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Abstract

We develop the concept of character level for the complex irreducible characters of finite, general
or special, linear and unitary groups. We give characterizations of the level of a character in terms
of its Lusztig label and in terms of its degree. Then we prove explicit upper bounds for character
values at elements with not-too-large centralizers and derive upper bounds on the covering number
and mixing time of random walks corresponding to these conjugacy classes. We also characterize
the level of the character in terms of certain dual pairs and prove explicit exponential character
bounds for the character values, provided that the level is not too large. Several further applications
are also provided. Related results for other finite classical groups are obtained in the sequel
[Guralnick et al. ‘Character levels and character bounds for finite classical groups’, Preprint, 2019,
arXiv:1904.08070] by different methods.

2010 Mathematics Subject Classification: 20C33 (primary); 20C15, 20P05 (secondary)

1. Introduction

It is well known that the complex irreducible characters of the symmetric group
S, are indexed by partitions A = (A, ..., A,) of n. If A,, ..., A, are fixed and
A1 (and therefore n) goes to infinity, by the hook length formula, the degree
of the character x* is given by a polynomial in n of degree d := A, + --- +
A,. For instance, d = 0 corresponds to the partition (n) and therefore to the
trivial character; d = 1 corresponds to (n — 1, 1) and therefore to the standard
representation of S,; d = 2 corresponds to (n — 2, 2) and (n — 2, 1, 1), each of
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degree quadratic in n, and each appearing in the tensor square of the standard
representation. It makes sense, therefore, to sort the irreducible characters of
S, at least those for which n is large compared to d, by their level which is
defined to be d. If we consider not S, but A,, then all irreducible characters
of S, of low level compared to n restrict to irreducible characters of A,, and
all irreducible characters of A, of low degree arise in this way. Replacing A,
by a Schur cover would not change this picture since the minimal degree of a
projective representation of A, which does not lift to a linear representation of
A, grows exponentially in 7.

Something similar happens for finite simple, or quasisimple, groups of Lie
type. For instance, a glance at the list of character degrees of the finite special
linear group G = SL,(g) or of the finite special unitary group G = SU, (q)
reveals that G has one irreducible character of degree 1 (‘zero level’), then
roughly ¢ characters of degree roughly ¢"~! (‘first level’), then roughly ¢>
characters of degree roughly ¢g**~* and ¢~ (‘second level’), and so on. In many
applications, it happens that characters of high enough level display a generic
behavior and can be handled by uniform arguments, whereas the ones of low
level can only be treated individually and after their explicit identification and
construction.

But how should one define the level of irreducible characters y € Irr(G)
for a finite group G of Lie type defined over IF,? There appear to be a few
possible approaches, one using the Deligne—Lusztig theory [L], particularly the
notions of unipotent support [Geck, GM, L] and wave front sets [K], and another
utilizing restrictions to ‘nice’ subgroups; cf. [GMST, GH1, GH2, GT, T2, TZ].
At present, our attempts in exploring the first approach have yielded strong
asymptotic results on character values for the elements g € G with the property
that the centralizer of the semisimple part of g in the underlying algebraic group
G is contained in a proper Levi subgroup of G; see [BLST, TT]. The second
approach can lead to more explicit results, but, so far, only for characters of very
low (first and, possibly, second) level.

The goal of this paper is to develop the concept of character level for complex
irreducible characters of finite, general or special, linear and unitary groups, that
is for GL,(¢), GU,(¢), SL,(g), and SU, (¢), where g is a prime power. We will

use the notation GL° to denote GL when € = + and GU when € = —, and
similarly for SL¢. For a given g and a given € = %, we define Q := g ife = +
and Q :=¢g?ife = —. Let V = [}, be the natural module of G € {GL: (q),
SL: (¢)}, where V is endowed with a G-invariant nondegenerate Hermitian form
if e = —. It is known that the class function

TigH> En(Eq)dimFQ Ker(g—1y) (11)

Downloaded from https://www.cambridge.org/core. IP address: 68.45.61.184, on 07 Oct 2020 at 14:45:21, subject to the Cambridge Core
terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fmp.2019.9


https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2019.9
https://www.cambridge.org/core

Character levels and character bounds 3

is actually a (reducible) character of G (in fact, it is a sum of irreducible Weil
characters of G, see, for example, [Ge, Hw], which are finite analogues of
the representations constructed in [W]). The true level [*(x) of an irreducible
character x € Irr(G) is then defined to be the smallest nonnegative integer j
such that x is an irreducible constituent of v/, and the level [(x) is the smallest
nonnegative integer j such that Ay is an irreducible constituent of 7/ for some
character A of degree 1 of G.

For any, not necessarily irreducible, character ¢ of G, the true level I*(p) is
defined to be the largest true level of its irreducible constituents, and similarly
for the level [(¢). We also define [*(p) = [(p) = —oc0 if ¢ = 0.

In both the cases € = =, we can find a Frobenius endomorphism F : G — G
on the reductive algebraic group G = GL,(F,) such that G© = G, = GL(q).
Moreover, given any 1 < j < n, we can find a (not necessarily F-stable)
parabolic subgroup P of G with an F-stable Levi subgroup £ such that £F =
G; xG,_; = GL; (¢) x GL:_ j(q). In this case, we will denote the Lusztig
functors Rgd, and *Rgcp [DM2, Section 11] of induction and restriction by
jox G, , and *Rg;wﬁ, respectively.

Our first main result, Theorem 3.9, completely determines irreducible
characters of G of any given level j in terms of their Lusztig labels. We
also give another characterization of characters of level j in terms of certain
dual pairs [Hw].

THEOREM 1.1. Let g be any prime power, ¢ =+, G = G, = GL(A) = GL{ (q)
with A = F, S = GL(B) = GL%(¢) with B = IF"Q and1 < j < n. LetV :=
A ®r, B, which in the case € = — is endowed with the tensor product of the
Hermitian forms on A and B, and consider the (reducible) Weil character Tt of
GL(V) = GL;_/ (¢) as defined in (1.1). Via the natural action of G x S on 'V, we
can view T as a character of G x S and decompose

Tlgxs = Z D, Xa,
aelrr(S)
where D, is either 0 or a character of G. Then the following statements hold.

(i) The map
O x > (R, , (X

i*Gn—j

vields a canonical bijection between the two sets
{0 € Ir(GL; (9)) | '(0) = j}

and
{v € Irr(GL(¢)) | '(v) = 2j —n}.
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(i1) If € = 4+, then the following statements hold:
(@ If " (@) <2j —n, thenI*(D,) < j.

(b) If () = 2j — n, then there is a unique irreducible constituent D? €
Irr(G) of true level j of Dy such that (D, — D) < j.

(¢) The map o — D; is the inverse of the bijection ®.
(iii) Lete = —. Suppose that 1 < j <n/2ifqisodd, and1 < j < /n —3/4—

1/2 if g is even. Then for any o € Irr(S), there is a unlque irreducible
character D; € Irt(G) of true level j of D, such that I*(D, — D?) < j.

Using this characterization, we then establish the following upper and lower
bounds for the degree of characters in terms of their level. These bounds show, in

log, x (1)
—

particular, that if x (1) is not too large, then [(y) is [ , agreeing with

intuitive understanding of the character level.
THEOREM 1.2. Letn > 2, € =+, and G = GL{(q). Set k. = 1 and k_ = 1/2.
Let x € Irr(G) have level j = [(x). Then the following statements hold:
(i) kg™ < x(1) < g
@) If j = n/2, then
204
x(1) > (9/16)(q — )g" "+
ife =+, and
24
x(D) = (g = DHg" !
ife = —. In particular, x (1) > ¢"*2if [(x) > n/2.

(iii) Ifn = T and [(1/n)log, x(1)] < ~/n —1—1, then
1 1
= [P220]

The next result gives an analogue of Theorem 1.2 for special linear and unitary
groups.

THEOREM 1.3. Letn >2, e =+, and S = SL;(q). Seto, =1/(q—1) ando_ =

1/2(g 4+ 1). Let ¢ € Irr(S) have level j = [(¢). Then the following statements
hold:

(i) O-eqj(n*_i) < QD(]) < qnj.
(i) If j > n/2, then p(1) > ¢"/*2/(q =€) > (2/3)q" 7.
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Character levels and character bounds 5
(i) Ifn = Tand [(1/n) logq ()] < +/n—1—1, then
log, (1)
=[]

Next we prove exponential bounds for character values at the group elements
with not-too-large centralizers. The first bound shows that character values
x (g) of ‘almost regular’ elements in G are arbitrarily small exponentially in
comparison to x (1) as long as n is sufficiently large.

THEOREM 1.4. There is an explicit function h = h(C,m) : Ry X Z>o — Ry,
such that, for any C € Ry, m € Zx, the following statement holds. For any
prime power q, any € = %, any G = GL; (q) or SL; (q) withn > h(C, m), any

Cn

x € Irr(G), and any g € G with |Cgre () (8)] < g",
Ix (@) < x (D).

The second bound shows that if the centralizer of g € G is not too large, then
the character values |x (g)| can be bounded away from x (1) exponentially (and
explicitly).

THEOREM 1.5. Let q be any prime power and let G = GL; (q) or SL{ (q) with
€ = +. Suppose that g € G satisfies |CGL;(q)(g)| < q”z/lz. Then

Ix (@] < x(D)*°
forall x € Irr(G).

Our characterization of characters of level j in terms of dual pairs
(Theorem 1.1) allows us to obtain strong (and explicit) exponential character
bounds for all elements in the group, provided that j is not large. For any
g € GL,(¢) = GL(A), let §(g) denote the largest dimension of eigenspaces of
gonA®r, F,.

THEOREM 1.6. Let g be any prime power, n > 1, € = £, and G = GL; (q).
Then the following statements hold for any x € Irr(G):

(i) Suppose € = + and I(x) < /@1 = T1/12 — 1/2. Then
Ix ()| < 1.76x(1)'~"/"
forall g € G \Z(G). Moreover, if (x) < (v12n — 59 — 1) /6, then
Ix(g)] < 1.76x (1)mx(=1/2100-3()/m

forall g € G.
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(i1) The same statements as in (1) hold if we replace G by SL,(q).
(ii1) Suppose € = —and [(x) < /n —3/4 —1/2. Then
1x(g)] < 2.43x (1)~
forall g € G . Z(G). Moreover, if [(x) < /n/2 —1, then
Ix(g)| < 2‘43X(l)max(l—l/ﬂ(x),s(g)/n)
forall g € G.

(iv) The same statements as in (iii) hold if we replace G by SU, (q).

The character bounds in Theorems 1.4—1.6 have already proved to be useful
in various applications (see, for example, Theorem 1.7 and [LST]). Note that
the exponent 1 — 1/n in the character bounds in Theorem 1.6 is optimal;
see Example 9.6(i). Similarly, if ¢ € GL,(g), respectively g € GU,(g) is
close to be a scalar matrix, that is, §(g) is very close to n, then the exponent
max(1 — 1/2[(x), §(g)/n) in Theorem 1.6 is again optimal; see Example 9.6(ii).
Furthermore, the bijections in Theorem 1.1 are explicitly described (in terms
of character labels) in Corollary 3.10. See also Corollary 8.6 for a bijection
between irreducible characters of level j < n/2 of SL,(¢), respectively SU, (g)
and irreducible characters of GL(q), respectively GU;(g). These bijections are
canonical, see Remark 9.7, and may be helpful in certain situations (for instance,
when one would like to control the action of outer automorphisms and Galois
automorphisms on irreducible characters).

As an immediate application, we derive upper bounds on the covering number
and mixing time of random walks corresponding to certain conjugacy classes in
SL: ().

For a finite group S and a fixed element g € S, consider the conjugacy class
C = g% and random walks on the (oriented) Cayley graph I'(S, C) (whose
vertices are x € S and edges are (x,xh) with x € S and h € C). Let P'(x)
denote the probability that a random product of ¢ conjugates of g is equal to
x € S, and let U (x) := 1/|S]| denote the uniform probability distribution on S.
Also, let

[P = Ul :zZlP’(x)—U(x)l, [P'=Ullrx := |S|-max | P'(x) = U (x)].
o5 xes

The mixing time of the random walk on I"(S, C) is defined to be the smallest
integer ¢ > 1 such that |P" — U1 < 1/e.
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Character levels and character bounds 7

THEOREM 1.7. Let S = SL; (q) with e = %. Let g € S be such that

2
|Cors ) (9] < ¢,

and let C = g5.

(i) Supposen = 19.Ift > 19, then P' converges to U in the || - || oo-norm when
q — 0o, in particular, the Cayley graph I" (S, C) has diameter at most 19.

@i1) Ifn > 10, then the mixing time T (S, C) of the random walk on I'(S, C) is
at most 10 for q sufficiently large.

We expect our results on character levels and character bounds to be useful
in several other applications as well. Recently, various interesting conjectures
on almost uniform distribution of the commutator map on simple groups of Lie
type have been raised. Theorem 1.6 has been used in [ST] to refute one of these
conjectures, and evidence in support of another, stated by Avni and Shalev [ST,
Conjecture 1.7], is provided by our next result, Corollary 7.5. More recently,
Theorem 1.4 has been used in [ILST] to study probabilistic Waring problems on
finite simple groups. As another application, Theorem 4.6 gives a decomposition
of the restriction of the Weil representation to a dual pair GL;,(¢) x GL;(gq)
— when ¢ is sufficiently large this is one of the main results of [S2]. Next,
Theorem 9.5 explicitly determines the U-rank (introduced in [GH2]) for any
character of GL,(g), resolving an open problem raised in [GH2, Conjecture
6.3.5] and generalizing the complex case of the main result of [T2]. We also
observe a parity phenomenon for the characters of finite unitary groups, see
Corollary 4.8.

Our method relies crucially on the Deligne—Lusztig theory [C, DM2]. It also
utilizes several features of finite general and unitary groups G, including the fact
that the centralizer Cg«(s) of any semisimple element in the underlying (dual)
algebraic group G* (of type GL,) is a Levi subgroup, geometric constructions of
unipotent representations of GL, (g), and the Ennola duality providing a bridge
between the character theories of GL,(q) and GU,(g). These properties allow
us to develop a complete character level theory for GL,(¢) and GU, (¢). They
do not, however, hold true for the remaining finite classical groups. A different
method, which relies on results proved for GL, (¢) in this paper and leads to only
a partial character level theory but still suffices to yield exponential character
bounds, is used in the sequel [GLT] to handle all these remaining groups.

Our paper is organized as follows. After proving some preliminary results in
Section 2, in Section 3, we prove Theorem 3.9 which characterizes the characters
of GL:(¢q) of given level j in terms of their Lusztig level and also produces
a bijection between these characters and a subset of irreducible characters of
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R. M. Guralnick, M. Larsen and P. H. Tiep 8

GL; (¢). These results allow us to characterize characters of a given level in
terms of their degree (Theorem 1.2) in Section 5 and to establish various bounds
on character values (Theorems 1.4 and 1.5) for GL{(q) in Section 6. Further
results concerning the level and the Alvis—Curtis duality are given in Section 4.
Extensions of several main results to special linear and special unitary groups,
as well as Theorem 1.7, are proved in Section 7. The proofs of Theorems 1.1
and 1.6 are completed in Section 8. Some further results are given in Section 9,
including Theorem 9.5 which determines the rank of any character in terms of
its level.

Notation. For any finite group G, Irr(G) denotes the set of complex irreducible
characters of G, reg denotes the regular character of G (that is, reg;(g) equals
|G|if g =1and 0if 1 # g € G), and 15 denotes the principal character of
G. For a subgroup H of a finite group G, a class function o of H, and class
functions B, y of G, y|p denotes the restriction of y to H, Indf, (v) denotes the
induced class function on G, and [B, y]s denotes the usual scalar product of
class functions. We will say that x € Irr(G) is an irreducible constituent of a
class function @ on G (and that « contains y) if [«, x]c # 0. Slightly abusing
the language, in various arguments, we will also consider the zero function on
G as a character of G. A generalized character of G is a Z-linear combination
of irreducible characters of G. For finite groups G and H, o X S denotes the
(outer) tensor product of class functions « on G and 8 on H, and similarly for
representations. If ¢ is a generalized character of the direct product G x H, then
we will let " denote the generalized character ), . ) ta.1, if

Q= Z aqpa X B.
aelr(G),Belr(H)

Other notation is standard.

2. Preliminaries

Recall that the complex irreducible characters of the symmetric group S, are
labeled by partitions A - n: x = x*. In particular, x ™ = Ig,. As usual, we write
X:(Al,kz,...,A,)Fnifkl 2)\.22 2)‘-r QOaHdZ:zl)\.i =n.

LEMMA 2.1. Consider y = (y1, V2, ---,¥,) = n + m and the Young subgroup
Y=S, xS, of S :=8,,, for somem,n > 1.
(1) x? can occur in Indf,(x“ X x ™) for some a - n if and only if y; > m.

(i) If y1 = m, then x? occurs in Indy (x* X x ™) exactly when a = (y», 3,
.., ¥r), in which case it occurs with multiplicity one.
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Proof. According to Young’s rule [JK, 2.8.2], x” can occur in Indj (x* X x ™)

fora = (o1, @y, ..., a,) F nif and only if
S A A I A I A N G I TR 7 (2.1)
In particular,
r r—1 r

n:Zai>Zai>ZVi:(’l+m)_ylﬂ

i=1 i=1 i=2

and so y; = m. Moreover, if y; = m, then we geto, = 0and @ = (32, 3, - - -,
¥r)-

Conversely, suppose that y; > m. Then we can find r integers t,, t>, ..., ¢, > 0
such that ) ', #; = m and

H<Vi—Vs, L<VY2—Vsserstiat S Vool — Vs b < Ve
Setting o; = y; — t;, we see that @ = (o), @3, ..., ) F n and a satisfies (2.1),
and so x” occurs in Ind)s, (x* X x™). The multiplicity-one claim also follows
from Young’s rule. O

The following well-known observation is essentially due to Brauer.

LEMMA 2.2. Let ® be a generalized character of a finite group G which takes

exactly N different values ay = ©(1), ay,...,an_, on G. Suppose also that
O(g) £ O) forall 1 # g € G. Then every irreducible character x of G
occurs as an irreducible constituent of @ for some 0 < k < N — 1.

Proof. Consider any x € Irr(G). By assumption,

N-1 L) X
[X,n(@—ai'lc)] :ﬁn(ao_ai)#(),
i=1 i=1

G
whence [x, ©@%]s # 0 for some 0 < k < N — 1. O

LEMMA 2.3. Let G be a finite group and let Xy, X}, ..., X, be n + 1 disjoint
(possibly empty) subsets of Irr(G). Let oy, oy, ...,o, be (not necessarily
irreducible) complex characters of G and PBo, pi, ..., B, be generalized
characters of G such that

(a) Spang(ag, oy, ...,a;) = Span,(Bo, Bi, ..., B;);
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R. M. Guralnick, M. Larsen and P. H. Tiep 10
(b) each x € X; occurs in Z{:o o;; and

(c) allirreducible constituents of B; belong to U{:o X,

forall0 < j < n. Then forall 0 < j < n, X; is precisely the set of irreducible
characters of G that occur in a; but not in Z{:—Ol Q.

Proof. We proceed by induction on 0 < j < m. For j = 0, any x € A} occurs
in «p by (b). Conversely, any irreducible constituent of & belongs to &; by (a)
and (c). ‘

For the induction step, consider any x € X;. By (b), x occurs in Y 7/_ o;.
If, moreover, x occurs in le;()l a;, then x belongs to U;’;} X, by (a) and (c),
a contradiction. Conversely, assume that x € Irr(G) occurs in «; but not in
Z{;OI a;. By (a), x occurs in B; for some 0 < i < j and so x € X, for some
0 < k < i by (c). Hence, k = j by (b), as desired. I

LEMMA 2.4. Let (G, Q) be either (GL,(q), q) or (GU,(q), %), and let V = Fy
denote the natural module for G. Then, for any 1 < j < n, the number N; of
G-orbits on the set §2; of ordered j-tuples (v, ..., v;) with v; € V is at most
8q7°/* in the first case and at most 2q”" in the second case.

