
Learning Sparse Nonparametric DAGs

Xun Zheng1 Chen Dan1 Bryon Aragam2 Pradeep Ravikumar1 Eric P. Xing1

Carnegie Mellon University1 University of Chicago2

Abstract

We develop a framework for learning sparse
nonparametric directed acyclic graphs (DAGs)
from data. Our approach is based on a re-
cent algebraic characterization of DAGs that
led to a fully continuous program for score-
based learning of DAG models parametrized
by a linear structural equation model (SEM).
We extend this algebraic characterization to
nonparametric SEM by leveraging nonpara-
metric sparsity based on partial derivatives,
resulting in a continuous optimization prob-
lem that can be applied to a variety of non-
parametric and semiparametric models in-
cluding GLMs, additive noise models, and
index models as special cases. Unlike exist-
ing approaches that require specific model-
ing choices, loss functions, or algorithms, we
present a completely general framework that
can be applied to general nonlinear models
(e.g. without additive noise), general differ-
entiable loss functions, and generic black-box
optimization routines. The code is available at
https://github.com/xunzheng/notears.

1 Introduction

Learning DAGs from data is an important and classical
problem in machine learning, with a diverse array of ap-
plications in causal inference (Spirtes et al., 2000), fair-
ness and accountability (Kusner et al., 2017), medicine
(Heckerman et al., 1992), and finance (Sanford and
Moosa, 2012). In addition to their undirected counter-
parts, DAG models offer a parsimonious, interpretable
representation of a joint distribution that is useful in
practice. Unfortunately, existing methods for learn-
ing DAGs typically rely on specific model assumptions
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(e.g. linear or additive) and specialized algorithms (e.g.
constraint-based or greedy optimization). As a result,
the burden is on the user to choose amongst many pos-
sible models and algorithms, which requires significant
expertise. Thus, there is a need for a general frame-
work for learning different DAG models—subsuming,
for example, linear, parametric, and nonparametric—
that does not require specialized algorithms. Ideally,
the problem could be formulated as a conventional op-
timization problem that can be tackled with general
purpose solvers, much like the current state-of-the-art
for undirected graphical models (e.g. Suggala et al.,
2017; Yang et al., 2015; Liu et al., 2009; Hsieh et al.,
2013; Banerjee et al., 2008).

In this paper, we develop such a general algorithmic
framework for score-based learning of DAG models.
This framework is flexible enough to learn general non-
parametric dependence while also easily adapting to
parametric and semiparametric models, including non-
linear models. The framework is based on a recent
algebraic characterization of acyclicity due to Zheng
et al. (2018) that recasts the score-based optimization
problem as a continuous problem, instead of the tradi-
tional combinatorial approach. This allows generic op-
timization routines to be used in minimizing the score,
providing a clean conceptual formulation of the problem
that can be approached using any of the well-known
algorithms from the optimization literature. This work
relies heavily on the linear parametrization in terms
of a weighted adjacency matrix W 2 Rd⇥d, which is
a stringent restriction on the class of models. One
of the key technical contributions of the current work
is extending this to general nonparametric problems,
where no such parametrization in terms of a weighted
adjacency matrix exists.

Contributions Our main contributions can be sum-
marized as follows:

• We develop a generic optimization problem that
can be applied to nonlinear and nonparametric
SEM and discuss various special cases including
additive models and index models. In contrast
to existing work, we show how this optimization
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problem can be solved to stationarity with generic
solvers, eliminating the necessity for specialized
algorithms and models.

• We extend the existing smooth characterization
of acyclicity from Zheng et al. (2018) to gen-
eral nonparametric models, show that the linear
parametrization is a special case of the general
framework, and apply this to several popular ex-
amples for modeling nonlinear dependencies (Sec-
tion 3).

• We consider in detail two classes of nonparametric
estimators defined through 1) Neural networks and
2) Orthogonal basis expansions, and study their
properties (Section 4).

• We run extensive empirical evaluations on a vari-
ety of nonparametric and semiparametric models
against recent state-of-the-art methods in order
to demonstrate the effectiveness and generality of
our framework (Section 5).

As with all score-based approaches to learning DAGs,
ours relies on a nonconvex optimization problem. De-
spite this, we show that off-the-shelf solvers return sta-
tionary points that outperform other state-of-the-art
methods. Finally, the algorithm itself can be imple-
mented in standard machine learning libraries such as
PyTorch, which should help the community to extend
our approach to richer models moving forward.

