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Abstract

We report the stellar atmospheric parameters for 7503 spectra contained in the first release of the Mapping Nearby
Galaxies at Apache Point Observatory survey (MaNGA) stellar library (MaStar) in Sloan Digital Sky Survey
DR15. The first release of MaStar contains 8646 spectra measured from 3321 unique stars, each covering the
wavelength range 3622–10354Å with a resolving power of R∼1800. In this work, we first determined the basic
stellar parameters: effective temperature (Teff), surface gravity (log g), and metallicity ([Fe/H]), which best fit the
data using an empirical interpolator based on the Medium-resolution Isaac Newton Telescope library of empirical
spectra (MILES), as implemented by the University of Lyon Spectroscopic analysis Software package. While we
analyzed all 8646 spectra from the first release of MaStar, since MaStar has a wider parameter-space coverage than
MILES, not all of these fits are robust. In addition, not all parameter regions covered by MILES yield robust
results, likely due to the nonuniform coverage of the parameter space by MILES. We tested the robustness of the
method using the MILES spectra itself and identified a proxy based on the local density of the training set. With
this proxy, we identified 7503 MaStar spectra with robust fitting results. They cover the range from 3179 to
20,517 K in effective temperature (Teff), from 0.40 to 5.0 in surface gravity (log g), and from −2.49 to +0.73 in
metallicity ([Fe/H]).

Unified Astronomy Thesaurus concepts: Stellar atmospheres (1584); Chemical abundances (224); Surveys (1671);
Astronomical reference materials (90); Radial velocity (1332); Spectroscopy (1558); Astronomical
techniques (1684)

Supporting material: machine-readable table

1. Introduction

A stellar library is a collection of spectra of different stars,
sharing the same wavelength range and resolution, that cover
a certain parameter space of atmospheric properties. A stellar
library can be theoretical (i.e., based on stellar atmospheric
models) or empirical (based on spectral observations).
Examples of theoretical stellar libraries include, but are not
limited to, Kurucz (1979) and its recalibration by Lejeune
et al. (1998), Zwitter et al. (2004), Martins et al. (2005),
Munari et al. (2005), Coelho et al. (2005, 2007), Gustafsson
et al. (2008), Leitherer et al. (2010), de Laverny et al. (2012),
and Bohlin et al. (2017). Examples of empirical libraries
include Pickles (1985, 1998), Diaz et al. (1989), Silva &
Cornell (1992), Lick/IDS (Worthey et al. 1994), Lançon &
Wood (2000), STELIB (Le Borgne et al. 2003), ELODIE
(Prugniel & Soubiran 2001), INDO-US (Valdes et al. 2004),
CaT (Cenarro et al. 2001), Medium-resolution Isaac Newton
Telescope library of empirical spectra (MILES) (Sánchez-
Blázquez et al. 2006; Falcón-Barroso et al. 2011), Hubble
Space Telescope NGSL (Gregg et al. 2006), X-Shooter Stellar
Library (Chen et al. 2014), the NASA Infrared Telescope

Facility (IRTF) Library (Rayner et al. 2009), and the
Extended IRTF library (Villaume et al. 2017).
Stellar libraries play an essential role for a wide range of

astrophysics applications. In particular, they serve as a reference for
the classification and automatic analysis of large stellar spectro-
scopic surveys, and are fundamental ingredients for the models of
stellar populations used to study the evolution of galaxies.
Initiated by the need to model the spectra of galaxies

