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Abstract

Boosting is a widely used learning technique in machine learning for solving
classification problems. In boosting, one predicts the label of an example using an
ensemble of weak classifiers. While boosting has shown tremendous success on
many classification problems involving tabular data, it performs poorly on complex
classification tasks involving low-level features such as image classification tasks.
This drawback stems from the fact that boosting builds an additive model of weak
classifiers, each of which has very little predictive power. Often, the resulting
additive models are not powerful enough to approximate the complex decision
boundaries of real-world classification problems. In this work, we present a general
framework for boosting where, similar to traditional boosting, we aim to boost the
performance of a weak learner and transform it into a strong learner. However,
unlike traditional boosting, our framework allows for more complex forms of
aggregation of weak learners. In this work, we specifically focus on one form of
aggregation - function composition. We show that many popular greedy algorithms
for learning deep neural networks (DNNs) can be derived from our framework
using function compositions for aggregation. Moreover, we identify the drawbacks
of these greedy algorithms and propose new algorithms that fix these issues. Using
thorough empirical evaluation, we show that our learning algorithms have superior
performance over traditional additive boosting algorithms, as well as existing
greedy learning techniques for DNNs. An important feature of our algorithms is
that they come with strong theoretical guarantees.

1 Introduction

Boosting is a widely used learning technique in machine learning for solving classification problems.
Boosting aims to improve the performance of a weak learner by combining multiple weak classifiers
to produce a strong classifier with good predictive performance. Since the seminal works of Freund
[13], Schapire [30], a number of practical algorithms such as AdaBoost [16], gradient boosting [24],
XGBoost [9], have been proposed for boosting. Over the years, boosting based methods such as
XGBoost in particular, have shown tremendous success in many real-world classification problems,
as well as competitive settings such as Kaggle competitions. However, this success is mostly
limited to classification tasks involving structured or tabular data with hand-engineered features.
On classification problems involving low-level features and complex decision boundaries, boosting
tends to perform poorly [3, 28] (also see Section 5). One example where this is evident is the image
classification task, where the decision boundaries are often complex and the features are low-level
pixel intensities. This drawback stems from the fact that boosting builds an additive model of weak
classifiers, each of which has very little predictive power. Since such additive models with any
reasonable number of weak classifiers are usually not powerful enough to approximate complex
decision boundaries, the models’ output by boosting tend to have poor performance.

In this work, we aim to overcome this drawback of traditional boosting by considering a generalization
of boosting which allows for more complex forms of aggregation than linear combinations of
weak classifiers. To achieve this goal, we work in the feature representation space and boost the
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performance of weak feature transformers. Working in the representation space allows for more
flexible combinations of weak feature transformers. This is unlike traditional boosting which works
in the label space and builds an additive model on the predictions of the weak classifiers. The
starting point for our approach is the greedy view of boosting, originally studied by Friedman et al.

[18], Mason et al. [24]. Let ]%s(f) be the risk of a classifier f on training samples S, boosting

techniques aim to approximate the minimizer of Rg in terms of linear combinations of elements
from a set of weak classifiers /. Many popular boosting algorithms including AdaBoost, XGBoost,
rely on greedy techniques to find such an approximation. In our generalized framework for boosting,
we take this greedy view, but differ in how we aggregate the weak learners. We approximate the

minimizer of Rg using models of the form fr = W¢r, where ¢r = Zf:o gt» and {g;}1_, are
feature transformations learned in each iteration of the greedy algorithm, and W is the linear classifier
on top of the feature transformation. Unlike additive boosting, where each g; comes from a fixed
weak feature transformer class G, in our framework each g; comes from a class G; which evolves over
time ¢ and is allowed to depend on the past iterates {gbi}f;l. Some potential choices for G, that could
be of interest are {g o ¢;_1 for g € G}, {g o ([¢0, ..., Pt_1]) for g € G}, where g 0 p(x) = g(o(x))
denotes function composition of g and ¢, and G is a weak feature transformer class. Note that the
former choice of G; is connected to layer-by-layer training of models with ResNet architecture [19].

