
Generalized Boosting

Anonymous Author(s)

Affiliation
Address
email

Abstract

Boosting is a widely used learning technique in machine learning for solving1

classification problems. In boosting, one predicts the label of an example using an2

ensemble of weak classifiers. While boosting has shown tremendous success on3

many classification problems involving tabular data, it performs poorly on complex4

classification tasks involving low-level features such as image classification tasks.5

This drawback stems from the fact that boosting builds an additive model of weak6

classifiers, each of which has very little predictive power. Often, the resulting7

additive models are not powerful enough to approximate the complex decision8

boundaries of real-world classification problems. In this work, we present a general9

framework for boosting where, similar to traditional boosting, we aim to boost the10

performance of a weak learner and transform it into a strong learner. However,11

unlike traditional boosting, our framework allows for more complex forms of12

aggregation of weak learners. In this work, we specifically focus on one form of13

aggregation - function composition. We show that many popular greedy algorithms14

for learning deep neural networks (DNNs) can be derived from our framework15

using function compositions for aggregation. Moreover, we identify the drawbacks16

of these greedy algorithms and propose new algorithms that fix these issues. Using17

thorough empirical evaluation, we show that our learning algorithms have superior18

performance over traditional additive boosting algorithms, as well as existing19

greedy learning techniques for DNNs. An important feature of our algorithms is20

that they come with strong theoretical guarantees.21

1 Introduction22

Boosting is a widely used learning technique in machine learning for solving classification problems.23

Boosting aims to improve the performance of a weak learner by combining multiple weak classifiers24

to produce a strong classifier with good predictive performance. Since the seminal works of Freund25

[13], Schapire [30], a number of practical algorithms such as AdaBoost [16], gradient boosting [24],26

XGBoost [9], have been proposed for boosting. Over the years, boosting based methods such as27

XGBoost in particular, have shown tremendous success in many real-world classification problems,28

as well as competitive settings such as Kaggle competitions. However, this success is mostly29

limited to classification tasks involving structured or tabular data with hand-engineered features.30

On classification problems involving low-level features and complex decision boundaries, boosting31

tends to perform poorly [3, 28] (also see Section 5). One example where this is evident is the image32

classification task, where the decision boundaries are often complex and the features are low-level33

pixel intensities. This drawback stems from the fact that boosting builds an additive model of weak34

classifiers, each of which has very little predictive power. Since such additive models with any35

reasonable number of weak classifiers are usually not powerful enough to approximate complex36

decision boundaries, the models’ output by boosting tend to have poor performance.37

In this work, we aim to overcome this drawback of traditional boosting by considering a generalization38

of boosting which allows for more complex forms of aggregation than linear combinations of39

weak classifiers. To achieve this goal, we work in the feature representation space and boost the40

Submitted to 34th Conference on Neural Information Processing Systems (NeurIPS 2020). Do not distribute.



performance of weak feature transformers. Working in the representation space allows for more41

flexible combinations of weak feature transformers. This is unlike traditional boosting which works42

in the label space and builds an additive model on the predictions of the weak classifiers. The43

starting point for our approach is the greedy view of boosting, originally studied by Friedman et al.44

[18], Mason et al. [24]. Let pRSpfq be the risk of a classifier f on training samples S, boosting45

techniques aim to approximate the minimizer of pRS in terms of linear combinations of elements46

from a set of weak classifiers F . Many popular boosting algorithms including AdaBoost, XGBoost,47

rely on greedy techniques to find such an approximation. In our generalized framework for boosting,48

we take this greedy view, but differ in how we aggregate the weak learners. We approximate the49

minimizer of pRS using models of the form fT “ W�T , where �T “ ∞T
t“0 gt, and tgtuTt“0 are50

feature transformations learned in each iteration of the greedy algorithm, andW is the linear classifier51

on top of the feature transformation. Unlike additive boosting, where each gt comes from a fixed52

weak feature transformer class G, in our framework each gt comes from a class Gt which evolves over53

time t and is allowed to depend on the past iterates t�iut´1
i“0. Some potential choices for Gt that could54

be of interest are tg ˝ �t´1 for g P Gu, tg ˝ pr�0, . . . ,�t´1sq for g P Gu, where g ˝ �pxq “ gp�pxqq55

denotes function composition of g and �, and G is a weak feature transformer class. Note that the56

former choice of Gt is connected to layer-by-layer training of models with ResNet architecture [19].57

As one particular instantiation of our framework, we consider weak feature transformers that are58

neural networks and use function compositions to combine them; that is, we use Gt’s constructed59

using function compositions. We show that for certain choices of Gt, our framework recovers the60

layer-by-layer training techniques developed in deep learning [6, 20]. Greedy layer-by-layer training61

techniques have seen a revival in recent years [5, 8, 20, 23, 27]. One reason for this revival is that62

greedy techniques consume less memory than end-to-end training of deep networks, and can hence63

accommodate much larger models in limited memory. As a primary contribution of the paper, we64

identify several drawbacks of existing layer-by-layer training techniques, and show that the choice65

of Gt used by these algorithms can lead to a drop in performance. We propose alternative choices66

for Gt which fix these issues and empirically demonstrate that the resulting algorithms have superior67

performance over existing layer-by-layer training techniques, and in some cases achieve performance68

close to that of end-to-end trained DNNs. Moreover, we show that the proposed algorithms perform69

much better than traditional additive boosting algorithms, on a variety of classification tasks.70