collected by the Mapping Nearby Galaxies at Apache Point
Observatory survey (MaNGA; Bundy et al. 2015; Yan et al.
2016), which is one of the state-of-the-art spectroscopic
surveys of the Sloan Digital Sky Survey (SDSS)-IV (Blanton
et al. 2017), we have developed the MaNGA stellar library
(MaStar) to build a large, comprehensive stellar library that
shares the same wavelength coverage of MaNGA galaxies and
other SDSS spectra, i.e., 3622Å–10354Å, and includes stars
covering a wide range of stellar-parameter space with a
resolving power of R∼1800. We have piggybacked on the
Apache Point Observatory Galaxy Evolution Experiment 2
(APOGEE-2) to reduce the cost of covering a large area of the
sky, as well as many existing stellar spectroscopic surveys to
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preselect our targets according to their measured parameters
(see Yan et al. 2019, for details). Briefly, we constructed the
target list of MaStar from stars previously observed by several
large stellar surveys, i.e., APOGEE-1, APOGEE-2 (Majewski
et al. 2017), SDSS/Sloan Extension for Galactic Under-
standing and Exploration (SEGUE; Yanny et al. 2009), and
Large Sky Area Multi-Object Fiber Spectroscopic Telescope
(LAMOST; Cui et al. 2012; Deng et al. 2012; Zhao et al.
2012). For fields without a sufficient number of stars with
existing stellar parameters from the literature, we also estimated
stellar parameters for millions of stars using PanSTARRS1
(Chambers et al. 2016) and APASS,12 as described in Yan et al.
(2019).

The MaStar project is obtaining stellar spectra that span a
wider range of stellar-parameter space—mass, effective temp-
erature (Teff), surface gravity (log g), luminosity class, and
chemical composition—than any previously published empiri-
cal spectral library. Upon completion of the MaStar survey in
2020, at the end of SDSS-IV, the MaStar library will contain of
order 10,000 unique stars. MaStar DR1 (Yan et al. 2019) is part
of the SDSS DR15 and is publicly available at https://www.
sdss.org/dr15/mastar/.

Obtaining the stellar spectra is the first step in constructing a
stellar library. The next step involves quantitatively deriving
the fundamental stellar parameters from each spectrum. For
applications that use individual spectra in the library, these
parameters allow researchers to select appropriate stars for
comparison. For stellar-population synthesis, these parameters
are needed to associate each spectrum with a position on a
stellar evolutionary track or isochrone. We have collected the
literature parameters for ∼70% of the stars in MaStar DR1.
However, a large fraction, i.e., the remaining 30% of MaStar
targets do not have input stellar parameters. Moreover, since
the stars with known stellar parameters are collected from
various stellar surveys, the mixing of different systematics may
create in-homogeneity. We therefore aim to calculate a
consistent set of stellar parameters for all MaStar spectra.
Furthermore, to ensure continuity with previous work on
galaxy evolution (e.g., Vazdekis et al. 2010; Maraston &
Strömbäck 2011; Conroy & van Dokkum 2012), we require
that our results are compatible with the MILES library, the
current state-of-the-art in this field. The parameters from this
paper have been used for the first MaStar-based stellar-
population models (E-MaStar, where E stands for “empirical,”
to acknowledge the semiempirical nature of the parameters
determined here; Maraston et al. 2020).
In this work, we focus on determinations of three

fundamental stellar parameters: effective temperature, Teff,
surface gravity, log g, and metallicity, [Fe/H]. In Section 2, we
briefly review the MaStar data. In Section 3, we present the
method used to determine the stellar parameters for MaStar
DR1. The stellar-parameter quality control is discussed in
Section 4. We describe the method used to validate our results
in Section 5, and demonstrate consistency with literature
parameters in Section 6. We summarize our results and
conclusions in Section 7.

2. Data

The MaStar program was designed to acquire optical spectra
using the MaNGA fiber bundles in tandem with APOGEE-2N

observations during APOGEE-led bright time observations.13

Therefore, the MaStar stellar spectra share the same instrument
resolutions as the spectra obtained for MaNGA galaxies,
making them ideal for constructing templates used to model the
stellar continuum, and populations of these sources. Data
reduction for MaStar spectra was performed by the MaNGA
Data Reduction Pipeline (DRP; Law et al. 2016), an IDL-based
software suite that produces final flux-calibrated data cubes
from the raw dispersed fiber spectra. We refer readers to Law
et al. (2016) for details about the DRP. After the data were
reduced, we eliminated spectra with low signal-to-noise, bad
sky subtraction, high scattered light, low point-spread function-
covering fraction, uncertain radial-velocity measurement, and/
or those with problematic flux calibration. In addition, we also
visually inspected each spectrum using the Zooniverse Project
Builder interface.14 A total of 28 volunteers from within the
collaboration participated in order to check for issues of flux
calibration, sky subtraction, telluric subtraction, emission
lines, etc. The results are input to the DRP to assign the final
quality flags.
The spectra we used in this work are from the first release of