As one particular instantiation of our framework, we consider weak feature transformers that are
neural networks and use function compositions to combine them; that is, we use G;’s constructed
using function compositions. We show that for certain choices of G, our framework recovers the
layer-by-layer training techniques developed in deep learning [6, 20]. Greedy layer-by-layer training
techniques have seen a revival in recent years [5, 8, 20, 23, 27]. One reason for this revival is that
greedy techniques consume less memory than end-to-end training of deep networks, and can hence
accommodate much larger models in limited memory. As a primary contribution of the paper, we
identify several drawbacks of existing layer-by-layer training techniques, and show that the choice
of G, used by these algorithms can lead to a drop in performance. We propose alternative choices
for G; which fix these issues and empirically demonstrate that the resulting algorithms have superior
performance over existing layer-by-layer training techniques, and in some cases achieve performance
close to that of end-to-end trained DNNs. Moreover, we show that the proposed algorithms perform
much better than traditional additive boosting algorithms, on a variety of classification tasks.

As the second contribution of the paper, we provide excess risk bounds for models learned using our
generalized boosting framework. Our results depend on a certain weak learning condition on feature
transformer classes {G;}7_,, which is a natural generalization of the weak learning condition that
is typically imposed in traditional boosting. The resulting risk bounds are modular and depend on
the generalization bounds of {G;}7_,. An advantage of such modular bounds is that one can rely on
the best-known generalization bounds for weak transformation classes {G;}7_; and obtain tight risk
bounds for boosting. As an immediate consequence of this result, we obtain excess risk bounds for
existing greedy layer-by-layer training techniques.

Related Work. Several works have proposed generalizations of traditional boosting. Cortes et al.
[10] propose a boosting algorithm where the hypothesis set of weak classifiers is chosen adaptively.
However, the resulting models are still additive models of weak classifiers and usually perform
poorly on hard classification problems. Several recent works have attempted to learn neural networks
greedily based on boosting theory. Cortes et al. [11] propose a boosting-style algorithm to learn both
the structure and weights of neural networks in an adaptive way. However, the algorithms developed
are restricted to feed forward neural networks and are mostly theoretical in nature. The experimental
evidence in the paper is a proof-of-concept and only considers small scale binary classification
tasks. Huang et al. [20], Nitanda and Suzuki [27] use ideas from classical boosting to learn neural
networks in a layer-by-layer fashion. As we show later, these algorithms are specific instances of our
generalized framework, and have certain drawbacks arising from the choice of G; they use.

2 Preliminaries

In this section, we set up the notation and review the necessary background on additive boosting. A
consolidated list of notations can be found in Appendix A.

Notation. Let (X,Y) € X x ) denote a feature-label pair following a probability distribution P.
Let PX , PY denote the marginal distributions of X and Y. In this work, we consider the multi-class
classification problem where J = {0,... K — 1}, and assume X < R%. Let S = {(x;,v:)}", be n
i.i.d samples drawn from P. Let P, be the empirical distribution of S and P;X, PY be the marginal
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distributions of {x;}I" ¢, {y:} ;.

In classification, our goal is to find a predictor that can well predict the label of any feature from just the
samples S. Let f : X — RX denote a score-based classifier which assigns X to class argmax; f;(X).
The expected classification risk of f is defined as Ex y [fo—1(f(X),Y)], where £o_1(f(X),Y) =0
if argmax; f;(X) =Y, and 1 otherwise. Since optimizing 0/1 risk is computationally intractable,
we consider convex surrogates of £y_1(f(X),Y"), which we denote by £(f(X),Y); typical choices
for ¢ include the logistic loss and the exponential loss. The population risk of f is then defined
as R(f) = Ex,y [¢(f(X),Y)]. Since directly optimizing the population risk is impossible, we

approximate it with the empirical risk }AQS( f) = % > (f(xi),y;) and try to find its minimizer.