Related work The problem of learning nonlinear
and nonparametric DAGs from data has generated
significant interest in recent years, including additive
models (Bühlmann et al., 2014; Voorman et al., 2014;
Ernest et al., 2016), generalized linear models (Park,
2018; Park and Raskutti, 2017; Park and Park, 2019; Gu
et al., 2018), additive noise models (Hoyer et al., 2009;
Peters et al., 2014; Blöbaum et al., 2018; Mooij et al.,
2016), post-nonlinear models (Zhang and Hyvärinen,
2009; Zhang et al., 2016) and general nonlinear SEM
(Monti et al., 2019; Goudet et al., 2018; Kalainathan
et al., 2018; Sgouritsa et al., 2015). Recently, Yu et al.
(2019) proposed to use graph neural networks for non-
linear measurement models and Huang et al. (2018)
proposed a generalized score function for general SEM.
The latter work is based on recent work in kernel-based
measures of dependence (Gretton et al., 2005; Fuku-
mizu et al., 2008; Zhang et al., 2012). Another line of
work uses quantile scoring (Tagasovska et al., 2018).
Also of relevance is the literature on nonparametric
variable selection (Bertin et al., 2008; Lafferty et al.,
2008; Miller et al., 2010; Rosasco et al., 2013; Gregorová
et al., 2018) and approaches based on neural networks
(Feng and Simon, 2017; Ye and Sun, 2018; Abid et al.,
2019). The main distinction between our work and

previous work is that our framework is not tied to
a specific model—as in Yu et al. (2019); Bühlmann
et al. (2014); Park (2018)—as our focus is on a generic

formulation of an optimization problem that can be
solved with generic solvers (see Section 2 for a more
detailed comparison). This also distinguishes this pa-
per from concurrent work by Lachapelle et al. (2019)
that focuses on neural network-based nonlinearities in
the local conditional probabilities. Furthermore, com-
pared to Huang et al. (2018) and Yu et al. (2019), our
approach can be much more efficient (Section 5.1; Ap-
pendix D). As such, we hope that this work is able to
spur future work using more sophisticated nonparamet-
ric estimators and optimization schemes.

Notation Norms will always be explicitly sub-
scripted to avoid confusion: k · kp is the `p-norm on
vectors, k · kLp is the Lp-norm on functions, k · kp,q
is the (p, q)-norm on matrices, and k · kF = k · k2,2 is
the matrix Frobenius norm. For functions f : Rs ! R
and a matrix A 2 Rn⇥s, we adopt the convention that
f(A) 2 Rn is the vector whose ith element is f(ai),
where ai is the ith row of A.

2 Background

Our approach is based on (acyclic) structural equation
models as follows. Let X = (X1, . . . , Xd) be a random
vector and G = (V,E) a DAG with V = X. We assume
that there exist functions fj : Rd ! R 1 and gj : R ! R
such that

E[Xj |Xpa(j)] = gj(fj(X)), Efj(X) = 0 (1)

and fj(u1, . . . , ud) does not depend on uk if Xk /2
pa(j), where pa(j) denotes the parents of Xj in
G. Formally, the independence statement means
that for any Xk /2 pa(j), the function a(u) :=
fj(X1, . . . , Xk�1, u,Xk+1, Xd) is constant for all u 2 R.
Thus, G encodes the conditional independence struc-
ture of X. The functions gj , which are typically known,
allow for possible non-additive errors such as in gener-
alized linear models (GLMs). The model (1) is quite
general and includes additive noise models, linear and
generalized linear models, and additive models as spe-
cial cases (Section 3.3).

In this setting, the DAG learning problem can be stated
as follows: Given a data matrix X = [x1 | · · · |xd] 2
Rn⇥d consisting of n i.i.d. observations of the model
(1), we seek to learn the DAG G(X) that encodes the de-
pendency between the variables in X. Our approach is
to learn f = (f1, . . . , fd) such that G(f) = G(X) using

1The reason for writing fj(X) instead of fj(Xpa(j)) is
to simplify notation by ensuring each fj is defined on the
same space.
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a score-based approach. Given a loss function `(y, ŷ)
such as least squares or the negative log-likelihood, we
consider the following program:

min
f

L(f) subject to G(f) 2 DAG,

where L(f) =
1

n

dX

j=1

`(xj , fj(X)).
(2)

There are two challenges in this formulation: 1) How
to enforce the acyclicity constraint that G(f) 2 DAG,
and 2) How to enforce sparsity in the learned DAG
G(f)? Previous work using linear and generalized linear
models rely on a parametric representation of G via
a weighted adjacency matrix W 2 Rd⇥d, which is no
longer well-defined in the model (1). To address this,
we develop a suitable surrogate of W defined for general
nonparametric models, to which we can apply the trace
exponential regularizer from Zheng et al. (2018).

