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Abstract 

Exploration of photovoltaics materials has received enormous interest in a wide range of both 

fundamental and applied research. Therefore, in this work, we identify a CsSi compound with a Zintl 

phase for a promising candidate of photovoltaic materials by using global structure prediction method. 

Electronic structure calculations indicate that this phase possesses a quasi-direct band gap of 1.45 eV, 

suggesting that its optical properties could be superior to diamond-Si for capturing sunlight from the 

visible to the ultraviolet range. In addition, a novel silicon allotrope is obtained by removing Cs atoms 

from this CsSi compound. The superconducting critical temperature of this phase was estimated as a Tc of 

9 K in terms of a substantial density of states at the Fermi level. Our findings represent a new promising 

CsSi material for photovoltaic applications, as well as a potential precursor of a superconducting silicon 

allotrope. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Caption: The structure of I-4-CsSi, a potential photovoltatic material and precursor of a superconducting silicon 

allotrope. 

 

 

Introduction 

The search for a candidate material for solar energy has attracted great attention, since it is a 

promising and available renewable resource for its abundant, clean, and sustainable merits.1-5 

Photovoltaics (PV), as important one for solar energy, could directly convert sunlight into 

electricity, where silicon-based materials are commonly accepted to be the most common PV 

materials.6,7 Compared to non-silicon-based PV materials, such as GaAs, CdS, CuInSe2, 

silicon-based materials have their own advantages, including stability, nontoxicity and low cost. 

However, due to silicon’s indirect fundamental band gap (1.1 eV) and much wider direct band gap 

(3.4 eV)8, it is still far from the optimal value (around 1.4 eV) for solar cell applications.9 Silicon 

can react with other elements to form a variety of stable binary Zintl phases, which were named 

after the pioneering chemist Eduard Zintl.10 Zintl phases are intermetallic compounds that contain 

a strongly electropositive metal, such as an alkali metal, alkaline earth metal, or lanthanoid, and a 

somewhat less electropositive metal (typically from the late d block or the early p block).11-14 In 

Zintl silicides, electron charge could transfer to the silicon atoms from other elements, forming a 

variety of sub-network structures with Si–Si covalent bonds.14-16 In past decades, Zintl silicides 

have drawn much attention owing to their excellent physical and chemical properties.17-32 



Among Cs-Si Zintl silicides, CsSi, Cs8-xSi46 and Cs7Si136 have been studied in 

experimentally. The ambient pressure phase of CsSi is thought to adopt the KGe structure type 

(space group P-43n, Z=32),33,34 while the high-pressure phase adopts the NaPb structure type 

(space group I41/acd, Z=32).35 Meanwhile, it is found that the Clathrate-I phase of Cs8-xSi46 and 

Clathrate-II phase of Cs7Si136 can be obtained using CsSi as a starting material via under high 

pressure or thermal decomposition.36,37 Recently, a semiconducting Im-3m symmetry CsSi6 phase 

is predicted.38 Moreover, alkali metal silicides are found to be important precursors in the 

preparation of new silicon allotropes, which can be synthesized by oxidation or thermal 

decomposition to remove the metal atoms.39 For example, a new Cmcm-Si6 phase with a 

quasi-direct band gap near 1.3eV was obtained by removing Na from Na4Si24.40 Furthermore, an 

Im-3m symmetry Si allotrope with a band gap of 1.17eV is predicted to be stable after removing 

Cs from Im-3m CsSi6, 38 and also, a metallic P6/m-Si6 allotrope with an interesting Tc of 12.2K at 

ambient pressure was proposed via a P6/m-NaSi6 compound as a precursor.41 

As mentioned above, it is still required to search for new PV materials for science interests 

and potential application. In this work, we predict a new CsSi compound with a Zintl phase at 

ambient pressure. Electronic structure calculations reveal that it is a semiconductor with a 

quasi-direct band gap of 1.45 eV. Moreover, the optical properties of this phase exceeded those of 

diamond-Si (dia-Si) as indicated from the simulations. CsSi, based on our simulations, could be a 

precursor material to synthesize a Immm symmetry silicon allotrope by removing the Cs atoms. 

Immm-Si4 is dynamically and thermally stable, and also exhibits remarkable superconductivity 

feature at atmospheric pressure. 