We consider classifiers of the form f(X) = W$(X), where ¢ : X — RP is the feature transformer
and W e RE*P is the linear classifier on top. A typical choice for ¢ is a neural network. We denote
the population and empirical risks of such an f as R(W, ¢), Rs(W, ¢). We usually work in the space
of feature transforms. Let Lo (P) denote the space of square integrable functions w.r.t P, and define
the inner product between ¢1, ¢2 € Lo(P) as {¢1,d2)p = Exp [(¢1(X), 92(X))]. We denote
with V,R(W, ¢) the functional gradient of R(W, ¢) w.r.t ¢ in the Lo (PX) space, which is defined
as Vo R(W, ¢)(x) = Eyx [WT VLW ¢(x),Y)], where V(W $(x), y) denotes the gradient of ¢
w.r.t its first argument, evaluated at W¢(x). Similarly, we let V¢]§5(VV, @) denote the functional
gradient of ]/%S(W, ) in the Ly (P;X) space

N WIVIWo(x:),v:), ifx=x,,
Volts(W, 9)(x) = {0 ( b)) otherwise

Additive Boosting. In this work, we refer to traditional boosting as additive boosting, as it constructs
additive models of weak classifiers. Let F be a hypothesis class of weak classifiers, a typical example
being decision trees of bounded depth. Additive boosting aims to find an element in the linear span

of F which minimizes the empirical risk Rs(f). As previously mentioned, there exists a duality
between boosting and greedy algorithms [18, 24]. Many popular boosting algorithms use a greedy

forward stagewise approach to find a minimizer of ]%5( f), and solve the following in each iteration:
. ~ t—1
Ne, fr = argmin, g rer R (Zi:1 nifi + 77f) ;

where 7 is the learning rate. Various algorithms differ in how they solve this optimization problem.
In gradient boosting, one uses a linear approximation of Rg around 2271 1; fi [24]. In this work,

we take this greedy view of boosting to design the generalized boosting framework.

Additive Representation Boosting. In this work, we perform boosting in the representation space,
contrasting with traditional boosting which works in the output space. Let G be a hypothesis class
of weak feature transformers, whose examples include the set of one layer neural networks of
bounded width and a set of vector-valued polynomials of bounded degree. More generally, G can be
any set of non-linear transformations. In additive representation boosting, we aim to find a strong
feature transform ¢ in the linear span of G, and a linear predictor W € W < RX*P that minimizes

ﬁg (W, ¢). To this end, we consider greedy algorithms that solve the following problem each iteration:

Wi, g¢ = argmingeyy geg Bs (W, ¢r—1 + ne9) (1)

where ¢y = ¢g + 25:1 1;,9; With ¢ being the initial feature transformation, and {n;}*, is a
predefined learning rate schedule.

3 Generalized Boosting

The starting point for our generalized boosting framework is the additive representation boosting
described in Section 2. Typically, linear combinations of weak feature transformations are not

powerful enough to model complex decision boundaries. Consequently, the minimizer of Rg(W, ¢)
over the linear span of G tends to have a high risk. A simple workaround for this issue would be
to perform additive boosting with a complex hypothesis class G. For example, if the weak feature
transformers are one layer neural networks, then one could increase the complexity of G by using
deeper networks. However, such an alternative has several drawbacks both from an optimization
and generalization perspective and defeats the purpose of boosting, which aims to convert weak
learners into strong learners. From an optimization perspective, moving to complex G makes each
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greedy step harder to optimize. For example, compared to deep neural networks, shallow networks
are easier to optimize, require fewer resources, and are easier to analyze or interpret [5]. From a
generalization perspective, since the generalization bounds of boosting depend on the complexity of
G, larger hypothesis classes can lead to overfitting and poor performance on unseen data.

In this work, we are interested in other approaches for increasing the complexity of models produced
by boosting, while ensuring the boosting/greedy steps are easy to implement. One way to achieve
this is by considering more complex combinations of weak feature transformers than the linear
combinations considered in additive representation boosting. Formally, let G, denote the hypothesis
class of feature transformations used in the ¢t” iteration of boosting. In additive boosting, G; = G for
all t. In our generalized boosting framework, we increase the complexity of G; by letting it depend

on the past iterates {¢; }ﬁ;é. Here are some potential choices for G;, other than the ones stated in the
introduction: {go (Z:;l a;pi), forge G, a; € R}, {godi_10¢:—_o- -0y, for g € G}. Depending
on the problem domain, one could consider several other ways of constructing G; using the past
iterates. Note that even with these complex choices of G;, the greedy steps are easy to implement and
only need a weak learner which can identify an element in G that best fits the data. As a result, this
remains in the spirit of boosting and at the same time ensures the models learned are complex enough

for real world problems.