Proof. (i) Consider U = ]F‘é with a fixed basis (e, ..., e;). Then there
is a natural bijection between §2; and Hom(U, V): any w = (vi,...,v;)
corresponds to f = f, € Hom(U, V) with f(e;) = v;. Suppose that @' = g(w)
for some g € G. Then f, = gf, and Ker(f, ) = Ker(f,). Moreover, in the
case Q = ¢2, the Hermitian forms of V restricted to f, (V) and f, (V) have
the same Gram matrices in the bases (f (u;), ..., foUi)) and (fo (uy), ...,
Jor(Ur)), if (uy, ..., uy) is a basis of U/ Ker(f, ). Conversely, assume that f,
and f, have the same kernel W for some @, @’ € £2;. Again we fix a basis
Uy, ooc,up)) of U/W. If Q = qz, assume, in addition, that the Hermitian forms
of V restricted to f,, (V) and f, (V) have the same Gram matrices in the bases
for @1)s -y for ) and (fupr (), ..., fuo (). By Witt's lemma [A, page
81], there is some g € G such that g( f,, (4;)) = fn'(u;) forall 1 <i < k. Hence,
for = &f» and so w’ = g(w). Note that there are at most q"2 of possibilities
for the Gram matrices in the basis (f,, (u1), ..., foUy)).

(i1) Suppose that Q = ¢q. Our arguments in (i) show that N; is just the total
number of subspaces W in U, that is,

J .
N=Y (f)q 2.2)

i=0
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Character levels and character bounds 11

where (j )q denotes the Gaussian binomial coefficient
(j) _ i@’ =4
i/, (@' —q")
By [LMT, Lemma 4.1(i)], we have
(j) 0 A DY § (S el VU
/g Tl =4 —o(1 = 1/g"")
andso N; < (32/9) 3>, ¢'U=". Suppose j = 2jo+1 > 1.For0 <i < j, we can

find 0 < k < josuchthati € {jo—k, jo+1+k}andi(j—i) = jo(jo+1)—k(k+1).
It follows that

< (32/9)¢"7",

2K, 64 S ] 2
24 iG=i) _ 2% joGo+D) /4
5 Zq = 5 g7t qu<k+l) < 8¢/,
i=0 k=0

yielding the claim. Similarly, if j = 2j, > 2, then writing i = jy+k for0 <i < J,
we have i (j — i) = ji — k?, whence

NI 3 > .
5 24 < 3q’5<1 +2Z7> <87,
q

i=0 k=1

and we are done again.

Note that N; > ¢Y"/* as G has at least qU"/* orbits on j-tuples @
corresponding to f,, with dim Ker(f,) = |j/2].

(iii) Suppose that Q = ¢*. Our arguments in (i) show that N ; is at most the sum
over k of the total number of (j — k)-dimensional subspaces W in U weighted
by a factor of ¢*°, that s,

J . J i—-1, 25 2t

i—i2fJ '7i21_[:(q1_q )

Ny<) gl )(i> =D qU oI —
i=0

o s g — )
For j —1>i > 1,by [LMT, Lemma 4.1(i)], we have
—0(@® —q*)
_ g o = 1?07 2D
;;(1)(1 — 1/q*=1) l—qg2—qg*+q

2i(j—i)
= < (1.46)g* 0.
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It follows that

J 0
Ny <q” +(146) ) ¢ < qf(l +(1.46) ) :—,2> < 1.83¢7.
i=1 ql

i=1

Note that N; > ¢/* if j < n/2 as G has ¢/° orbits on linearly independent
j-tuples, and, in fact, N; = []_,(g* ' 4+ 1) if I < j < n/2, as we show in
Corollary 4.7. O

Let G be a connected reductive algebraic group defined over a finite field of
characteristic p, and let F : G — G be a Frobenius endomorphism. Let P be a
(not necessarily F-stable) parabolic subgroup of G with a Levi subgroup £ which
is F-stable. Then the Lusztig induction R%cp is defined and sends generalized
characters ¥ of L := LF to generalized characters of G := G'; see [DM2,
Section 11]. The character formula for Rch (), see [DM2, Proposition 12.2],
utilizes Green functions

Q%C'P:g; X‘CL[;_)Z

as defined in [DM2, Definition 12.1], with GF and L denoting the set of
unipotent elements in G and in L. If P is F-stable in addition, then Rgcp is
just the Harish—-Chandra induction RY (that first inflates any character of L to
a character of P := P’ and then induces to G). It is known that the Lusztig
induction is transitive (see [DM2, Proposition 11.5]); furthermore, it satisfies the
‘Mackey formula’ in some cases, including the cases where P is F-stable [DM2,
Theorem 5.1], or if one of the involved Levi subgroups is a maximal torus [DM2,
Proposition 11.3], or if G = GL, (F) [DM1, Theorem 2.6]. Moreover, when the
Mackey formula holds, it implies that Rgcp does not depend on the choice of
P (see [DM2, page 88]). Hence, when we work with G of type GL, we will
therefore write RY instead of R .

We will record some properties of Lusztig induction.

LEMMA 2.5. Let G = G, x G, be a direct product of connected reductive
algebraic groups with a Frobenius endomorphism F : G — G which stabilizes
both G, and G,. Let P; be a parabolic subgroup of G; with an F-stable Levi
subgroup L; fori = 1,2, andlet P =Py x Py, L =L x L,.

(i) Suppose that u; € (GF), and v; € (L), fori =1,2. Then

g g
Q%cp(ulu% vvy) = lelcpl (uy, Ul)ngchz(Mz, V7).
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Character levels and character bounds 13

(ii) Suppose that y; is a generalized character of LF fori =1, 2. Then

RE (1 ®ys) = R o (1) B RE . (7).

Proof. (i) LetL : G — G denote the Lang map L(g) = g~ ' F(g), and let I/ be the
unipotent radical of P. Then (g, ) € G x LF acts on L~ (If) via x — gxI, and
this turns the £-adic cohomology group H/(L~'(U), Q,) into a G"-module-L”
for all j > 0, where £ # p is a fixed prime. Next,

1
|L£F]

QF cplu,v) = L, v), L' U, (2.3)

where the Lefschetz number £((u, v), L='(U)) is the trace of (u, v) acting on

HX L' @) = Y (— ) HI L™ ). Qu:

j=z0

see [DM2, 10.3,12.1].
In our case, Y = U, x U,, where U; is the unipotent radical of P; fori = 1, 2.
It follows that L~'(4) = L~'(U4,) x L~'(4,), and so

(w1t v102), LN U)) = L((uy, v1), L' UY)) - £((ua, v2), L' Un))

by [DM2, Proposition 10.9(ii)]. Together with (2.3), this implies the claim.
(ii) By [DM2, Proposition 11.2],

(RZpy)(8) = > L D, L Uy (2.4)

1
F
|£ |le£F
for any generalized character y of G¥. Applying this formula to y := y; X
y» and using [DM2, Proposition 10.9(ii)] again (also noting that y ((xy)~') =
y(x~'y N forall x, y € GF), we obtain the claim. O

In view of Lemma 2.5 and the discussion prior to it, when we work with G a
direct product of groups of type GL, we can also write RY instead of Rgcp.

COROLLARY 2.6. Let G = G, x G, be a direct product of connected reductive
algebraic groups with a Frobenius endomorphism F : G — G which stabilizes
both G, and G,. Let P, be a parabolic subgroup of G, with an F-stable Levi
subgroup L, and let P = P x Gy, L = L, x G,. Suppose that y is a generalized
character of LT and § is a generalized character of G5 . Then

Rl p(y ®8) = RY p (y) K6.
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R. M. Guralnick, M. Larsen and P. H. Tiep 14

Proof. Note that (2.4) applied to Rgchz (8), where P, := L, := G, yields
Rgi cp,(8) = 8. Now the statement follows by applying Lemma 2.5(ii). 0

Note that [GKNT, Lemma 2.7(ii)] is a partial case of Corollary 2.6.

3. Character levels in finite general linear and unitary groups

In this section, we will characterize the irreducible characters of GL:(q)
of given level j, in terms of their Lusztig level, and construct a bijection
between them and irreducible characters of GL; (¢). To this end, in the first
two subsections, we will construct some Lusztig induced characters. These
characters will play a key role in the subsequent characterizations in the third
subsection of characters of given level.

Let g be a prime power, € = %, and let G := G, := GL{(g) withn > 2,
and natural module V' = (ey, ..., e,)r,. When € = +, let 5, := 7, denote the
permutation character of the action of G on the set of vectors of V so that

tn(g) — qdimpq Ker(g—1v) (31)

for all g € G. When € = —, let 5, := ¢, denote the reducible Weil character of
G (see, for example, [Ge, TZ]), that is,

dimp , Ker(g—1v)
q

2u(8) = (=D"(=q) (3.2)

for all g € G. Applying Lemma 2.2 to (G, ®) = (GL:(q), n,), we get the
following.

COROLLARY 3.1. Each irreducible character of GL:(q) occurs as an
irreducible constituent of (n,)* for some 0 < k < n. I

In view of Corollary 3.1, we can introduce the following.

DEFINITION 1. Let x € Irr(GL; (¢)).

(1) We say that x has true level j, and write [*(x) = j, if j is the smallest
nonnegative integer such that x is an irreducible constituent of (1,)’.

(i1) We say that x has level j, and write [(x) = j, if j is the smallest nonnegative
integer such that x A is an irreducible constituent of (1, )’ for some character
A € Ir(GL; (¢)) of degree 1.
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Character levels and character bounds 15

3.1. A Harish—Chandra induced character of GL,(g). Consider the case
€ =+ sothat G = G, = GL,(q). Fix some 1 < j < n — 1 and consider the
parabolic subgroup

P = StabG((e], ey ej)qu)

with unipotent radical U and Levi subgroup L = G; x G,_;, where G; is
identified with

[ Stabp(e) = GL((er, - ¢))x,)
i=j+1

and G,_; is identified with

J
(") Stabp(e:) N Stabp((ejs1, - .- €a)r,) = GL((ej41s - .-, €a),).

i=1
PROPOSITION 3.2. In the above notation,

j—1

Rg_,-xGn,j(reng X lan,‘) = l—[(rn - Cli : lG)

i=0

Proof. Note that G acts transitively on the set 2 of ordered j-tuples (fi, ...,
f;) of linearly independent vectors in V, and the corresponding permutation

character is
j—1

7=[]@ -4 10

i=0

Since the stabilizer of (ey, ..., e;)is H :=UG,_; < P, we have
7 =Ind$ (1) = Ind$(a) = Rg‘/_xcnﬂ_ (reg;, M 1g, ),

where « is trivial at U and equals to

GJXG,,,I'

IndGH (g, ;) = reg;, X lg,_;
as P/U-character. Hence, the statement follows. O

‘We use the parametrization of unipotent characters of GL,, (¢) by partitions A -
n: ¥ = ¥, as in [C, Section 13.1]. We will need the following well-known fact
about the Harish—Chandra induction of unipotent characters of Levi subgroups
of GL,(g) (see, for example, [J2, (3.5)]).
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LEMMA 3.3. Let o = m and B + n, and consider the Young subgroup S,, x S,
of S, and the Levi subgroup G,, X G, of Gyn = GL,1,(q). Then

Indg"ys (X*®x?) = Y awpx’. ReU, (W RYP) = Y aupyt,

AEm+n A=m+n

where aqg, is the Littlewood—Richardson coefficient. O

3.2. A Lusztig induced character of GU, (¢). In this subsection, we assume
€ = — so that G = G, = GU,(¢g). We use the parametrization of unipotent
characters of GU, (¢) by partitions A I n: ¥ = v*, as in [C, Section 13.1]. We
will need the following property of the Lusztig induction of unipotent characters
of GU, (q); see [FS, Proposition (1C)].

LEMMA 3.4. Let « - m and B + n, and consider the Levi subgroup G,, x G,
Ome+n = GUm—&-n(Q) Then

RGO ByP) = 3 (Zaep) ¥,

A-m+n

where aqg), is the Littlewood—Richardson coefficient as in Lemma 3.3. L]

We will now introduce some notation as in [ThV]. Let F act on ]F‘; via F(x) =

x~7 and let © be the set of F-orbits on F*. Then there is a natural bijection
between ® and @, the set of F-irreducible polynomials f = f(t) over IF2, that
is, the monic polynomials f € IF,2[¢] for which there is an F-orbit O of length
deg(f) such that f(r) = Hzeo( f — 2). Let P, denote the set of partitions of
n >0, andlet P = |J2, P,. For » € P,, we define |A| = n. Fix a linear order
on @. Now, a @-partition

v= (), v(f).v(f3)....)

is a sequence of partitions in P indexed by @, of size |v| =
> rex ()l deg(f). Denote

P? = {@-partitions v | |v| = n} UPQ)

Then the conjugacy classes ¢, in GU,(¢g) are naturally indexed by p € P?. We
let ¢; denote the class of the identity. Also, for a class ¢, let 7, denote the class
function that takes value 1 on ¢, and O elsewhere.
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Character levels and character bounds 17

Let C, denote the space of complex-valued class functions on GU,, (g). Then
Ennola defined in [E] the following product ) * a; € C,, 4, for oy € C,, and
o, € C,,, where

arxonc) = Y ghon(cu)en(cu,). (33)
ey I=n. s ll=n2
and g}Ll u, 18 defined using the Hall polynomials [M, Ch. II]:
o A deg(f)
G = ] | 8 hai (=)™, (3:4)
fe@

It turns out, see [ThV, Corollary 4.2], that x coincides with the Lusztig induction.

PROPOSITION 3.5. Let « be a class function on G,, = GU,,(q) and B be a class
function on G, = GU, (q). Then

RE™ (@R B) = axp. O

PROPOSITION 3.6. In the above notation, for 1 < j < n — 1, we have

j-1
Rg";xGn—j (reng X lGn—j) = (_1)‘/'("7” H(é—n - (_l)niiqi : lG)

i=0

Proof. Since reg; = |G,|m, Proposition 3.5 and (3.3) and (3.4) imply that

RG' ., (regs Mg, )(g)=1G;| Y b,

[vll=n—j

=1G;1 Y []simp=*) 3.5)

[vll=n—j fe®

if g € G, belongs to the conjugacy class c,. For any prime r and any integer #,
a finite abelian r-group M is said to have type A = (A, ..., A) Fnif

M=ZCy X Coy X o+ X Cray.

Note that the Hall polynomial gﬁv(x) is characterized by the property that, for
every prime r, gﬁv (r) is the number of subgroups N < M such that N has type
w and M /N has type v, where M is a fixed abelian r-group of type A.

Recall that 1(f) equals (1/) if f =t — 1 and 0 otherwise. Hence, for any
f € @ with f #1t — 1, we see that gﬂf)v(r) equals 1 if v = X and O otherwise,
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whence gi‘( = 8, Hence, in the summation in (3.5), we need to consider only
the v with ||v|| =n — j and v(f) = A(f) forall f # ¢ — 1, for which

[T el (™) =g i(—a), (3.6)

fe®

where A := A(t — 1) and v' := v(r — 1). Writing A" = (A;, As, ..., &) With k
nonzero parts, we see that the unipotent part u of g has Jordan canonical form
diag(Jy,, Ji,, - - ., o) on V; = Ker(s — 1y), where s is the semisimple part of g
(and J,, is the Jordan block of size m with eigenvalue 1). It follows that

k= dimﬂrq2 Ker(g — 1y). (3.7

First, we consider the case k < j. Then g(*ll,.wl (r) = 0 for all r (indeed, any
abelian r-group M of type A' has r-rank & and so cannot contain any subgroup
N of type (1/)), whence g(lllj)yv, (—g) = 0, regardless of v!. Together with (3.5)
and (3.6), this implies that jo”,xGH_ (reng X1, ,)(g) = 0. On the other hand,
(3.7) and the condition k < j yield ]_[f;()l (¢,(g) — (=1)""Ig") = 0, and so we are
done in this case.

Now we consider the case k > j. Recall that we need to consider only those v
with v(f) = A(f) forall f # ¢t — 1, whence |v'| = |A'| — j. If M is an abelian
r-group of type A', then it has r-rank k and so £2,(M) is elementary abelian of
rank k. Any subgroup N of type (1/) is then an elementary abelian r-subgroup
of rank j in £2,(M), and M /N has type v’ for some v’ - (J]A'| — j). It follows
that 2 (r) is just the number of elementary abelian subgroups of rank j in £2,(M),
that is,

ot =)

mICESo)

h(r) =

if we set

hx) = > gh, () €Clx].

vIEA =)

Since this happens for all primes r, we can conclude (with using also (3.7)) that

[ () = (=9))

> gh(—@) =h(—q) =

VIE(M ) 2o ((=q) = (=q))
_ TS (=D"6@) = (=a))
—D7IG] '
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Character levels and character bounds 19

Together with (3.5) and (3.6), this implies that

RE' g, (regg Mg, )(g) = (-1 H(( 1)"¢.(8) — (—=)"),

i=0

as stated. O

3.3. Characterizations of characters of given level. We will now return to
the notation G = G, = GL (¢), with ¢ = £ and ¢ any prime power. Let

Tns € =+,

(=D"¢, e=-—.

Wy =

Then we can combine Propositions 3.2 and 3.6 into a single statement.

PROPOSITION 3.7. Fore = + and forany 1 < j < n — 1, we have

j—1

RG' g, (regg, WG, )= (=1 [ (@, — (eq)' - 15). O
i=0

We can identify the dual group G* with G = GL{(g) and use Lusztig’s
classification of complex characters of G; see [C, DM2].If s € G is a semisimple
element, then £(G, (s)) denotes the rational series of irreducible characters of
G labeled by the G-conjugacy class of s. For any semisimple s € G, we can
decompose V = V°® @ V! as direct (orthogonal if € = —) sum of s-invariant
subspaces where V0 = D _ V(;, s acts on V; as § - 1y,, and no eigenvalue of

s' := s|y1 belongs to
Mg-e1 :={x € F;Z | xI= = 1}

Then
Co(s) = [] GL(Vs) x Core(s").

5€[.Lq_5]

Correspondingly, any unipotent character ¥ of Cs(s) can be written in the form

V= Bsep, ¥ R, (3.8)

where {75 is the unipotent character of GL*(V;) labeled by a partition y, of
dimg, Vs, and v, is a unipotent character of Corevr)(s!). If V5 = 0, then we view
y s as the partition (0) of 0. (It will follow from Theorem 3.9 that the irreducible
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character labeled by (s, 1) has true level n if V| = 0 and level n if Vs = 0 for all

§e /'Lq—el-) _
Fix an embedding of F* into C*. Then one can identify Z(Cg;(s)) with

Hom(Cq (5)/[Cq(s), Cs(s)], C)

as in [FS, (1.16)], and the linear character of Cgs(s) corresponding to s will
be denoted by §. Now, the irreducible character x of G labeled by s and the
unipotent character ¥ is

X = £RE, \$¥); (3.9)
see [F'S, page 116].

PROPOSITION 3.8. For G = GL; (q) and 1 < j < n, all irreducible constituents
of
j—1
=] = (eq) - 10)

i=0

are among the characters given in (3.9), where \ is as in (3.8) and the first part
of the partition y | is at least n — j. Moreover, if the first part of the partition y
is exactly n — j, then the corresponding character is an irreducible constituent

of .

Proof. (i) Note that the case j = n follows from the proof of Lemma 2.2 applied
to 7. So we will assume that 1 < j < n — 1. Any ¢ € Irr(G) occurs in
precisely when it is a constituent of RY (reg;, Mg, ;) for L := G; x G,;, by
Proposition 3.7. Thus, there is an irreducible character o € Irr(G;) such that ¢
is an irreducible constituent of Rf (a X 16, ;). Now we can find a semisimple
element s = (sy, ly) € G, where V. = W & U (an orthogonal sum if € = —),
G; = GL*(W), G,—; = GL*(U), and o € £(G}, (sw)). We also consider the
decomposition W = W° @ W! for the element sy as prior to (3.8). Then the
decomposition V = V° @ V! for s satisfies

Vi=W!', Vi=WeU, Vi=Ws; V5eu, o~{1}.

Let dimg, W) = k for some 0 < k < j and 7 := s|y1 = (sw)|w1. Now we have

Co,(sw) = Caewy () x [ GL(Vs) x GL (W),
1£8€1g—e1

Cq,(s) = Corevy () x  [] GL(Vs) x GL(Vy).
1£8€pmq—e
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In what follows, for brevity, we will denote the restriction of §, the linear
character of Cg(s) corresponding to s, to any subgroup of Cg(s) by the same
symbol §. In particular, the linear character of Cq, (sw) corresponding to sy will
also be denoted by §.

According to (3.9) applied to o, we have

o« =£RE, (,, GBRY), (3.10)

for some unipotent character B of Cgpe(y1(f) X Hlﬁeuﬁl GL*(V5) < G and
unipotent character ¥ of GL(W;) = G; (so v F k). Note that § is trivial
on GL¢(V}). By transitivity of the Lusztig induction and Corollary 2.6 (and
using [DM2, Proposition 12.6]), we have

Gj Gk xGy

to = RG,-,kak(RCG;(}W) SR YY) = G, kak(:B Xy,

where f := RGf - (SW)(§ B). It follows, using the same properties of the Lusztig
induction, that

+taNlg, , = Rg_;,kxck (B Xy") K lg, ;, = Rg;:ig{xc,_/ (B Xy’ X lg,_,)-

Hence,
G xGp
+RY (@R 1, ) = G wGo s (RGT X GixGr ](ﬂ X' K 1, ,))
= Rg’; /\XGkXG,,,‘/(ﬂ IE l/f IZ lG,, j)
G xGp
- Rg’; kX Gn— /+k( G; :Xkag: i :B Ky’ X lg,_ ]))

= RS 6, (BRRGIE (0" Rlg, ).