MaStar (Yan et al. 2019). These spectra span a wavelength
3622–10354Å with a resolving power of R∼1800, and are
provided in DR15 of SDSS-IV (Aguado et al. 2019). For each
spectrum, the calibrated flux, inverse variance of the flux,
accurate line spread function (LSF), and mask are provided as a
function of wavelength. In Figure 1, we show the distribution
of the median signal-to-noise (S/N) over the full wavelength
coverage of all spectra contained in the first release of MaStar.
Most (∼90%) spectra have a mean S/N above 50. This release
of MaStar contains 3321 unique stars with 8646 spectra that
have accurate flux calibration, within ∼4% (Yan et al. 2019).

3. Method

To determine the stellar parameters of the MaStar objects we
use the full-spectrum-fitting package University of Lyon

Figure 1. Median signal-to-noise distribution of the 8646 MaStar spectra in
DR1. Numbers are normalized by the total number of stars, so the bins
represent fractions of the spectra.

12 https://www.aavso.org/apass

13 MaStar has supplemented the main MaStar protocol with some MaStar-led
plates.
14 https://www.zooniverse.org/lab
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Spectroscopic analysis Software (ULySS)15 (Koleva et al.
2008). This package performs χ2

fitting between a template
spectrum and the data, where the model spectrum is
interpolated between a set of spectra with known stellar
parameters of Teff, log g, and [Fe/H]. The basic idea is that the
interpolator approximates the normalized flux in each spectral
bin as polynomials of Teff, Fe H[ ], and log g, with each set of
polynomials defined for three groups of stars (OBA, FGK, and
M). Interpolation was applied in overlapping regions in
between the groups in the parameter space. The algorithm
allows the use of Legendre polynomials to account for residual
extinction and/or flux-calibration systematics.

There are several interpolators published by the same group, e.g.,
the ELODIE interpolator (Wu et al. 2011), the MILES interpolator
(Prugniel et al. 2011), and the expanded MILES interpolator
(Sharma et al. 2016), which extends the MILES interpolator to
include cool stars ( T 4500eff K) from the FEROS archive, with
stellar parameters adopted from Allen (1973), Casagrande et al.
(2008), and Neves et al. (2013). However, our results, based on the
extended MILES interpolator show artificial wiggles in the cool
dwarfs region. Therefore, we prefer to use an older version of the
MILES interpolator (Prugniel et al. 2011), which spans a wider
range of stellar parameters than the interpolator based on the
ELODIE library. The MILES library also has a wider wavelength
coverage than the ELODIE library. The MILES stellar parameters
from Cenarro et al. (2007) were not used to build this interpolator,
because that is based on a heterogeneous combination of literature
compilation and photometric calibration (Prugniel et al. 2011).
Instead, the MILES interpolator used in this work was built by
recalculating the stellar parameters of MILES spectra using
ELODIE 3.2 (Wu et al. 2011) as the reference for homogeneous
stellar atmospheric parameters, with a semiempirical solution
(Prugniel et al. 2007) introduced to cover a better atmospheric-
parameter range using theoretical spectra of hot stars with
Teff�20,000K from Martins et al. (2005). Some low-metallicity
cool dwarfs from Coelho et al. (2005) are included to widen the
stellar-parameter coverage as well.

We estimate the stellar parameters by constructing an initial
guess grid to locate the possible parameter range, i.e., Teff =
[3500, 4000, 5600, 7000, 10,000, 30,000]K, [Fe/H]=[−1.7,
−0.5, +0.5], and glog = [1.8, 3.8], so that the interpolator can
find the closest parameter region to use as a starting point.
Since the spectra of MaStar span the wavelength range of
3622–10354Å, we use the common wavelength range (i.e.,
3622–7400Å) between MILES and MaStar in the full-
spectrum-fitting process. Error spectra, along with the data,
were used to find the best fit, with bad pixels masked. The
initial fit is performed by finding the minimum χ2 between the
observed spectrum and an interpolated MILES spectrum.
We then allow the interpolator to search for a better solution
in the parameter space within the grid by finding the final fit
that has the best χ2 in the local solution space.