As the second contribution of the paper, we provide excess risk bounds for models learned using our71

generalized boosting framework. Our results depend on a certain weak learning condition on feature72

transformer classes tGtuTt“1, which is a natural generalization of the weak learning condition that73

is typically imposed in traditional boosting. The resulting risk bounds are modular and depend on74

the generalization bounds of tGtuTt“1. An advantage of such modular bounds is that one can rely on75

the best-known generalization bounds for weak transformation classes tGtuTt“1 and obtain tight risk76

bounds for boosting. As an immediate consequence of this result, we obtain excess risk bounds for77

existing greedy layer-by-layer training techniques.78

Related Work. Several works have proposed generalizations of traditional boosting. Cortes et al.79

[10] propose a boosting algorithm where the hypothesis set of weak classifiers is chosen adaptively.80

However, the resulting models are still additive models of weak classifiers and usually perform81

poorly on hard classification problems. Several recent works have attempted to learn neural networks82

greedily based on boosting theory. Cortes et al. [11] propose a boosting-style algorithm to learn both83

the structure and weights of neural networks in an adaptive way. However, the algorithms developed84

are restricted to feed forward neural networks and are mostly theoretical in nature. The experimental85

evidence in the paper is a proof-of-concept and only considers small scale binary classification86

tasks. Huang et al. [20], Nitanda and Suzuki [27] use ideas from classical boosting to learn neural87

networks in a layer-by-layer fashion. As we show later, these algorithms are specific instances of our88

generalized framework, and have certain drawbacks arising from the choice of Gt they use.89

2 Preliminaries90

In this section, we set up the notation and review the necessary background on additive boosting. A91

consolidated list of notations can be found in Appendix A.92

Notation. Let pX,Y q P X ˆ Y denote a feature-label pair following a probability distribution P .93

Let PX
, P

Y denote the marginal distributions of X and Y . In this work, we consider the multi-class94

classification problem where Y “ t0, . . .K ´ 1u, and assume X Ñ Rd. Let S “ tpxi, yiquni“1 be n95

i.i.d samples drawn from P . Let Pn be the empirical distribution of S and P
X
n , P

Y
n be the marginal96

2



distributions of txiuni“1, tyiuni“1.97

In classification, our goal is to find a predictor that can well predict the label of any feature from just the98

samples S. Let f : X Ñ RK denote a score-based classifier which assignsX to class argmaxi fipXq.99

The expected classification risk of f is defined as EX,Y r`0´1pfpXq, Y qs, where `0´1pfpXq, Y q “ 0100

if argmaxi fipXq “ Y , and 1 otherwise. Since optimizing 0{1 risk is computationally intractable,101

we consider convex surrogates of `0´1pfpXq, Y q, which we denote by `pfpXq, Y q; typical choices102

for ` include the logistic loss and the exponential loss. The population risk of f is then defined103

as Rpfq “ EX,Y r`pfpXq, Y qs . Since directly optimizing the population risk is impossible, we104

approximate it with the empirical risk pRSpfq “ 1
n

∞n
i“1 `pfpxiq, yiq and try to find its minimizer.105

We consider classifiers of the form fpXq “ W�pXq, where � : X Ñ RD is the feature transformer106

and W P RKˆD is the linear classifier on top. A typical choice for � is a neural network. We denote107

the population and empirical risks of such an f as RpW,�q, pRSpW,�q. We usually work in the space108

of feature transforms. Let L2pP q denote the space of square integrable functions w.r.t P , and define109

the inner product between �1,�2 P L2pP q as x�1,�2yP “ EX„P rx�1pXq,�2pXqys. We denote110

with r�RpW,�q the functional gradient of RpW,�q w.r.t � in the L2pPXq space, which is defined111

as r�RpW,�qpxq “ EY |x
“
W

T
r`pW�pxq, Y q

‰
, where r`pW�pxq, yq denotes the gradient of `112

w.r.t its first argument, evaluated at W�pxq. Similarly, we let r�
pRSpW,�q denote the functional113

gradient of pRSpW,�q in the L2pPX
n q space114

r�
pRSpW,�qpxq “

"
W

T
r`pW�pxiq, yiq, if x “ xi,

0 otherwise
.