We now present our algorithm for generalized boosting (see Algorithm 1). Similar to additive
representation boosting, our algorithm proceeds in a greedy fashion. In the ¢ iteration of the
algorithm, we aim to solve the following optimization problem:

Wi, gt = argmin Rg (W, dr—1 + ni9) - (2)

WeWw,geg,

We provide two approaches for solving this problem. One is the exact greedy approach, which
directly solves the optimization problem (Algorithm 2). For problems where direct optimization of
Equation (2) is difficult!, we provide an approximate technique which performs functional gradient
descent on the objective. In this approach, which we call gradient greedy approach, we approximate

the objective with the linear approximation of }A%s around ¢;_1 (Algorithm 3):
Rs (W, 911 +mg) ~ Rs W.d-1) + e (VoRs(Wodn-1).9) -

To optimize the linear approximation, we first fix W to W;_; and find a minimizing g; € G;.
Intuitively, this step can be seen as finding a g which best aligns with the negative functional gradient
of empirical risk at the current iterate. For appropriate choice of learning rate 1, moving along

gz results in reduction of ﬁs. Next, we fix g; and find a linear predictor W which minimizes the

empirical risk ]%S(VV, ¢¢). This alternating optimization of g and W makes the algorithm easy to
implement in practice. Moreover, this algorithm is more stable than joint optimization of g and W.
We note that such gradient greedy approaches have been developed for traditional boosting [24].

3.1 Compositional Boosting

As one particular instantiation of our framework, we consider G;’s constructed by composing elements
from a weak feature transformer class G with the past iterates {¢; }f;é and study the resulting boosting
algorithms. We refer to such boosting algorithms as compositional boosting algorithms since the
strong feature transformer is constructed from weak feature transformer via function composition.
When G; = {g o ¢4 for g € G}, the models in our framework have the ResNet architecture and can
be defined recurrently as ¢y = ¢¢—1 + Mgt © ¢+—1. Moreover, Algorithm 1 with this choice of G; and
Algorithm 2 as update routine give us the greedy layer-wise supervised training technique proposed
by Bengio et al. [6] and recently revisited by Belilovsky et al. [5]. In another recent work, Huang
et al. [20] propose a boosting-based algorithm for learning ResNets. We now show that their approach
is equivalent to the greedy technique of Bengio et al. [6], and thus can be seen as an instance of our
general framework. We note that such a connection is not known previously.

Proposition 3.1. Suppose the classification loss { is the exponential loss. Then the greedy technique
of Huang et al. [20] for learning ResNets is equivalent to the greedy layer-wise supervised training
technique of Bengio et al. [6].

In another recent work, Nitanda and Suzuki [27] propose a gradient boosting technique to greedily
learn a ResNet. This algorithm is closely related to the gradient greedy approach described in
Algorithm 3, with G, = {g o ¢;_; for g € G}.

'Such scenarios arise if the feature transformations are non-differentiable functions such as decision trees.
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Algorithm 1 Generalized Boosting

1: Input: Training data S = {(x;, y;)}i=1, iterations T, initial linear predictor Wp, initial feature transformer
o, learning rates {n;}_, Update-routine: UPDATE
t «—
while t < T do
Construct feature transformer class G; based on past iterates {(W;, ¢i)}:Z,
Wi, ¢p¢ < UPDATE (S, Wi—1, pt—1, ¢, Gt)
t—t+1
end while
Return: Wr, ¢

Algorithm 2 Exact Greedy Update Algorithm 3 Gradient Greedy Update

1: Input: Training data S, previous iterate 1: Input: Training data .S, previous iterate (W, ¢), learning rate
(W, ¢), learning rate 7, feature trans- n, feature transformer class G
former class G // Pick a descent direction

2: o g — argming g <V¢§3(VV7 ®)
W, g" — argmin Rs(W,¢ +19) &t — b+ gt
Wew.geg // Update the linear predictor
3: ¢t — p+ngt W™ — argming,,, Rs(W, ")
4: Return: W™, ¢* Return: W™, ¢