By Lemmas 2.1, 3.3, and 3.4, each irreducible constituent of
Gn—j v
Re & (W ® g, )

is Y* for some A = (A, Ay, ..., A) Fn— j+kwithA; > n — j. Again by
transitivity of the Lusztig induction [DM2, Proposition 4.7] and Corollary 2.6,
we have for any such A that

RS i BRYY) = RE 6 (RE (BB Ry
— Rg: Gy j+k(RgéE§)><an/'+k (§ﬂ IE '(ﬁx))
= RCC;(s)(S:B X Wl)
= R BB YY),

Downloaded from https://www.cambridge.org/core. IP address: 68.45.61.184, on 07 Oct 2020 at 14:45:21, subject to the Cambridge Core
terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fmp.2019.9


https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2019.9
https://www.cambridge.org/core

R. M. Guralnick, M. Larsen and P. H. Tiep 22

and so by (3.9), it is an irreducible character of G up to sign. We have, therefore,
shown that the irreducible constituents of = are among the characters given in
(3.9) with the first part of the partition y, = A being at leastn — j.

(i1) Conversely, suppose that the partition y, = A for the character ¢ has the
first part A; = n — j. The above arguments and Lemmas 2.1, 3.3, and 3.4 show
that the multiplicity of ¢ in Rf (« ¥ 1¢,_,) can be nonzero precisely when v =
(A2, A3, ..., A,), in which case it is £1. Certainly, s (up to conjugacy), §, and S
are uniquely determined by ¢. Now (3.10) implies that « is uniquely determined
by ¢. Thus, there is a unique a € Irr(G ;) such that ¢ is an irreducible constituent
of R¢ (a X lg,_;). Using the adjoint functor of Lusztig restriction, we then have

@ = (RG)vq, (@) (3.11)

Therefore, even though the Lusztig induction RY may send characters to
generalized characters and cancel out irreducible constituents of different
RY (o' K lg,_;), the established uniqueness of « allows us to conclude that ¢ is
an irreducible constituent of 7. Since reg;, = 3,1, @'(Da’, we also see
that [¢, m]g = £a(1). O

THEOREM 3.9. Let ¢ be an irreducible character of G = G, = GL; (q) which is
labeled by the G-conjugacy class of a semisimple element s € G and a unipotent
character r of Cg(s) written as in (3.8). Let 0 < j < n be an integer.

(1) @ has true level j precisely when the first part of the partition y, isn — j.
In this case, there is a unique o € Irr(G ;) such that ¢ is a constituent of
jo”_xcnﬂ_ (a X 1g,_;); equivalently,

a = (*Rg;XGn—j ((p))l(;nij;

and ¢ occurs in (t,)’ if € = + and in (¢,)’ if € = — with multiplicity a(1),
and *(a) = 2j — n. Furthermore, the map

@ 19 = (RGlyq, () o

i%Gn-j
vields a bijection between
{x € Irr(GL; (@) | "(x) = j}

and
(v € Im(GL (@) | I*(v) > 2j — ).

(i1) ¢ has level j precisely when the longest among the first parts of the
partitions ys, 8 € flg_c1, iSn — j.
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Proof. (i) For 1 <i < n, define o; = (7,)" when € = + and o; = ({,)" when
€ = —, and let B; := ]_[;(_:i)(a)n — (eq)* - 15). Also, let g = By := 1. Then
condition 2.3(a) is fulfilled. Next, for 0 < i < n — 1, let A; denote the set of
irreducible characters x labeled by a semisimple element s € G and a unipotent
character ¥ of Cg(s) as in (3.8), where the first part of y, is equal to n — i,
and let &), denote the set of such irreducible characters y where V| = 0 (that is,
s — 1y is nondegenerate). Then Proposition 3.8 shows that conditions 2.3(b), (c)
are fulfilled. Hence, by Lemma 2.3 and Definition 1, &; is precisely the set of
characters of true level j.

Suppose now that [*(¢) = j. Then the existence and uniqueness of o have been
established in the proof of Proposition 3.8, where we also showed that [¢, B;]¢ =
Fa(1) and observed (3.11). Note that o; — (e D" B ; 1s a linear combination of
(t,)',0<i < j,whene =+, and of (£,)", 0 <i < j, when € = —, and so has
no constituent of true level j by Definition 1. Hence,

[, ajlc = £l¢, Bjlc = Fa(l).

Since «; is a true character, we must have that [¢, o;]¢c = «(1). Also, in the
notation of the proof of Proposition 3.8, y, =A = — j, Ay, ..., A,) and v =
(X2, ..., A,). In particular, A, < n — j, whence ["(o) > 2j — n by the first
statement applied to G;, and the map ® is well defined. It is injective, as ¢ is
uniquely determined by «.

Conversely, suppose that o € Irr(G ;) as given in (3.10) satisfies [*(o) > 2j —n.
Then, in the above notation v = (A,, ..., A,) Fk,wehave A, < j— (2j —n) =
n— j;hence, A := (n — j, A, ..., A,) is a partition of n — j + k. With ¢ defined
as in (3.9), the proof of Proposition 3.8 shows that ® (¢) = « and so @ is onto.

(i) The linear characters of G are precisely the characters 7 with t € Z(G).
Also note that if s € G is semisimple, then tAch(s)f = si. Hence, by [DM2,
Proposition 12.6], we have R (§¥)i = RE_ (siy). In particular, if 1 = §- 1y
for some § € p,_.i, then the partition y -, defined for ¢ plays the role of y, for
f¢. Hence, the statement follows from (i) and Definition 1. O

We record the following consequence of the above proof.

COROLLARY 3.10. Let I"(@) > 2j — n for o € Irr(GLj. (9)) and express o as
in (3.10). If ® denotes the bijection in Theorem 3.9(i), then ®(¢) = o, where
@ is as defined in (3.9), with A = y, obtained by adding n — j to the front of
V:()\2,...,)\.,).'1,:(I’l—j,)\z,...,)\r). O

EXAMPLE 3.11.
(i) It is well known (see, for example, [T1]) that t, is the sum of 15 and
some irreducible Weil characters of G = GL,(¢), and every Weil character,
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multiplied by a suitable linear character, occurs in 7,. Thus, 15 has level 0,
and Weil characters are precisely the characters of level 1.

(i1) The Steinberg character of GL, (¢) is the unipotent character corresponding
to the partition (1"); hence, it has level n — 1.

(iii) Consider the case of G = GL,(g) and its irreducible characters, as labeled
in [DM2, Table 1]. The g — 1 characters of degree 1 have level 0. The
q — 1 characters of degree ¢ (including the Steinberg character) and the
(g — 1)(g — 2)/2 characters of degree g + 1 are all of level 1. Finally, the
remaining g (g — 1)/2 characters of degree g — 1 are all of level 2.

EXAMPLE 3.12.

(i) It is well known (see, for example, [TZ]) that ¢, is a sum of irreducible
Weil characters of G = GU, (¢q), and every Weil character, multiplied by
a suitable linear character, occurs in ¢,. Thus, Weil characters of G are
precisely the characters of level 1.

(i) The Steinberg character of GU,,(¢) is the unipotent character corresponding
to the partition (1"), hence it has level n — 1.

In the case € = +, thatis, G = GL(V) = GL,(g), sometimes it is convenient
for us to use the Dipper—James classification of complex irreducible characters
of G, as described in [J1]. Namely, suppose x € Irr(G) is labeled by s € G = G*
and ¢ as in (3.9). The Frobenius map F : x +> x? acts on the set of eigenvalues
of s acting on V ®r, Fq; let s, 57, ..., s, be a full set of representatives of F-
orbits on it. Then one has

Co(s) = GLy, (™) x GLy,(¢®) x - -+ x GLy, (g™),
where k;Z>,, s; has degree d; = [IF,(s;) : F,], and Z;":l kidi = n.
Correspondingly, the unipotent character ¥ of Cs(s) can be written as
v =y Ry R Ky,

where ¥ is the unipotent character of GL;, (¢%) labeled by the partition A; - k;.
Then the Dipper—James label of x is

X = S(s1,41) 0 8(s2,A2) 0 -+ 0SS, A)- (3.12)

In fact, in (3.12), we will use the convention thatif 1 € {s, ..., s}, thens; = 1,
and if 1 ¢ {sy,...,s,}, then we artificially add S(s;, A;) with A; = (0). With
this convention, we have y, = A, and can reformulate part of Theorem 3.9 for
GL, (g) as follows.
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THEOREM 3.13. Let x be any irreducible character of G, = GL,(q), written
as in (3.12). Let 0 < j < n be an integer.

(i) Then x has true level j precisely when the first part of the partition A is
n—j.

(ii) Suppose *(x) = n — j. Let A, denote the partition obtained from A, by
removing the first part n — j, and let

a = S(S17 ):1) o S(s27 )\‘2) -0 S(smv )Vm)’

Then o € Trr(G)), (@) > 2j —n, and @ = (*R" . (9)) 9.

j*Gn—j
Furthermore, the map ® : x — « yields a bijection between

{0 € Irr(GL. () | F(0) = j}

and
(v € Im(GL; () | I*(v) > 2j — n).

(i) x has level j precisely when the longest among the first parts of the
partitions A; with s; € K3 isn — j. O

4. Further results on character levels

Recall that if G is a connected reductive algebraic group and F : G — G is
a Frobenius endomorphism, then the Alvis—Curtis (duality) isometry Dg sends
any irreducible character of G := G* to an irreducible character, up to a sign,
see [DM2, Ch. 8], and defines an involutive unitary transformation on the space
C(G) of complex-valued class functions on G. If (G*, F*) is dual to (G, F) and
G* = (G, then £(G, (s)) denotes the rational series corresponding to the
G*-conjugacy class of a semisimple element s € G*; see [DM2, page 136].
Furthermore, let &g := (—1)°9, where og is the relative rank of G, as defined
on [C, page 197].

LEMMA 4.1. In the above notation, the following statements hold.

(1) The Alvis—Curtis isometry respects rational series of irreducible characters

of G.

(ii) Suppose f € C(G) is such that f(g) = f(s) whenever s is the semisimple
partof g € G. Then Dg(fa) = fDg(a) for any a € C(G).
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Proof. (i) If T is any F-stable maximal torus, then note by [DM2, Definition
8.8] that D acts trivially on C(7F). Hence, by [DM2, Proposition 8.11], for
any character 6 € Irr(7 "), we have that

Dg(R$(0)) = eger RF(D7(0)) = egeT RT(0) = £RT(0),  (4.1)

whence the statement follows.

(ii) Let £ be an F-stable Levi subgroup of an F-stable parabolic subgroup
of G, and let *Rg denote the Harish—Chandra restriction. By [DM2, Proposition
12.6], we have

RZ(CRZ(fo) = RZ(CREQ) - fler) = f - RECRE(@)).
Now the statement follows by applying [DM2, Definition 8.8]. O

Let G = GL,,(F,,) and let F denote the Frobenius endomorphism X =
(xij) = X@ = (x]) or F : X > (X@)~! 5o that G* = GL,(q), respectively
GU,(q). Following [FS, Section 1], we will always fix an F-stable maximal
torus 7 consisting of diagonal matrices so that |7,"| = (¢ — 1)", respectively
(g + 1)". Then the G’ -conjugacy classes of maximal tori in G are parametrized
by conjugacy classes in the Weyl group W = Ng(77)/7; = S,. Furthermore,
the unipotent characters of G are parametrized by the irreducible characters A
of W, which, in turn, are parametrized by partitions A + n. For w € W, let 7,
denote an F-stable maximal torus of G corresponding to the W-conjugacy class
of w. Then, for any A € Irr(W) labeled by A I n, the corresponding unipotent
character ¥ = y* of G is given by

a

Y = ﬁ Z AMw)RE: (1) 4.2)
weW

for some a, = =1; see [FS, (1.13)]. The same construction extends to direct
products of groups of type GL, equipped with Frobenius endomorphisms
stabilizing each factor, in particular, to F-stable Levi subgroups of GL,,.

LEMMA 4.2. LetG = G, x G, X - - - X G,, be a direct product of algebraic groups
G; =GL,, and let F : G — G be a Frobenius endomorphism that stabilizes each
factor G;. Let

W=W xW, x---xW,=S§, xS,, x---x8S,,

be the Weyl group of G. For any A € Trt(W), let Y* denote the corresponding
unipotent character of G F Then

Dg(y*) =y,
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where sgn € Irr(W) is the character that sends each permutation & € S, to the
sign of .

Proof. We apply (4.2) to ¥*. Note that sger, = (—1)'™ by [DM2, Exercise
13.29], where [ (w) is the length of the element w in W. Since W; is of type A,
we have (—1)"™ = sgn(w). Hence, (4.1) implies that

Dg(RY. (175)) = egeT, RS- (17¢) = sgn(w)RY. (175).
Applying Dg to (4.2), we obtain that Dg(¥*) = a;a;.sgn¥* 8" O

Now we return to G = GL,, with the aforementioned Frobenius endomorphism
F:G — Gsothat G := GF = GL,(q) or GU,(g). As before, we can identify
the dual group G* with G. For any semisimple element s € G,

L:=Cg(s) =G xGyx---X
is of the form described in Lemma 4.2, and likewise the Weyl group
W =S, xS, x---xS,,

of L is a direct product of symmetric groups. Hence, any unipotent character
Y* of Cg(s) is labeled by an irreducible character u € Irr(W,), as described in
(4.2). We will keep the notation sgn as in Lemma 4.2.

PROPOSITION 4.3. In the above-introduced notation, let x*" denote the
irreducible character of G = G¥ labeled by a semisimple element s € G and the
unipotent character Y* € Irr(Cg (s)) corresponding to € Irr(Wy), as in [FS,
(1.18)]. Then

Dg (™) = x5,

Proof. For w € W,, let T, denote an F-stable maximal torus of £ = Cg(s)
corresponding to the W-conjugacy class of w. Then, according to [FS, (1.18)],
we have that

ax, A
= > ww)RS Glry) (4.3)

weWg

for some a, , = £1, where the linear character § of Cg(s) is introduced before
(3.9). As mentioned in the proof of Lemma 4.2, e, = sgn(w)e,. Applying (4.1),
we obtain that

Dg(RS. (3172)) = eger, RS

w

Bl7zr) = sgn(w)eges RS (Sl7p).
Applying Dg to (4.3), we then arrive at

DQ (X”}') = ax,uas,,u-sgnEQgCXJY“Asgn- O
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Now we can link the levels of x € Irr(G) and its Alvis—Curtis dual. Slightly
abusing the notation, we define [(— ) := [(x) for any x € Irr(G).

PROPOSITION 4.4. Let G = GL, and G = G¥ = GL,(q) or GU,(q) for a
Frobenius endomorphism F : G — G. Then for any x € Irr(G),

[(x) +(Dg(x)) =2n—1.

Proof. The proofs for GL,(g) and GU,(¢) are identical, so we will give the
details in the case G = GU,,(q). Let [(x) = j and apply Theorem 3.9 to x. Then
the longest part among all the parts of the partitions p;, § € py—c1, is precisely
n — j if we express x as in (3.8) and (3.9). Say the partition y has the longest
partk,, =n — j.

According to Proposition 4.3, Dg(x) = Z£x**", and so the unipotent
character of Cg(s) corresponding to Dg(x) has e-component equal to 75 -
sgn = s, where ) is the partition conjugate to y; - ns, with the longest part
k;. Now, if € # €, then

/ .
ks <ns <n—ne <n—keg =J.
Furthermore, since y . and y; are conjugate partitions, we have

ki, <ng+1—ky<n+1—ky=j+1
We have shown that max{k; | 6 € p,—1} < j+ 1. Hence, (Dg(x)) 2n—j—1
by Theorem 3.9. O

The example of x = 15 shows that the bound in Proposition 4.4 is sharp since
+Dg (1) is the Steinberg character of G.

Next, for a fixed € = =+, we consider G, = GL{(¢) = G", G, = GL{(¢) =
(G)F with G, = GL; for 1 < k < n, and define w, := 7, if € = + and w, =
(=D"¢, if € = —. In what follows, the notation (7)) C G, means that we sum
over a set of representatives of G;-conjugacy classes of F-stable maximal tori 7
in G;; furthermore, we set T := 7 and W(T) := Ng,(T)/T for any such T.

We will need the following identity.

LEMMA 4.5. For any m € Zx,, we have

m

=3 <’Z) ﬁ(r —q").

k=0 q i=0
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Proof. We proceed by induction on m, with trivial base case m = 0. For the
induction step m > 2, note that if 1 < k < m — 1, then

m m—l) m_k<m—1)
= +q . 4.4)
(k)q ( ko), k—1),

Applying the induction hypothesis to the two indeterminates t' = t/q and ¢, we

have
m k—1 m
qu‘k(’;’:f ) [le-g)=a—-1ng"" Z( ) 1"[(r
k=1 q i=0 k=1 4 i=0
m—1
=@t-1g""> ( ) ]—[(t
j=0 qi=0

— (f _ l)qm—]t/m—l — (t _ l)tm_l.
Combined with (4.4), it yields that

1

$(0) o= oo

q9 i=0 q i=0
m 1 k—1
# X (3 7)) o)
k= q i=0
— m 1 + ([ _ ) m 1 — tm‘ O

Now we can prove the following result, which gives a decomposition for (w, )"
in terms of Deligne—Lusztig characters. In the case ¢ is sufficiently large, this
statement follows from the main result of [S2].

THEOREM 4.6. Fix € = &+ and let G, = GLZ(q) for 1 < k < n. Then, for any

1<m<n,
()" = Z |W( T RS, (0®1g, J(DRE, (0R1g, )
k=0 (THCGx 0elre(T)
_ Z Z €'eg,eq, ET Gy RS @R e )
W T 1Gmily TxGus wi)-
k=0 (DG P’ gelrr(T)

Proof. First, we note that the second equality in the statement follows from the
G)Yl

degree formula for R;%; (6 X1, ,) (see, for example, [S2, (2.3) and (2.6)]).
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. 1 |
Next, we can rePlace the summation ) - g, W b?/ G ZTcgk_’ where the
second summation runs over all F-stable maximal tori 7 in G;. Since gg, =
€""=D/2 we also see that

_ km—k
€GEGur = €Gi€

for 0 < k < m. Hence, the right-hand side R of the formula in Theorem 4.6 is

- eg E7€" |Gl
R = Rf1g (0R1g, )
Zzummmuz TGk Gt

k=0 T CGx felrr(T)
m
MGl G
=y TR > egerRiL, (0R1g,)
k=0 | Tm—klp’ Kl T cgy. betm(m)

m km
Corollary 2.6 "G, |p’ Gn EGET LGy
= kz —— RO > o R© X1,

0 |G"17k|p/ ’ |Gk|p/ T CGr,0€lr(T) | k|p

m km
[DM2, Corollary 12.14] € |Gm |p’ G,
= z : RG/( X Gp—k (regGk ‘Z IGn—k)

k=0 |Gm7k|p’ : |Gk|p’

k—1
Ek(mfk)lG |p’

m
Propositions 3.2, 3.6 m :
D irsrwerormd § (GG URREER
k=0 I mfklp’ | k|p’ i=0

m k—1
=Z@)Hw—mwmﬁﬁﬂmﬁ
k=0

€4 =0
(Here, at the last step, we apply Lemma 4.5 to t = w,(g) and z = €q for every
g€G,) O

In the next result, which is a GU-analogue of (2.2), the first equality was
known in the case ¢ is sufficiently large; cf. [S2].

COROLLARY 4.7. Let g be a power of a prime p, Gy = GU,(q) for 1 <k < n.
Then for any 1 < m < n,

m (_1)(k+n)m|Gm|p/
(&))" 16,6, = )~~~
; |Gm—iclp - |Gl

0, 2tm,
g+ D(@+D--(g" "+ 1), 2/m.