2.1 Identifiability

Existing papers approach this problem as follows: 1)
Assume a specific model for (1), 2) Prove identifiability
for this specific model, and 3) Develop a specialized
algorithm for learning this specific model. By contrast,
our approach is generic: We do not assume any par-
ticular model form or algorithm, and instead develop
a general framework that applies to any model that
is identifiable. By now, there is a well-catalogued list
of identifiability results for various linear, parametric,
and nonlinear models, which we review briefly below
(see also Section 3.3).

When the model (1) holds, the graph G is not neces-
sarily uniquely defined: A well-known example is when
X is jointly normally distributed, in which case the fj
are linear functions, and where it can be shown that
the graph G is not uniquely specified. Fortunately, it
is known that this case is somewhat exceptional: As-
suming additive noise, as long as the fj are linear with
non-Gaussian errors (Kagan et al., 1973; Shimizu et al.,
2006; Loh and Bühlmann, 2014) or the functions fj are
nonlinear (Hoyer et al., 2009; Zhang and Hyvärinen,
2009; Peters et al., 2014), then the graph G is generally
identifiable. We refer the reader to Peters et al. (2014)
for details. Another example are so-called quadratic

variance function models, which are parametric models
that subsume many generalized linear models (Park
and Raskutti, 2017; Park, 2018). In the sequel, we
assume that the model is chosen such that the graph G

is uniquely defined from (1), and this dependence will
be emphasized by writing G = G(X). Similarly, any
collection of functions f = (f1, . . . , fd) defines a graph
G(f) in the obvious way. See Section 3.3 for specific
examples with discussion on identifiability.

2.2 Comparison to existing approaches

It is instructive at this point to highlight the main
distinction between our approach and existing ap-
proaches. A common approach is to assume the fj
are easily parametrized (e.g. linearity) (Zheng et al.,
2018; Aragam and Zhou, 2015; Gu et al., 2018; Park and
Raskutti, 2017; Park, 2018; Chen et al., 2018; Ghoshal
and Honorio, 2017). In this case, one can easily encode
the structure of G via, e.g. a weighted adjacency ma-
trix, and learning G reduces to a parametric estimation
problem. Nonparametric extensions of this approach
include additive models (Bühlmann et al., 2014; Voor-
man et al., 2014), where the graph structure is easily
deduced from the additive structure of the fj . More
recent work (Lachapelle et al., 2019; Yu et al., 2019)
uses specific parametrizations via neural networks to
encode G. An alternative approach relies on exploit-
ing the conditional independence structure of X, such
as the post-nonlinear model (Zhang and Hyvärinen,
2009; Yu et al., 2019), the additive noise model (Peters
et al., 2014), and kernel-based measures of conditional
independence (Huang et al., 2018). Our framework
can be viewed as a substantial generalization of these
approaches: We use partial derivatives to measure
dependence in the general nonparametric model (1)
without assuming a particular form or parametrization,
and do not explicitly require any of the machinery of
nonparametric conditional independence (although we
note in some places this machinery is implicit). This
allows us to use nonparametric estimators such as multi-
layer perceptrons and basis expansions, for which these
derivatives are easily computed. As a result, the score-
based learning problem is reduced to an optimization
problem that can be tackled using existing techniques,
making our approach easily accessible.

3 Characterizing acyclicity in

nonparametric SEM

In this section, we discuss how to extend the trace
exponential regularizer from Zheng et al. (2018) beyond
the linear setting, and then discuss several special cases.

3.1 Linear SEM and the trace exponential
regularizer

We begin by briefly reviewing Zheng et al. (2018) in the
linear case, i.e. gj(s) = s and fj(X) = wT

j
X for some

wj 2 Rd. This defines a matrix W = [w1 | · · · |wd] 2
Rd⇥d that precisely encodes the graph G(f), i.e. there is
an edge Xk ! Xj in G(f) if and only if wkj 6= 0. In this
case, we can formulate the entire problem in terms ofW :
If L(W ) = kX�XWk2

F
/(2n), then optimizing L(W )

is equivalent to optimizing L(f) over linear functions.
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Define the function h(W ) = tr eW�W � d, where [W �
W ]kj = w2

kj
. Then Zheng et al. (2018) show that (2)

is equivalent to

min
W2Rd⇥d

L(W ) subject to h(W ) = 0, (3)

The key insight from Zheng et al. (2018) is replacing
the combinatorial constraint G(W ) 2 DAG with the
continuous constraint h(W ) = 0. Our goal is to define
a suitable surrogate of W for general nonparametric
models, so that the same continuous program can be
used to optimize (2).