7
) P’r)’(

A A i

We now highlight certain drawbacks of the existing greedy layer-wise training techniques, which arise
from the particular choice of G; used by these algorithms. Since {g o ¢;_; for g € G} is constructed
solely based on the past iterate ¢;_1, any mistake in ¢;_1 is propagated to all the future iterates. As
a result, these algorithms can not recover from their past mistakes. As an example, consider the
following scenario where two points x;, X5 belonging to two different classes are placed close to
each other in the feature space, after 15 iteration of greedy; that is ¢ (x1) ~ ¢1(x2). In such a
scenario, the future iterates {¢; }° , generated by existing greedy algorithms will always place X1, X2
close to each other in the representation space. As a result, the algorithm will always misclassify
at least one of x;, x2. Another issue with existing greedy techniques is that they do not guarantee
that the complexity of G; increases with time ¢. In such scenarios, Algorithm 1 doesn’t make much
progress in each iteration and can result in poor models. As an example, consider the setting where G
is the set of all linear transformations. Suppose ¢ is the identity transform and ¢, is such that its
range lies in a low dimensional subspace. Then, it is evident that G; 2 G, for all ¢t > 2.

To fix these issues, we propose two new compositional boosting algorithms obtained with a more
careful choice of G;. In our first algorithm, which we call DenseCompBoost, we choose G; as follows

Gi={go(d+Y] " aitn), forgeGa;eR}, 3)

where Id(-) is the identify function. Such a choice of G, helps us recover from the past mistakes. For
example, if ¢ is a constant function, then the algorithm can still learn a good feature transformer by
relying on the input x and the initial feature transform ¢y. Moreover, our choice of G; ensures its
complexity grows with ¢ and satisfies: G,_1 © G, for all £. We call our algorithm DenseCompBoost,
since the resulting model for this choice of G; resembles a DenseNet [21], where each layer is allowed
to be connected to all the previous layers. That being said, the models output by DenseCompBoost
differ from DenseNet in how they aggregate the previous layers. DenseNet concatenates the features
from previous layers, whereas DenseCompBoost adds the features. Our second algorithm, which we
call CmplxCompBoost, tries to increase the complexity of G; in each iteration as follows

Gr = {90@717 forg e QNt}, “4)

where G, is a weak feature transformer class and satisfies G;_; < G; for all ¢t. In the case of one
layer neural networks, such G;’s can be constructed by increasing the layer width with ¢. We note that
the G, in this algorithm is independent of the past iterates. By increasing the complexity of G; with ¢,
we expect the complexity of G; to increase and Algorithm 1 to make more progress in each iteration.
While not immediately evident, we note that this technique can also fix the mistakes made by past
iterates. For example, suppose ¢; is such that it places two points X1, xo from different classes,

close to each other in the feature space. Then having a more complex G» can help recover from this

mistake, as one can potentially finda g € Q~2 which can separate these two points. In Section 5, we
present empirical evidence showing that our new boosting algorithms have superior performance over
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existing additive and compositional boosting algorithms. Further empirical evidence corroborating
the issues we identified with existing layer-wise training techniques can be found in Appendix J.1.

4 Excess Risk Bounds

In this section, we provide excess risk bounds for the models’ output by the generalized boosting
framework. Our results depend on a weak learning condition on the hypothesis class G; used in the
t*" iteration of Algorithm 1. This condition is a way to quantify the relative strength of G, and roughly
says that there always exists an element in G; which has an acute angle with the negative functional
gradient at the current iterate. Such a condition ensures progress in each iteration of boosting.

Definition 4.1. Let 3 € (0,1],e = 0 be constants. Gy is said to satisfy the (8, €)-weak learning
condition for a dataset S, if there exists a g € Gy such that

(9.~VoRs(Wes00)) > BB(Gr1)|VsRs (Wi 60)|px —

where B(Gy11) = SUPyeg,,, |9 px, and P, is the empirical distribution of S.

In traditional boosting, such conditions are typically referred to as the edge of a weak learner and
play a crucial role in the convergence analysis. For example, Freund and Schapire [14] assume
that for any set of weights over the training set .S, there exists a classifier in the hypothesis class of
weak classifiers which has better than random accuracy on the weighted samples. The following
proposition shows that their condition is closely related to Definition 4.1.