Computational details 

CsSi compounds are predicted at ambient pressure via the CALYPSO (Crystal structure 

Analysis by Particle Swarm Optimization) methodology,42,43 combined with first-principles 

calculations. This method has been successfully used for the prediction of new stable and 
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mestastable materials.44-47 The ab initio structural relaxations and electronic properties 

calculations were performed within the framework of density functional theory (DFT) as 

implemented in the Vienna Ab-initio simulation package (VASP).48 The generalized gradient 

approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE)49 functional was used to 

approximate the electronic exchange and correlation interaction. We used projector augmented 

wave (PAW)50 potentials with 5s25p66s1 and 3s23p2 electrons treated as valence for Cs and Si 

atoms, respectively. An energy cutoff of 700 eV and dense Monkhorst–Pack k-meshes were used 

to ensure the total energies were converged to within around 1 meV/atom in the structural 

optimizations. Phonon calculations were performed to determine the dynamical stability of the 

predicted structures using a supercell approach as implemented in the PHONOPY package.51 

Since the semi-local DFT PBE functional is known to underestimate the band gap of predicted 

structures, the hybrid Heyd-Scuseria-Ernzerhof functional (HSE06)52 was used to calculate the 

electronic and optical properties. The electron phonon coupling constant was obtained from 

first-principles density-functional perturbation theory as implemented in the QUANTUM 

ESPRESSO package.53 Ultrasoft pseudopotentials and an energy cutoff of 80 Ry were employed, 

with a 3 × 5 × 5 q-grid and 12 × 20 × 20 k-grids. The broadening for which was converged to 

within 0.001 was 0.04Ry.  

Results and discussion 

Herein, the computational prediction of novel CsSi structures was carried out using the 

particle swarm method with simulation cells of up to four formula units at ambient pressure. Our 

structure search identified a previously unknown orthorhombic CsSi Zintl phase (space group I-4, 

16 atoms/cell), as shown in Fig. 1. In our predicted I-4-CsSi structure, silicon atoms form isolated 

tetrahedra, corresponding to the typical characteristics of Zintl monosilicides with an alkali metal. 

At ambient pressure, the optimized lattice parameters are a = 10.107Å and c = 7.022Å, with Cs 

atoms occupying the 8g (0.112, 0.259, 0.909) and Si atoms occupying the 8g (0.115, 0.96, 



0.619)Wyckoff sites. A Bader charge analysis54 revealed that 0.68e are transferred from the Cs 

atoms to the Si atoms in I-4-CsSi. 

The phase stability of I-4-CsSi was investigated by calculating the enthalpy of formation, 

which is given via ΔH = [H(CsSi) −H(Cs)−H(Si)]/2, where H(CsSi) is the enthalpy of I-4-CsSi, 

H(Cs) is the enthalpy of elemental bcc Cs, and H(Si) is the enthalpy of elemental Si in the 

diamond structure. The formation enthalpies of the known P-43n and I41/acd-CsSi phases were 

also considered in our simulations. The enthalpy of I41/acd-CsSi is lower than that of the P-3n 

structure above 3.3 GPa, indicating that the I41/acd phase becomes stable above this pressure, 

which is consistent with the experimental preparation of I41/acd-CsSi at 4 GPa.35 Our results 

revealed that ΔH of I-4-CsSi is -0.032 eV/ atom at ambient pressure, which is 27 and 50 

meV/atom higher than that of I41/acd and P-43n-CsSi, respectively. To investigate the dynamic 

stability of I-4-CsSi, we computed the phonon dispersion curves at ambient pressure, as shown in 

Fig.2a. There is no imaginary frequency in the whole Brillouin Zone, demonstrating the 

dynamically stable nature of our predicted I-4-CsSi. The I-4-CsSi compound is thus a low-lying 

metastable phase. With increasing the pressure to 49.2 GPa, I-4-CsSi becomes enthalpically more 

favorable than P-43n-CsSi, although I41/acd still remains the most stable phase.   

For materials used in PV devices, the band gap is a critical parameter because the conversion 

efficiency from sunlight into electrical power is a function of the band gap. The electronic band 

structure of I-4-CsSi was calculated, as shown in Fig. 2b. It is well known that the PBE functional 

normally underestimates the band gap, while the screened hybrid functional of Heyd, Scuseria, 

and Ernzerhof (HSE) usually gives more accurate electronic band gaps. I-4-CsSi was calculated to 

have a band gap of 1.42 eV with the HSE06 functional, and 0.92 eV with the PBE functional, 

from the minimum of the conduction band at the M-point to the maximum of the valence band 

close to the Γ-point along the Γ-Z direction. The direct band gap of I-4-CsSi, which is located at 



the M-point, was 1.45 eV with the HSE06 functional (0.93 eV with PBE), indicating that I-4-CsSi 

is a semiconductor with a quasi-direct band gap.  

