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Key Points:

e Interior marsh ponds deepen with wider channels connecting the ponds, indicating
sediment export through these channels

e Vegetated marshes and ponds occupy alternative stable elevation states, which impairs
marsh recovery once converted to open ponds
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Abstract

Coastal marshes and their valuable ecosystem services are feared to be lost by sea level
rise, yet the mechanisms of marsh degradation into ponds and potential recovery are poorly
understood. We quantified and analyzed elevations of marsh surfaces and pond bottoms along a
marsh loss gradient (Blackwater River, Maryland, U.S.A.). Our analyses show that ponds deepen
with increasing tidal channel width connecting the ponds to the river, indicating a new feedback
mechanism where channels lead to enhanced tidal export of pond bottom material. Pond
elevations also decrease with increasing pond size, consistent with previous work identifying a
positive feedback between wind-wave erosion and pond size. These two positive feedbacks,
combined with bimodal elevation distributions and sharp topographic boundaries between
interior ponds and the marsh platform, indicate alternative elevation states and imply that marsh
loss by pond formation is nearly irreversible once pond deepening exceeds a critical level.

Plain Language Summary

Coastal marshes are highly valued ecosystems, but in some areas with increased sea level
rise these vegetated marshes disappear and convert into large ponds. Currently we do not fully
understand how these ponds are formed and why marsh vegetation is not recovering in these
areas. In this study we measured the soil elevation of marshes and ponds in an area where large
marsh surfaces have converted to ponds (Blackwater River, Maryland, U.S.A.). We found that
ponds are generally deeper when the connection of the ponds with the tidal channels is wider.
This indicates that pond sediments can be exported through these channels, and the wider the
channel, the easier sediment is exported, leading to deeper ponds. Larger ponds are also deeper
because larger waves can develop there, resulting in more wave-erosion. These two processes
both lead to deeper ponds. Furthermore, we found that there is a sharp elevation drop from the
marsh platform into ponds, and that intermediate elevations rarely occur. This all suggests that
ponds, once they are formed, are very difficult to recover into marsh vegetation.
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1 Introduction

Marsh conversion to interior ponds is considered an important mechanism of coastal
marsh loss, particularly where sediment supply and tidal range are very low (e.g. Kearney et al.,
1988; Mariotti, 2016; Mariotti & Fagherazzi, 2013; Morton et al., 2003; Penland et al., 2000),
with large implications for the loss of highly valued ecosystem services, such as protection
against storm impacts (Moller et al., 2014; Stark et al., 2015; Temmerman et al., 2013), nursery
habitat for fisheries (Barbier et al., 2011), and storage of soil carbon (Duarte et al., 2013;
McLeod et al., 2011).

We hypothesize that marshes and interior open water ponds can be considered alternative
stable geomorphic states within the larger coastal marsh ecosystem. This would have the
important implication that marsh conversion to ponds is very hard to reverse, as each state is
typically sustained by positive feedback mechanisms that provide long-term stability (Moffett &
Gorelick, 2016; Scheffer et al., 2001). Marshes have been identified as one stable state of
intertidal landforms ( Fagherazzi et al., 2006; Marani et al., 2010; van Belzen et al., 2017; Wang
& Temmerman, 2013), as they maintain their elevation relative to rising sea level by feedbacks
between tidal inundation and accretion of mineral and organic sediments (Kirwan & Megonigal,
2013; Morris et al., 2002; Temmerman et al., 2004). However, it is unknown if marsh ponds are
an alternative, low elevated state. Previous work suggests that positive feedbacks such as
collapse and disintegration of underlying soil organic matter after initial vegetation die-off may
reinforce the pond state (Day et al., 2011; Delaune & Pezeshki, 1994; van Huissteden & van de
Plassche, 1998). Furthermore, modeling and aerial image analysis suggest that ponds expand by
wind-wave erosion after they reach a critical size (> 200 m, Mariotti, 2016; Ortiz et al., 2017).
However, expanding ponds may recover when they intersect a tidal channel and when drainage
and sediment infilling promotes the recovery of marsh vegetation (Millette et al., 2010; Perillo et
al., 1996; Redfield, 1972; C. A. Wilson et al., 2014; K. R. Wilson et al., 2009, 2010). Hence, we
do not currently understand whether interior marsh ponds represent an alternative stable state,
and we lack field data on elevation changes after marsh conversion to ponds, necessary to
understand whether marsh collapse is irreversible.