Additive Boosting. In this work, we refer to traditional boosting as additive boosting, as it constructs115

additive models of weak classifiers. Let F be a hypothesis class of weak classifiers, a typical example116

being decision trees of bounded depth. Additive boosting aims to find an element in the linear span117

of F which minimizes the empirical risk pRSpfq. As previously mentioned, there exists a duality118

between boosting and greedy algorithms [18, 24]. Many popular boosting algorithms use a greedy119

forward stagewise approach to find a minimizer of pRSpfq, and solve the following in each iteration:120

⌘t, ft “ argmin⌘PR,fPF pRS

´ÿt´1

i“1
⌘ifi ` ⌘f

¯
,

where ⌘ is the learning rate. Various algorithms differ in how they solve this optimization problem.121

In gradient boosting, one uses a linear approximation of pRS around
∞t´1

i“1 ⌘ifi [24]. In this work,122

we take this greedy view of boosting to design the generalized boosting framework.123

Additive Representation Boosting. In this work, we perform boosting in the representation space,124

contrasting with traditional boosting which works in the output space. Let G be a hypothesis class125

of weak feature transformers, whose examples include the set of one layer neural networks of126

bounded width and a set of vector-valued polynomials of bounded degree. More generally, G can be127

any set of non-linear transformations. In additive representation boosting, we aim to find a strong128

feature transform � in the linear span of G, and a linear predictorW P W Ñ RKˆD that minimizes129

pRSpW,�q. To this end, we consider greedy algorithms that solve the following problem each iteration:130

131

Wt, gt “ argminWPW,gPG pRS pW,�t´1 ` ⌘tgq , (1)

where �t “ �0 ` ∞t
i“1 ⌘igi with �0 being the initial feature transformation, and t⌘iu8i“1 is a132

predefined learning rate schedule.133

3 Generalized Boosting134

The starting point for our generalized boosting framework is the additive representation boosting135

described in Section 2. Typically, linear combinations of weak feature transformations are not136

powerful enough to model complex decision boundaries. Consequently, the minimizer of pRSpW,�q137

over the linear span of G tends to have a high risk. A simple workaround for this issue would be138

to perform additive boosting with a complex hypothesis class G. For example, if the weak feature139

transformers are one layer neural networks, then one could increase the complexity of G by using140

deeper networks. However, such an alternative has several drawbacks both from an optimization141

and generalization perspective and defeats the purpose of boosting, which aims to convert weak142

learners into strong learners. From an optimization perspective, moving to complex G makes each143

3



greedy step harder to optimize. For example, compared to deep neural networks, shallow networks144

are easier to optimize, require fewer resources, and are easier to analyze or interpret [5]. From a145

generalization perspective, since the generalization bounds of boosting depend on the complexity of146

G, larger hypothesis classes can lead to overfitting and poor performance on unseen data.147

In this work, we are interested in other approaches for increasing the complexity of models produced148

by boosting, while ensuring the boosting/greedy steps are easy to implement. One way to achieve149

this is by considering more complex combinations of weak feature transformers than the linear150

combinations considered in additive representation boosting. Formally, let Gt denote the hypothesis151

class of feature transformations used in the tth iteration of boosting. In additive boosting, Gt “ G for152

all t. In our generalized boosting framework, we increase the complexity of Gt by letting it depend153

on the past iterates t�iut´1
i“0. Here are some potential choices for Gt, other than the ones stated in the154

introduction: tg ˝p∞t´1
i“0 ↵i�iq, for g P G,↵i P Ru, tg ˝�t´1 ˝�t´2 ¨ ¨ ¨˝�0, for g P Gu. Depending155

on the problem domain, one could consider several other ways of constructing Gt using the past156

iterates. Note that even with these complex choices of Gt, the greedy steps are easy to implement and157

only need a weak learner which can identify an element in G that best fits the data. As a result, this158

remains in the spirit of boosting and at the same time ensures the models learned are complex enough159

for real world problems.160

We now present our algorithm for generalized boosting (see Algorithm 1). Similar to additive161

representation boosting, our algorithm proceeds in a greedy fashion. In the t
th iteration of the162

algorithm, we aim to solve the following optimization problem:163

Wt, gt “ argmin
WPW,gPGt

pRS pW,�t´1 ` ⌘tgq . (2)

We provide two approaches for solving this problem. One is the exact greedy approach, which164

directly solves the optimization problem (Algorithm 2). For problems where direct optimization of165

Equation (2) is difficult1, we provide an approximate technique which performs functional gradient166

descent on the objective. In this approach, which we call gradient greedy approach, we approximate167

the objective with the linear approximation of pRS around �t´1 (Algorithm 3):168

pRS pW,�t´1 ` ⌘tgq « pRS pW,�t´1q ` ⌘t

A
r�

pRSpW,�t´1q, g
E

PX
n

.

To optimize the linear approximation, we first fix W to Wt´1 and find a minimizing gt P Gt.169

Intuitively, this step can be seen as finding a g which best aligns with the negative functional gradient170

of empirical risk at the current iterate. For appropriate choice of learning rate ⌘, moving along171

gt results in reduction of pRS . Next, we fix gt and find a linear predictor W which minimizes the172

empirical risk pRSpW,�tq. This alternating optimization of g and W makes the algorithm easy to173

implement in practice. Moreover, this algorithm is more stable than joint optimization of g andW .174

We note that such gradient greedy approaches have been developed for traditional boosting [24].175

3.1 Compositional Boosting176

As one particular instantiation of our framework, we consider Gt’s constructed by composing elements177

from a weak feature transformer class G with the past iterates t�iut´1
i“0 and study the resulting boosting178

algorithms. We refer to such boosting algorithms as compositional boosting algorithms since the179

strong feature transformer is constructed from weak feature transformer via function composition.180