In particular, if 1 < j <n/2andV = IFZZ is the natural GU,(g)-module, then
the number of GU, (q)-orbits on ordered j-tuples (vi,...,v;) with v; € V is

i[=l (q2ifl +1).
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Proof. Tt follows from the proof of Theorem 4.6 that

mn (k+n)m Gm ,
)" = (~D)™ (" = Y Gl

mRkaGn ((regg, Mg, ).
k=0 m—kip P

Taking the inner product and using [DM2, Corollary 12.7], we get

m
€ (k+n)m |Gm |p’

k=0 |Gm7k|p’ : |Gk|p’

mn e ktmm |G |p

< NGurlp - 1Gily

G“
[regGk X 1Gn—k ’ *RGk XGp_k (lGn)]Gk XGp—k

()", 1g,1s, =

[regGk X lGn—k’ leXGn—k]GkXGn—k

M

m 6(k+n)m|G |p

|Gm k|p |Gk|p

M

When 2 { m, the terms for k and m — k, 0 < k < m/2, in the last summation
cancel each other, yielding [(£,)", 16,16, = 0. If 2|m, the last summation is
ka:o(—l)k(l;:),q, and soitis (g + 1)(¢g> + 1) --- (¢"~' 4+ 1) by Gauss’ formula
(see [Ku, (1.7b)]).

Finally, the last statement follows by applying the formula we just proved to
m=2j. O

Corollary 4.7 implies the following parity phenomenon for unitary groups.

COROLLARY 4.8. Suppose that 0 < i,j < i+ j < n, and2 1t (i + j). Then
the GU,, (q)-characters (¢,)" and (£,)’ have no common irreducible constituents.
In particular, if 0 < j < n/2, then (¢,)’ contains only irreducible characters of
true level j —2t,0 <t < j/2.

Proof. Note that [(£,)', (¢,)16, = [(¢,)"1, 16,16, - Hence, the statements follow
from Corollary 4.7 and Definition 1. O

5. Bounds on character degrees

Recall that g = p/ > 2 and € = &, we let GL: (¢) denote GL,(¢) if e = +
and GU,(g) if € = —. In this section, we prove Theorem 1.2. For values of j
small compared to n, this gives rather tight bounds on the degree of characters x
of GL; (¢) of level j. The idea behind the proof is that x is obtained by Lusztig
induction from a character of the form o X g of GL{(q) x GL;(q), where «
is a unipotent character of low level and b is small compared to n. From this,
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the degree of x can be expressed as a polynomial in ¢ whose degree lies in the
interval [(j(n — j), jn]. It is shown that the leading term of this polynomial
gives a fairly good approximation to the value of the polynomial, even when ¢

is small.
Recall that ¥* denotes the unipotent character of GL{ (¢) correspondlng toa
partition L = (A, A, ..., A,) F n (with the convention A, > Xy > -+ 2 A, > 0).

For such A, define
a(}) —Z(z—m,, b(A) = (n —ZA2)= Z MA (B
1<i<j<r

(see [L, (4.4.2)] and [GP, 5.4.2], where the function a(A) was introduced and
where it was also noted that b(A) = n(n—1)/2—a(L") for the conjugate partition
1), and let G; := GL; (¢) x GL;,(g) x --- x GL; (g) be a Levi subgroup of
G := GLi(q).

First, we collect some elementary estimates.

LEMMA 5.1. Letq > 2 and a, b € Z,. Then the following inequalities hold:
() TI,(1 = 1/g") > 9/16 and [T%,(1 = 1/q") > (9/16)(1 — 1/q) > 9/32.
(ii) Ifd € Zo, then T[2, (1 = 1/g") > (9/16)(1 — 1/q).

(i) (g2 — (@ +1) < ¢** and (¢~ + D)™ — 1) > g*!

(iv) [T= (@' — (=17 > g""*V/2,

(v) If a > b, then

qa + 1 a—b qu -1 (Q”H - 1)(61‘1 + 1) 2a—2b
b 1 <9 < b_1’ b+l _ ] b 1 < :
q° + q (¢ )(g”+ 1)

i) ¢°/2< (g—Dg” ™ <[G.,, 1 (GIx Gy <q® < [GM, (GixG)lp.
Furthermore, (G, : (G; x G)y = (5/8)q* ifa > 2, and [G_,, :
(G; x Gy > (g — Dg*™! ifa +b >3

Proof. (i) This is [LMT, Lemma 4.1(ii)]. Part (ii) follows from (i). Parts (iii)

and (v) are obvious, and (iv) follows from (iii). It is easy to see that g~ Zb:i

implies ¢** < [G} 1 (G x G)]1, . Next, if 2|a, then a repeated application of
(v) yields

( a+b ( 1)a+b) ( a+2 __ 1)(qa+l +1) - b
(@" = (=D")---(g> =D+ 1) '
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If 2 t a, then a repeated application of (iii) to the numerator and an application
of (iv) to the denominator of X yields

(@“ — (1)) o (@ 4+ 1)(g™ — 1) glarbtadtat) B
(qb _ (—l)b) R (qz — 1)(61 +1 < qb+A..+2+1 =q

Assume now that a > 2. If 2|a, then a repeated application of (iii) shows that
the numerator of X is > ¢" for N := Zfifﬂ i. If 2 1 a, then singling out
the factor ¢g**! — 1 and then applying (iii) to the remaining product shows
that the numerator of X is > ¢V ~*(¢g* — 1) > (15/16)¢". Singling out the
factor ¢ + 1 and then applying (iii) to the remaining product shows that the
denominator of X is < ¢™~'(q +1) < (3/2)g™ for M := Y"7_, i. It follows that

X > (15/16)(2/3)g" ™ = (5/8)q", as well as

X = ah.

X2 @' -Dg"™M g+ 1) > (g —Dg"".

The same argument applies if » > 2. Finally, ifa =b =1,then X =¢—1. [

LEMMA S2. LetA=(k =M 2  =2---2A 20Fnand?2 <k <n/2
Then

[Al:=n’=2) 27 >0.
i=1

In fact, either [A] > 2.4n or one of the following statements holds:
@) n=3k=6and A = (2,2,2).
(i) n =2k + 1, and either . = (k, k, 1) or A € {(3,2,2), (2,1, 1, D}.

(iii) n = 2k, and either A € {(k, k), (k,k —1,)}ori € {(4,2,2), (3,1, 1, 1)}

Proof. (a) Note thatif a, b € Z>, and a > b, then ((a + 1)* + (b — 1)?) — (a* +
b*) > 2. In what follows, we will call any replacement of the pair (a, b) among
the A;’s by (a + 1, b — 1) a push-up, and note that any push-up decreases [A] by
at least 4.

First, suppose that k < n/3. Write n = 3¢ +d withc = |n/3] 2 k > 2
and 0 < d < 2. Aslong as A; < ¢, we can apply a push-up to some pair (A, A ;)
(where A; > O but A, if any, is 0) to increase A, and decrease [A]. Once A; = c,
we can apply the same procedure to A,, and so on. This argument shows that [A]
will be minimized when A = (c, ¢, ¢, d). In particular, if ¢ > 3, then

[A] > Bce+d)? —2(3c*+d*) =3¢* +6¢d —d* > 3c¢*+5¢d > 9c+15d > 3n.
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Assume that ¢ = 2, thatis 6 < n < 8. If n > 7, then a push-up argument shows
that [A] > [(2,2,2,d)] > 2.4n.If n = 6, but A # (2, 2,2), then [A] > [(2, 2,
)] +4 > 2.4n.

(b) Now we may assume n/3 < k < n/2,and writen = 2k +1 with0 </ < k.
Again using push-ups, we see that

A > [k, k, D] =4kl — 1> >3kl +1 > 2.4n

if ] > 2. Suppose ! = 1 and A # (k, k, 1). Then A, < k — 1 and we can push X,
up to k — 1. In particular, if k > 4, then [A] > [(k,k — 1,2)] = 8k — 9 > 2.4n.
If k =3buti # (3,2,2), then [A] > [(3,2,2)] + 4 > 2.4n. If k = 2, then
A=(2,1,1,1).

Assume now that n = 2k but A # (k, k), (k,k — 1,1). Then A, < k — 2
and we can push X, up to k — 2. In particular, if k > 5, then [A] > [(k, k — 2,
2)]=8k—16 >2.4n.If k =4 but A # (4, 2, 2), then [A] > [(4, 2, 2)]+4 > 2.4n.
Otherwise k =3 and A = (3,1, 1, 1).

Finally, [A] > O in all the listed exceptions to the inequality [A] > 2.4n. [J

Note that the constant 2.4 cannot be improved since [(5, 3, 2)] =24 =2.4-10.

LEMMA 53. Fore =t and A = (k= A 2 X = --- 2 A, > 0) b n, the
following statements hold:

1) v*(1) and (G : G3l, are both monic polynomials in q with integer
coefficients and of degree deg, (1) = deg,[G} : G51y = D(X).

(ii) If € =+, then y*(1) = ¢"™ > g,
(iii) If € = —, then

[A]—1
q [y
w*(1)>max{(—q+l> -q"", 54" ’”}.

(iv) [G; : Gyly < ¢"® < [G] : G{1,.

Proof. (a) The statements about v*(1), respectively [G; : G3],, being a monic
polynomial in g with integer coefficients, are well known. The degree formula
for y* is likewise well known (see, for example, [C, Section 13.8]), from which
it follows that
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r r—1 .
deg, (1) = (";1> 3Gt —it D=y (’2)

i=1 i=1

(A +r— l+1) b0,
=1

We also have
deg,[G : G5ly =n(n+1)/2 =Y Mk +1)/2 =b().
i=1

(b) For the remaining statements (ii)—(iv), we will use induction on the length
r of A, with the base case r = 1 being obvious. Let

m= A3, .. ) (n—k).
By induction on r and Lemma 5.1(vi), we have
(G, : G 1y =[G, : Gy x G, 1y[G,_, : G, 1y <" Pg"™W =¢"®,

yielding (iv).
For the remaining claims (ii) and (iii), we will use the quantized hook formula

a()) (q - 1)(612 - 62) e (61” - en)
Hh (g'™ — €l >

where h runs over all the hooks of the Young diagram of A and /(%) denotes the
length of the hook # (see, for example, [Ol, (21)] or [Ma]).
Suppose € = +. Then by (i) and (5.2), we have

yr(1)/q" _ [T_,(1—1/q" ’“)
lﬂ"(l)/qb(") 1—[1 1(1 _ l/ql(h,))

() =gq

(5.2)

since [(h) <n,l(hy) <n—1,...,1(h) <n—k+1.Asy*(1) > g"® by the
induction hypothesis, we get ¥*(1) > ¢*™. Since b(A) = b(p) + k(n — k) >
k(n — k), (ii) holds.

(c) From now on, we assume € = —. Then (i), (5.2), and Lemma 5.1(iv) imply

that
y* (1) 1
¢ " TLa = /g®)

)>( )”1.

The same estlmate holds if at least two hooks have odd length 3 smce (1 +
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1/¢%)*> < 1+ 1/q. The only A that have no hook of even length and at most one
hook of odd length > 3 are (1) and (2, 1), for which (iii) also holds.

It remains to prove y¥*(1) > ¢*"~% /2. Suppose, in addition, that k < n — 2.
By Lemma 5.1(iii), we have

(qn _ 6)(6]"_1 _ en—l) . (qn—k+l _ 6n—k+l) - q4 _
g =Dt n—k+1) = q*

1
> 15/16.

Note that [(h;) > [(hy) > -+ > [(h) > 1. As (1 +x)7! > e forall x > 0,

ql(h1)+~--+l(hk) 1

> —= .
(gt — el .. (gt — ety ~ T2, (1 + 1/g%+)

2 oo 2i
S | i+1
> Z .zl >

2e~1/0
T

Together with (i) and (5.2), the last two inequalities imply that

YR/ 15 270 ]

v /g w ~ 16 3 2

and so Y*(1) > g?® bW /2 = 4=k /2 The same estimate holds if n — 1 <
k < n. O

PROPOSITION 5.4. Let € = &, G = GL:(q), and let x € Irr(G) have level
0 < j < n. Then the following statements hold:

@ x(1) < q".

(i) x(1) =g’ D ife =+and x(1) > qg/" /2 ife = —.
Proof. Since t/ and ¢/ have degree ¢", (i) follows from the definition of [(x).
Note that (ii) is obvious if j € {0, n}, so we will assume 1 < j <n — 1. We
can now apply Theorem 3.9 and Corollary 2.6 and see that x = =RY(a X B),
where L = G¢ x Gj, where 0 < a < a+b =n,a € Irr(GY), and, up to a linear

character, B8 = y* for some A - b with the longest part A, = k =n — j. In
particular, using [DM2, Proposition 12.17], we have

x() =[G : L1ya()B) =[G : L1, y*(1).

If a = 0 then we are done by Lemma 5.3(ii), (iii) (applied to ¥*). We will now
assume that a > 1. If € = 4, then by Lemmas 5.1(vi) and 5.3(ii) we have

x(1) = gobHhO=b > gaktkb=k) _ gkn=b) _ o=,
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Suppose that € = —. Applying Lemmas 5.1(vi) and 5.3(iii), we obtain that
X(1) = (1/4)g 070 = (1/a)gHe 000 > gie=d
ifk < b.If k = b, then B(1) = ¢*®~», so by Lemma 5.1(vi), we have
x(1) = (1/2)q" =g’ /2. m

Next, we aim to bound x (1) from below when [(x) > n/2. First, we begin
with unipotent characters.

LEMMAS5.S5. LetA=(k=X* =X = -~ > A = 0)Fnandlet y = y* €
Irr(GL; (q)) forn > 2 and € = . If k < n/2, then ¢ (1) > q"2/4.

Proof. Note that if k = 1, then ¥ is just the Steinberg character, of degree
g""~Y/2_and the statement holds in this case. So we will assume 2 < k < n/2.
Then Lemma 5.3(i) implies that

2b(\) = 2deg, (G : Gf 1y =n> =) A =[Al/2+n°/2.  (53)

i=1

Hence, Lemmas 5.3(ii) and 5.2 immediately imply v (1) > ¢"*/* in the case € =
+. We may now assume € = —. Since (g+1)/g < 3/2 < ¢, by Lemma 5.3(iii)
and (5.3), we have

v(l) > qb(x)—o.s(n—l) > qn2/4

if [A] > 2.4(n — 1). In particular, we are done if [A] > 2.4n. In the cases of
exceptions to the latter inequality, as listed in Lemma 5.2, one can check using
explicit formulas for ¥*(1) (see [C, Section 13.8]) and estimates in Lemma 5.1
that ¥ (1) > g"/* as well. O

We will need an extension of Lemma 5.5 in the case of unitary groups.

LEMMA 5.6. Let G = GU,(q) withn > 2, and let x € Irr(G) belong to the
rational series E(G, (s)), where all eigenvalues of the semisimple element s € G
belong to [L,—1. Suppose that |(x) > n/2. Then either x (1) > " or x(1) =
(g — 1)q"2/ “=1 and one of the following cases occurs:

(i) n =2k, Cs(s) = GUi(gq) x GUy(q), and x (1) = [G : C5(s)],-
(i) 2<n <4
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Proof. (1) By the assumptions, we can decompose the natural module V = ]FZ2

into an orthogonal sum €5, V;, where the V; are distinct eigenspaces for s,
say with eigenvalue €; € u,_.;. Setting a; = diqu2 Viand L := Cgs(s) =
GU(V)) x --- x GU(V,,), by (3.9), we then have

X ::I:Rf(oq&oh@---&am),

where o; = v; ", A; = a;, and v; is a linear character of GU(V;) = GU,, (q). Let
k denote the largest among all the parts of all A;. Then [(x) > n/2 implies that
k < n/2. By Lemma 5.5, we may assume that m > 2. One can check by direct
computation that x (1) > (g — 1)¢"/*" when 2 < n < 4, so we will assume that
n > S.

(i1) Here we consider the case k = 1, thatis, A; = (1) forall i and m = n. As
n 2 5, by Lemma 5.1(iv), we have

X(l) — |GUn(6])|p//(q + l)n > qn(n+1)/2—l.6n > qn2/4

(where we also used the trivial estimate ¢ + 1 < g'®).
(iii) From now on, we may assume that m, k > 2. According to Lemma 5.3(iii),
a;(1) = (2/3)%~1q**) Furthermore, by Lemma 5.1(iii), (iv),

aj

IGU @)y < (@+D ] 4’ < 3/2g"“ ™2, IGU ()], > ¢"" . (5.4)

j=2
It follows that
[G:L], > (2/3)mqn(n+l)/2*27':1 ai(@i+/2 _ (2/3)’”6](”2721"”:‘ “[2)/2.

Putting all these estimates together, we obtain

X() =[G : L1, [Jau(1) > 23y E @m0 g =it /a2l v
i=1

= (2/3)"q""

where the parts of the partition g consist of all parts of all A;, put together in
decreasing order. Note that b() = ([] + n?)/4, and ¢*¢ > 3/2. It follows that
x(1) > ¢"/* if [w] > 2.4n. Thus, it remains to consider the exceptions to the
latter inequality, listed in Lemma 5.2.

(iv) Consider the case u = (k, k, 1). If m = 3, then (5.4) implies that

x (1) = [GUx41(q) : (GUk(q) x GUr(q) x GUi(g)],

2 2
- (2/3)3qn(n+1)/27k(k+1)71 - qk +2k-2 > qn /4
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if k > 3. Itis easy to check that x (1) > ¢"*/* also holds when k = 2.
Suppose m = 2. If {A{, A,} = {(k, k), (1)}, then by Lemma 5.1(vi), we have

[T, — (1)) q+1
_ qk Hfﬂiz(qi _ (_l)i) . qk(k+l)+k

[T (q" — (=1)) 2
If {A{, A2} = {(k, 1), (k)}, then by Lemma 5.1(vi), we have

¢TI — D) g™ 41

x(1) =

> q"2/4.

n?/4

2k+1 i i
[T = (D) ¢ = (=g _ g ¢

(1) = . . >
X T, (@ — (— D) g+ 4

>4

when k > 3. It is easy to check that x (1) > ¢"”/* also holds when k = 2.
(v) Next suppose that u = (k, k). Since m > 2, we have A; = A, = (k) and so

x(1) = [GUx(q) : (GUk(g) x GUr(g)], > (g — Dg"*!

by Lemma 5.1(vi). In fact, if the unipotent character 1y of C(s) corresponding
to x is not the principal character, then ¢|v (1) and so x (1) > ¢""/*.

(vi) Here we consider the case u = (k, k — 1, 1). Direct computations show
that x (1) > (g — 1)g"/*~" if k = 2. So we will assume k > 3. If m = 3, then
(5.4) implies that

x(1) = [GUx(q) : (GUi(g) x GUy_1(g) x GUi(@)],
- (2/3)3qk(2k+1)7k271 - qk2+k73 > qn2/4'
Suppose m = 2. If {A, X} = {(k, k — 1), (1)}, then by Lemma 5.1(vi), we
have

0@ = DT — (D) g* -1
[T @ — (=) q+1
7" '(q = D[T%000 — (=D S e

[T @ — (= 1))
If {A{, A2} = {(k, 1), (k — 1)}, then by Lemma 5.1(vi), we have

x(1) =

2
2 qn /4‘

2k i i
ni:k+2(q —(=D" ) q"*' - (_l)kq S R3S q”2/4.
T2 @ — (=) g+1
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If {A{, A2} = {(k — 1, 1), (k)}, then by Lemma 5.1(vi), we have

2k i i
Hi:k+1(q — (=" ) qk + (_l)kq S R3S qn2/4
[To@ - =Dy a+l
(vii) Finally, one can check by direct computations that y (1) > ¢ /* in the

remaining cases, where p© = (4,2,2), 3,2,2), 3,1,1,1), (2,2,2), and (2, 1,
1, 1). O

x(1) =

n?/4

LEMMAS5.7. Letn =a+bwitha € Z>,, b € Z>,, € = %, and let

_ GL; ()
v =ERo gxoryq) (@ B A),

where a is a character of GL{(q), B is a character of GL;(q), and the sign for y
is chosen so that y (1) > 0. Then y (1) > q“™’/* if at least one of the following
conditions holds:
(@) € =+ a(l) > (9/16)(q —1)g“/*~!, and B(1) > ¢"/*=2. Moreover; a (1) >
qg—1if(a,b)=2,1).
(i) € = 4, a(l) = ¢“/*2 b > 2, and B(1) = ¢**P for some k € Z with
b/2 < k < min{b, (a + b)/2}.

(i) € = —, a(l) = g“/ and B(1) > ¢*¢9 /2 withk € Z and b2 < k <
min{b, (a + b)/2}.

(iv) € = — a(l) = ¢/ and B(1) > ¢""/*".