3.2 A notion of nonparametric acyclicity

Unfortunately, for general models of the form (1), there
is no W , and hence the trace exponential formulation
seems to break down. To remedy this, we use par-
tial derivatives to measure the dependence of fj on
the kth variable, an idea that dates back to at least
Rosasco et al. (2013). First, we need to make precise
the spaces we are working on: Let H1(Rd) ⇢ L2(Rd)
denote the usual Sobolev space of square-integrable
functions whose derivatives are also square integrable
(for background on Sobolev spaces see Tsybakov (2009)).
Assume hereafter that fj 2 H1(Rd) and denote the
partial derivative with respect to Xk by @kfj . It is
then easy to show that fj is independent of Xk if
and only if k@kfjkL2 = 0, where k · kL2 is the usual
L2-norm. This observation implies that the matrix
W (f) = W (f1, . . . , fd) 2 Rd⇥d with entries

[W (f)]kj := k@kfjkL2 . (4)

precisely encodes the dependency structure amongst
the Xj . Thus the program (2) is equivalent to

min
f :fj2H1(Rd),8j2[d]

L(f) subject to h(W (f)) = 0. (5)

This implies an equivalent continuous formulation of
the program (2). Moreover, when the functions fj are
all linear, W (f) is the same as the weighted adjacency
matrix W defined in Section 3.1. Thus, (5) is a genuine
generalization of the linear case (3).

3.3 Special cases

In addition to applying to general nonparametric mod-
els of the form (2) and linear models, the program (5)
applies to a variety of parametric and semiparametric
models including additive noise models, generalized
linear models, additive models, and index models. In
this section we discuss these examples along with iden-
tifiability results for each case.

Additive noise models The nonparametric addi-
tive noise model (ANM) (Hoyer et al., 2009; Peters
et al., 2014) assumes that

Xj = fj(X) + zj , Efj(X) = 0, zj ?? fj(X). (6)

and zj ⇠ Pj is the random noise. Clearly this is a
special case of (1) with gj(s) = s. In contrast to the
remaining examples below, without additional assump-
tions, it is not possible to simplify the condition for
[W (f)]kj = 0 in (4). Assuming the fj are three times
differentiable and not linear in any of its arguments,
this model is identifiable (Peters et al., 2014, Corol-
lary 31).

Generalized linear models A traditional GLM as-
sumes that E[Xj |Xpa(j)] = gj(wT

j
X) for some known

link functions gj : R ! R and wj 2 Rd. For exam-
ple, we can use logistic regression for Xj 2 {0, 1} with
gj(s) = es/(1 + es). This is easily generalized to non-
parametric mean functions fj 2 H1(Rd) by setting

E[Xj |Xpa(j)] = gj(fj(X)). (7)

Clearly, (6) is a special case of (7). Furthermore, for
linear mean functions, [W (f)]kj = 0 if and only if
wjk = 0, recovering the parametric approach in Zheng
et al. (2018). Several special cases of GLMs are known
to be identifiable: Linear Gaussian with equal variances
(Peters and Bühlmann, 2013), linear non-Gaussian mod-
els (Shimizu et al., 2006), Poisson models (Park and
Park, 2019), and quadratic variance function models
(Park and Raskutti, 2017).

Polynomial regression In polynomial regression,
we assume that fj(X) is a polynomial in X1, . . . , Xd.
More generally, given a known dictionary of functions
⌘`(u1, . . . , ud), we require that fj(X) =

P
`
�j` ⌘`(X).

Then it is easy to check that [W (f)]kj = 0 if and
only if �j` = 0 whenever ⌘` depends on uk. For each
k, define ajk(u) := fj(X1, . . . , Xk�1, u,Xk+1, Xd). As
long as ajk(u) is not a linear function (i.e. each fj is
a degree-2 polynomial or higher in Xk) for all k and
j, then Corollary 31 in Peters et al. (2014) implies
identifiability of this model.