Here, we report the results of a field study along the Blackwater River marshes
(Maryland, USA) where relative sea level rise rates are 3-4 times the global average (Sallenger et
al., 2012) and widespread marsh loss is well-documented by aerial pictures for about the past
century (Schepers et al. 2017). We made measurements of marsh and pond bottom elevation
along transects in marshes at five stages of marsh degradation, from intact to completely
degraded marshes (Schepers et al., 2017). We identify sediment export through connecting
channels as a new mechanism for pond deepening, and show that topographic characteristics of
marshes and ponds are consistent with alternative states, suggesting that reversal of pond
expansion is unlikely in these rapidly deteriorating marshes.
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2 Methods
2.1 Study area

The Blackwater marshes (38°24° N, 76°40° W, Supporting Figure S1) are organogenic,
microtidal marshes that discharge into Fishing Bay, an embayment of the Chesapeake Bay.
Previous research showed that the marshes are being converted to open water ponds at least since
the 1930s (Schepers et al., 2017). There is a spatial gradient in marsh loss from intact marshes
close to Fishing Bay, to increasing pond surface area with increasing distance upstream the
Blackwater River up to Lake Blackwater, a vast open water area that consisted of marshes back
in the 1930s (Figure 1, Figure S2). Marsh loss has been attributed to insufficient surface
accretion (on average 1.7-3.6 mm yr-1 (Stevenson et al. 1985)) compared to relative sea level
rise (currently 3.83 mm yr-1 nearby in Cambridge, MD, (NOAA station 8571892,
http://tidesandcurrents.noaa.gov/sltrends, 05/02/2020), disturbance by invasive Nutria
(Myocastor coypus) (Kendrot, 2011; Stevenson et al., 1985) and lateral erosion of the ponds
(Ganju et al., 2013; Stevenson et al., 1985).

2.2 Soil elevation measurements

We selected five field sites along the marsh loss gradient (Schepers et al., 2020; Figure
S1). At each field site, three parallel marsh transects of 1000 m length (each 250 m apart) that
straddle the Blackwater River were generated and points were selected with a 10 m interval
along the transects by using a GIS system (ArcGIS 10.3, ESRI). We located each point in the
field in the summer of 2014 and recorded the elevation relative to the North American Vertical
Datum of 1988 (NAVD&8) with a high-precision GPS (Trimble R8 RTK-GPS, vertical error <2
cm, at site 5 vertical error < 4.5 cm). Points located in tidal channels were not included in the
analyses. At the degraded site 5, points located in the 1938 channel were also excluded. For each
site, the NAVDS8 elevations were recalculated to local mean sea level as measured by water
level loggers. The non-parametric Wilcoxon rank-sum statistic (Mann-Whitney U) was used to
test the elevation differences between marshes and ponds for each field site (0=0.05).

Additional topographic measurements were performed at the transitions from vegetated
marshes to unvegetated pond areas. At these transitions, we measured two points on the
vegetated marsh platform, one as close as possible to the pond edge and still in the marsh
vegetation, and one point approximately 1 m from the pond edge. Similarly, two elevation points
were recorded in the unvegetated pond areas, one as close as possible to the pond edge and one
approximately 1 m from the pond edge in the pond. Horizontal distances between these points
were calculated from the point coordinates (horizontal error <2 cm) and subsequently the slope
(elevation change divided by horizontal distance) was calculated in between subsequent marsh
points, pond points, and for the transition from marshes to ponds. The slope differences between
these three morphological units were tested with the non-parametric pairwise Wilcoxon rank sum
test with Bonferroni correction (a=0.05).