When Gt “ tg ˝ �t´1 for g P Gu, the models in our framework have the ResNet architecture and can181

be defined recurrently as �t “ �t´1 ` ⌘tgt ˝ �t´1. Moreover, Algorithm 1 with this choice of Gt and182

Algorithm 2 as update routine give us the greedy layer-wise supervised training technique proposed183

by Bengio et al. [6] and recently revisited by Belilovsky et al. [5]. In another recent work, Huang184

et al. [20] propose a boosting-based algorithm for learning ResNets. We now show that their approach185

is equivalent to the greedy technique of Bengio et al. [6], and thus can be seen as an instance of our186

general framework. We note that such a connection is not known previously.187

Proposition 3.1. Suppose the classification loss ` is the exponential loss. Then the greedy technique188

of Huang et al. [20] for learning ResNets is equivalent to the greedy layer-wise supervised training189

technique of Bengio et al. [6].190

In another recent work, Nitanda and Suzuki [27] propose a gradient boosting technique to greedily191

learn a ResNet. This algorithm is closely related to the gradient greedy approach described in192

Algorithm 3, with Gt “ tg ˝ �t´1 for g P Gu.193

1Such scenarios arise if the feature transformations are non-differentiable functions such as decision trees.

4



Algorithm 1 Generalized Boosting
1: Input: Training data S “ tpxi, yiquni“1, iterations T , initial linear predictorW0, initial feature transformer

�0, learning rates t⌘iuTi“1, Update-routine: UPDATE
2: t – 1
3: while t § T do

4: Construct feature transformer class Gt based on past iterates tpWi,�iqut´1
i“0

5: Wt,�t – UPDATE pS,Wt´1,�t´1, ⌘t,Gtq
6: t – t` 1
7: end while

8: Return: WT ,�T

Algorithm 2 Exact Greedy Update
1: Input: Training data S, previous iterate

pW,�q, learning rate ⌘, feature trans-
former class G

2:

W`, g` – argmin
ÄWPW,g̃PG

pRSpÄW,�` ⌘g̃q

3: �` – �` ⌘g`

4: Return: W`,�`

Algorithm 3 Gradient Greedy Update
1: Input: Training data S, previous iterate pW,�q, learning rate

⌘, feature transformer class G
2: // Pick a descent direction
3: g` – argming̃PG

A
r�

pRSpW,�q, g̃
E

PX
n

4: �` – �` ⌘g`

5: // Update the linear predictor
6: W` – argminÄWPW

pRSpÄW,�`q
7: Return: W`,�`

194

195

We now highlight certain drawbacks of the existing greedy layer-wise training techniques, which arise196

from the particular choice of Gt used by these algorithms. Since tg ˝ �t´1 for g P Gu is constructed197

solely based on the past iterate �t´1, any mistake in �t´1 is propagated to all the future iterates. As198

a result, these algorithms can not recover from their past mistakes. As an example, consider the199

following scenario where two points x1,x2 belonging to two different classes are placed close to200

each other in the feature space, after 1st iteration of greedy; that is �1px1q « �1px2q. In such a201

scenario, the future iterates t�tu8t“2 generated by existing greedy algorithms will always place x1,x2202

close to each other in the representation space. As a result, the algorithm will always misclassify203

at least one of x1,x2. Another issue with existing greedy techniques is that they do not guarantee204

that the complexity of Gt increases with time t. In such scenarios, Algorithm 1 doesn’t make much205

progress in each iteration and can result in poor models. As an example, consider the setting where G206

is the set of all linear transformations. Suppose �0 is the identity transform and �1 is such that its207

range lies in a low dimensional subspace. Then, it is evident that G1 Ö Gt for all t • 2.208

To fix these issues, we propose two new compositional boosting algorithms obtained with a more209

careful choice of Gt. In our first algorithm, which we call DenseCompBoost, we choose Gt as follows210

211
Gt “

!
g ˝ pId`

ÿt´1

i“0
↵i�iq, for g P G,↵i P R

)
, (3)

where Idp¨q is the identify function. Such a choice of Gt helps us recover from the past mistakes. For212

example, if �1 is a constant function, then the algorithm can still learn a good feature transformer by213

relying on the input x and the initial feature transform �0. Moreover, our choice of Gt ensures its214

complexity grows with t and satisfies: Gt´1 Ñ Gt, for all t. We call our algorithm DenseCompBoost,215

since the resulting model for this choice of Gt resembles a DenseNet [21], where each layer is allowed216

to be connected to all the previous layers. That being said, the models output by DenseCompBoost217

differ from DenseNet in how they aggregate the previous layers. DenseNet concatenates the features218

from previous layers, whereas DenseCompBoost adds the features. Our second algorithm, which we219

call CmplxCompBoost, tries to increase the complexity of Gt in each iteration as follows220

Gt “
!
g ˝ �t´1, for g P rGt

)
, (4)

where rGt is a weak feature transformer class and satisfies rGt´1 Ä rGt for all t. In the case of one221

layer neural networks, such rGt’s can be constructed by increasing the layer width with t. We note that222

the rGt in this algorithm is independent of the past iterates. By increasing the complexity of rGt with t,223

we expect the complexity of Gt to increase and Algorithm 1 to make more progress in each iteration.224