Additive models In an additive model (Hastie and
Tibshirani, 1987; Ravikumar et al., 2009), we assume
that fj(X) =

P
k 6=j

fjk(Xk) for some fjk 2 H1(R).
Then it is straightforward to show that k@kfjkL2 = 0
if and only if fjk = 0. In other words, [W (f)]kj = 0
if and only if kfjkkL2 = 0. Assuming the fjk are
three times differentiable and not linear in any of its
arguments, this model is identifiable (Peters et al., 2014,
Corollary 31, see also Bühlmann et al., 2014).
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Index models The multiple index model (Alquier
and Biau, 2013; Yuan, 2011) assumes fj(X) =P

M

m=1 hjm(�T

jm
X) for some hjm 2 H1(R) and �jm 2

Rd. As long as M is sufficiently large, these functions
are universal approximators (Diaconis and Shahsha-
hani, 1984). When M = 1, this is known as a
single-index model. As long as the functions hjm

(m = 1, . . . ,M) are linearly independent, it is straight-
forward to show that k@kfjkL2 = 0 if and only if
�jmk = 0 for each m. In other words, [W (f)]kj = 0

if and only if
P

M

m=1 �
2
jmk

= 0. Once again, assuming
three-times differentiability and nonlinearity of hjm,
Corollary 31 in Peters et al. (2014) implies identifiabil-
ity of this model.

Among these examples, both polynomial regression
and GLMs with linear mean function are nonlinear
but finite-dimensional, and hence the problem (5) is
straightforward to solve (see Section 4.3).

4 Optimization

In general, the program (5) is infinite-dimensional. In
this section we discuss different ways to reduce this
to a tractable, finite-dimensional optimization prob-
lem. One of the advantages of encoding dependence
via W (f) is that it provides a plug-and-play framework
for plugging in various nonparametric estimators whose
derivatives can be computed. We will illustrate two
examples using multilayer perceptrons and orthogo-
nal basis expansions, however, we emphasize that it is
straightforward to implement other differentiable mod-
els for the fj . These flexible nonparametric estimators
will help reduce (5) to a straightforward optimization
problem, as we discuss at the end of this section.

The basic recipe is the following:

1. Choose a model family for the conditional expec-
tations E[Xj |Xpa(j)] (e.g. general nonparametric,
additive, index, etc.);

2. Choose a suitable family of approximations (e.g.
neural networks, orthogonal series, etc.);

3. Translate the loss function L(f) and constraint
W (f) into parametric forms L(✓) and W (✓) using
the approximating family;

4. Solve the resulting finite-dimensional problem.

Step 3 above is the key step that enables transform-
ing (5) into a tractable optimization problem. By
approximating the fj with a flexible family of func-
tions parametrized by ✓, we can replace the infinite-
dimensional quantity W (f) with the simpler W (✓). As

is standard in the literature on nonparametric estima-
tion, the dimension of ✓ is allowed to depend on n,
although this dependence will be suppressed.

4.1 Multilayer perceptrons

We first consider the use of neural networks to approx-
imate the fj , as in an ANM (6) or GLM (7). Consider
a multilayer perceptron (MLP) with h hidden layers
and a single activation � : R ! R, given by

MLP(u;A(1), . . . , A(h)) = �(A(h)�(· · ·A(2)�(A(1)u))),

A(`) 2 Rm`⇥m`�1 , m0 = d.

By increasing the capacity of the MLP (e.g. increasing
the number of layers h or the number of hidden units
m` in each layer), we can approximate any fj 2 H1(Rd)
arbitrarily well.

First, we must determine under what conditions
MLP(u;A(1), . . . , A(h)) is independent of uk—this is
important both for enforcing acyclicity and sparsity. It
is not hard to see that if the kth column of A(1) consists
of all zeros (i.e. A(1)

bk
= 0 for all b = 1, . . . ,m1), then

MLP(u;A(1), . . . , A(h)) will be independent of uk. In
fact, we have the following proposition, which implies
that this constraint precisely identifies the set of MLPs
that are independent of uk:
Proposition 1. Consider the function class F of all

MLPs that are independent of uk and the function

class F0 of all MLPs such that the kth column of A(1)

consists of all zeros. Then F = F0.

This important proposition provides a rigorous way
to enforce that an MLP approximation depends only
on a few coordinates. Indeed, it is clear that con-
straining A(1)

bk
= 0 for each b will remove the depen-

dence on k, however, there is a concern that we could
lose the expressivity of multiple hidden layers in doing
so. Fortunately, this proposition implies that there
is in fact no loss of expressivity or approximating
power. Furthermore, it follows that [W (f)]kj = 0

if kkth-column(A(1)
j

)k2 = 0. This result enables us to
characterize acyclicity independent of the depth of the
neural network, as opposed to handling individual paths
through the entire neural network as in Lachapelle et al.
(2019), which depends linearly on the depth.