Proof. (i) By Lemma 5.1(vi), [GL; : (GL} x GL})l,, > ¢*. Also, a(1) >
q“2/4‘2. Hence, if ab > 8, we have

2 2 _ atbh)?
y(1) > ¢° [0 [Arab—d q( +b)/4
Consider the case ab < 8.If a = 2 and b > 3, then since a(1) > 1 = g* /4™,
we have L .
]/(1) - qa /4+b” [A+ab-3 2 q(a+b) /4‘
The same argument appliesifa > 3 and b > 2. If a = b = 2, then
V(l) = qab — q(a+b)2/4.

We may now assume that b = 1. If a > 3, then
[GL! : (GL} xGL)),y = (¢“"' = D/(g =1 > 24" /(g — 1),
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whence

y(l) > g — l)qa2/471 ) 15 atl a*/4+a—1 _

(a+1)?/4
16 16(g -1 ~1 '

q

Ifa=2,theny(l) >¢>—1> g%
(ii) As in (i), note that y (1)/q@+?*/* > g*, where

a? (a + b)? 1
A :=Z—2+k(b—k)—|-ab— > Z((2k—b)(3b—2k)—8) (5.5

as a > 2k — b. In particular, A > 1, and so we so are done, if k = b > 3. If
k=b=2buta >3,then A =a—-3 > 0.If k =b = a = 2, then we have
)/(1) > qab — q(a+b)2/4‘

So we may assume k < b — l,andso3b -2k >b+22>24.1f2k — b > 2,
then A > 0.If2k—b =0,then A = (ab—4)/2 > 0.If 2k —b =1, then b > 3
and A =ab—9/2 > 3/2.

(iii) First we consider the case b = 1 and use the trivial bound (1) > 1. If
a=2,theny(l) > q(g>*—q+1) > q°* Ifa > 3, then

+1 +1
¢ = DT g > q“2/4+af‘ >

(a+1)2/4
g+1 '

y(1) > q

Ifk=a=b=2theny(l) > q(¢g*+1)(g>—g+1) > g*. Now we may assume
that b > 2 and (k, a, b) # (2,2,2). By Lemma 5.1(vi),

[GL; : (GL; X GL;)][), > (S/S)qab - qab_]

and B(1) > g*®=P=1 Tt follows that y (1) /q@+?"/* > g4, where A is defined in
(5.5). As shown in (ii), A > 0, and so we are done.

(iv) The case b = 1 follows from the same arguments as in (iii). Suppose b > 2
As in (iii), we now have y (1) > g®@/4t0" /4+ab=2 > g(a+b)?/4, O

LEMMA 5.8. Letn = md withm € Z>, and d € Z,.
(i) Ifd =2, then [GL,(q) : GL,,(¢)1, > (9/16)(g — 1)g""/*"".

(i) Ifd > 3, then [GL,(q) : GL,.(¢")1, > q""/* unless (n,d, q) = (3,3,2) in
which case [GL,(q) : GL,,(g)1,, > (g — 1)g"™/*"".

(ili) [GU,(q) : GL,, (gD, > ¢"/* if2|d.
(iv) [GU,(q) : GU,, (gD, > (1.49)g"/* if 2 1 d.
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Proof. (i) By Lemma 5.1(i), we have

- ; 9 qg—1 ¢
GL,(¢) : GL,,(¢D], = 2-1 _ 1y 2 LT 0 yLei-)
[GL.(¢) g1y !:! (q ) > 6 q

9 )
_ — g™
]6(61 )q

(i1) The statement can be checked directly if n < 4, so we will assume that
n > 5. Now by Lemma 5.1(ii), we have

[GL.(q) : GL,(¢)]y
- i 9 q— 1 " i n%/2—n — n
i=1.d}i q
(iii) Here we have

n/2
[GU,.(q) : GL,(¢)], > [GU,(q) : GL,a(g)]y = [ [@* '+ 1) > ¢" 7.

i=1

(iv) By Lemma 5.1(iii), we have

IGU (gD = @'+ D] J@" = D) < @'+ D ]]q"

i=2 i=2
9% 9
< § l_[qdz — gqmd(m-o—l)/Z.
i=l1

It then follows from Lemma 5.1(iv) that
qn(n-H) /2 8

. d _ n?/2—n?%/2d
[GUn(q) . GUm(q )]P/ > (9/8)qmd(d+1)/2 - 9q

8
> §q"2/3 > (1.49)¢""*. O
Recall the notation (3.12) for irreducible characters of GL,(g).

PROPOSITION 5.9. Let n > 2 and let x € Irr(GL,(q)) be of level [(x) = n/2.
Then either x (1) > q”z/ * or one of the following statements holds:

1) x = S(s, (n/2)) with deg(s) = 2, and

n/2

x () =@ =1 > 9/16)(g — g™ .
i=1
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@) (n,q) = (3,2), x = S(s, (1)) with deg(s) = 3, and x(1) =3 > (q —
l)qn2/4—l.

Proof. (a) We represent x in the form (3.12), where d, > dr > --- > d,, > 1.
First, we consider the casem = landd =d; > 2.1Ifd > 3,ord =2 and A; =
(n/2), then the statement follows from Lemma 5.8(i), (ii). Suppose d = 2, but
A1 # (n/2). Then the unipotent character ¥ of GL,»(¢?) in (3.8) corresponding
to x has degree divisible by ¢, whence using Lemma 5.8(i), we have

n2 _ nZ
x() > (g —Dg" "' g* > g™ "

We have also shown that
deg S(si, &) = 2(q — Dghid/+! (5.6)

ifd; > 1.

(b) Here we consider the case d; = 1, and let k denote the largest among all
the parts of all A;, 1 < i < m. Since [(x) > n/2, we must have by Theorem 3.9
that k < n/2. By Lemma 5.3(ii), (iv), we have x (1) > ¢, where

N :=deg,[G; : (Gf x -+ x G{)]y + Y _b() = b(w),

i=1

and the partitions of p - n consist of all parts of all A;, put in decreasing order;
in particular, the longest part 1, of u is k. Hence, b(it) > n?/4, as shown in the
proof of Lemma 5.5.

(c) We may now assume thatm > 2,d, > --- > d, > 2 for some 1 < ¢t < m;
and, furthermore, d;.; = --- = d,, = 1 if t < m, in which case we let k denote
the largest among all the parts of all A;, ¢t + 1 < i < m. Also, seta := Zﬁzl kid;

andb:= Y  k.Then x = RG", ¢, (a X B), where

o :=S(1,A)0--08(s:,A), B i=S0s1,Ah41) 0080, An).

Note that deg S(s;, ;) = g — 1if (k;, d;) = (1, 2); in particular, «(1) > g — 1.
Applying (5.6) and Lemma 5.7(i), we get a(1) > (9/16)(qg — 1)g*"/* " if t = 1
and a(1) > g“/*if r > 2. In particular, we are done if t = m.

We may now assume that 7 < m and (1) > max{(9/16)(q — 1)g*/*~", g — 1}.
If k < b/2 (in particular, b > 2), then B(1) > ¢**/* as shown in (b), whence
x(1) > ¢"'/* by Lemma 5.7(i). Finally, suppose that b > k > b/2. Since [(x) >
n/2, we again have that k < n/2. Also, B(1) > ¢g*®=® by Proposition 5.4(ii).
It follows, by Lemma 5.7(i) for » = 1 and by Lemma 5.7(ii) for b > 2, that
x(1) > q"2/4. O
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PROPOSITION 5.10. Letn > 2 and let x € Irr(GU, (q)) be of level I(x) = n/2.
Then either x (1) = q""* or x(1) = (g —1)q""/*~" and one of the following cases
occurs:

() n =2k, Cs(s) = GUr(q) x GUi(q), and x (1) =[G : Cg(s)]-
(i) 2<n <4

Proof. Let x € £(G, (s)) where s € G is semisimple. We will represent x in the
form of (3.9) and (3.8). Let a := dimy , VOand b := dimg , V

(a) Suppose that b > 0. Then we can decompose V! into an orthogonal sum of
s-invariant nondegenerate subspaces, say V; of dimension b; over F ., 1 < j <1,
and b = Z ._; b;, in such a way that CGU(V/)(S) is either GLb,/d] (q f) with 2|d
or GUy, /4, (q ) with 2 { d; > 1. By Lemma 5.8(iii), (iv),

[GU(V)) : Cauw, ()], > ¢"77, (5.7)

and, furthermore, b; > 2. Now, a repeated application of Lemma 5.7(iv) using
(5.7) shows that .
[GU(V") : Couny(s)],y > ¢" /™. (5.8)

In particular, x (1) > ¢"'/*ifa = 0.

(b) If b = 0, then we are done by Lemma 5.6. So we will assume thata, b > 0.
Let k denote the largest among all the parts of the partitions y;, § € f,41. Since
I(x) = n/2, we have k < n/2 by Theorem 3.9. By Lemma 2.5(ii), we can also
write

X = iRggZEZ;xGUbw)(“ XA,

where

@ =E£ReD (§(Msep, W), B =ERe? (GY).

Caua () (9) Cauy, @) ()

Now (1) > ¢*@=* /2 by Proposition 5.4, and (1) > ¢*'/* by (5.8); also, b > 2.
Applying Lemma 5.7(iii), we obtain that x (1) > ¢"/* if k > a/2. If k < a/2,
then ar(1) > ¢“*/*~' by Lemma 5.6, whence x (1) > ¢"/4 by Lemma 5.7(iv). [

Now we can prove the main result of this section, Theorem 1.2, which we
restate below.

THEOREM 5.11. Letn > 2, ¢ =+, and G = GL{ (q). Setky = 1 andk_ = 1/2.
Let x € Irr(G) have level j = [(x). Then the following statements hold:

(i) keq’" ™) < x(1) < gV
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@) If j = n/2, then
x(D) > (9/16)(g — Dg""*"!
ife =+, and
x(D) > (g = Dg" ™!
ife = —. In particular, x (1) > ¢"*2if l(x) > n/2.

(iii) Ifn =T and [(1/n)log, x(1)] < ~/n —1—1, then

1 1
(0 = (Og"TX()W

Proof. (i) is Proposition 5.4, and (ii) follows from Propositions 5.9 and 5.10.
For (iii), we have that j, := [(1/n) logq x(1)] < +/n — 1 — 1 by hypothesis. In
particular,

x(1) < g < qn(m—1> < qn2/4—2

asn > 7. It then follows from (ii) that j < n/2. Also, x (1) < g™ by (i), whence
(1/n)log, x (1) < jandso j = jo. Suppose that j > jo. Then jo+1 < j <n/2
and j, < +/n—1—1, and so

J=j) = Go+ D —jo— 1 =njo+n— o+ 1> >njo+ 1.
Combined with (i), this implies that x (1) > ¢/"~/~! > ¢"/o_a contradiction. []
COROLLARY 5.12. Let G = GL{(q) withn > 2 and € = %. For x € Irr(G),

x(D) - 1DgGOM)] > ¢" 172,
Proof. The statement follows from Theorem 5.11(Gi) if [(x) > n/2 or
I(£Dg(x)) = n/2. If I(x), (£Dg(x)) < n/2, then by Proposition 4.4, we

have [(x) = [(£Dg(x)) = (n — 1)/2, in which case by Theorem 5.11(), we
have

x() - 1Dg ()] = g =V22 > g2, O
6. Bounds on character values
PROPOSITION 6.1. There is an explicit function
f = f(C, m, k) . R}l X Z>_1 X Z}() d R>1
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such that, for any C € Rs\, m € Zx_,, k € Z-, the following property A(C,
m, k) holds:

There exists some § = §(C,m, k) € [1/2"+!,1/2™)
such that, for any prime power q, any € = =+,
A(C,m,k): any G :=GL{(q) withn > f(C, m,k),
any g € G with |Cs(g)| < ¢, and any x € Irr(G) of level k,
Ix (&) < x (1)

Proof. (i) We will prove A(C, m, k) by induction on m > —1. Certainly, we
can take f(C, —1,k) = 1 and §(C, —1, k) = 1. For the induction step, assume
m > 0 and consider any g € G with |C(g)| < ¢©"; in particular,

lx (@) < q?, Vx € Irr(G).

(ii) Now we consider any n > N; := 2"*2C + 8. This implies that n*/4 —
2 > 2"Cn. Hence, if [(x) = j = n/2, then by Theorem 1.2(ii), we have that
x(1) > ¢*"“", and so

om+1

Ix (@) < g < x ()Y

Next suppose that [(x) = j > 2""'Cbut j <n/2. Then2 < j < (n — 1)/2,
whence jn/2— j?—12> j/2—1 > 0. It follows by Theorem 1.2(i) that x (1) >
g’ =)= > ¢/"/? and so we again have

Ix ()] < g < x ()"

q

Thus, A(C, m, j) holds for all n > N, and all j > 2™*!C, by taking §(C, m,
]) — 1/2m+1‘

(iii) We will now prove A(C, m, k) by backward induction on k > 0 assuming
n > 2N, k < 2"T'C, and may therefore assume that A(C, m, j) holds for any
j withk + 1 < j < 2k as well as that A(C, m — 1, j) holds for all j > 0.

Consider any x € Irr(G) with [(x) = k. If k = 0, then x(1) = 1 by
Theorem 1.2(i) and so we can take any § > 1/2"*!. So we will assume k > 1. Let
V =TI, respectively V = IF;Z, denote the natural module for G. By the definition

of the level, A x is an irreducible constituent of o* for some linear character A of
G, where o := 1, respectively ¢,. As 0 = o, we see that o = XX + p, where
either p = 0 or p is a G-character. Writing

t
XX = ZaiXia
i=1
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where x; € Irr(G) and a; € Z., we have
t t
Zai < Zaiz =[x, xxle <lo*, %16 = [6%, 15]6.
i=l i=1

If € = +, then [0*, 15]¢ is just the number of G-orbitson V x V x --- x V,

4k
and k < n/4 by our assumptions on n, k; hence, it is at most 8q‘”‘2 by Lemma 2.4.
If ¢ = —, then [0, 15]¢ is the number of G-orbits on V x V x --- x V,

2%
whence it is at most Zq‘”‘2 by Lemma 2.4. We have, therefore, shown that

X(@F < ¢*"* max |x(9)]. (6.1)

X

Since y; is an irreducible constituent of o2, [(x;) < 2k. If 0 < [(x;) < k, then
by taking

n>N,:=max f(C,m—1,j), a:= max §(C,m—1,j)e[1/2", 1/2""),

0</j<k 0<j<k
we have by A(C,m — 1, j), 0 < j < k, and Theorem 1.2(i) that
X (@] < (D" < g™ (6.2)
On the other hand, if k < [(x;) < 2k, then by taking

> = . = . m+1 m
n>=>N; krggkf(C,m,J), B kg}g/(S(C,m,J)E[lﬂ ,1/2™),

we have by A(C,m, j), k < j < 2k, and Theorem 1.2(i) that
i@ < a(IF < g (6.3)
It follows from (6.1)—(6.3) that
X (@) < g g, (6.4)

where y := max(a/2, B) € [1/2"+!,1/2™), if n > max(2N;, N,, N3). Now we
choose § = §(C, m, k) suchthat y < § < 1/2™ and

3k+3
S—vy

nz f(C,m,k) = max<2N1, N,, N,

= max(Z"’”C + 16, mi(kf(C,m -1, ),

0<i<
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3k+3
2%, (C D —y)

Then (2k*> 4+ 3/2 + kny) < (kn — k> — 1)8. Since x(1) > ¢ *~! by
Theorem 1.2(i), (6.4) now implies that | x (g)| < x (1)°, completing the induction
step of the proof. O

Now we can prove Theorem 1.4 for GL{ (¢), which we restate below.

THEOREM 6.2. There is an explicit function h = h(C,m) : Ry| X Zso — Ry,
such that, for any C € Ry, m € Zx, the following statement holds. For any
prime power q, any € = =%, any G := GL{ (¢) withn > h(C, m), any g € G with
|Cs(2)| < ¢, and any x € Irr(G),

Ix(9)] < x (D",

Proof. Consider any g € G with |Cs(g)| < . As shown in page (ii) of the
proof of Proposition 6.1, |x (g)| < X(1)1/2" 1fn > 2"+ C 4+ 8 and [(x) = 2"C.
On the other hand, by Proposmon 6.1, we have

x| < x(M*

if l((x) =k <2"Candn > f(C,m,k). Thus, |x(g)| < x(1)"/*" for all

n>h(C,m) = max(z'"“c +8, max f(C,m, k)). 0

1<k<2mC

Next we prove Theorem 1.5 for GL; (¢), which we restate below.

THEOREM 6.3. Let q be any prime power and let G = GL{(q) with € = =+.
Suppose that g € G satisfies |Cs(g)| < q”z/lz. Then

Ix (@)l < x(1)*°

forall x € Irr(G).

Proof. (i) We will work with the assumption that [Cs(g)| < ¢" % with 8 = 1 /12.
(In fact, § can also be chosen to be 35/418.) Let [(x) = k, and we aim to show
that

Ix (@) < x(1)*°.

(ii)) Note that when 1 < n < 4, there is no element g € G such that
|Cs(g)| < ¢"*/1% and that the statement is trivial if x (1) = 1. So we will assume
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thatn > 5 and x (1) > 1. Furthermore, if kK = 1, then x is a Weil character; see
Examples 3.11 and 3.12. In this case, it is not difficult to use character formulas
for Weil characters, see, for example, [TZ, Lemma 4.1], to verify that the
statement holds for g. So we will assume k > 2. It then follows by Theorem 1.2(i)
that x (1) > ¢®">. In particular, if 3 < n < 41, then n?/24 < (8/9)(2n —5), and
SO

X1 < ICa(@)]"? < g% = g" 1 < x ()™

So we may assume
nz42, k=2 (6.5)

Suppose that k > n/15. Then Theorem 1.2 implies that x (1) > ¢'4*/?»5-1,
whereas | x (g)| < ¢"/** and so |x(g)| < x(1)¥°. So we may assume k < n/15,
whence k < n/11 — 1 because of (6.5). In this case, k(n — k) — 1 > 10kn/11,
and so Theorem 1.2(i) yields

x(1) = g'"/M, (6.6)
Now, if kK > 5n8/8, then (8/9)(10kn/11) > n*8§/2 and so (6.6) implies that
X (@] <1Ca()'? < g™ < x ().

Thus, we may assume that
k < 5nd/8. (6.7)

(iii) For some integer 1 < m < n/4k, to be chosen later, we decompose
s t
(D" =Y o+ Y bB, 6.8)
i=1 j=1

where a;, b; € Z., a; € Irr(G), B; € Irr(G), and

a (1) < g™, B;(1)=q".

Arguing as in page (iii) of the proof of Proposition 6.1 and using the condition
4km < n, we obtain

s t

272 2,2
§ a; + E b/ < q4mk+3 g ql9mk/4
i=1 j=1

as k > 2. Using the bounds |o;(g)| < «; (1) and

18 ()] < ICo()]'* < g% < B;(1) /g™,
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we have

N N
Zaiai(g)' < Zaiai(l) < qlgm2k2/4+n26,
i=1 i=1

(6.9)
t t
2z biBi (D) ()™
;b,ﬂ; (g)' ST mE S
Now we set a* := 7/8 and choose m € Z such that
né 40na*  35n 11né  44né
mk < —— =2né, mk< =—, mk> = .
41 — a*) 209 209 100c* 35
(6.10)

Note that 2n§—44né/35 = 26né/35 > 5n8/8 > k. Furthermore, 2n8 < 351n/209.
Thus, there exists m € Z satisfying (6.10). This choice of m guarantees that

19mk®>  n*S _ Skna*  Skna*  10kna*
+— < + = :
8 2m 11 11 11
Now we choose o = 8/9 and note by (6.5) that

(6.11)

10kno 10kno* Skn S 420
— = —— = — >
11 11 396 © 396

It follows from (6.11) that

19mk®> n*§  10kna
+ <
8 2m 11
Using (6.9) and (6.6), we then get

Zaiai (&)
i=1

The choice (6.10) of m also ensures that kn(1 — o*) < n?8/4m. Again,

1/2m
< q(l9mzk2/4+n25)/2m < x(1)9/2. (6.12)

kn(1 — o) —kn(l —a) =kn/72 > 1

by (6.5), whence kn(1 — o) < n?8/4m — 1. As x (1) < g** by Theorem 1.2(i),
using (6.9), we now obtain that

Y biBi(e)
j=1
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Combining (6.8), (6.12), and (6.13) together and recalling m > 1, we arrive at

K t 1/2m
Zaiai(g)‘ + ijﬂj(g) >
i=1 j=1

s 1/2m t 1/2m
Y@ +|Y biBi@)| < x(D
i=1 j=1
as stated. O

[x (&)l <(

<

7. Special linear and special unitary groups

In this section, we extend the above results to special linear and special unitary
groups.

DEFINITION 2. Forn € Z>; and € = %, consider the subgroup S := SL; (¢) of
G := GL; (g). For any ¢ € Irr(S), choose any x € Irr(G) lying above ¢. Then
we define the level [(p) of ¢ to be [(¢) := [(x).