As mentioned by Prugniel et al. (2011) and Wu et al. (2011),
the LSF may affect the full-spectrum-fitting procedure. We
therefore calculate the difference between the LSF of each input
MaStar spectrum and the intrinsic resolution. Several groups
have calculated the intrinsic resolution of the MILES library
following its publication. Falcón-Barroso et al. (2011) derived
FWHM = 2.51Å. A similar value for the MILES resolution,
FWHM = 2.54Å, was also calculated by Beifiori et al. (2011).

Here we use FWHM = 2.51Å for the MILES templates. The
MILES interpolator is then convolved to the same resolution as
the individual MaStar spectrum. As the LSF varies with
wavelength, we accordingly convolved the MILES templates
as a function of wavelength. The best fit is obtained by
comparing the MILES interpolated model spectra and the
MaStar data with pixel size 69.03 km s−1, evenly spaced in
logarithmic wavelength. A multiplicative polynomial is
employed in the fitting process to match the overall shape
between the data and the model. As mentioned in Yan et al.
(2019), the MaStar spectra are not extinction corrected. There-
fore, when performing the spectrum fitting, we need to assume a
polynomial to correct for differences in the broadband shape due
to extinction effects and/or flux-calibration residuals. We
initially used a tenth-order multiplicative polynomial to account
for these effects, and then reduce the order of the polynomial in
future iterations to achieve better fits. The final polynomial is
then multiplied with the data to match the assigned template.
MaStar DR1 has ∼80% of the stars with - E 0.1B V . However,
this has no effect on the final parameters, as we rely on the
relative ratios of the lines on the full-spectrum fitting result.
Figure 2 shows some examples of the full-spectrum fits to

MaStar spectra. The black spectra are the observations from
MaStar, the blue spectra are the best fits from the MILES
interpolator. The cyan lines show the polynomial used, and the
red-line regions mask the bad pixels. The bad pixels include
pixels flagged by MaStar’s mask flag and the region around
the Na D 5900 feature, since the latter usually suffers from
interstellar absorption. The lower panel shows the residual
between the data and the model, with the green spectrum
marking the 1σ error level. The derived stellar atmospheric
parameters and reduced χ2 are provided in each of the panels.

4. Quality Control

We fit 8646 spectra measured for 3321 unique stars in
MaStar. In order to make sure the stellar parameters derived
from the full-spectrum-fitting process are sensible, we validated
the spectral fitting on a case-by-case basis as needed.

4.1. Data-quality Effects

We define two wavelength ranges to monitor the general
signal-to-noise of the MaStar spectra—blue: 3600–5500Å and
red: 5000–7500Å. Wavelengths beyond 7500Å are out of the
range of the MILES templates, and therefore are not discussed
here. Among the 8646 observations, around 0.4% have low
signal-to-noise, less than five in the blue and red regions. If
either of the above wavelength ranges has a median signal-to-
noise value less than five, or the median signal-to-noise value
over the entire wavelength range is less than 35, the spectra are
tagged as having low signal-to-noise. We decided not to use
their solutions due to these limitations.

4.2. Best-Fit Assessment

Since the interpolator itself has boundaries in the parameter
space, fits that return value at the extremes of the parameter
space at Teff = [2800, 40,000]K, [Fe/H]=[−2.5, +1.0],

=glog 0.0, 5.9[ ] (48 objects16) are rejected. As a flexible
fitting package, the fit process allows template broadening to

15 http://ulyss.univ-lyon1.fr/

16 These are dominated by giants and subgiants whose metallicity could not be
determined correctly.
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mimic stellar rotation, however, we do not expect broadening
that is comparable to galaxy velocity dispersions, i.e., a few
hundred km s−1. Such large template broadening may indicate
a template mismatch, low S/N, or a possible binary. Either
way, if the fitting results in a broadening larger than
200 km s−1, we classify it as unsuccessful. The distribution of
the fitting dispersion is shown in Figure 3. The great majority
of MaStar spectra are shifted to the rest-frame; therefore, the
radial-velocity fit we perform is to correct for any residual
velocity offset. As a result, radial-velocity residuals with large
values (i.e., rv�400 km s−1) may also indicate unsuccessful
fits. We show the distribution radial-velocity residuals in
Figure 4. Usually, when this happens the package confuses the
absorption features between the data and the models. The
corresponding stellar parameters are therefore not considered
secure.