Let ✓j = (A(1)
j

, . . . , A(h)
j

) denote the parameters for
the jth MLP and ✓ = (✓1, . . . , ✓d). Define [W (✓)]kj =

kkth-column(A(1)
j

)k2. The problem (2) thus reduces to

min
✓

1

n

dX

j=1

`(xj ,MLP(X; ✓j)) + �kA(1)
j

k1,1

subject to h(W (✓)) = 0. (8)
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4.2 Basis expansions

As an alternative to neural networks, we also consider
the use of orthogonal basis expansions (Schwartz, 1967;
Wahba, 1981; Hall, 1987; Efromovich, 2008). While
many techniques are valid, we adopt an approach based
on Ravikumar et al. (2009). Let {'r}1r=1 be an or-
thonormal basis of H1(Rd) such that E'r(X) = 0 for
each r. Then any f 2 H1(Rd) can be written uniquely

f(u) =
1X

r=1

↵r'r(u), ↵r =

ª

Rd

'r(u)f(u) du. (9)

As long as the coefficients ↵r decay sufficiently fast, f
can be well-approximated by the finite series bfR :=P

R

r=1 ↵r'r. Similar claims are true for one-dimensional
Sobolev functions, which applies to both additive (i.e.
for fjk) and index (i.e. for hjm) models.

We illustrate here an application with additive models
and one-dimensional expansions. It is straightforward
to extend these ideas to more general models using a
tensor product basis, though this quickly becomes com-
putationally infeasible. For more on high-dimensional
orthogonal series, see Lee et al. (2016). Thus,

fj(u1, . . . , ud) =
X

k 6=j

fjk(uk)

=
X

k 6=j

1X

r=1

↵jkr'r(uk).
(10)

Given integers Rk and assuming fjk is sufficiently
smooth, we have kfjk � bfRk

jk
kL2 = O(1/Rk) (Efro-

movich, 2008), so that the overall approximation er-
ror is on the order O(d/mink Rk). Furthermore,
[W (f)]kj = 0 () kfjkkL2 = 0 () ↵jkr = 0 for all
r. Since we are discarding terms for r > Rk, in practice
it suffices to check that ↵jkr = 0 for r = 1 . . . , Rk, orP

Rk

r=1 ↵
2
jkr

= 0.

Letting ✓ denote the parameters ↵jkr for all j, k, r, it
thus suffices to define [W (✓)]kj = [

P
Rk

r=1 ↵
2
jkr

]1/2 for
the purposes of checking acyclicity. Let �k be the
matrix [�k]ir = 'r(X

(i)
k

). To estimate the coefficients
↵jkr, we solve

min
✓

1

n

dX

j=1

`
⇣
xj ,

X

k 6=j

�kajk
⌘

+ �1

X

k 6=j

1

n
aT
jk
�T

k
�kajk + �2

X

k 6=j

kajkk1

subject to h(W (✓)) = 0. (11)

This is similar to Ravikumar et al. (2009) with the
addition of an explicit `1 constraint.

4.3 Solving the continuous program

Having converted L(f) and W (f) to their finite-
dimensional counterparts, we are now ready to solve (5)
by applying standard optimization techniques. We em-
phasize that the hard work went into formulating the
programs (8) and (11) as generic problems for which
off-the-shelf solvers can be used. Importantly, since in
both (8) and (11) the term W (✓) is differentiable w.r.t.
✓, the optimization program is an `1-penalized smooth
minimization under a differentiable equality constraint.
As in Zheng et al. (2018), the standard machinery of
augmented Lagrangian can be applied, resulting in a
series of unconstrained problems:

min
✓

F (✓) + �k✓k1,

F (✓) = L(✓) +
⇢

2
|h(W (✓))|2 + ↵h(W (✓))

(12)

where ⇢ is a penalty parameter and ↵ is a dual variable.

A number of optimization algorithms can be applied
to the above unconstrained `1-penalized smooth mini-
mization problem. A natural choice is the L-BFGS-B
algorithm (Byrd et al., 1995), which can be directly
applied by casting (12) into a box-constrained form:

min
✓

F (✓) + �k✓k1

() min
✓+�0,✓��0

F (✓+ � ✓�) + �1T (✓+ + ✓�)
(13)

where 1 is a vector of all ones. We note that as in
Zheng et al. (2018), (12) is a nonconvex program, and
at best can be solved to stationarity. Our experiments
indicate that this nonetheless leads to competitive and
often superior performance in practice.