LEMMA 7.1. In the notation of Definition 2, the following statements hold:
(1) W) does not depend on the choice of x € Irr(G) lying above ¢.

(il) W) is the smallest j € Zso such that ¢ is an irreducible constituent of
()5 if € = +, respectively of (¢])|s if € = —.

Proof. (i) Let J denote the inertia subgroup of ¢ in G. By the Clifford
correspondence, x = Ind?(glx) for some ¥ € Irr(J) lying above ¢. Since J/S is
cyclic, ¢ extends to J by [Is, Corollary (11.22)], whence any v’ € Irr(J) lying
above ¢ is Yv for some v € Irr(J/S) by Gallagher’s theorem [Is, Corollary
(6.17)]. Now if x' € Irr(G) is another character also lying above ¢, then
x = Ind?(w’) for some ' = Yrv € Irr(J/S) lying above ¢. As G/S is abelian,
v extends to some (linear) A € Irr(G/S). It follows that

x' = Ind§ (¥ (Als) = Ind§ (YA = x2,

and so [(x) = [(x’) by Definition 1.

(ii) Let T be defined as in (1.1) sothat t = 1, if e = +and 7 = ¢, if € =
—, and let [(p) = j. Then by Definitions | and 2, ¢ is a constituent of x|s =
(xA)|s for some x € Irr(G) and A € Irr(G/S), where x A is a constituent of /.
Conversely, suppose that ¢ is a constituent of (t¥)|s for some 0 < k < j. Then
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@ is a constituent of x'|s for some x’ € Irr(G) which is a constituent of *. It
follows by Definition 2 and (i) that

j=Up) =1Ux") <k,
andsok = j. O

LEMMA 7.2. Let G = GL{ (q) and suppose that ¢ € Irr(SL; (¢)) does not extend
10 G. Then x (1) > ¢""/*2 for any x € Irr(G) lying above ¢. In particular;

o(1) > ¢"* /(g —€) = (2/3)g" * .

Proof. By hypothesis, x € Irr(G) is reducible over S. Hence, the bound on yx (1)

follows in the case € = — from [LBST2, Theorem 3.9]. In the case € = +, this
bound follows from [KT2, Proposition 5.10] and Proposition 5.9(i). Now the
bound on ¢(1) also follows since x (1)/¢p(1) < [G : S]=¢q — €. ]

Now we can prove the bounds for character degrees given in Theorem 1.3,
which we restate below.

THEOREM 7.3. Letn >2,¢ ==, and S =SL(q). Seto,. =1/(g—1) ando_ =
1/2(g 4+ 1). Let ¢ € Irr(S) have level j = l(p). Then the following statements
hold.

(@) 0.’ < (1) < g".

(i) If j > n/2 then (1) > ¢"/*72/(q — €) > (2/3)g"*7.
(i) Ifn = Tand [(1/n)log, (1)] < ~/n—1—1, then

1 1
() = (Og‘fT‘”()w

Proof. Keep the notation of Definition 2. Since

x()/ (g —e) <o) < x(1),

(i) follows from Theorem 1.2(i). Next, (ii) follows from Theorem 1.2(ii) if
¢(1) = x(1) and from Lemma 7.2 otherwise. Certainly, (iii) also follows from
Theorem 1.2(iii) if ¢ (1) = x (1). Assume that ¢ (1) < x(1). Then by Lemma 7.2,
we have s
n?/4=36 _ q"! < <
qg+1 q+1
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and so

[(1/n)log, o(1)] = [n/4 —3.6/n] > vn—1—1

(as n > 7), a contradiction. I
COROLLARY 7.4. Theorems 1.4 and 1.5 hold for SL: (q).

Proof. Let S := SL{ (¢). Certainly, the conclusions of Theorems 1.4 and 1.5 hold
for any character ¢ € Irr(S) that extend to G := GL{ (¢). If ¢ is not extendable
to G, then (1) > ¢""/*~36 by Lemma 7.2. We will again use the trivial bound
lp(g)] < |Cs(g)|"?. For Theorem 1.4, taking n > 2"*'C + 4, we have Cn <
(n?/4 —3.6)/2™"!, and so

Cn/2 (n%/4-3.6)/2" < (p(l)l/zm )

lp| < gq <gq

For Theorem 1.5, taking n > 5, we have
n? n?/4-3.
|(p| gq /24 < q(8/9)( /4-3.6) < ¢(1)8/9

n?/12

O

Note that for 1 < n < 4, there is no element g € S such that |[C(g)| < ¢

Now we are ready to prove Theorem 1.7, which bounds the mixing time for
various random walks on SL{ (g).

Proof of Theorem 1.7. We follow the proof of [BLST, Theorem 1.11]. Consider

the Witten ¢ -function
1
£3(s) = v (7.1)
x €lrr(S) X( )

By [LS, Theorem 1.1], lim, o, £5(s) = 1 as long as s > 2/n.
For (i), we have, by a well-known result (see [AH, Ch. 1, 10.1]) and
Corollary 7.4, that

1P -Ule< Y (%) XD < E5a/9—2) — 1.
1s#xemms) S X

Now, asn > 19,if t > 19, then /9 — 2 > 2/n and so the statement follows.
For (ii), note that P’(x) is the probability that a random walk on the Cayley
graph I (S, C) reaches x after ¢ steps. Let

1P = Ul =Y IP'(x) = U)].
xeS
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By the Diaconis—Shahshahani bound [DS] and Theorem 1.5,

2t
WP -ul?< ). (';‘(E—fi') X1 <e*e/9-2) 1.
Is#x €lrr(S)

Asn > 10,ift > 10, then 2¢/9 — 2 > 2/n, and the statement follows. OJ

We conclude this section with another application. The Ore conjecture, now a
theorem [LBST1], states that if G is a finite nonabelian simple group, then the
commutator map

GxG—G, (x,y) xyx 'y

is surjective, or, equivalently,

no@) = Y L8 g (7.2)

1 >
x €lrr(G) X( )

for all g € G. A strong qualitative refinement of the Ore conjecture was
conjectured by Shalev [Sh, Conjecture 1.11] and states that if G is a finite simple
group of Lie type of bounded rank and |G| — oo, then the commutator map
yields an almost uniform distribution on G; more precisely,

-1 0.
lrgiegluc(g) | —

However, this was disproved by Liebeck and Shalev (unpublished), by
considering transvections in SL5(g). A more recent conjecture of Avni and
Shalev [ST, Conjecture 1.7] states that if G is a simple group of Lie type of rank
r, then

[max. ne(g) < C(r) (7.3)

for some constant C(r) possibly depending on r. We can now offer some
evidence in support of this conjecture.

COROLLARY 7.5. For any k € Z>,, let q; be a prime power, n, > 19, ¢, = %,
Gy = SLZ’; (gx), and let g € G, be such that |CGL;1;'( @@ < (qk)nﬁ/lz. If ue,
is defined as in (7.2) and lim;_, o, |G| = 00, then

klirg M, (gr) = 1.
Proof. By Theorem 1.5, |x (gx)| < x(1)¥° for all x € Irr(G;), whence

e () — 11 < E%(1/9) = 1,
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where the zeta function ¢5(s) is as defined in (7.1). Now the result follows
by [LS, Theorem 1.1] (if n; is bounded) and [LS, Theorem 1.2] (if n; grows
unbounded). L]

Very recently, it has been shown in [ST] that the upper bound C(r) in the
Avni—Shalev conjecture (7.3) must, in fact, depend on r, and similarly,

lim max pua,(g) = oo.
n—00 1#£geh,

8. Proofs of Theorems 1.1 and 1.6

8.1. Dual pairs for GL,(g). In this subsection, we prove Theorems 1.1
and 1.6 for G = GL,(q). We view G = G, = GL(A), where A = IFZ, and
consider § = GL(B) = GL;(g) with B = IF{I' and 1 < j <n.LetV := AQp, B,
and consider the (reducible) Weil character v of GL(V) = GL,;(q) as defined in
(1.1). Note that

dimp, Ker(g — 1y) = j - dimg, Ker(g — 14)
for any g € G. Hence, (1.1) and (3.1) imply that
tlg = (m)’. 8.1

Any v € V = A ®p, B can be written as Z;Zlai ® b; for some a; € A,
b; € B. Choosing such an expression with smallest possible ¢ for v, one then
calls ¢ the rank of v; note that this rank cannot exceed j = dim B. Note that
G acts transitively on the set £2 of all v € V of (largest possible) rank j; let p
denote the permutation character of G x § acting on 2.

Fix a basis (ey, ..., e,) of A and abasis (fi, ..., f;) of B, and consider v, :=
S/ e ® fi. It is straightforward to check that (g,s) € I' := G x S fixes vy
exactly when

X! %

Denoting R := Stabj(vy), we see that p = Indg(l r)- Consider the parabolic
subgroup
P =U x L := Stabg({ey, ..., ej)r,)

of G, with its radical U and Levi subgroup L = {diag(X, Y)} = GL; x GL,_;,
where

GL; := {diag(X, I,_;) € L}, GL,_; :={diag({;,Y) € L}.
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We can write R = U x f,, where
U:={u,1))el |uelU),
L = {(diag(X~',Y),X)el'| X € GL;(q),Y € GL,_;(g)}.
Now consider any « € Irr(S) and § € Irr(G), and express
*REG) =y X lor,_; +6', (8.2)

where y is a character of GL;, 8’ is a character of L with no irreducible
constituent having GL,_; in its kernel, and *Rf denotes the Harish—Chandra
restriction (which is adjoint to the Harish-Chandra induction RY). Also let o
denote the transpose-inverse automorphism of S: o (X) = ‘X ~!. Note that X € §
and ‘X are S-conjugate. Hence,

YX) =y@X)=y(X H=yXH =y, (8.3)

that is, y” = y. Hence, the value of (y X lg, ;) M o at a typical element
(diag(X~', Y), X) € Lis y" (X)a(X) = pa(X).
Certainly, the kernel of 1, contains U <1 R and also GL,,_;. It then follows that

[0 X a)k, 1rlr = [((y W1, ;) Ma)l;, 1;]; = [ve, loy oy, = [V, alov;-

Using (8.2) and the adjoint functor RY, we also have o4
[y, alor, = ['RY(8), @ R la, 1. = [8, RY (@ B gL, )]c.
Together with (8.4), this shows
B Xa, plr = [ Ka)|g, lrlr =[5, RY (@ K laL,_)le- (8.5)

Next we will use the proof of Proposition 3.8 applied to y := «, written in the
form (3.12) with sy = 1 # 55, ..., 5,,. Also write

M=)k K= 0— e 0.

In combination with Theorem 3.9, the proof of Proposition 3.8 shows that all
irreducible constituents of RY (e X 1g,,_,) are of true level < j; moreover, if
is such a constituent of true level j, then

0 = D2 :=S(1,x) 0 S(52,A2) 0--- 0 (5, A), (8.6)
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and 6 occurs with multiplicity one. Note that A isa partition precisely when
n — j = y,, which is equivalent to [*(a) = j — y» > 2j — n. Writing the «-
isotypic component of p as E, X « and setting D; := 0 when [*(«) < 2j — n,
we conclude from (8.5) that E, — D¢ is a character of G of true level smaller
than j.

Recall that G acts transitively on §2, with point stabilizer RN G = U x
GL,_; = Stabg(ey, ..., ¢;). Hence, the proof of Proposition 3.2 implies that

Pl = Rf(rech, X 1eL, ;)

Now, by Proposition 3.8, Theorem 3.9, and (8.1), (t — p)|¢ = (7,)’ — p|¢ has
true level smaller than j. The same is true for all irreducible constituents of F,,
where F, X « is the a-isotypic component of 7| — p. Since every irreducible
character of G of true level j appears in (z,)/ by Definition 1, such a character
6 must be some D; for some o € Irr(S) with [*(a) > 2j — n, and (8.6) implies
that

a = ("R7(6))' %

Thus, we have completed the proof of statements (i), (ii) of Theorem 1.1 in the
case € = +. We have also obtained an explicit formula for the bijection o — D}
in Theorem 1.1(ii) in terms of Dipper—James parametrization.

COROLLARY 8.1. Let () = 2j — n for a € Irr(GL(q)) and express
a=S(,x)08(s2, )0 08(u, An)
asin (3.12), withs; = land Ay = (y», ..., ¥;). Then in Theorem 1.1(i1), we have
O Na) =D = S(1,x1) 0 S(s2,A2) 00 S(Sm, An),
with Xl =Mm—=7,Y s V)

Proof. This is just (8.6). O

To prove statements (i) and (ii) of Theorem 1.6, we need some auxiliary
statements. For any finite-dimensional vector space U over a field F and any
element x € GL(U), let dy(x) := dimg Ker(x — 1) and let §;(x) denote the
largest dimension of x-eigenspaces on U ® F.

LEMMA 8.2. LetF be a field and let V = AQp B withdimy A = n and dimg B =
J, and let g € GL(A) with 5,(g) = k. Then the following statements hold.

(4) dv(g ®s) < kj forall s € GL(B).
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@) Ifk =2 n/2, thendy(g ® s) < k(j — 2) + n for all but possibly one element
s € GL(B).

(iii) Assume g ¢ Z(GL(A))and j 2 2. Thendy(g ®@s) < (n—1D(G — 1)+ 1
for all but possibly one element s € GL(B), and dy(g ® s) < (n — 1)j for
all s € GL(B).

Proof. With no loss, we may replace A, B, V by A Qp F, B ®p F, V Qp F, and,
thus, assume that F = F. Note that dy (h) < dy (h) +dy,y(h) forany h € GL(V)
and any h-invariant subspace U C V. Since F = T, there exists a g ® s-invariant
filtration of V with all quotients isomorphic to A. Since the result is obvious for
j =1, (i) follows.

For (ii), replacing g by a scalar multiple (which does not change 5,(g)), we
may assume that the 1-eigenspace of g on A has dimension k. First, suppose
that g is not unipotent. Write A = A; @ A, with A; = Ker((g — 1)") and A, =
Im((g — 1)"). Similarly, write B = B, & B, with B, = Ker((s — 1)/) and B, =
Im((s — 1)’). Applying (i) to g ® s acting on A; ® B, we get dy(g ® s) <
k(dim B;) + (dim A,)(dim B,), where the right-hand side is clearly maximized
when dim A, = n — k, giving

dy(g ®s) < k(dim By) + (n — k)(dim B,).

Since k > n — k, the right-hand side in the latter bound does not decrease as
dim B, grows. So if B, # 0, this gives dy (g ® 5) < k(j —2) + n.

We will now prove the same inequality for s # 1 and B, = 0, that is, when s is
unipotent. Note that since g ® s has no fixed point on A, ® B, the result follows
by induction on n unless A, = 0, that is, g is unipotent. Let J; denote the Jordan
i x i-block with eigenvalue 1; also use the symbol m J; to denote the direct sum
of m blocks J;. By [S1, Theorem, page 685],ifa, b € Z>,, then J,®J, is a direct
sum of min(a, b) Jordan blocks, whence dy (J, ® J,) = min(a, b). Applying the
latter formula to various (a, b), it follows for h = J, @ rJ; and t = J, with
r=>a—2,a,b>2that

dy(h®1) =min(a,b) +r <r+a+r+1)(b-2)
=dy(FP 1) < (r+Db=dy(h* @1, (8.7)

where we define
W=@-)hL&r+2—a), t'=»5L&0b-2J, °:=>bJ
for the given h, t. Write
8=Jy®J,® - DS, ®vJ), 5=y B, D D Jp
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witha, > a, > --- > a, > 2,b; =2 b, > --- > by > 1. Then the conditions
k >n/2ands # 1imply thatv > )" (a; —2) and b; > 2. Thus, we can write
g=h®---@h, withh; =J, ®r;Jyandr; > a; — 2. Applying (8.7), we see
that dy (g ® s) does not decrease when we replace g, s by

g° ::hf@hg@‘-'GBh,tﬂ, s’ Z=Jbb]GBJ,?Z@“'@J;?:Jz@(j—z)]I’

which does not change d4(g) = k. Thus,

m m l
dy(g®5) < dy(g®s") = Z<rf+“f)+z(”+”(z b _2) S
i=1 i=1 i=1

For (iii), note that g ¢ Z(GL(A)) implies that k < n — 1, whence dy (g ® 5) <
(n — 1)j by (i). Furthermore, if k < n/2, then by (i), we have

dy(g®s) <nj/2<m—-1){ -1 +1
as j > 2. If k > n/2, then the statement follows from (ii). O

Let 2 < j < n/2, and let x € Irr(G) have [(x) = j. Multiplying x by a
suitable linear character, we may assume that [*(x) = j. By Theorem 1.1(ii),
x = D; for some o € Irr(S). Consider any g € G \ Z(G). We will now bound
D; (1) and | D;(g)| using the well-known formula

1
Da(g) = 155 D T(89)a(s). (8.8)

ses

According to Definition 1 and Theorem 1.1(ii), we can write

N N’
tlo =) @b D,:=D.—D;=7) bb, (8.9)
i=l1 i=l1

where 6; € Irr(G) are pairwise distinct, a;, b; € Z>o, N > N', a; > b; if i < N',
I*(6;) < j for all i. In fact, if i < N/, then [*(6;) < j — 1, and so [(6;) =
@) < j—1<n/2as j < n/2, whence 6;(1) < ¢"V~" by Theorem 1.2.
Let k(X) = |Irr(X)| denote the class number of a finite group X. By [FGI,
Proposition 3.5], k(GL,(g)) < ¢". Note that N’ cannot exceed the total number
of irreducible characters of true level < j; hence, by Theorem 1.1(ii), we have

1

J—1 J=
/ i j
N’ < E k(GLi(g) < ) q' <¢q’.
i=0 i=0
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Also, Zl va; =[tlg, tlele < Sqf by Lemma 2.4. It follows that
N

v
(Zb’) N/Z”z @D <8
i=1

and so

N’

D,(1) <Y big"i™" </8g7tig"I V. (8.10)

i=1

Next, if 1 # s € S, then |t(s)| = ¢"*® < ¢"V~D, whence (8.8) implies that

D, (1) = a(1)(g"” — ISIg""=")/IS].

We may assume that g ¢ Z(G) and so k := §,(g) < n—1. Then by Lemma 8.2(i),
(iii), |t (gs)| = g€ < g"~PU=DH! for all but possibly one element s € S, for
which we have |7(gs)| < g¥ < ¢~ V/. Hence, by (8.8), we have

1Da(9)] < (1) (g +[SIg" =PV /18],

Since x = D, = D, — D,,, we have |x(g)| < |Dy,(g)| + D, (1). Using (8.10),
we now obtain

x(1) = a(D)(@" —[S1g""™" —|S],/8¢7+ig""™)/|S],
X (@] < a()(g +1S1g" "IV +18],/8¢7+ig" =) /|S].

Now assume that 2 < j < /(8n — 17)/12 — 1/2. Then

8.11)

=D —D+1<n(—1), 14/8¢7+ < 1.046g7 T+,
32+ j+1/2<n—1,

qj2+n(j1)(1 + /8qj2+j) < 1.046q3(j2+j+1)/2+n(j*l)*j

< 1.046g"Di71 < 0.523¢" 1/,

and so

As S| < qu, it now follows from (8.11) that

g (1 —0.523q~ ’) 0.869¢" 1.523¢@Di
1) > <=1
= S~ isiam’ YOS Tsam

and so |x(g)| < 1.76x(1)!~1/".
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Next assume that 2 < j < (v/12n —59 — 1)/6. Then 32+ j +3 <n — 2,
and so

qj2+n(j—1)<1 + 8qj2+j> < 1.046¢ 7 ++3/24n0 =)

< 1.046¢"V1P71 < 0.523¢"0 12,

It now follows from (8.11) that

W > ¢"(1-0.523g7)) _ 0.869¢" @) < gk 4 0.523¢"0112)
X = = > X&) =
|S1/ec(T) |S1/ec(T) |S1/e (1)
and so
|X(g)| < 1.76X(1)max(171/2j,k/n)’ (812)

as stated in Theorem 1.6(1).

Since the case j = 0 is obvious, it remains to consider the case j = 1,
whence x is a Weil character (see Example 3.11). Suppose first that j = 1 <
J(@8n —17)/12 —1/2,and so n > 6. It is easy to check that

X =@ " —/g—1, Ix@I<@"+9)/g—1)
and so again | x (g)| < 1.76x(1)'~/"; in particular, (8.12) holds if k = n — 1. We
now considerthecasek <n—2and j =1 < (/12n —59—1)/6, thatis,n > 9.
If g = 2, then
x(D=2"-2, |x(@l<2*=2< x ("
Ifk < (n—1)/2, then

x()>q"" Ix(® <q" < x()'
Ifk > (n + 1)/2, then

x(D =@ —9/g—D, Ix@®l <@ +q¢""+q9)/@q—1) < 176x(1)"".
Ifk =n/2and g > 3, then

x(D =@ —9/@—1D, Ix@l<Qq"+q)/g—1) <1L76x(1)">,

completing the proof of (8.12) for j = 1.