2.3 Water level measurements

Water levels were measured every 15 min at each field site from August 14 to October 29
2014. Pressure transducers (Hobo U20L-02, Onset, MA, USA) were deployed in a PVC stilling
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tube at the river bank and the elevation of each sensor was recorded with a high-precision GPS
(see previous paragraph) to refer the water level data to the NAVDS&S vertical datum after local
atmospheric pressure compensation. Tidal characteristics (including mean high water level, mean
low water level, mean semi-diurnal tidal range, relation between elevation and inundation time
(in %)) for each field site were calculated with the Tides-package in R (Cox & Schepers, 2017).

2.4 Environmental variables as potential controls on soil elevation

We studied the influence of several environmental variables on marsh surface elevation
and pond bottom elevation derived from an aerial image of 2010 classified into vegetated marsh
areas, ponds and the Blackwater River (Schepers et al., 2017). To examine how marsh and pond
elevations varied along the marsh loss gradient, we calculated the river length from the middle of
each field site to the mouth of the Blackwater River. This variable accounts for several potential
large-scale environmental differences between the field sites such as differences in tidal range
and sediment availability, which both are known to decrease with increasing upstream distance
along the Blackwater river (Ganju et al. 2013, tidal range see previous section).

To test if marsh surface elevation is related to distance from open water, we calculated
the Euclidean distance of each marsh point to the Blackwater River, to secondary channels that
are directly connected with the Blackwater River, and to inner marsh ponds.

To test if pond bottom elevation is related to the degree of connectivity between the pond
and the Blackwater River, we measured the minimum width of the channel connecting each pond
with the Blackwater River, and the distance to the Blackwater River. The minimum width for
each connecting channel was calculated as the double of the minimum distance from the
centerline (the middle of the connecting channel) to the channel banks. Ponds that were not
connected received value zero. The connection distance was defined as the minimum travel
distance from each pond point to the Blackwater River along secondary channels or water
bodies. To include unconnected ponds in the analysis, the connection distance was categorized in
four classes: not connected, connection <2000 m, connection 2000-4000 m, and connection
>4000 m. These connected classes coincide with three modes in the distance distribution.

To study the potential effect of waves on pond bottom elevation, we calculated the
distance of each pond point to the nearest vegetated marsh and estimated the wind fetch length.
The latter is defined here as the length of a line that covers a continuous water surface from one
side of the pond to the other. This was determined in four directions and averaged for each pond
point (Schepers et al., 2017).

Finally, we tested the effect of pond age on pond bottom elevation. We defined the
minimum age of the pond points based on aerial images of 1938, 1981, 1995, 2006, 2010 and
2013. Our fieldwork was carried out in 2014, so the minimum age is 2014 subtracted by the year
of the earliest aerial image on which the point was located in a pond.

2.5 Statistical analyses

To test which environmental variables (see previous section) significantly influence the
soil elevation, we fitted a linear regression model to explain the elevation of the vegetated marsh
platform using 916 marsh elevation points. We started the marsh model selection with four
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calculated variables ((1) downstream river length to the river mouth, (2) the Euclidean distance
to the Blackwater River, (3) distance to secondary channels that are directly connected with the
Blackwater River and (4) distance to inner marsh ponds). A second model was fitted with 692
pond points to explain the pond bottom elevations. The mean fetch length variable was omitted
to avoid collinearity with distance to the nearest marsh. We started the pond model with five
variables, (1) downstream river length to the river mouth, (2) the (log) distance to the nearest
marsh, (3) minimum width and (4) length of connecting channel and (5) the minimum pond age.
Each of the two models started with all the variables, followed by a backward model selection
until only significant variables were present in the model (Zuur et al., 2009), see Text S1. All
statistics were performed in R, version 3.2.2 (R Core Team, 2017).

