. Define a partition on X by using Bayes’ rule, for example, (29)—(30).

Figure 3 has already illustrated two examples where this procedure succeeds in the limit
as n — oo. To further assess the effectiveness of this meta-algorithm in practice, we eval-
uated its performance on simulated data. In our implementation we used the EM algorithm
with regularization and weight clipping to learn the GMM Q in step 1, although clearly any
algorithm for learning a GMM can be used in this step. The details of these experiments can
be found in Appendix E of the Supplementary Material.

We call the resulting algorithm NPMIX (for Nonparametric MIXture modeling). To illus-
trate the basic idea, we first implemented four simple one-dimensional models:

(i) GAUSSGAMMA (K =4): A mixture of two Gaussian distributions, one gamma dis-
tribution and a Gaussian mixture.
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FIG. 4. Examples (i)—(iv) of one-dimensional mixture models. The original mixture density is depicted as a solid
black line, with the overfitted Gaussian mixture components as dotted lines and coloured according to the cluster
to which they are assigned. The true Bayes optimal partition 7w and the estimated partition T are depicted by the
horizontal lines at the top, and the raw data are plotted on the x-axis for reference.

(1)) GUMBEL (K = 3): A GMM with three components that has been contaminated with
non-Gaussian, Gumbel noise.

(iii)) POLY (K =2): A mixture of two polynomials with nonoverlapping supports.

(iv) SOBOLEV (K = 3): A mixture of three random nonparametric densities, generated
from random expansions of an orthogonal basis for the Sobolev space H'!(R). This is the
same example used in Figure 1.

The results are shown in Figure 4. These examples illustrate the basic idea behind the algo-
rithm. Given samples, overfitted mixture components (depicted by dotted lines in Figure 4)
are used to approximate the global nonparametric mixture distribution (solid black line).
Each of these components is then clustered, with the resulting partition of X = R depicted
alongside the true Bayes optimal partition. In each case, cutting the cluster tree to produce K
components provides sensible and meaningful approximations to the true partitions.
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FIG. 5. Example of a successful clustering on the unbalanced MOONS mixture model using NPMIX. (Left)
Contour plot of overfitted Gaussian mixture approximation, centers marked with o’s. (Middle) Original data
colour coded by the approximate Bayes optimal partition. (Right) Estimated Bayes optimal partition, visualized
as the input space X colour coded by estimated cluster membership.

To further validate the proposed algorithm, we implemented the following two-dimensional
mixture models and compared the cluster accuracy to existing clustering algorithms on sim-
ulated data:

(v) MOONS (K = 2): A version of the classical MOONS dataset in two dimensions. This
model exhibits a classical failure case of spectral clustering which is known to have difficul-
ties when clusters are unbalanced (i.e., A1 # A2). For this reason, we ran experiments with
both balanced and unbalanced clusters.

(vi) TARGET (K = 6): A GMM derived from the TARGET dataset (Figure 7). The GMM
has 143 components that are clustered into six groups based on the original TARGET dataset
from [74].

Visualizations of the results for our method are shown in Figures 5, 6 and 7. One of the
advantages of our method is the construction of an explicit partition of the entire input space
(in this case, X = R?) which is depicted in all three figures. Mixture models are known to
occasionally lead to unintuitive cluster assignments in the tails, which we observed with the
unbalanced MOONS model. This is likely an artifact of the sensitivity of the EM algorithm
and can likely be corrected by using a more robust mixture model estimator in the first step.

We compared NPMIX against four well-known benchmark algorithms: (i) K-means, (ii)
Spectral clustering, (iii) Single-linkage hierarchical clustering and (iv) A Gaussian mixture
model (GMM) with K components. We only considered methods that classify every sample
in a dataset (this precludes, e.g., density-based clustering). Moreover, of these four algorithms
only K-means and GMM provide a partition of the entire input space X which allows for
new samples to be classified without rerunning the algorithm. All of the methods (including
NPMIX) require the specification of the number of clusters K which was set to the correct
number according to the model. In each experiment we sampled random data from each

F1G. 6. Example of a successful clustering on the balanced MOONS mixture model using NPMIX. (Left) Contour
plot of overfitted Gaussian mixture approximation, centers marked with o’s. (Middle) Original data colour coded
by the approximate Bayes optimal partition. (Right) Estimated Bayes optimal partition, visualized as the input
space X colour coded by estimated cluster membership.
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F1G. 7. Example of a successful clustering on the TARGET mixture model using NPMIX. (Top) Density plot of
the original mixture density. (Left) Contour plot of overfitted Gaussian mixture approximation, centers marked
with o’s. (Middle) Original data colour coded by the approximate Bayes optimal partition. (Right) Estimated
Bayes optimal partition, visualized as the input space X colour coded by estimated cluster membership.

model and then used each clustering algorithm to classify each sample. To assess cluster
accuracy, we computed the adjusted RAND index (ARI) for the clustering returned by each
method. ARl is a standard permutation-invariant measure of cluster accuracy in the literature.