Apart from the above issues, we also had a few cases for
which the derived errors of the corresponding parameters were
zero. Those fits were rejected as failed fits as well. The full-
spectrum-fitting process calculates the reduced χ2, which is an
indicator of the success of the fit. We show the distribution of
the reduced χ2 in Figure 5. We flagged the fits with reduced
χ2�150. Normally this happens to input spectra with strong
emission features at very low (Teff3700 K) or very high
(Teff  30,000 K) temperatures.
Note that the original MILES library has a limited number of

cool dwarfs (∼15 stars; Yan et al. 2019). Thus, the results for
cool stars based on this version of the interpolator need to be
treated with caution.
In addition, many stars in MaStar DR1 have repeated

observations. Independent measurement of their stellar para-
meters from full-spectrum-fitting gives consistent results, with

Figure 2. Full-spectrum-fitting examples for MaStar with MANGA ID 27-1619, 7-17427001, 3-126081903, 4-16745, 7-17272128, and 3-139461928, respectively.
Upper panels: the data are shown as a black line, the best fit is shown as a blue line, and the polynomial is shown as a cyan line in each of the plots. Lower panels:
residuals between the data and the best-fit model, with the green line marking the 1σ error from the data. Red pixels mark the bad pixels flagged in the data.
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the stellar parameters derived from our fitting of different
spectra of the same object typically differing by δ Teff∼40 K,
d ~glog 0.04 dex, and d ~Fe H 0.05[ ] dex.

5. Validation

Because the MILES interpolator is constructed from the
MILES library, it can only provide valid results in those
regions of parameter space that are well-sampled by the MILES
library. When it is used to fit stars that do not have a sufficient
number of similar stars in the MILES library, it may produce
results with very large errors. In fact, Coelho et al. (2020, see
their Table2) reported ∼70 stars in the MILES library that may
not be suitable for stellar-population model inputs. Here, we
provide a way to identify such cases using only the resulting
parameters and the training set for the interpolator. While this
will not identify all large errors, it significantly reduces their
rate. It also allows us to estimate the fraction of the remaining
contamination of the derived stellar parameters due to the
uneven input-parameter space in the interpolator.

This method assumes we can only reliably estimate the
parameters for a particular stellar spectrum if its parameters are
completely enclosed by the interpolator’s training set. How-
ever, we only know the output result from the interpolator.
Thus, we establish a metric based on the output parameters of a
star and the input parameters of the training set. We then try to
determine a threshold for this metric using the training set itself
as a test sample. By fitting the training-set spectra, the MILES
spectra, with the MILES interpolator itself, we can check if any
spectra have large offsets in their derived parameters, and
whether they can be successfully identified using the metric and
the associated threshold.
First, we fit individual MILES spectra using the MILES

interpolator. This is also a basic input–output test for the
ULySS code and the MILES interpolator. In principle, the
output stellar parameters should be identical or very close to
the input values, but this is not always be case.
Figure 6 shows the recovered stellar parameters for the