To prove Theorem 1.6(ii), note that if ¢ € Irr(SL,(g)) of level j does not
extend to G, then j > 1 (in particular, n > 6 as above) and any character y €
Irr(G) lying above it has degree x (1) > ¢"/*2 by Lemma 7.2. On the other
hand, x (1) < ¢ by Theorem 1.2, a contradiction. Hence, v extends to G, and
the statement follows from Theorem 1.6(1).

Thus, we have completed the proof of Theorems 1.1 and 1.6 in the case
€ =+. O
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8.2. The rank of GU,(q)-characters. Letm > 1, A = IFZ’" be endowed

with a nondegenerate Hermitian form o with Gram matrix (O 16’) in a basis (u;,

s Um, V1, ..., Uy), Where I, is the identity m x m-matrix. Let G = GU(A) =
GU2m (g), and consider the Siegel parabolic subgroup P := Stabs (U) of G, with
unipotent radical Q, where U := (uy, ..., um)qu. Fix « € IF» with k1 = —1,
a nontrivial linear character ¢ : (F,, +) — C*, and let H,, := {X € M,,(F,2) |
X ='X@). Then

Q={[1,X] = (Ig KIX)|XeHm}, (8.13)

and any linear character of Q is of the form

Ap (10 "IX> > ¥ (Tr(BX)) (8.14)
for some B € H,,. The rank r(\p) is now defined to be the rank of B.

DEFINITION 3 [GH2, Section 4]. For any GU,,,(g)-character x, the U-rank
of x, r(x), is defined to be the largest among all the ranks r(A), where A is
any irreducible constituent of x|y and Q is the unipotent radical of the Siegel
parabolic subgroup P.

(In fact, this definition can be extended to odd-dimensional unitary groups, but
we will not need it here.)

As shown in the proof of [GMST, Lemma 12.5], all the Weil characters of
GU,, (¢) have rank 1, that is, r({,) = 1. Together with the subadditivity of
matrix rank, this yields the following immediate consequence.

COROLLARY 8.3. Forany x € Irr(GU,,,(9)), r(x) < I(x) < F(x). ]

Next, fix an integer 1 < j < m and consider B = F , endowed with a
nondegenerate Hermitian form o with an orthonormal basis (e, ..., e;). Then
we can consider V := A Q. 2 B with the Hermitian form defined via (a ® b) o
(@ ®b)=(aoa)bob) for alla,a’ € A and b, b’ € B. We will also consider
V with a nondegenerate IF,-bilinear symplectic form

(wlw) = Trg,, /v, (kw o w'),

with respect to which U ®r B is a maximal totally isotropic subspace (of
dimension 2mj over ;). This gives rise to an embedding GU(V) — I' :=
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PROPOSITION 8.4. Let q be any odd prime power. Consider the dual pair G x
S — GU(V) = GUyyj(q), where G = GU(A) = GU,, (g) and S = GU(B) =
GU;(q), with 1 < j < m. Also consider the Siegel parabolic subgroup P =
Stabg ((uq, ..., um)qu) and its radical Q. Let ). € Irr(Q) be any character of
rank j, and let T be the reducible Weil character of GU(V) as given in (1.1).
Then the restriction of T|gxs to Q x S contains the character A X regg.

Proof. Consider a pair of complementary maximal totally isotropic F,-
subspaces in the IF,-space V, with complementary Witt bases:

W= (u; ®ej,ku; ®ej)r,, W= <%vi ®ej, ZLszi ® €j>1F,,
Let x, denote the unique linear character of order 2 of GU(V), and let = denote
a reducible Weil character of degree q2’"f, as constructed in [Gr, Section 13].
Then it is known that @ |gywy = x27; see [TZ, Section 4]. We will use the
model given in [Gr, Section 13] for a representation affording the character o,
with I" acting on the space W of complex-valued functions on W'. If §, denotes
the delta function for any point u € W', then (8, | u € W') is a basis for W.
The action of the Siegel parabolic subgroup Stab;(W) in this basis is described
in [Gr, (13.3)].
Now fix the following vector:

wi=4W ®e + Qe+ +v;®¢)).

First, we consider the action of any g = [/, X] € Q, given in the form of (8.13).
Using [Gr, (13.3)], we have

8Buge) =¥ G — D ®e) | v ®e1) = Y(xX11)u e
where we recall that X = (x;) € H,,. The same computation shows that
8(8y) =Y (xi + x4+ +x5,;)8,.

Choosing
Y :=diag(1,1,...,1,0,0,...,0),

Jj times m—j times

we then have
g(8y) = Y (tr(XY))d, = Ay(g)du,

for all g € Q, cf. (8.14), and note that r(Ay) = j.
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On the other hand, if s € § = GU(B), then s fixes both W and W’, and,
moreover, s(w) = w if and only if s = 1. As the action of Q x S on W is
monomial in the basis (8, | © € W), we conclude that

W' = (8sm) | s € S)c

is a Q@ x S-module, with character Indgxs()w ® 1s) = Ay X reg. Thus, the
restriction of @ to O x § contains Ay X regg, and the same is also true for
T = x2(@|cuv)). Since P acts transitively on the set of Q-characters of any
given rank, the statement follows. O

COROLLARY 8.5. In the notation of Theorem 1.1, assume thate = —, 1 < j <
n/2 and that q is odd. Then for any a € Irr(GU, (q)), I"'(Dy) = j.

Proof. First, note that [*(D,) < [*((£,)’) = j. Assume that [*(D,) < j for some
o € Irr(S).

(i) Consider the case n = 2m. By Proposition 8.4, T|p«s contains A X regg
for some A € Irr(Q) of rank j. It follows that (D, X )|« s contains A X o, and
s0 (Dy)|o contains A. The latter means that r(D,) > j, and so [*(D,) > j by
Corollary 8.3, contrary to the assumption.

(i) Now let n = 2m + 1 and embed G,,, x G| = GU,,,(¢) x GU (q¢) in G =
GU, (q). We can consider the dual pair G,, x § — GU,,,;(g) and decompose

ComjlGanxs = Z E;X B,

Belrr(S)
where Ej is a G, -character (possibly zero). Then we have
> (Dp)l6y BB = Tloyxs = ( > BN ﬁ)(lgzm X Z)).
Belrr(S) pelr(S)

Comparing the a-isotypic components, we obtain

(D)oo, = Y (BLj @)y, Ep. (8.15)

Belrr(S)

By definition, the assumption [*(D,) < j implies that there is some 0 < k <
j such that all irreducible constituents of D, are contained in (Z,)*. Since
(&)16yy = q&am (see [TZ, Lemma 4.2]), it follows that

F((D)lGyy) <k < J. (8.16)
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On the other hand, we can choose an irreducible constituent 8 € Irr(S) of a{_j.
Then

1 < (B, a8, = (BLj, @)ays
and so (D,)g,, contains Eg by (8.15). Now [*(Eg) = j by (i), and this
contradicts (8.16). ]

8.3. Dual pairs for GU,(q). In this subsection, we prove Theorems 1.1
and 1.6 for G = GU,(g). We view G = G, = GU(A), where A = IF’q’z, and
consider S = GU(B) = GU,(¢g) with B = F;z and1 < j<n.LetV := A®qu B,
and consider the (reducible) Weil character v of GU(V) = GU,;(q) as defined
in (1.1). Also keep the notation G; = GU;(g) for 1 < i < n. Note that statement
(i) of Theorem 1.1 is now just part of Theorem 3.9(i).

Suppose now that 2 < j < n/2 and consider any « € Irr(G;). Let D;, denote
the sum of all irreducible constituents of true level < j of D,, counting with
their multiplicities so that D2 := D, — D, is a character, all of whose irreducible
constituents have true level j. If, in addition, g is odd, then D is nonzero by
Corollary 8.5.

We will again use (8.8) and express 7| and D), as in (8.9). In particular, 6; €
Irr(G) are pairwise distinct, a;, b; € Z>o, N > N',a; 2 b; if i < N/, [*(6;) < j
for all i. In fact, if i < N’, then [*(6;) < j — 2 by Corollary 4.8, and so [(6;) =
) < j—2 <n/2as j < n/2, whence 6;(1) < ¢"U=? by Theorem 1.2.
According to [FG1, Section 3.3], k(GU,(q)) < 8.26¢". Note that N’ cannot
exceed the total number of irreducible characters of true level < j — 2; hence,
by Theorem 1.1(i), we have

j—2 j-2
N'< Y kGUi(g) <826 q' < 8.26"".
i=0 i=0
Also, YN a? = [t|g, tlele = [(&)¥, 16le < 2¢7° by Lemma 2.4. It follows
that
N’ 2 N’ N
(Z b;) < N/X:bi2 < 8.26¢7 ! Z“:‘z < 16.52¢7° 1,
i=1 i=1 i=1
and so
N/

D,(1) <Y big"l™ </ 16.52q7*+i~1¢"0 2. (8.17)

i=1
As before, if 1 # s € S, then |t(s)| = ¢"%® < ¢"U~V, whence (8.8) implies
that ' .

D, (1) = a(1)(g"” —1SIg""~")/|S].
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We may assume that g ¢ Z(G) and so k := §,(g) < n—1. Then by Lemma 8.2(i),
(iii), |t (gs)| = g9 < gM~DU=D+! for all but possibly one element s € S, for
which we have |t(gs)| < g¥ < g™ V/. Hence, by (8.8), we have

1Da(9)] < a(1) (g +Slg" =PV /1S,

Using (8.17) and the estimate | D2 (g)| < |D,(g)| + D, (1), we obtain

Dy(1) > a(D)(g" —|Slg""™" — S13/16.52¢7"+i~1¢"I72) /|5],
1D ()] < (1)@ +1Slg" PV 4 1813/16.52+1-1q"U2) /|S].

(8.18)
Note that |S| < 1.5¢7" by Lemma 5.1(iii).
Now assume that 2 < j < 4/n — 3/4—1/2;in particular, n > 7. Then j>+j <
n—1,m—-DG—-1)+1<n(—1),andso

1'5qj2+n(,i1)<1 + /16.52qj2+j—1—2n) < 1'77qj2+n(jfl)

< 1.77¢" D771 < 0.885¢ "1,
It now follows from (8.18) that

n(l-0.885¢) _ 0.778¢" 1 8854V
q q 2 q ’ |Da(g)| < #
IS]/e (L) IS|/a(1) 1S1/a(D)

and so D¢ is a nonzero character of G and |D2(g)| < 2.43D3(1)'~!/".
Next assume that 2 < j < 4/n/2 — 1;in particular, n > 10. Then j*> < n/2—1,

and so
1.5qj2+"(j_1)<1 + \/16.52q12+f‘2”) < 1.77¢7 0D

< 1.77¢"971YP71 < 0.885¢" 012,

D, (1) >

It now follows from (8.18) that

nj(] — —J nj kj n(j—1/2)
q"V (1 —0.885¢77) S 0.778¢q Dt < q" + 0.885¢
|S1/ee(1) IS1/ee(1) |S1/ee(1)
and so | D2(g)| < 2.43 D2 (1)max(=1/2ik/n),

We have shown that, for any o € Irr(S), D is a nonzero G-character that
involves only characters of true level j. As Tl = (s @(1)(Dg + D), it
follows that the total sum X' of all multiplicities of irreducible constituents of true

D, (1) >
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level j in 7| is atleast ), 1.5, @(1). On the other hand, ¥ = o a(1) by
Theorem 3.9(i), and, furthermore, each character of true level j enters some Dy,
and the total number of such characters is k(S). We conclude that the characters
D¢ are all irreducible, pairwise distinct, and account for all characters of true
level j of G.

Suppose now x € Irr(G) have I[(x) = jand 2 < j < «/n — 3/4—1/2 as above.
Multiplying x by a suitable linear character, we may assume that [*(x) = j. By
what we have just shown, x = D_ for some o € Irr(S). We have, therefore,
proved Theorems 1.1(iii) and 1.6(iii) for j > 2.

Since the case j = 0 is obvious, it remains to prove Theorems 1.1(iii)
and 1.6(iii) for j = 1. In this case, statement 1.1(iii) is well known, and
D, = D;; furthermore, x is a Weil character (see Example 3.12). First, suppose
that j =1 < /n —3/4—1/2,and son > 4. It is easy to check that

x(D=@" —/g+D, Ix@I<@ "+9)/@g+1)

and so again |x(g)| < 2.43x(1)!~V/". Assume now that j = 1 < /(n —2)/2,
thatis,n > 6.If k < (n — 1)/2, then

x(D>(@" —9/@+1D, Ix@<qg" <243

If k > n/2, then

x(D =@ —/@+1D, Ix@l<@d"+q)/(q+1) <2435 )",

completing the proof of Theorem 1.6(iii) for j = 1.

Theorem 1.6(iv) can now be proved by exactly the same argument as we had in
the proof of Theorem 1.6(ii). Thus, we have completed the proof of Theorems 1.1
and 1.6. Note that Theorem 1.1(iii) is weaker than Theorem 1.1(ii). The reason
is that in the case ¢ = —, we do not have an explicit geometric model for the
reducible Weil representation of GL*(V) = GL;j (g) (affording the character
defined in (1.1)), which would allow us to have better control on D, X « for any
« € Irr(GL5(g)), as we did in Section 8.1. O

COROLLARY 8.6. Let G = GL;(q) > S =SL(q) withe = £, and let0 < j <
n/2. Then the following statements hold:

1) If x € Irr(G) has (x) = J, then ¢ := x|s is irreducible. Furthermore,
Irr(Glo) = {x2 | 2 € Irr(G/S)},
and it contains a unique character of true level j.
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(ii) If © is the bijection in Theorem 1.1(i), then A : a — (O~ ' (a))|s is a
bijection between Irr(GLj(q)) and {¢ € Irr(S) | l(p) = j}.

Proof. (i) Replacing x by x A for a suitable A € Irr(G/S), we may assume that
I*(x) = j. By Theorem 3.9, the first part of the partition y, is n — j. It follows
that forany § € p,_. {1}, the first part of y is < j, whence [*(xB) 2 n—j > j
and so xB # x forany 15 # B € Irr(G/S). As G/S is cyclic, the statements
now follow from [KT1, Lemma 3.2] and Gallagher’s theorem [Is, (6.17)].

(i1) Fora € Irr(GLj(q)), let x := ©® (a)and ¢ := x|s = A(x). Then [*(x) =
Jj < n/2, and the same arguments as in (i) show that [(x) = j. Now ¢ € Irr(S) by
(i) and (@) = I(x) = j by Definition 2. Suppose now that ¢ = A(«’) for some
o' € Trr(GLS(g)). Then (x)|s = ¢ = xls for x" := @~'(a). By (i), x' = xB
for some B8 € Irr(G/S). Since I*(x") = j = I*(x), the arguments in (i) show
that 8 = 15 and ¥’ = x, whence o’ = «. Thus, A is injective. Finally, suppose
@1 € Irr(S) has [(¢;) = j. Then [(x;) = j for some x; € Irr(Glg,) again by
Definition 2. Replacing x; by x,8 for a suitable § € Irr(G/S), we may assume
that I*(x1) = j. Now @1 = (x)ls by (i) and s0 ¢ = A(E(x1)), proving the
surjectivity of A. O

9. Some further results

9.1. The level and the rank of GL,(q)-characters. Again consider G =
GL(A) = GL,(g) with g a power of a prime p and A = (ey, ..., e,)r,, and
fix a primitive complex pth root & of unity. Consider the subspace W; = (e,

.., ej)r, forany 1 < j < n/2 and its stabilizer P; = U; x L; with unipotent
radical

U, = {[Ij,X] = (10’ ]XA) | X € Mj,,,j(IFq)}.
n—j

Note that the F,-bilinear form (X,Y) — tr(X - Y) is nondegenerate on
M;,_;(IF,). It follows that any character A € Irr(U;) can be written uniquely
in the form

A=Ayt [, X] > "armp rXD

forsome Y € M;,_;(F,), and the rank of Ay is defined to be r(Ay) := rank(Y).
DEFINITION 4 [GH2, Definition 4.2.1]. For any GL,(g)-character x, the U-

rank of x, r(x), is defined to be the largest among all the ranks r(A), where A is
any irreducible constituent of x|y, and 1 < j < n/2.

As we will see from Theorem 9.5, the U-rank r(yx) is related to, but coarser
than, the level [(). First, we record some elementary properties of r(x).
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PROPOSITION 9.1. With the above-introduced notation, the following
statements hold:

(i) Suppose thatl = r(x) = k for some x € Irr(GL,(q)). Then for any j with
k < j < n/2, there is an irreducible constituent p of x|y, with k < r(u) <
min(j, [).

(1) Suppose that r(x) = k and r(0) = [ for GL,(q)-characters x, 6 and that
k+1<n/2 Thenr(x0) =k + 1.

(iii) Suppose that o € Irr(GL;(g)) and B € Irr(GL,_;(q)) with r(a) = k and
r(B) = 1. View a X B as a character of a Levi subgroup L; = GL;(q) x
GL,_;(q) of P;. If x € Irr(GL, (q)) is an irreducible constituent of Rfj (X
B), thenr(x) > k + 1.

Proof. (i) By the definition, there are some i,/ with k < [ < i < n/2 such that
X |y, contains an irreducible constituent A = Ay with rank(Y) =/ = r(x). Note
that L; acts on the constituents of x|y, via conjugation, and conjugating A by
a suitable element in L;, we may assume that ¥ = (g 8) Now we consider the
subspace

W, = (€1, €2, ..., €k, Cititls Citiet2s - -+ s ei+j)]an

and its stabilizer P; = U; x L; with unipotent radical U;. Let Q := U; N U
andlet u := X1z € Irr(U ;) be any irreducible constituent of x |[/j that lies above
Alg. With the given choice of Y, it is straightforward to check that Z = (’k *),

and so rank(Z) > k. On the other hand, as U ; is G-conjugate to U;, we have that
rank(Z) < r(x) =/, andrank(Z) < jas Zisan (n — j) X j-matrix.

(i) By (i), we may assume that, for j := k + [, x|y, contains an irreducible
constituent A = Ay of rank k and 6|y, contains an irreducible constituent u = A
of rank /. Again conjugating A and p by a suitable element in L ;, we may assume

that
_ (100 _ (000
Y‘(o 00)’ Z—(01,0>'
It follows that (x0)|y; contains A = Ayz with rank(Y + Z) = k +[. Since the

upper bound r(x6) < k + [ is obvious, the statement follows.
(iii) We identify GL;(g) and GL,_;(g) with

Gl = StabG(<el7 D) ej)IFq’ €itly vy en)’

G2 = StabG(el, ey ej’ (ej+17 D €n>]Fq)7
respectively. Let U, ; denote the unipotent radical of Stabg, ({ey, ..., e)r,), and
let U, ; denote the unipotent radical of Stabg, ({(€; 11, - - ., €;11)r,). By (1), we may
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assume that o[y, , contains an irreducible constituent A = A of rank k, and after
a suitable conjugation, X = (lk 0). Likewise, we may assume that 8|y,, contains
an irreducible constituent 4 = Ay of rank [ with ¥ = (1/ ) By the assumption,
*RG (x) contains o X B, and so the restriction of x to U; X (U, x x U,,;) contains
an 1rredu01ble constituent y that is trivial on U}, equal to A on U, 4, and equal to
won U, ;. Now we consider the subspace

Wip = (e, e, ..., €, €11, €j12, .-, €j1)F,
and note that the unipotent radical ﬁkH of its stabilizer in G contains
Q= WU;NUpp) X (Upp x Usy).

Letd := Az € Irr(UkH) be any irreducible constituent of x|z, ,, that lies above
v|o. The conditions on X, Y, and y now imply that Z = (Ig 8 Z,]‘ ZZ) Clearly,

rank(Z) =k +1[,and so r(x) > k + [ (since Uk+1 is again G-conjugate to Uy ;).
O

COROLLARY 9.2. Forany x € Irr(GL,(q)), r(x) < min(I(x), n/2).