The results are shown in Table 1. On the unbalanced MOONS data, NPMIX clearly out-
performed each of the four existing methods. On balanced data, K -means, spectral clustering

TABLE 1
Average and median adjusted RAND index (ARI) for N = 100 simulations of three different nonparametric
mixture models

Mean ARI Median ARI st. dev.
MOONS (UNBALANCED)
NPMIX 0.727 0.955 0.284
K -means 0.126 0.124 0.016
Spectral 0.197 0.122 0.232
Single-linkage 0.001 0.001 0.002
GMM 0.079 0.078 <1073
MOONS (BALANCED)
NPMIX 0.934 0.972 0.188
K-means 0.502 0.503 0.021
Spectral 0.909 0.910 0.013
Single-linkage <107 <107 <107
GMM 0.782 0.783 <1073
TARGET
NPMIX 0.696 0.998 0.354
K -means 0.081 0.072 0.034
Spectral 0.967 0.975 0.077
Single-linkage 0.824 1.000 0.222

GMM 0.126 0.124 0.002
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and GMM improved significantly, with spectral clustering performing quite well on average.
All four algorithms were still outperformed by NPMIX. On TARGET the results were more
interesting. Both single-linkage and spectral clustering perform very well on this dataset.
NPMIX shows more variance in its performance, as indicated by the high median (0.998)
and lower mean (0.696). On 57/100 runs, the ARI for NPMIX was > 0.99, and on the rest
the ARI was < 0.6. This is likely caused by sensitivity to outliers in the TARGET model, and
we expect that this can be corrected by using a more robust algorithm (e.g., instead of the
vanilla EM algorithm). As our motivations are mainly theoretical, we leave more detailed
fine-tuning of this algorithm and thorough side-by-side comparisons to future work. For ex-
ample, by using the learned mixture density to remove “background samples” (e.g., as in
density-based clustering), this algorithm can be trivially improved.

7. Discussion. We have established a new set of identifiability results for nonparamet-
ric mixtures that rely on the notion of clusterability. In particular, our results allow for an
arbitrary number of components and for each component to take on essentially any shape.
The key assumption is separation between the components, which allows simple clustering
algorithms such as hierarchical clustering to recover individual mixture components from
an overfitted mixture density estimator. Furthermore, we established conditions under which
identified mixtures and their partitions can be consistently estimated from data. We also dis-
cussed applications to data clustering, including a nonparametric notion of the Bayes optimal
partition and an intuitive meta-algorithm for nonparametric clustering.

The assumption that the number of components K is known is, of course, restrictive in
practice, however, this assumption can be substantially relaxed as follows: If K is unknown,
simply test whether or not there exists a K such that the separation criterion (19) holds.
If such a K exists and is unique, then the resulting K-mixture is identifiable. In practice,
however, there may be more than one value of K for which (19) holds. Furthermore, if A is
identifiable for some K, it may not be the case that A is identifiable for K’ < K, owing to the
separation criterion (18) (cf. (14)). Of course, such an exhaustive search may not be practical,
in which case it would be interesting to study efficient algorithms for finding such a K.

As pointed out by a reviewer, there is a connection between the NPMIX algorithm in-
troduced in Section 6 and kernel density estimation (KDE). Indeed, by choosing L = n,
the overfitted mixture model learned in step 1 is similar to a kernel density estimate with
a Gaussian kernel, although not exactly the same since KDE fixes the weights, centers and
bandwidth of each kernel unless more sophisticated adaptive bandwidth selection strategies
are used. By contrast, a GMM allows these parameters to be learned from the data. Thus,
in the limiting case L = n, NPMIX is similar to single-linkage clustering applied to a new
metric defined via the Wasserstein distance between the n kernels, where this new metric
depends crucially on the choice of bandwidth. An important difference in practice is that by
taking L < n, the NPMIX algorithm denoises the data in the first step, making it less sen-
sitive to outliers. For example, Priebe [56] points out that approximately L = 30 Gaussian
components suffice to approximate a log-normal density with n = 10,000 samples; see also
Corollary 4.4. Exploring this connection more deeply is an interesting direction for future
work.

It would also be interesting to study convergence rates for the proposed estimators. In
particular, there are two important quantities of interest in deriving these rates: The sample
size n and the number of overfitted components L. Interestingly, it was only recently that the
minimax rate of estimation for parametric mixtures was correctly determined [36], which is
nl/(4=50+2) in the L;-Wasserstein metric, where sp is the true number of mixture compo-
nents and s is the number used in estimation; see also [20, 38, 39, 54]. In the general case,
this is also related to problems in agnostic learning [48]. In our nonparametric setting we
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expect these rates to depend on both L and n. Furthermore, it is necessary to control the
distance between the p-projection Q* and I' which depends on the choice of L alone. This
latter problem will almost certainly require imposing additional regularity conditions on I’,
for example, as in [30, 31].

Finally, it would be of significant interest to apply existing clustering theory to find new
conditions that guarantee clusterability in the same way that Proposition 3.2 shows that sep-
arability is sufficient for single-linkage clustering. We have already noted that the separation
constant 417(A) can be reduced. Furthermore, in simulations we have observed that complete
linkage is often sufficient when working with the proposed NPMIX algorithm. But under
what precise conditions on I" is complete linkage sufficient? By applying known results from
the clustering literature, it may be possible to extend our results to prove deeper identifiability
theorems for nonparametric mixtures.
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