While not immediately evident, we note that this technique can also fix the mistakes made by past225

iterates. For example, suppose �1 is such that it places two points x1,x2 from different classes,226

close to each other in the feature space. Then having a more complex rG2 can help recover from this227

mistake, as one can potentially find a g P rG2 which can separate these two points. In Section 5, we228

present empirical evidence showing that our new boosting algorithms have superior performance over229

5



existing additive and compositional boosting algorithms. Further empirical evidence corroborating230

the issues we identified with existing layer-wise training techniques can be found in Appendix J.1.231

4 Excess Risk Bounds232

In this section, we provide excess risk bounds for the models’ output by the generalized boosting233

framework. Our results depend on a weak learning condition on the hypothesis class Gt used in the234

t
th iteration of Algorithm 1. This condition is a way to quantify the relative strength of Gt and roughly235

says that there always exists an element in Gt which has an acute angle with the negative functional236

gradient at the current iterate. Such a condition ensures progress in each iteration of boosting.237

Definition 4.1. Let � P p0, 1s, ✏ • 0 be constants. Gt`1 is said to satisfy the p�, ✏q-weak learning238

condition for a dataset S, if there exists a g P Gt`1 such that239 A
g,´r�

pRSpWt,�tq
E

PX
n

• �BpGt`1q}r�
pRSpWt,�tq}PX

n
´ ✏,

where BpGt`1q “ supgPGt`1
}g}PX

n
, and Pn is the empirical distribution of S.240

In traditional boosting, such conditions are typically referred to as the edge of a weak learner and241

play a crucial role in the convergence analysis. For example, Freund and Schapire [14] assume242

that for any set of weights over the training set S, there exists a classifier in the hypothesis class of243

weak classifiers which has better than random accuracy on the weighted samples. The following244

proposition shows that their condition is closely related to Definition 4.1.245

Proposition 4.1. For binary classification, the weak learning condition of Freund and Schapire [14]246

satisfies the empirical weak learning condition in Definition 4.1, albeit in the label space.247

For binary classification problems, it is well known that the weak learning condition of [14] is248

the weakest condition under which boosting is possible [15, 29]. This, together with the above249

proposition, suggests that our weak learning condition in Definition 4.1 cannot be weakened for250

binary classification problems.251

To begin with, we derive excess risk bounds for the gradient greedy approach. Our analysis crucially252

relies on the observation that it can be viewed as performing inexact gradient descent on the population253

risk R. Several recent works have analyzed inexact gradient descent on convex objectives [2, 12,254

31, 32]. However, the condition on the inexact gradient imposed by these works is different from255

ours and in many cases is stronger than our condition. For example, the condition of Balakrishnan256

et al. [2] translates to }g ` r�RpW,�q}PX § ✏ in our setting, which is stronger than our weak257

learning condition. So the core of our analysis focuses on understanding inexact gradient descent with258

descent steps satisfying the weak learning condition in Definition 4.1. In our analysis, we consider a259

sample-splitting variant of the algorithm, where in each iteration we use a fresh batch of samples.260

This is mainly done to simplify the analysis by avoiding complex statistical dependencies between261

the iterates of the algorithm. Let ñ “ t nT u, we split the training dataset S into T subsets tStuTt“1 of262

size ñ, where St “ tpxt,i, yt,iquñi“1. We work with the subset St in the tth iteration of Algorithm 1.263

We are now ready to state our main result on the excess risk bounds of the iterates of Algorithm 3.264

Our results depend on the Rademacher complexity terms related of the hypothesis sets W,Gt265

R pW,Gtq “ E

»

—– sup
WPW,
gPGt

1

ñ

ñÿ

i“1

Kÿ

k“1

⇢ikrWgpxt,iqsk

fi

�fl , R pGtq “ E
«
sup
gPGt

1

ñ

ñÿ

i“1

Dÿ

j“1

⇢ijrgpxt,iqsj
�
,

where rusk denotes the kth entry of a vector u, and the expectation is taken w.r.t the randomness266

from St and the Rademacher random variables ⇢ij’s.267

Theorem 4.1 (Gradient Greedy). Suppose the classification loss ` is L-Lipschitz and M -smooth268

w.r.t the first argument. Let the hypothesis set of linear predictors W be s.t. any W P W satisfies269

�min

`
WW

T
˘

• �
2
min

° 0 and �max

`
WW

T
˘

§ �
2
max

. Moreover, suppose for all t, Gt satisfies the270

p�, ✏tq-weak learning condition of Definition 4.1 for any dataset St. Finally, suppose any g P Gt is271

bounded with supX }gpXq}2 § B. Let the learning rates t⌘tu8t“1 be chosen as ⌘t “ ct
´s

, for some272

s P
´

�`1
�`2 , 1

¯
and positive constant c. If Algorithm 1 is run for T iterations with Algorithm 3 as273

update routine, then pWT ,�T q, the T th
iterate output by the algorithm, satisfies the following risk274

bound for any W
˚
,�

˚
and ↵ P p0,�p1´ sqq, with probability at least 1´ � over datasets of size n275

RpWT ,�T q § RpW˚
,�

˚q `O

¨

˝ 1

T↵
` T

2´s

d
log T

�

ñ

˛

‚` 2
Tÿ

t“1

⌘t pLR pW,Gtq ` LR pGtq ` ✏tq .