5 Experiments

We study the empirical performance of two instances
of the general framework: MLP (4.1) and Sobolev
expansions (4.2), denoted by NOTEARS-MLP and
NOTEARS-Sob. For NOTEARS-MLP we use an MLP
with one hidden layer with 10 hidden units and sig-
moid activation function. For NOTEARS-Sob we use
Sobolev basis 'r(u) = sr sin(u/sr), sr = 2/((2r � 1)⇡)
(r = 1, . . . , 10). Complete details on all baselines and
simulations, including a discussion of computational
complexity and runtimes, can be found in the appendix.

Baselines For comparison, the following methods
are chosen as baselines: fast greedy equivalence search
(FGS) (Ramsey et al., 2017), greedy equivalence search
with generalized scores (GSGES) (Huang et al., 2018),
DAG-GNN (GNN) (Yu et al., 2019), NOTEARS
(Linear) (Zheng et al., 2018) for linear SEM, and causal
additive models (CAM) (Bühlmann et al., 2014). To
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Figure 1: Structure recovery measured by SHD (lower is better) to ground truth. Left: n = 1000. Middle:
n = 200. Right: Average over all configurations. Rows: random graph model (Erdos-Renyi and scale-free).
Columns: different types of SEM. NOTEARS-MLP performs well on a wide range of settings, while NOTEARS-Sob
shows good accuracy on additive models.
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Figure 2: Structure recovery measured by SHD (lower is better) to ground truth. Left: n = 1000. Middle: n = 200.
Right: Average over all configurations. Rows: random graph model (Erdos-Renyi and scale-free). Columns:
different types of SEM. Either NOTEARS-MLP or NOTEARS-MLP++ (i.e. NOTEARS-MLP with neighborhood
selection and pruning) achieves competitive accuracy compared to CAM.

summarize, FGS and Linear are specialized at linear
models, whereas GSGES, GNN, and CAM targets gen-
eral nonlinear dependencies. Comparisons with other
score-based methods (KGV score (Bach and Jordan,
2003), Spearman correlation (Sokolova et al., 2014))
and constraint-based methods (PC (Spirtes et al., 2000),
MM-MB (Aliferis et al., 2010)) can be found in previous
work (Huang et al., 2018), hence are omitted.

Simulation The ground truth DAG is generated
from two random graph models: Erdos-Renyi (ER) and
scale-free (SF). We use ER2 to denote an ER graph
with s0 = 2d edges, likewise for SF. Given the ground
truth DAG, we simulate the SEM Xj = fj(Xpa(j))+zj
for all j 2 [d] in topological order, and each zj ⇠ N(0, 1).
To evaluate the performance under different data gen-
eration mechanisms, we consider four models for the
fj : 1) Additive models with Gaussian processes (GPs)
for each fjk, 2) Index models (M = 3), 3) ANM with
MLPs, and 4) ANM with GPs.

Metrics We evaluate the estimated DAG structure
using the following common metrics: false discovery
rate (FDR), true positive rate (TPR), false positive rate
(FPR), and structural Hamming distance (SHD). Note
that both FGS and GSGES return a CPDAG that may
contain undirected edges, in which case we evaluate
them favorably by assuming correct orientation for
undirected edges whenever possible, similar to (Zheng
et al., 2018).

5.1 Structure learning

In this experiment we examine the structure recovery
of different methods by comparing the DAG estimates
against the ground truth. We simulate {ER1, ER2,
ER4, SF1, SF2, SF4} graphs with d = {10, 20, 40}
nodes. For each graph, n = {1000, 200} data samples
are generated. The above process is repeated 10 times
and we report the mean and standard deviations of the
results. For NOTEARS-MLP and NOTEARS-Sob, � =
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{0.01, 0.03} are used for n = {1000, 200} respectively.