MILES spectra compared with their input values. Note that the
calculated stellar parameters of MILES stars are not always
the same as the input parameters as given by Prugniel et al.
(2011). To inspect the global parameter distribution of the
results, we show the parameter distribution of the input and
output results in Figure 7, where the red open circles are the
stellar parameters from Prugniel et al. (2011) and the blue solid
dots are the recovered stellar parameters of the MILES spectra
using the MILES interpolator. Due to the uneven distribution of
the training set in the stellar-parameter space, the recovered
parameters are biased toward regions with more stars in the
input-parameter space. This is more apparent in the very hot or
very cool temperature regions, where the interpolator’s training
set has fewer stars.
The three dimensions of the parameter space ( Tlog eff , glog ,

and [Fe/H]) have different units. We define a normalized three-
dimensional distance unit between any two points in the
parameter space by normalizing the difference in each
dimension appropriately so that the typical uncertainty in each
dimension is about equal in this normalized unit. This can be
approximately achieved if we scale the maximum range
spanned in Tlog eff (from 3.477 to 4.550) to 10, scale that in
log g (from 0.17 to 5.7) to 3, and scale that in [Fe/H] (from

Figure 3. Distribution of the fitted dispersion of the 8646 MaStar spectra in
DR1. A total of 51 out of 8646 spectra have fitted dispersions larger than
200 km s−1.

Figure 4. Distribution of the fitted radial-velocity residuals of the MaStar
spectra in DR1. A total of 6 out of 8646 spectra have fitted radial velocities
larger than 400 km s−1.

Figure 5. Distribution of reduced χ2 from the full-spectrum-fitting of the
MaStar spectra in DR1. 10 out of 8646 fitting has reduced χ2 larger than 100.

5

The Astrophysical Journal, 899:62 (10pp), 2020 August 10 Chen et al.



−3.15 to +1.0) to 2. For each MILES star, we compute the
distance between its recovered parameters and its input
parameters in this normalized unit, and call it Doffset. We show
the distribution of Doffset in Figure 8. A total of 94% of the stars
have Doffset less than 0.5. Figure 9 illustrates the stellar-
parameter stability. Regions with larger symbols are the ones
with larger uncertainties in the input-parameter space, i.e.,
larger Doffset. If a Doffset is shared evenly among the three
dimensions, the offset in each dimension is 0.29 in the
normalized unit, which corresponds to D =Tlog 0.03eff ,
D =glog 0.5, and D =Fe H 0.6[ ] .

For each star, given its recovered parameters, we look for its
neighbors in the (input) parameter space among the training set.
Note that the neighbor search is between the output parameters
of the star of interest and the input parameters of the training
set. We do it this way because we would only know the output
parameters for MaStar objects. For each star (MILES or
MaStar), we define the fourth-nearest-neighbor distance among
the training set, again in the normalized unit, and call it Dx4NN.
We choose to use the four nearest stars because a minimum of
four points are needed to define a volume (a tetrahedron) that
encloses a point in the 3D parameter space. We aim to find a
threshold in Dx4NN to ensure that most stars with Dx4NN smaller
than the threshold have small Doffset.

There could be cases in which the four nearest neighbors
around the star of interest are all clustered on one side, and are
much closer to each other than to the star of interest. Here we do

Figure 6. Recovered stellar parameters for MILES spectra using the MILES interpolator vs. their input parameters from Prugniel et al. (2011). The black dashed lines
mark the one-to-one relations.

Figure 7. Comparison between input (red open circles) and output (blue dots) stellar-parameter distributions of the MILES spectra. The “output” parameters are
derived by fitting these MILES spectra with the MILES interpolator, which is built using the same set of spectra, and the “input” parameters based on Prugniel et al.
(2011). From inspection, the recovered parameters differ from the input set in several regions of the parameter space.

Figure 8. Distribution of scaled distance Doffset (see the text for details) of input
parameters of the MILES interpolator based on Prugniel et al. (2011).
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not require the star of interest to be completely enclosed by the
tetrahedron, as some moderate extrapolation could still give
reasonable results. We only require that the Dx4NN be smaller
than the largest pair-wise distance among its neighbors. There are
six distances among the four neighbors. We call the maximum
among them D6. We require Dx4NN to be smaller than D6.

Figure 10 shows Doffset versus Dx4NN for all MILES stars.
We highlight in this figure those stars with Dx4NN larger than
their respective D6, which are excluded from the following
statistical calculations.