6



The T´↵ term above corresponds to the optimization error, the ⌘t✏t term corresponds to the approxi-276

mation error, and the rest correspond to the generalization error. As T increases, T´↵ goes down,277

and as ñ increases, the generalization error goes down. If there is no approximation error, that is if278

✏t “ 0 for all t, then the excess risk goes down to 0 as ñ, T Ñ 8 at an appropriate rate. Further279

discussion on this result can be found in Appendix D. We now extend the analysis of Theorem 4.1 to280

the exact greedy approach.281

Corollary 4.1 (Exact Greedy). Consider the setting of Theorem 4.1. Suppose Algorithm 1 is run282

with Algorithm 2 as update routine. Then pWT ,�T q, the T th
iterate output by the algorithm, satisfies283

the same risk bounds as gradient greedy algorithm in Theorem 4.1.284

In the rest of the section, we instantiate Theorem 4.1 for specific choices of Gt. We first consider the285

additive representation boosting algorithm.286

Corollary 4.2. Consider the setting of Theorem 4.1 and consider the additive representation boosting287

algorithm, where Gt “ G for all t. Suppose G is the set of one layer neural networks with sigmoid288

activation functions: G “
 
�pCxq, for C P RDˆd

, }Ci,˚}1 § ⇤,@i
(
.Moreover, suppose the feature289

domain X is a subset of r0, 1sd. Then the T
th

iterate output by Algorithm 1, with Algorithm 2 or 3 as290

update routine, satisfies the following risk bound for any pW˚
,�

˚q, with probability at least 1´ �291

RpWT ,�T q § RpW˚
,�

˚q `O

ˆ
1

T↵

˙
` 2

Tÿ

t“1

⌘t✏t `O

¨

˝KD⇤T 1´s logD?
ñ

` T
2´s

d
log T

�

ñ

˛

‚.

Next, we consider the layer-by-layer fitting technique of Bengio et al. [6].292

Corollary 4.3. Consider the setting of Corollary 4.2 and consider the layer-by-layer training tech-293

nique of Bengio et al. [6], where Gt “ tg ˝ �t´1 for g P Gu. Suppose G is the set of one layer neural294

networks with sigmoid activation functions: G “
 
�pCxq, for C P RDˆD

, }Ci,˚}1 § ⇤,@i
(
. Then295

the T
th

iterate output by Algorithm 1, with Algorithm 2 or 3 as update routine, satisfies the following296

risk bound for any pW˚
,�

˚q with probability at least 1´ �297

RpWT ,�T q § RpW˚
,�

˚q `O

ˆ
1

T↵

˙
` 2

Tÿ

t“1

⌘t✏t `O

¨

˝KD⇤T 2´2s logD?
ñ

` T
2´s

d
log T

�

ñ

˛

‚.

Note that the generalization and optimization errors for both additive feature boosting and layer-298

by-layer fitting have similar dependence on T, ñ. However, the latter tends to have a smaller299

approximation error (✏t) as it is able to build complex Gt’s over time. So one would expect layer-by-300

layer fitting to output models with a better population risk, which our empirical results in fact verify.301

302

5 Experiments303

In this section, we present experiments comparing the performance of various boosting techniques on304

both simulated and benchmark datasets.305

Baselines. We compare our proposed boosting techniques with XGBoost, AdaBoost, additive306

representation boosting (discussed in Corollary 4.2) and greedy layer-by-layer training technique of307

Bengio et al. [6] (Corollary 4.3). XGBoost uses decision stumps as weak classifiers. For AdaBoost,308

we use 1 hidden layer neural networks as weak classifiers. We use two kinds of neural networks,309

based on the dataset. For tabular datasets, we use fully connected networks and for image datasets, we310

use convolutional networks (CNN) with the convolution block made up of Convolution, BatchNorm,311

ReLU layers arranged sequentially. For additive representation boosting (Additive Feature Boost312

from now on) and layer-by-layer fitting (StdCompBoost from now on), the weak feature transformer313

class G consists of one layer neural network transformations. Similar to AdaBoost, we use two kinds314

of transformations: a) fully connected transformations of the form gpxq “ ReLUpCx` dq, and b)315

convolutional transformations with Convolution, BatchNorm, ReLU blocks arranged sequentially.316

Finally, we also compare against end-to-end training of neural networks.317

Proposed Techniques. For DenseCompBoost, we consider two choices for G: one based on fully318

connected blocks and the other based on convolution blocks. For CmplxCompBoost, we again319

consider two choices for the weak transformer class G̃t in Equation (4): a) ReLUpCx ` dq with320

C P RDtˆDt´1 , where Dt “ Dt´1 `� for some positive constant �, and b) convolution blocks321

with number of output channels equal to the number of input channels plus a constant�. This choice322

of feature transformers ensures the complexity of G̃t increases with t. We use exact greedy updates323

(Algorithm 2) for both of our proposed methods and set learning rate ⌘t to 1.324

7



Table 1: Test accuracy of various boosting techniques on synthetic datasets. Numbers in bold indicate
the best performance among various greedy techniques. The row corresponding to half width shows
the performance of DenseCompBoost using layers with a width equal to half of the best width.