Proposition 4.1. For binary classification, the weak learning condition of Freund and Schapire [14]
satisfies the empirical weak learning condition in Definition 4.1, albeit in the label space.

For binary classification problems, it is well known that the weak learning condition of [14] is
the weakest condition under which boosting is possible [15, 29]. This, together with the above
proposition, suggests that our weak learning condition in Definition 4.1 cannot be weakened for
binary classification problems.

To begin with, we derive excess risk bounds for the gradient greedy approach. Our analysis crucially
relies on the observation that it can be viewed as performing inexact gradient descent on the population
risk R. Several recent works have analyzed inexact gradient descent on convex objectives [2, 12,
31, 32]. However, the condition on the inexact gradient imposed by these works is different from
ours and in many cases is stronger than our condition. For example, the condition of Balakrishnan
et al. [2] translates to |g + V4 R(W, ¢)||px < € in our setting, which is stronger than our weak
learning condition. So the core of our analysis focuses on understanding inexact gradient descent with
descent steps satisfying the weak learning condition in Definition 4.1. In our analysis, we consider a
sample-splitting variant of the algorithm, where in each iteration we use a fresh batch of samples.
This is mainly done to simplify the analysis by avoiding complex statistical dependencies between

the iterates of the algorithm. Let 72 = | |, we split the training dataset S into 7" subsets {S}7_, of

size 71, where S; = {(x¢.,ys.:)}™ ;. We work with the subset S; in the ¢" iteration of Algorithm 1.
We are now ready to state our main result on the excess risk bounds of the iterates of Algorithm 3.
Our results depend on the Rademacher complexity terms related of the hypothesis sets W, G;

13K 18D
ROV, G) =E| sup = > > pi[Walxe)le |, R(Ge) =E [sup = > > pisla(xe)]; |
Wew, N5 5 9eG: V25 i
9€gt
where [u]; denotes the k" entry of a vector u, and the expectation is taken w.r.t the randomness
from S; and the Rademacher random variables p;;’s.

Theorem 4.1 (Gradient Greedy). Suppose the classification loss { is L-Lipschitz and M -smooth
w.r.t the first argument. Let the hypothesis set of linear predictors VW be s.t. any W € W satisfies
Nin (WWT) > 02, > 0and \pax (WWT) < 02,.. Moreover, suppose for all t, G, satisfies the
(B, €1)-weak learning condition of Definition 4.1 for any dataset Sy. Finally, suppose any g € Gy is
bounded with sup, |g(X)|2 < B. Let the learning rates {n;};>, be chosen as n, = ct—*°, for some

S € (%, 1) and positive constant c. If Algorithm 1 is run for T iterations with Algorithm 3 as

update routine, then (W, o), the T*" iterate output by the algorithm, satisfies the following risk
bound for any W* ¢* and o € (0, B(1 — s)), with probability at least 1 — § over datasets of size n
T

1 log 5

R(WT7 (bT) < R(VVY*7 (b*) + 0 ﬁ + T2—s >
n

T
+2 3 (LR (W, Gy) + LR (Gy) + €1) -

t=1
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The T~ term above corresponds to the optimization error, the 1€, term corresponds to the approxi-
mation error, and the rest correspond to the generalization error. As T increases, T~ goes down,
and as n increases, the generalization error goes down. If there is no approximation error, that is if
e; = 0 for all ¢, then the excess risk goes down to 0 as 1,7 — o0 at an appropriate rate. Further
discussion on this result can be found in Appendix D. We now extend the analysis of Theorem 4.1 to
the exact greedy approach.

Corollary 4.1 (Exact Greedy). Consider the setting of Theorem 4.1. Suppose Algorithm 1 is run

with Algorithm 2 as update routine. Then (W, ), the T*™" iterate output by the algorithm, satisfies
the same risk bounds as gradient greedy algorithm in Theorem 4.1.

In the rest of the section, we instantiate Theorem 4.1 for specific choices of G;. We first consider the
additive representation boosting algorithm.