Figure 1 shows the SHD in various settings; the com-
plete set of results for the remaining metrics are
deferred to the supplement. Overall, the proposed
NOTEARS-MLP method attains the best SHD (lower
the better) across a wide range of settings, particularly
when the data generating mechanism is an MLP or
an index model. One can also observe that the per-
formance of NOTEARS-MLP stays stable for different
graph types with varying density and degree distribu-
tion, as it does not make explicit assumptions on the
topological properties of the graph such as density or
degree distribution. Not surprisingly, NOTEARS-Sob
performs well when the underlying SEM is additive
GP. On the other hand, when the ground truth is not
an additive model, the performance of NOTEARS-Sob
degrades as expected. Finally, we observe that GSGES
outperforms NOTEARS-MLP and NOTEARS-Sob on
GP, which is a nonparametric setting in which a kernel-
based dependency measure can excel, however, we note
that the kernel-based approach accompanies an O(n3)
time complexity, compared to linear dependency on
n in NOTEARS-MLP and NOTEARS-Sob. Also, with
by properly tuning the regularization parameter, the
performance of NOTEARS-MLP for each individual set-
ting can be improved considerably, for example in the
GP setting. Since such hyperparameter tuning is not
the main focus of this paper, we fix a reasonable � for
all settings (see Appendix D for more discussion).

With respect to runtime and scalability, we note that
the computational complexity of our approach depends
on the choice of nonparametric estimator. For example,
NOTEARS-MLP requires O(nd2m+d2m+d3) flops per
iteration of L-BFGS-B. In terms of runtime, the average
runtime of GSGES on ER2 with d = 40, n = 1000 is
over 90 minutes, whereas NOTEARS-MLP takes less
than five minutes on average (see Appendix D for more
discussion).

Figure 2 shows the SHD compared with CAM. We first
observe that NOTEARS-MLP outperforms CAM in mul-
tiple index models and MLP models, on the other hand,
CAM achieves better accuracy on additive GP and the
full GP setting. Recall that the CAM algorithm in-
volves three steps: 1) Preliminary neighborhood search
(PNS), 2) Order search by greedy optimization of the
likelihood, and 3) Edge pruning. By comparison, our
methods effectively only perform the second step, and
can easily be pre- and post-processed with the first
(PNS) and third (edge pruning) steps. To further inves-
tigate the efficacy of these additional steps, we applied
both preliminary neighborhood selection and edge prun-
ing to NOTEARS-MLP and NOTEARS-Sob on additive
GP and GP settings, denoted as NOTEARS-MLP++ and
NOTEARS-Sob++. Noticeably, the output from PNS

simply translates to a set of constraints in the form of
✓j = 0 that can be easily incorporated into the L-BFGS-
B algorithm for (13), demonstrating the flexibility of
the proposed approach. The performance improves in
both cases, matching or improving vs. CAM.

5.2 Real data

Finally, we evaluated NOTEARS-MLP on a real dataset
from Sachs et al. (2005) that is commonly used as
a benchmark as it comes with a consensus network

that is accepted by the biological community. The
dataset consists of n = 7466 continuous measurements
of expression levels of proteins and phospholipids in
human immune system cells for d = 11 cell types.
We report an SHD of 16 with 13 edges estimated by
NOTEARS-MLP. In comparison, NOTEARS predicts
16 edges with SHD of 22 and GNN predicts 18 edges
that attains SHD of 19. (Due to the large number
of samples, we could not run GSGES on this dataset.)
Among the 13 edges predicted by NOTEARS-MLP, 7
edges agree with the consensus network: raf ! mek,
mek ! erk, PLCg ! PIP2, PIP3 ! PLCg, PIP3 !
PIP2, PKC ! mek, PKC ! jnk; and 3 edges are
predicted but in a reversed direction: raf  PKC, akt
 erk, p38  PKC. Among the true positives, 3 edges
are not found by other methods: mek ! erk, PIP3 !
PLCg, PKC ! mek.

6 Discussion

We present a framework for score-based learning of
sparse directed acyclic graphical models that subsumes
many popular parametric, semiparametric, and non-
parametric models as special cases. The key technical
device is a notion of nonparametric acyclicity that
leverages partial derivatives in the algebraic charac-
terization of DAGs. With a suitable choice of the
approximation family, the estimation problem becomes
a finite-dimensional differentiable program that can be
solved by standard optimization algorithms. The re-
sulting continuous optimization algorithm updates the
entire graph (i.e. all edges simultaneously) in each iter-
ation using global information about the current state
of the network, as opposed to traditional local search
methods that update one edge at a time based on local
information. Notably, our approach is generally more
efficient and more accurate than existing approaches,
despite relying on generic algorithms. This out-of-the-
box performance is desirable, especially when noting
that future improvements and specializations can be
expected to improve the approach substantially.

The code is available at https://github.com/
xunzheng/notears.

https://github.com/xunzheng/notears
https://github.com/xunzheng/notears
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