Technique Simulation 1 Simulation 2 Simulation 3
XGBoost (Trees) 84.40 97.59 50.10
AdaBoost (1 NN) 67.90 93.73 72.64

Additive Feature Boost 88.49 93.91 73.13
StdCompBoost 91.53 96.95 82.49

DenseCompBoost 93.55 98.35 95.70

DenseCompBoost (half width) 93.54 97.99 94.37
CmplxCompBoost 91.97 97.22 82.52

End-to-End 93.88 98.35 99.09

Table 2: Test accuracy of various boosting techniques on benchmark datasets. We use convolution
blocks for the first 5 datasets and fully connected blocks for the other datasets.

Technique SVHN FashionMNIST CIFAR10 Convex MNIST-rot-
back-image MNIST Letter CovType Connect4

XGBoost (Trees) 77.72 90.34 58.34 82.29 53.89 97.96 96.16 97.46 86.63
AdaBoost (1 NN) 82.88 88 72.78 86.17 50.02 98.27 92.08 90.95 86.39

Additive
Feature Boost 83.36 89.95 74.33 89.30 54.31 98.27 90.86 93.12 86.58

StdCompBoost 90.81 92.77 81.93 98.19 73.17 98.37 96.43 95.61 86.33
DenseCompBoost 91.03 93.17 82.31 98.6 73.1 98.34 96.96 96.28 86.85

CmplxCompBoost 91.25 93.18 82.43 98.52 74.32 98.34 96.66 95.92 86.49
End-to-End 94.82 93.49 86.88 98.81 82.69 98.95 97.67 96.86 87.37

Results: The baseline and proposed methods are tested on 3 simulated datasets involving binary325

classification tasks with polynomial decision boundaries, and 9 benchmark datasets consisting of326

both tabular and image data. Details of the datasets and hyperparamters can be found in Appendix J.327

Table 1 presents the results on simulated datasets. Both CmplxCompBoost and StdCompBoost largely328

outperform the additive boosting methods, with CmplxCompBoost being slightly better due to the329

increasing complexity in G̃t. Notably, DenseCompBoost performs significantly better than the rest330

and is able to bridge the gap between StdCompBoost and End-to-End. We attribute its success to331

its ability to recover from earlier mistakes: while StdCompBoost or CmplxCompBoost necessarily332

accumulate errors at each layer, DenseCompBoost is further connected to earlier layers, allowing333

it to undo its past mistakes. To verify this, we corrupt the weights of the first layers of models334

learned using StdCompBoost and DenseCompBoost, during the training process. We observed335

that DenseCompBoost is barely affected by a poor first layer (0.7% drop in accuracy), whereas336

StdCompBoost suffers a significant performance drop (about 10%) (see Table 3 in Appendix J.1).337

Results on benchmark datasets are presented in Table 2. It can be seen that additive boosting tech-338

niques have poor performance on image classification tasks. Among compositional boosting methods,339

StdCompBoost performs the worst. While DenseCompBoost performs comparably to CmplxComp-340

Boost on image datasets, it is better on tabular data. We believe a hybrid of DenseCompBoost and341

CmplxCompBoost algorithms can achieve better performance than either of the algorithms.342

6 Conclusion343

We proposed a generalized framework for boosting, which allows for more complex forms of344

aggregation of weak learners than traditional boosting. Our generalized framework allows to derive345

learning algorithms that (a) have performance close to that of end-to-end trained DNNs, and (b)346

come with strong theoretical guarantees. Additive boosting algorithms do not satisfy property (a),347

while DNNs do not satisfy property (b). In particular, additive boosting algorithms, even with small348

neural networks as their weak classifiers, do not not have the strong performance of end-to-end349

trained DNNs. Improving their performance requires the hypothesis space to increase in complexity350

while not increasing sample complexity of each boosting step too greatly, which can be achieved by351

our generalized boosting framework. One particular instantiation of our framework is aggregation352

using function compositions. A number of existing greedy techniques for learning neural networks353

fall into our framework, and our analysis allowed us to delineate some of their key flaws, then354

consequently, propose new techniques which improve upon them. We believe our work opens up a355

new line of inquiry for greedy learning of highly flexible models with rigorous theoretical guarantees,356

by leveraging the theory of boosting and generalized greedy algorithms in function spaces. We357

moreover believe our work has the potential to bridge the gap in performance between existing greedy358

layer-by-layer training techniques and end-to-end training of deep networks.359

8



Broader Impact360

In the long term, our work can potentially lead to XGBoost like packages for efficiently learning361

complex machine learning models and can have similar societal consequences as XGBoost. In the362

short term, this work does not present any societal consequences.363

References364

[1] Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparame-365

terized neural networks, going beyond two layers. In Advances in neural information processing366

systems, pages 6155–6166, 2019.367

[2] Sivaraman Balakrishnan, Martin J Wainwright, Bin Yu, et al. Statistical guarantees for the em368

algorithm: From population to sample-based analysis. The Annals of Statistics, 45(1):77–120,369