Corollary 4.2. Consider the setting of Theorem 4.1 and consider the additive representation boosting
algorithm, where G, = G for all t. Suppose G is the set of one layer neural networks with sigmoid
activation functions: G = {o(Cx), for C € RP*? ||C; [\ < A,Vi} . Moreover, suppose the feature
domain X is a subset of [0, 1]%. Then the T*" iterate output by Algorithm 1, with Algorithm 2 or 3 as
update routine, satisfies the following risk bound for any (W*, ¢*), with probability at least 1 — §

1 r KDAT'*log D [log £
< * * _ 2 T2—s 5
R(WT,QZST) R(W ,(b )+O<TO‘) + E 77t€t+0 —\/ﬁ + 7&

t=1
Next, we consider the layer-by-layer fitting technique of Bengio et al. [6].

Corollary 4.3. Consider the setting of Corollary 4.2 and consider the layer-by-layer training tech-
nique of Bengio et al. [6], where Gy = {g o ¢1_1 for g € G}. Suppose G is the set of one layer neural
networks with sigmoid activation functions: G = {o(Cx), for C € RP*P |C; . |1 < A, Vi} . Then
the T iterate output by Algorithm 1, with Algorithm 2 or 3 as update routine, satisfies the following
risk bound for any (W*, ¢*) with probability at least 1 — §

T — T

1 KDAT?* %51og D log L

R(W. < RW* ¢*)+ 0 | — 2§ o) T2 54| =0
( T7¢T) ( 7¢ ) + (Ta) + t=177t6t + \/ﬁ + 7

Note that the generalization and optimization errors for both additive feature boosting and layer-
by-layer fitting have similar dependence on T',n. However, the latter tends to have a smaller
approximation error (¢;) as it is able to build complex G;’s over time. So one would expect layer-by-
layer fitting to output models with a better population risk, which our empirical results in fact verify.

S Experiments

In this section, we present experiments comparing the performance of various boosting techniques on
both simulated and benchmark datasets.

Baselines. We compare our proposed boosting techniques with XGBoost, AdaBoost, additive
representation boosting (discussed in Corollary 4.2) and greedy layer-by-layer training technique of
Bengio et al. [6] (Corollary 4.3). XGBoost uses decision stumps as weak classifiers. For AdaBoost,
we use 1 hidden layer neural networks as weak classifiers. We use two kinds of neural networks,
based on the dataset. For tabular datasets, we use fully connected networks and for image datasets, we
use convolutional networks (CNN) with the convolution block made up of Convolution, BatchNorm,
ReLU layers arranged sequentially. For additive representation boosting (Additive Feature Boost
from now on) and layer-by-layer fitting (StdCompBoost from now on), the weak feature transformer
class G consists of one layer neural network transformations. Similar to AdaBoost, we use two kinds
of transformations: a) fully connected transformations of the form g(x) = ReLU(Cx + d), and b)
convolutional transformations with Convolution, BatchNorm, ReLU blocks arranged sequentially.
Finally, we also compare against end-to-end training of neural networks.

Proposed Techniques. For DenseCompBoost, we consider two choices for G: one based on fully
connected blocks and the other based on convolution blocks. For CmplxCompBoost, we again
consider two choices for the weak transformer class G; in Equation (4): a) ReLU(Cx + d) with
C € RP+*Di1 where D; = D;_1 + A for some positive constant A, and b) convolution blocks
with number of output channels equal to the number of input channels plus a constant A. This choice

of feature transformers ensures the complexity of G, increases with ¢. We use exact greedy updates
(Algorithm 2) for both of our proposed methods and set learning rate 7; to 1.
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Table 1: Test accuracy of various boosting techniques on synthetic datasets. Numbers in bold indicate
the best performance among various greedy techniques. The row corresponding to half width shows
the performance of DenseCompBoost using layers with a width equal to half of the best width.

Technique Simulation 1 | Simulation 2 | Simulation 3

XGBoost (Trees) 84.40 97.59 50.10
AdaBoost (1 NN) 67.90 93.73 72.64
Additive Feature Boost 88.49 93.91 73.13
StdCompBoost 91.53 96.95 82.49
DenseCompBoost 93.55 98.35 95.70
DenseCompBoost (half width) 93.54 97.99 94.37
CmplxCompBoost 91.97 97.22 82.52

[ End-to-End i 93.88 [ 98.35 [ 99.09 |

Table 2: Test accuracy of various boosting techniques on benchmark datasets. We use convolution
blocks for the first 5 datasets and fully connected blocks for the other datasets.