We consider the parameter measurements for a star to be
reasonable when its Doffset is less than 0.5. In order to
determine the threshold for the Dx4NN metric, we compute the
fraction of MILES stars with Doffset<0.5 among all those with
Dx4NN less than a threshold, while excluding those with

>D Dx4NN 6. Figure 11 shows this fraction as a function of
varying threshold. From this plot, we find that when we adopt a
threshold of Dx4NN<0.35, 96.9% of the stars have
Doffset<0.5.

With the threshold defined by Dx4NN, we can assess the
reliability of the parameter measurement for MaStar. Among the
8646 MaStar spectra, 87% have Dx4NN<0.35, Dx4NN<D6,

and pass the quality control test. We consider these cases to have
reliable stellar-parameter estimates. Given the test based on
MILES, we expect 96.9% of these cases would have a parameter
offset less than 0.5 in the normalized unit. We show their stellar-
parameter distribution in Figure 12. Table 1 lists these values, so
that they can be compared with either literature values or other
methods.

6. Consistency with Input Parameters

Apart from the above internal quality control, we can also
validate the parameters we derived from this work by checking
their consistency with the input catalog stellar parameters. As
mentioned in Yan et al. (2019), we selected stars from existing
stellar-parameter catalogs, including ASPCAP uncalibrated
atmospheric parameters (García Pérez et al. 2016; Holtzman
et al. 2018; Jönsson et al. 2018) from the latest SDSS-IV Data
Release (APOGEE DR16; Ahumada et al. 2019), SEGUE
(Yanny et al. 2009), and LAMOST (Cui et al. 2012; Deng et al.
2012; Zhao et al. 2012). Because the stellar parameters from
these above projects were derived using different methods, it is
important to address the parameter consistency.
We have identified 2460 spectra that passed the quality

thresholds and have APOGEE parameters, where 288 of them
are in the fine parameter category in APOGEE (García Pérez
et al. 2016; Holtzman et al. 2018; Jönsson et al. 2018;
Ahumada et al. 2019), 1064 such spectra which have SEGUE
parameters, and 1810 spectra which have LAMOST para-
meters. We show the stellar parameters from this work
compared with these literature parameters in Figure 13. The
mean Teff determined in this work are about 50 K cooler than
these literature values, with an rms of 163 K; the mean log g
determined in this work are about 0.03 dex lower than the input
literature values, with an rms of 0.30 dex; the mean [Fe/H]
determined in this work are about 0.06 dex lower than the input
literature values, with an rms of 0.20 dex. These values are
typically consistent with the accuracy of ULySS’s parameters
(e.g., Prugniel et al. 2011), except for a larger deviation in Teff,
which is likely due to the multiple input methods from different
sources. Besides, these accuracies are within the range required
by robust population synthesis (100 K, Maraston 2005).
We also explore the stellar-parameter consistency from different

input-parameter sources. A mean negative offset of 9 K is found in
comparing with Teff from APOGEE, with an rms of 174 K; a mean

Figure 9. Stellar-parameter distributions of the input MILES spectra. The symbol size is scaled to Doffset; larger symbols correspond to larger systematic errors in
recovering the stellar parameters.

Figure 10. Doffset as a function of Dx4NN. Note that distances are scaled (see the
text for details).
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negative offset of 71 K is found in comparing with Teff from
SEGUE, with an rms of 167 K; a mean negative offset of 41 K
is found in comparing with Teff from LAMOST, with an rms of
154 K. A mean offset of 0.01 dex is found in comparing with log g
from APOGEE, with an rms of 0.32 dex; a mean negative offset of
0.07 dex is found in comparing with log g from SEGUE, with an
rms of 0.29 dex; a mean negative offset of 0.01 dex is found in
comparing with log g from LAMOST, with an rms of 0.29 dex.

A mean negative offset of 0.03 dex is found in comparing with
[Fe/H] from APOGEE, with an rms of 0.13 dex; a mean positive
offset of 0.10 dex is found in comparing with [Fe/H] from
SEGUE, with an rms of 0.23 dex; a mean positive offset of 0.04
dex is found in comparing with [Fe/H] from LAMOST, with an
rms of 0.19 dex. In general, given the rms as typical accuracy of
ULySS’s parameters, our results agree well with the input stellar
parameters.