2017.370

[3] Pierre Baldi, Peter Sadowski, and Daniel Whiteson. Searching for exotic particles in high-energy371

physics with deep learning. Nature communications, 5:4308, 2014.372

[4] Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds373

and structural results. Journal of Machine Learning Research, 3(Nov):463–482, 2002.374

[5] Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Greedy layerwise learning can375

scale to imagenet. arXiv preprint arXiv:1812.11446, 2018.376

[6] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-wise377

training of deep networks. In Advances in neural information processing systems, pages378

153–160, 2007.379

[7] Catherine L Blake and Christopher J Merz. Uci repository of machine learning databases, 1998,380

1998.381

[8] Chang Chen, Zhiwei Xiong, Xinmei Tian, and Feng Wu. Deep boosting for image denoising.382

In Proceedings of the European Conference on Computer Vision (ECCV), pages 3–18, 2018.383

[9] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of384

the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages385

785–794, 2016.386

[10] Corinna Cortes, Mehryar Mohri, and Umar Syed. Deep boosting. 2014.387

[11] Corinna Cortes, Xavier Gonzalvo, Vitaly Kuznetsov, Mehryar Mohri, and Scott Yang. Adanet:388

Adaptive structural learning of artificial neural networks. In Proceedings of the 34th Interna-389

tional Conference on Machine Learning-Volume 70, pages 874–883. JMLR. org, 2017.390

[12] Olivier Devolder, François Glineur, and Yurii Nesterov. First-order methods of smooth convex391

optimization with inexact oracle. Mathematical Programming, 146(1-2):37–75, 2014.392

[13] Yoav Freund. Boosting a weak learning algorithm by majority. Information and computation,393

121(2):256–285, 1995.394

[14] Yoav Freund and Robert E Schapire. A desicion-theoretic generalization of on-line learning and395

an application to boosting. In European conference on computational learning theory, pages396

23–37. Springer, 1995.397

[15] Yoav Freund and Robert E Schapire. Game theory, on-line prediction and boosting. In398

Proceedings of the ninth annual conference on Computational learning theory, pages 325–332,399

1996.400

[16] Yoav Freund, Robert E Schapire, et al. Experiments with a new boosting algorithm. In icml,401

volume 96, pages 148–156. Citeseer, 1996.402

[17] Peter W Frey and David J Slate. Letter recognition using holland-style adaptive classifiers.403

Machine learning, 6(2):161–182, 1991.404

[18] Jerome Friedman, Trevor Hastie, Robert Tibshirani, et al. Additive logistic regression: a405

statistical view of boosting (with discussion and a rejoinder by the authors). The annals of406

statistics, 28(2):337–407, 2000.407

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image408

recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,409

pages 770–778, 2016.410

9



[20] Furong Huang, Jordan Ash, John Langford, and Robert Schapire. Learning deep resnet blocks411

sequentially using boosting theory. arXiv preprint arXiv:1706.04964, 2017.412

[21] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian QWeinberger. Densely connected413

convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern414

recognition, pages 4700–4708, 2017.415

[22] Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and Yoshua Bengio. An416

empirical evaluation of deep architectures on problems with many factors of variation. In417

Proceedings of the 24th international conference on Machine learning, pages 473–480, 2007.418

[23] Sindy Löwe, Peter O’Connor, and Bastiaan Veeling. Putting an end to end-to-end: Gradient-419

isolated learning of representations. In Advances in Neural Information Processing Systems,420

pages 3033–3045, 2019.421

[24] Llew Mason, Jonathan Baxter, Peter L Bartlett, and Marcus R Frean. Boosting algorithms as422

gradient descent. In Advances in neural information processing systems, pages 512–518, 2000.423

[25] Andreas Maurer. A vector-contraction inequality for rademacher complexities. In International424

Conference on Algorithmic Learning Theory, pages 3–17. Springer, 2016.425

[26] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng.426

Reading digits in natural images with unsupervised feature learning. 2011.427

[27] Atsushi Nitanda and Taiji Suzuki. Functional gradient boosting based on residual network428

perception. arXiv preprint arXiv:1802.09031, 2018.429

[28] Natalia Ponomareva, Thomas Colthurst, Gilbert Hendry, Salem Haykal, and Soroush Radpour.430

Compact multi-class boosted trees. In 2017 IEEE International Conference on Big Data (Big431

Data), pages 47–56. IEEE, 2017.432

[29] Gunnar Rätsch and Manfred K Warmuth. Efficient margin maximizing with boosting. Journal433

of Machine Learning Research, 6(Dec):2131–2152, 2005.434

[30] Robert E Schapire. The strength of weak learnability. Machine learning, 5(2):197–227, 1990.435

[31] Mark Schmidt, Nicolas L Roux, and Francis R Bach. Convergence rates of inexact proximal-436

gradient methods for convex optimization. In Advances in neural information processing437

systems, pages 1458–1466, 2011.438

[32] Vladimir Nikolaevich Temlyakov. Greedy expansions in convex optimization. Proceedings of439

the Steklov Institute of Mathematics, 284(1):244–262, 2014.440

[33] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for441

benchmarking machine learning algorithms, 2017.442

10