Technique SVHN | FashionMNIST | CIFAR10 | Convex 11\1212111—813222 MNIST | Letter | CovType | Connect4
XGBoost (Trees) 71.72 90.34 58.34 82.29 53.89 97.96 | 96.16 97.46 86.63
AdaBoost (1 NN) 82.88 88 72.78 86.17 50.02 98.27 | 92.08 90.95 86.39

Additive
Feature Boost 83.36 89.95 74.33 89.30 54.31 98.27 | 90.86 93.12 86.58
StdCompBoost 90.81 92.77 81.93 98.19 73.17 98.37 | 96.43 95.61 86.33
DenseCompBoost || 91.03 93.17 82.31 98.6 73.1 98.34 | 96.96 96.28 86.85
CmplxCompBoost || 91.25 93.18 82.43 98.52 74.32 98.34 | 96.66 95.92 86.49
\ End-to-End [[ 9482 ] 93.49 [ 8688 [ 9881 | 82.69 [[ 9895 19767 96.86 | 8737 |

Results: The baseline and proposed methods are tested on 3 simulated datasets involving binary
classification tasks with polynomial decision boundaries, and 9 benchmark datasets consisting of
both tabular and image data. Details of the datasets and hyperparamters can be found in Appendix J.

Table 1 presents the results on simulated datasets. Both CmplxCompBoost and StdCompBoost largely
outperform the additive boosting methods, with CmplxCompBoost being slightly better due to the

increasing complexity in G;. Notably, DenseCompBoost performs significantly better than the rest
and is able to bridge the gap between StdCompBoost and End-to-End. We attribute its success to
its ability to recover from earlier mistakes: while StdCompBoost or CmplxCompBoost necessarily
accumulate errors at each layer, DenseCompBoost is further connected to earlier layers, allowing
it to undo its past mistakes. To verify this, we corrupt the weights of the first layers of models
learned using StdCompBoost and DenseCompBoost, during the training process. We observed
that DenseCompBoost is barely affected by a poor first layer (0.7% drop in accuracy), whereas
StdCompBoost suffers a significant performance drop (about 10%) (see Table 3 in Appendix J.1).

Results on benchmark datasets are presented in Table 2. It can be seen that additive boosting tech-
niques have poor performance on image classification tasks. Among compositional boosting methods,
StdCompBoost performs the worst. While DenseCompBoost performs comparably to CmplxComp-
Boost on image datasets, it is better on tabular data. We believe a hybrid of DenseCompBoost and
CmplxCompBoost algorithms can achieve better performance than either of the algorithms.

6 Conclusion

We proposed a generalized framework for boosting, which allows for more complex forms of
aggregation of weak learners than traditional boosting. Our generalized framework allows to derive
learning algorithms that (a) have performance close to that of end-to-end trained DNNs, and (b)
come with strong theoretical guarantees. Additive boosting algorithms do not satisfy property (a),
while DNNs do not satisfy property (b). In particular, additive boosting algorithms, even with small
neural networks as their weak classifiers, do not not have the strong performance of end-to-end
trained DNNs. Improving their performance requires the hypothesis space to increase in complexity
while not increasing sample complexity of each boosting step too greatly, which can be achieved by
our generalized boosting framework. One particular instantiation of our framework is aggregation
using function compositions. A number of existing greedy techniques for learning neural networks
fall into our framework, and our analysis allowed us to delineate some of their key flaws, then
consequently, propose new techniques which improve upon them. We believe our work opens up a
new line of inquiry for greedy learning of highly flexible models with rigorous theoretical guarantees,
by leveraging the theory of boosting and generalized greedy algorithms in function spaces. We
moreover believe our work has the potential to bridge the gap in performance between existing greedy
layer-by-layer training techniques and end-to-end training of deep networks.
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Broader Impact

In the long term, our work can potentially lead to XGBoost like packages for efficiently learning
complex machine learning models and can have similar societal consequences as XGBoost. In the
short term, this work does not present any societal consequences.
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