Figure 11. Left: fraction of MILES stars in bins of Dx4NN that have Doffset<0.5. Right: fraction of MILES stars with Dx4NN less than a threshold that have
Doffset<0.5. Stars with Dx4NN>D6 are excluded from the statistical calculations.

Figure 12. Adopted stellar-parameter distribution of MaStar from this work.

Table 1
Stellar Parameters Adopted in This Work

MANGAID R.A. Decl. Teff log g [Fe/H] Teff err log g err [Fe/H] err χ2

(deg) (deg) (K) (cgs) (K) (cgs) (dex)

7-17152035 288.1182 51.4476 5124 2.31 −1.36 5 0.01 0.01 5.07
7-17443125 290.2698 51.3453 4502 2.15 −0.38 4 0.01 0.01 3.34
7-17373411 290.1849 49.8035 4839 2.33 −0.29 3 0.01 0.00 6.16
7-17182569 288.5502 49.5116 4855 3.18 0.30 4 0.01 0.00 4.00
7-17182569 288.5502 49.5116 4868 3.26 0.29 6 0.02 0.01 2.28
7-17113356 287.2459 51.0213 4797 2.21 −0.65 3 0.01 0.00 5.03
7-17372978 289.7807 50.2919 4583 1.59 −0.99 6 0.02 0.01 2.94
7-16750617 282.3300 43.3356 4144 1.90 −0.23 1 0.01 0.00 9.48
7-16565620 282.0194 44.5682 5451 3.43 0.12 4 0.01 0.01 4.48
7-16557545 281.6392 44.0813 3840 1.61 −0.03 1 0.00 0.00 14.38

Note. A sample of the stellar parameters from this work. The full table is available in digital format only.

(This table is available in its entirety in machine-readable form.)
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We acknowledge that due to the available template
interpolator (i.e., Prugniel et al. 2011), which does not contain
the [α/Fe] dimension, we are not providing [α/Fe] in this
work. Our team is working on different methods of estimating
the stellar parameters. The [α/Fe] dimension will be addressed
in future work.

7. Conclusions

We have examined 8646 spectra from the first release of
MaStar to estimate their basic stellar parameters, using the
MILES interpolator (Prugniel et al. 2011) and the full-
spectrum-fitting package ULySS. We carried out a sanity
check of this fitting method by feeding the same spectra used to
build the interpolator through the fitting algorithm. This
input–output test shows that the algorithm is not always
robust. We defined a set of criteria to identify regions of
parameter space where it is safe to apply this fitting method,
and evaluated the purity of the resulting sample. We present the
parameters for a subset of MaStar spectra that reside within the
safe region of the parameter space identified. Our “secure”
stellar parameters cover a wide range of the parameter space:
3179�Teff�20,517 K, surface gravity 0.40�log g�5.0,
and metallicity −2.49�[Fe/H]�+0.73. For stars in com-
mon with the APOGEE, SEGUE, and LAMOST surveys, we
compared the results with the derived parameters by these
surveys and found good agreement: the mean differences of Teff
determined in this work are about 50 K cooler than the input
Teff, with an rms of 163 K; the mean differences of log g
determined in this work are about 0.03 dex lower than the input
log g, with an rms of 0.30 dex; the mean differences of [Fe/H]
determined in this work are about 0.06 dex lower than the input
values, with an rms of 0.20 dex. Note that this work is based on
the interpolator of the MILES stellar library. MaStar objects
that are outside of the MILES parameter space may not have
secure estimates of their stellar parameters. Therefore, we only
list the parameters that passed the quality control tests. These
parameters have been already used for the calculation of the
first MaStar-based stellar-population models (Maraston et al.
2020). The models have been tested with Milky Way globular
cluster spectra, obtaining good results, providing reassurance of
the overall quality of these parameters (see details in Maraston
et al. 2020).
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Figure 13. Stellar parameter derived from this work compared with the input stellar parameters from APOGEE, SEGUE, and LAMOST. In each panel we show the
differences between the stellar parameters from this work and the input parameters.
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