We performed Random Forest analyses to validate the results of both linear regression
models (see Supporting Information).

3 Results
3.1 Indications for the existence of alternative elevation states

Several indicators, including bimodality of the elevation distribution and sharp elevation
transitions between one state and the other, both in space and time, point to alternative state
behaviour of marshes and ponds.

A bimodal distribution of a key environmental variable can be an indicator of alternative
stable states, with each mode focusing around the equilibrium values that characterizes each state
(Scheffer & Carpenter, 2003; Schroder et al., 2005). The elevation measurements have a bimodal
distribution with different marsh and open water pond elevations (Figure 1). At field site 1, with
almost intact marshes and very few ponds, the marsh has a clear unimodal elevation distribution
around 0.25 m relative to mean sea level. At field sites two to five, which represent a gradient of
increasing marsh loss and hence an increasing proportion of pond data (Table S1) and pond area
(Schepers et al., 2017), the pond elevations are decreasing compared to the marshes. This results
in a bimodal elevation distribution, characterized by the separation of the elevation distributions
of higher elevation, vegetated marshes from low elevation, unvegetated ponds, and a low
occurrence of intermediate elevations (Figure 1). At all field sites, including the most intact, the
ponds and marshes occupied a significantly different elevation (p < 0.001). However, it seems
that an equilibrium elevation in the ponds has only been reached at field site 5, Lake Blackwater,
which has a mode at 1.2 m below mean sea level.

Another potential indicator of alternative stable states is a sharp spatial boundary between
contrasting sites (Scheffer & Carpenter, 2003; Schroder et al., 2005). The transitions from the
marsh platform to the pond bottom are steep (Figure 2), with slopes typically exceeding 0.5. In
contrast, slopes within the marshes and ponds are more gradual (typically ~ 0.01) and not
statistically different from each other (Figure 2). Steep transitions or cliffs are also observed at
marsh-tidal flat borders in other areas and interpreted there as indicative of bistable states (van de
Koppel et al., 2005). In our study area, the pond cliffs probably emerge from the different
feedback mechanisms between marshes and ponds: It is known that marshes maintain high
elevations in the tidal frame by capturing sediment or building up organic matter (Baustian et al.,
2012; Mudd et al., 2010; Temmerman et al., 2012). But ponds lacking the vegetation-induced
sedimentation feedback, are unable to capture sediment and deepen by the collapse of the soil
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and root structure (Day et al., 2011; Delaune & Pezeshki, 1994; van Huissteden & van de
Plassche, 1998), thus increasing the elevation deficit between marshes and ponds.
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Figure 1. Elevation distribution of marsh (grey) and pond (black) points (marsh areas
that converted to bare patches or open water without vegetation) for the five field sites (1-5) with
increasing vegetation loss in upstream direction along the Blackwater River. Histogram bin
width is 0.025 m. Inundation time (in %) quartiles are visualized as blue vertical lines, the
average semi-diurnal tidal range is visualized as a light blue rectangle. Aerial images of the sites
are visualized on the right, with reddish colors representative for marsh vegetation and darker
areas for open water
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Figure 2. The Elevation differences in marshes or ponds are significantly more gentle
than at the transition between the two states, as shown in boxplots of the slopes within marshes,
the transition from marshes to ponds and within ponds for sites 1-4. Within each site,
significantly different slopes are labelled with different letters (pairwise Wilcoxon rank sum test
with Bonferroni correction, o= 0.05). At the transitions of site 3, two points with slope 2.8 and
6.8 are not visible on the Figure.

Our analyses did not identify the minimum age of ponds as a significant explanatory
variable explaining pond depth (Figure 3 right, Table S3, Figure S4). This suggests that pond
deepening is not a gradual process that continues at a steady rate. Maximum pond depths for the
different pond age classes increased from pond ages of 4 to 33 years and remained similar for
pond ages between 33 and 76 years (Figure 3 right). This suggests that pond depths can reach a
maximum (close to -1.5 m) in a relatively short time (~33 years) after which deepening with time
i1s minimal. It corroborates with our above-discussed indicators of alternative stable states, as
state shifts would occur relatively rapidly until a new stable state is reached (Scheffer &
Carpenter, 2003; Schroder et al., 2005; Wang & Temmerman, 2013).