Proof. The inequality r(x) < n/2 is immediate by the definition. Also note that
r(x) does not change if we multiply x by a linear character of G. Hence, we
may assume that [*(x) = [(x) = j < n/2, and so ¥ is a constituent of (t,)’ by
Definition 1. If 2 < n < 3,then j = 1 < r(x) < 3/2 and we are done. So we
may assume n > 4 and conclude by [T2, Corollary 2.3] that r(z,) = 1. It then
follows by Proposition 9.1(ii) that r(x) < r((z,)’) < j. L]

We will also need the following result.
LEMMA 9.3. Forintegersm =2 and 1 < j < m — 1, let N(m, j) denote the

number of matrices X € M,,(F,) of rank j, and let N'(m, j) denote the number
of those matrices but with the (1, 1)-entry X, equal to 0. Then N'(m, j) >

N(m, j)/q.

Proof. Let Y be a uniformly distributed random variable with values in the set
M, (F,), let YV denote the first column, and let ¥\ denote the upper left entry.
If Pr[E] denotes the probability of the event E, then our claim is that

Prrank(Y) = j | ¥{" = 0] > Pr[rank(Y) = j].
Now,

Prlrank(Y) = j | ¥\ = 0]
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= Prlrank(¥Y) = j | YV = 0]Pr[YY =0 | ¥" = 0]
+Prlrank(Y) = j | YP = 0](1 = Priy® =0 v" = 0)),
while

Prlrank(Y) = j] = Pr[rank(Y) = j | Y = 0]Pr[Y" = 0]
+Pr[rank(Y) = j | Y £ 0](1 — Pr{y®® = 0)).

As
Priy® =0v" =0] > Priy™ = 0],

it suffices to show that
Prirank(Y) = j | Y’ = 0] > Pr[rank(Y) = j | YV # 0],
or, equivalently,
Prirank(Y) = j | Y¥ = 0] > Pr[rank(Y) = j].

More generally, let p,, ,(j) denote the probability Pr[rank(Y) = j] form x n
matrices Y over IF,. Then our assertion reduces to the statement that

pm,n (]) < pm,n—l (])

when j < min(m, n).

Consider the action of GL,,(q) x GL, (g) on M,,,(IF,) via(g, h) o X=gXh'.
As I' acts transitively on the set £2(m, n, j) of all Y € M,,,(F,) of rank j, by
computing the stabilizer of ¥ = ({/ {) in GL,,(¢) x GL,(q), we see that

Iﬂ:@m—q61YSM”—¢)

2(m,n, j)| =
142, 2, |GL,(9)]

Since j < min(m, n), it follows that

pm,n(j) _ |.Q(m, n, J)|/qmn — qn -1 <
Pun1(j)  12(m,n—1, pl/g""*D g (g™ — 1)

17

as required. O

Recall the notation (3.12). Using Lemma 9.3, we now show

COROLLARY 9.4. Let x = S(s, A) € Irr(GL, (q)) with deg(s) = [F,(s) : F,] =
d>2 Thenr(x) = |n/2].
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Proof. Assume the contrary and let t € GL,(g) be a transvection. Put ¢ in the
unipotent radical U, of P;. By [BDK, Corollary 5.4d(ii)], *Rfl (x) = OforalLevi
subgroup L; of P;. Since L, acts transitively on Irr(U;) \ {1y,}, it follows that
X lu, 1s a multiple of the sum of all nontrivial linear characters of U;, and so
x() = —x(D/@" = 1) <0.

First, we consider the case n = 2m € 2Z and take r = (' ) in the unipotent
radical U,, of P,, with Y = diag(1,0,...,0). By the assumption, x|y, =
ZJ’";OI n;X;, where n; € Zzoand X; := 3, 5 4,0 < j < m. Here, O, is the
P, -orbit of all rank j characters A = Ay of U,,. In the notation of Lemma 9.3, it
is easy to see that Ax(t) = 1 if X|; = 0, whereas Zaem Aox(t) = —1. It follows
by Lemma 9.3

_NOm, j) = N'Gn, j) _ qN'Gm, j) = N(m, j)
qg—1 qg—1

()= N'(m, j) 0,

forall 0 < j < m, and so x(¢) > 0, a contradiction.

Now let n = 2m + 1 > 3 be odd. Embed H := GL,,(¢) in G = GL,(q)
via h +— diag(h, 1). Since x(¢) < 0, there is some irreducible constituent yr of
Xx|g with ¥ (¢) < 0. By the previous result, r(y) = m. It is easy to see that this
implies r(x) = m, and so equality holds since r(x) < n/2. O

The main result of this subsection is the following theorem, resolving [GH2,
Conjecture 6.3.5] and generalizing the complex case of the main result of [T2].

THEOREM 9.5. For any x € Irr(GL,(q)), the U-rank r(x) is given by the
formula

r(x) = min(l(x), Ln/2]).
In particular, 1(x) = r(x) = [1(x)/2].

Proof. Letl(x) = j. The case j = 0 is obvious, so we may assume that 1 < j <
n.

(a) First, we prove by induction on j that if 1 < j < n/2, then r(x) = I(x).
Multiplying x by a suitable linear character of G, we may assume that x is an
irreducible constituent of (z,)’. Now if j = 1, then again by [T2, Corollary 2.3],
we have that 0 < r(x) <r(r,) = landsor(y) = 1.

For the induction step, we assume 2 < j < n/2. Fix a basis (e, ..., e,)
of A and a basis (fi,..., f;) of B = F/, and consider vy := }/_,&; ® f; €
V = A ®g, B. Let p denote the permutation character of G x § acting on §2,
the set of vectors in V of rank j, which contains v,. As noted in Section 9.1,
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(g,s) € I' := G x S fixes vy exactly when
tx—l *
g = ( 0 Y>, s =X,X eGL;(g),Y € GL,_;(q)

(in the chosen bases). Hence, Stab, ¢(vo) = 1, where U is the unipotent radical
of ~
P :=Stabg({€j 11, €j42, - - -, €n)r,)-

Thus, U x S has a regular orbit on £2. Since t|;, ¢ contains plg, . it follows
that 7|z, ¢ contains the regular character

reg; . g = Z a(Hr X a.

aelrr(S), relmr(D)

Hence, for any o € Irr(S) and the G-character D, defined in Theorem 1.1(ii),
we have that D,|; contains «(1)reg;.

By Theorem 1.1(ii), we may assume that x = D_ for some o € Irr(S). Next,
let o denote the transpose-inverse automorphism of G (defined in the given basis
of A). Arguing as in (8.3), we see that o acts on any G-character via complex
conjugation. Now observe that o sends P to P; = Stab({ey, ..., e;)r,) and U to
the unipotent radical U; of P;. So the result of the preceding paragraph, applied
to Dg, implies that D,|y; contains a(l)reng. In particular, if A € Irr(U;) has
rank j (recall j < n/2), then D,|y, contains a(1)A. On the other hand, r(D, —
D?) < j by the induction hypothesis and Theorem 1.1(ii). It follows that x = D
contains (1), whence r(x) = j by Corollary 9.2.

In fact, observe that forany g € U;, 7,(g) € {¢", ¢"', ..., q¢" '}, and 7,(g) =
g" if and only if g = 1. Hence, for ¥ := ]_[:';,Lj(rn —q' - 1), we have that
¥lu, = | GL;(g)| - regy,. Since r((z,)") < i, it follows that

[((z))ly;» M, = [GLj(@)| = |S| = Z B(1)%.
Bel(S)
On the other hand, each Dj with 8 € Irr(S) contains B(1)A as shown above.
Hence, we have proved that each U ;-character of rank j has multiplicity exactly
a(l) in x|y, when x = Dy, has true level j.

(i) Now we prove by induction onn > 1 that if j > n/2, thent(x) = [n/2].
The induction base n < 3 is obvious. For the induction step, denote m := |[n/2]
and assume that the statement holds for n up to 2m — 1. We will also write x in
the form (3.12).

Consider the case x = S(s,A). If deg(s) > 1, then we are done by
Corollary 9.4. Hence, we may assume that s = 1, and so

A=M=n—jjZ2r=2--Z2A>0Fn

Downloaded from https://www.cambridge.org/core. IP address: 68.45.61.184, on 07 Oct 2020 at 14:45:21, subject to the Cambridge Core
terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fmp.2019.9


https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2019.9
https://www.cambridge.org/core

R. M. Guralnick, M. Larsen and P. H. Tiep 74

by Theorem 3.9. The assumption j > n/2 implies that s > 2.
Suppose first that A has repeated rows. Then we look at the last repeated rows
of A:
ha =" = Kok > Mg > -0 > Ay

witha, k > 1 and a+k < s. Then the rim R of the Young diagram Y (A) contains
a 2-hook H consisting of the last two nodes of A, ;_; and A,,. Setting

Yy = ()"la D) )"a+k—2’)\'a+k—] - 13 )"a+k - 17 )"a+k+17 D) )"5) = (n - 2)»
§:=(1, D),

we see that R \. H is the rim of Y (y). Denoting by x* the irreducible character
of S, labeled by A, and similarly x” € Irr(S,_,) and x° € Irr(S,), we see
by [GKNT, Lemma 4.1] that

Xx|s,,_zxsz contains x?” X x°. 9.1)

Suppose now that A has no repeated rows. Removing the last node of the first
and the last node of the second row of Y (L) from R, we now get the rim of Y (),
withy ;= A — 1,4 — 1, A3, ..., ;) Fn—2. Keeping § := (1, 1), we then see
by [JK, Corollary 2.8.14] that (9.1) holds in this case as well.

In turn, (9.1) implies by Lemma 3.3 that

“Rer" ) xcLaq (X) contains S(1, y) K S(1, §). (9.2)

Note that r(S(1, §)) = 1. Furthermore, the first part of y isn — jorn — j — 1,
andso j :=I(S(1,p)) = j—2 > m — 1. It follows by (i) when j = m — 1 and
by the induction hypothesis when j’' > m thatr(S(1, y)) = |[(n—2)/2] =m—1.
Now applying Proposition 9.1(iii) to (9.2), we obtain that r(x) > m, as desired.

(iii) To complete the proof, it remains to consider the case y = RLG (x X B),
where L = GL,(g) x GL,(q) with 1 <a < b, @ € Irr(GL,(g)), B € Irr(GL, (¢)).
Here we can take

L = StabG(<ela ceey ea)]an (ea+17 ey en)Fq)a

a Levi subgroup of P, = Stabs({ei, ..., e,)r,). We also consider a ‘middle’
parabolic subgroup

P, = Stabg((en—m1, - - - €1)r,)

with unipotent radical Q. Observe that Q = R x T, where

I, 0 0 I, 0 0
R = Pa N Q = 0 Ib—m 0 . T = 0 Ib,m 0
0 x I, * 0 I,
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Furthermore, R is the unipotent radical of the parabolic subgroup

StabGLb(q)((elz—m+l PRI en)]F,])

in the second direct factor of L.
The condition [(x) = j > m + 1 implies by Theorem 3.9 that

(B)>b—(—j)=j—a>b—m.

As b — m < b/2, applying (i) and the induction hypothesis to GL,(g), we
conclude that r(8) > b — m. Hence, by Proposition 9.1(i), f|z contains a
character v = Az of maximum rank b — m; in fact, we can take Z = (0 Ir-n ).

Recall that x = Ind(,?a (@), where U, < Ker(p) and ¢|, = o X 8. Therefore,
X |o contains

Ind? , (¢lp,n0) = Indj (¢lr) = Indf" (@(1)Blr) = (a(1)Blr)reg;;

in particular, x|, contains v - reg;. Since 2m — b < a, reg; contains a character
i = Ay of rank 2m —b; in fact, we can take Y = ("2 0). Viewing Q as T x R, we
see that x|, contains u X v = Ay KA, = Ay with X = (;) By the construction,

X has rank m, whence r(x) > m, as stated.

Note that Theorem 9.5 shows that [GH2, Proposition 11.1] is false in the case
I(x) = n =2m + 1. Indeed, when n = 2m + 1 we can take x € Irr(GL,(q))
of maximum level n, for which we have r(x) = m, whereas [GH2, Proposition
11.1] states that [(8) < 2r(0) for all 8 € Irr(GL,,,41(g))-

9.2. Some final remarks. First, we give an example to show that the
exponent 1 — 1/n in Theorem 1.6 is optimal (in the range where g is bounded
and n — 00).

EXAMPLE 9.6. Let G = GL(A) = GL{(q) fore = + and let x = "~V be
the unipotent Weil character of level 1. Then x (1) ~ ¢"/(q — €).

(i) x(g) ~ q"'/(q — e) if g is a transvection.

(if) For any n/2 < k < n — 1, we can find g € SL’ (¢g) such that the g-fixed
point subspace on A has dimension k (and so §(g) = ds(g) = k). Then

x(8) ~q"/(q —e).

REMARK 9.7. Let G = GL; (¢g) for ¢ = & and § = SL{(¢). One can define a
certain subgroup D of outer automorphisms of G (in a compatible way for all
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n) such that the action of G x D on § induces Aut(S); see [GKNT, (5.2)]. In
particular, this gives rise to an action of D on irreducible characters of G, S, and
GL; (g) with 1 < j < n. Furthermore, I := Gal(@/@) also acts naturally on
those characters. In the case of G and GL; (g), these actions are well understood;
see, for example, [GKNT, Section 5]. Furthermore, 7,, respectively ¢,, is D-
invariant and I"-invariant; in particular, [*()) is preserved under the action of D
and I". It is straightforward now to check that the bijection in Corollary 3.10 is
D-equivariant and [ -equivariant. Finally, if ¢ € Irr(S) has level j < n/2, then
by Corollary 8.6, it lies under a unique x € Irr(G) of true level j. Combined
with the D-equivariance and I'-equivariance in the GL-case, this implies that
the bijection in Corollary 8.6(ii) is D-equivariant and /"-equivariant.

Theorem 1.1 exhibits certain irreducible constituents of 7|g s, namely DS Mo
with « € Irr(S), where G = GL; (¢) and S = GL; (¢). One may be interested in
the fotal number of irreducible constituents of t|gs or at least N, ; := [t]gxs,
T|oxsloxs- We will now provide some upper and lower bounds on the latter
invariant.

First, we consider the linear case, and let S = GL;(¢) = GL(U), G =
GL,(¢q) =GL(W) with1 < j <n,U = Fé, W=F,.SetV=UQW = sz.AS
7 is the permutation character of GL(V') on the point set of V, N, ; is the number
of orbits of § x G acting on V @ V. Note that V is Aut(S x G)-equivalent to
Hom(U, W) with the natural S x G-action. Thus, we are counting orbits on
ordered pairs of linear transformations from U to W. These were classified by
Kronecker (see [Ga], and, for an elementary treatment, see [Sp]).

Now, given a pair (A, B) with A, B € Hom(U, W) (or, equivalently, the pencil
A+ x B), we can replace W by any subspace of W that contains Im(A) + Im(B).
Hence, the number of orbits N, ; forn = 2 is the same as N, ; forany n > 2j.

What Kronecker showed is that we can decompose any pencil A 4+ xB as a
direct sum. More precisely, we can write U = @, U; and W = @, W; such that
A(U;), B(U;) C W,, and one of the following holds:

(i) d = dimU; = dim W; and
(@) (Aly,, Bly,) = (14, X), where X invertible;
(b) (Aly,, Bly,) = (14, Y), where Y is nilpotent; or
(©) (Aly,, Bly,) = (Y, I;) where Y is nilpotent;
(1) dimU; +1 = dim W; > 2 and there is a unique (A|y,, B|y,) depending only
ondim U;;
(iii) dimU; = 14dim W; > 2 and there is a unique (A|y,, B|y,) depending only
on dim U;;
i) (Aly. Blu) = (0,0.

Downloaded from https://www.cambridge.org/core. IP address: 68.45.61.184, on 07 Oct 2020 at 14:45:21, subject to the Cambridge Core
terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fmp.2019.9


https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2019.9
https://www.cambridge.org/core

Character levels and character bounds 77

Here, in (a), (b), respectively (c), A, respectively B, is represented by the
identity matrix I, in suitable bases of U; and W;. Moreover, this decomposition
is unique up to the conjugacy of X and Y and the dimensions of the pieces. We
can also combine pieces of the same kind (a), (b), (c), or (iv) so that each of these
four types occurs for at most one index i.

Now assume that the term of type (a) in the decomposition occurs for
r = dim U; (with 0 < r < j). The number of orbits on the first part of the
decomposition is just k(GL,(g)), where k(H) = |Irr(H)| as usual. For the
remainder of the decomposition, we write j —r = a + b + ¢ + d + e as the
sum of the totals of dim U; for each of the remaining five types. Let p(m) denote
the number of partitions of m, and let p’(m) be the number of partitions of m with
no parts of size 1. Then the number of nilpotent classes of a x a-matrices is p(a).
Next, the contribution of type (ii), respectively (iii), to N, ; is p(c), respectively
p'(d). It follows forn > 2j that N, ; = F(j, q), where

J
F(j,q) =) fi-k(GL,(q)), 9.3)

r=0

where

Jn = > p(@)p®)p(c)p'(d). 9.4)

a,b,c,deZz, a+b+c+d<m

Note that we have, in fact, shown that N, ; < F(j,¢q) forany 1 < j < n. If
j = n/2,tofind N, ; precisely, the only extra condition required is that we have
to see that ) . dim W; in the decomposition is at most n. One can easily write
down the exact formula. We just note that by ignoring the pieces of type (ii)
(where dim W; > dim U;), we obtain the following lower bound:

J J
Noj = ) hjrk(GLi(@)) > ) k(GL,(9)),

r=0 r=0

where
hi= ) p@p®)p@. (9.5)
a,b,deLsg, a+b+d<m
Next, we consider the unitary case and let S = GU;(¢) = GU(U), G =
GU,(q) =GUW) with 1 < j <n,U=F,,W=F,.SetV=UQ®W =F2.
As 7% is now the permutation character of GU(V) on the point set of V, N,,. ;18
the number of orbits of S x G acting on V. We again replace V by Hom(U, W),
and note a couple of easy facts.
We may assume that n < 2j, for we can replace W by any nondegenerate
subspace containing the image of T € Hom(U, W). Suppose that Ker(7) = 0

Downloaded from https://www.cambridge.org/core. IP address: 68.45.61.184, on 07 Oct 2020 at 14:45:21, subject to the Cambridge Core
terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fmp.2019.9


https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2019.9
https://www.cambridge.org/core

R. M. Guralnick, M. Larsen and P. H. Tiep 78

and Im(7T') is nondegenerate. Then T*T, with T* = 'T“ = (x2) for T = (x,,),
is an invertible Hermitian operator on U and the S-conjugacy class of the latter is
an invariant for the S x G-orbit of T. Conversely, if M is any invertible Hermitian
J x j-matrix over F 2, then the corresponding Hermitian form has Gram matrix
I; in a suitable basis of U and so M = T*T for a suitable injective T with
nondegenerate image. Also note that M = ‘M@ is GL,(TF,)-conjugate to M@
and so, by the Lang—Steinberg theorem, M is GL; (I_Fq)-conjugate to some M’ €
GL,(q). By [TaZ, Theorem 1],’M' = AM A~ for some symmetric A € GL,(g),
and so M’ is self-adjoint with respect to the Hermitian form with Gram matrix A.
Finally, two elements of GL;(q) are GL;(g)-conjugate precisely when they are
GL; (H}q)—conjugate, again by the Lang—Steinberg theorem. We have, therefore,
shown that the number of GU;(g)-conjugacy classes of invertible Hermitian
J x j-matrices over [F 2 is at least k(GL;(g)) (in fact, equality holds; see [FG2,
Lemma 3.1)).

We can do the same thing for 7' such that both Ker(7) and Im(T) are
nondegenerate. Thus, we obtain the lower bound N, ; > Zf:O k(GL,(q)).

For 1 < j < n/2, we can prove another lower bound for N, ;. Note that
7|¢ = (¢,)’ contains (¢,)’/ 2 since (£,)? is the permutation character of G on the
point set of W. It follows that 7| contains all irreducible characters of true level
j —2i,0 <i < j/2.Hence, Theorem 1.1(i) implies the lower bound

Nuj= Y. k(GU;i(g)).

0<i<j/2

We summarize our results in the following statement.

PROPOSITION 9.8. In the notation of Theorem 1.1, let N, ; = [T|gxs,
T|gxsloxs- Then

J
N, ;=Y k(GL,(q)).

r=0

In fact, in the linear case, that is when (G, S) = (GL,(¢g), GL;(g)), we have

J J
> hjk(GL(@)) < N, j < Y fi-k(GL.(q))
r=0 r=0

with f,, and h,, as defined in (9.4) and (9.5). In the unitary case, if 1 < j < n/2,
then

Ny = Y. k(GU;i(g)).

0<i<j/2
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In fact, using the Lang—Steinberg theorem, one can show that the function
F(J, g) defined in (9.3) also gives an upper bound for N, ; in the unitary case
(for a detailed argument see [Gu]).
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