Bimodality of the elevation distribution, steep cliffs and the relatively quick deepening of
marsh elevation to interior ponds suggest alternative state behaviour. In addition, our analyses
demonstrate that the elevation of marshes and interior ponds is sustained by different factors and
feedback mechanisms. Marshes maintain high elevations in the tidal frame by capturing
sediment from the water column. This is evident as marsh elevations decrease upstream and with
increasing distance from the Blackwater River, reflecting gradients in tidal range and sediment
availability (Text S1, Table S1 and Table S2) (Christiansen et al., 2000; Friedrichs & Perry,
2001; Ganju et al., 2015; Moskalski & Sommerfield, 2012; Temmerman et al., 2003). However
pond elevations are linked to erosion and sediment export (see next paragraphs). Consequently,
this suggests that marshes and interior ponds represent different stable elevation states.

3.2 Ponds deepen with increasing pond size and wider connections to the tidal channel
system
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Little is known about the factors influencing pond depth. Here we demonstrate that pond
depth increases with pond size and wider connections to the tidal channel system, and that these
factors are linked to erosion and sediment export.

As a general pattern, pond elevation measurements demonstrate that the elevation
decreases with increasing marsh loss and hence increasing total pond surface area. The average
pond elevation decreases from -0.41 to -0.52 m between field site 2 to 4, and further to -0.96 m
at field site 5 (Figure 1), where marshes have completely converted to open water (Figure S2).
Our statistical model indicates that the distance of points to the nearest marsh edge and the
minimum width of channels connecting the ponds to the tidal channel network are the two
statistically significant variables explaining the variations in pond bottom elevation (Figure 3,
Table S3). Other factors, including downstream distance to river mouth, length of connecting
channel and the minimum pond age did not have a significant effect on pond bottom elevation.
These results are supported by the random forest analysis (Text S1, Figure S4).
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Figure 3. Pond bottom elevation (in m relative to mean sea level) with distance
(logarithmically transformed) to the nearest marsh (left), the minimum width of the channel
connecting ponds to the tidal channel network (middle), and minimum pond age (right figure).
Multiple linear regression analysis (Supporting Information and Table S3) revealed that the
distance to the marsh and the minimum width are significantly related to pond depth; minimum
age was not significant.

The relationship between pond bottom elevation and distance to marsh (Figure 3 left)
shows that small ponds have shallow depths, and that larger ponds have depths that
logarithmically increase with distance from the nearest marsh edge, such that the sharpest
increase in pond depth occurs at a short distance from the marsh edge. The distance to the marsh
edge is highly correlated with the mean fetch length (Pearson's r: 0.86), which is an important
factor influencing wind wave erosion on tidal flats (Carniello et al., 2009; Fagherazzi et al.,
2006; Mariotti & Fagherazzi, 2013) and which suggest that as ponds expand over time, they
become increasingly susceptible to pond bottom deepening by wind waves. Previous studies
identified a critical interior marsh pond size of 200 - 1000 m for wave-induced erosion of
vegetated pond edges (Mariotti, 2016; Ortiz et al., 2017). The majority of the ponds in our study
are smaller than this critical size (Table S1). The bottom of ponds typically consists of very
weak, liquefied material that is expected to be much easier eroded than vegetated pond edges,
and hence wave-induced erosion of pond bottom material occurs in ponds that are smaller than
the critical pond size for pond edge erosion (Stevenson et al., 1985; Schepers, 2017).
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a shallow, isolated pond; elevation loss mainly by soil organic
matter decomposition

pond gets connected to channel;
weak pond bottom material is eroded by waves and tides,
and exported through connecting channel which deepens the pond

deeper & larger ponds have large tidal prism
and wider connecting channels,
which further facilitates tidal sediment export & pond deep

Figure 4. Conceptual model of subsequent stages and mechanisms of pond bottom
deepening.

We identify the connection of ponds to the tidal channel system as a new important
mechanism for exporting sediments from ponds, as we find that ponds get deeper with wider
connecting channels (Figure 3, middle; and conceptual model in Figure 4). The width of
connecting channels is controlled by pond size (Pearson’s r: 0.89) as larger ponds have a larger
tidal prism (i.e. larger tidal volumes flooding and draining from the ponds) and marsh channels
that convey a larger tidal prism are known to develop larger channel widths (D’Alpaos et al.,
2010; Rinaldo et al., 1999; Vandenbruwaene et al., 2013). Previous measurements in our study
area indicate that tidal currents cause net sediment export via the channel system, and that this is
maximized during northwesterly wind events, which corresponds with the orientation of ponds,
suggesting that pond erosion is the dominant contributor to the sediment export (Stevenson et al.,
1985; Ganju et al., 2013). Across eight microtidal sites along the US Atlantic and Pacific coasts,
including our study area, a larger pond-to-marsh surface ratio correlates with larger sediment
export through the channels (Ganju et al., 2017). This all indicates that ponds are major source
areas of sediments that are exported by tidal currents via the channel system. Although we have
no direct observations of tidal currents and sediment transport in the ponds themselves, pond
bottoms typically consist of very loose, liquefied soil material that is easily suspended and
exported by tidal currents via the channels connected to ponds (Stevenson et al., 1985). The
wider the connecting channel, the lower the pond bottom elevation (Figure 3 middle), suggesting
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that export is facilitated when connecting channels are wider. Wider channels are generally also
deeper (e.g. D’Alpaos et al., 2010; Vandenbruwaene et al., 2013), which would imply lower
bottom friction and would enable stronger tidal currents and larger sediment export.
Resuspension and export of loose pond bottom material close to the pond edge would steepen the
pond-marsh transition and make the pond edge more susceptible for slumping (e.g. Stevenson et
al., 1985; Mariotti et al., 2016). As such export of pond sediments may contribute to further pond
expansion as well as deepening (see conceptual model in Figure 4).

The mechanism of pond deepening and expansion driven by tidal connections adds to
previous work that focused on wind driven erosion as the primary mechanism of pond expansion
(Mariotti & Fagherazzi, 2013; Ortiz et al., 2017). Previous studies show that a connection with
the tidal channel system drains ponds and thereby enables plant re-establishment, followed by
fast sediment accretion (Millette et al., 2010; Perillo et al., 1996; Redfield, 1972; C. A. Wilson et
al., 2014; K. R. Wilson et al., 2009, 2010). Channel driven pond expansion and permanent marsh
loss in our field sites 2-5 (Schepers et al., 2017; Stevenson et al., 1985) seems contradictory to
these studies. We suggest the low tidal range of our site as a potential explanation for the
different behavior, where a relatively small loss in elevation results in a large increase of tidal
inundation time and hence increased stress for plant re-establishment (Kearney & Turner, 2016;
Kirwan & Guntenspergen, 2010).

While our study highlights feedback mechanisms between pond bottom erosion, pond
size and pond connection to the channel network, little is known on how initially small and
unconnected ponds deepen and expand, i.e. before the identified feedback mechanisms start to
play a role. It has been suggested that biochemical decomposition of the organic material at the
bottom and edges of the ponds is the main driver of initial pond deepening and expansion
(DeLaune et al., 1994; van Huissteden & van de Plassche, 1998). The fact that pond age is not a
significant factor determining pond depth, also when only small (<100 m), unconnected ponds
are included in the regression model analysis (results not shown), suggests that the early stages
of pond deepening do not occur gradually with time. Hence, identifying the drivers of initial
pond deepening and expansion is an unresolved issue that merits further research.
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Figure 4.
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