To further explore the potential applications for photovoltaic devices, we simulated the 

optical absorption spectrum of I-4-CsSi using the HSE06 functional, as shown in Fig. 3. The 

calculated absorption spectrum of the dia-Si phase is also simulated for comparison with the 

reference air mass (AM) 1.5 solar spectral irradiance.55 For I-4-CsSi, the absorption of low-energy 

photons starts from ~1.5 eV, which is close to its band gap. The I-4-CsSi phase exhibits 

considerably stronger absorption than dia-Si in the visible light range of 1.7-3.2eV, and the 

absorption spectrum overlaps significantly with the solar spectrum. The decrease of the direct 

optical band gap as compared to that of dia-Si is beneficial for improving the absorption, thus, the 

photo current of the solar cell. This suggests that the I-4-CsSi phase could potentially be 

employed in highly efficient Si-based solar cells.     

It is well known that Zintl phases play a critical role as precursors for the synthesis of Si and 

Ge allotropes or other metastable compounds using chemical oxidation and thermal 

decomposition. Thus, the Cs atoms in the I-4-CsSi structure were removed to obtain the pure 

silicon allotrope. After fully structural optimization, the phase evolved into a new orthorhombic 

silicon allotrope with the Immm space group (Fig. 4a). This Immm-Si4 phase contains open 

channels formed from six-membered Si rings along the crystallographic c axis, and differs 

markedly from the tetrahedral motifs present in the I-4-CsSi structure.  

The silicon sublattice of the product differs from that of the precursor has been found 

experimentally in the formation of Ge allotropes by oxidation of Na12Ge17 or Na4Ge9.56,57 The Na 

atoms template the formation of the Ge136 framework as the [Ge4
]4- and [Ge9]4- polyanions are 

oxidized and are then emptied from the clathrate framework cages as the reaction progresses.39 

The transformation of polyanionic clusters into the Ge136 framework requires not only new Ge-Ge 

bonds to be formed but also existing Ge–Ge bonds to be broken. 39 At ambient pressure, the 



optimized lattice parameters of Immm-Si4 are a = 6.195, b = 3.248, and c = 3.496 Å, with Si 

atoms occupying the 4e (0.191, 0.5, 0.5) Wyckoff sites. The bond lengths of Si1-Si2 and Si1-Si3 

are 2.495 and 2.368 Å, respectively (Fig. 4a).  

The total energies of the experimentally known dia-Si, R8,58,59 Cmcm-Si6,40 and 

Fd-3m-Si136
60 phases, and the theoretically predicted Immm-Si4, and P6/m-Si6

41 phases of silicon 

were calculated. Fig.4b shows that dia-Si is the most thermodynamically stable phase, as 

expected. The total energies of Cmcm-Si6 and P6/m-Si6 are 0.09eV/atom and 0.35eV/atom higher 

than that of dia-Si, respectively, which is in good agreement with previous computations.41 

Moreover, the energy of Immm-Si4 is lower than that of Fd-3m-Si136, a phase that has been 

synthesized using thermal decomposition.60 Fig. 4c shows no imaginary frequencies are observed 

in Immm-Si4 throughout the whole Brillouin zone, indicating that it is dynamically stable at 

ambient pressure.             

To further understand the electronic properties, we calculated the band structure and density 

of states of Immm-Si4, as shown in Fig. 4d. The results indicate that Immm-Si4 exhibits metallic 

behavior. The previously reported pure Si allotropes are almost semiconductors except the 

recently proposed metallic P6-m Si phase with Tc of 12.2 K at ambient pressure.41 Therefore, we 

calculated the electron-phonon coupling constant, λ, from first-principles density-functional 

perturbation theory, and the superconducting critical temperature, Tc, was estimated using the 

Allen-Dynes-modified McMillan formula,61,62 with a Coulomb pseudopotential μ* of 0.1. The 

logarithmic average of phonon frequencies, ωlog, and λ obtained from the Eliashberg spectral 

function, α2F(ω), were 259 K and 0.70, respectively. Our results predict that the Immm-Si4 

allotrope is a superconducting phase with an estimated Tc of 9 K at ambient pressure. 

Conclusions 

In summary, we predicted an I-4-CsSi compound via crystal structure search carried out at 

ambient pressure. Compared to the known CsSi phases, it is thermally metastable and 
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dynamically stable. Electronic structure calculations indicate that I-4-CsSi has a quasi-direct band 

gap of 1.45 eV, which perfectly matches the optimal value of ~1.4 eV for solar cell applications. 

The calculated optical absorption of I-4-CsSi reveals that its optical properties are superior to 

those of dia-Si. Moreover, a novel silicon allotrope of Immm-Si4 was obtained by removing Cs 

atoms from the I-4-CsSi compound followed by structural relaxation. Immm-Si4 is dynamically 

stable at ambient pressure with an estimated Tc value of 9 K. Immm-Si4 is 0.05eV/atom more 

stable than the previously synthesized Fd-3m-Si136 phase, indicating that it is likely to be 

synthesized in the lab. Our current results represent that I-4-CsSi is not only a new promising 

material for photovoltaic applications, but also a potential precursor of a novel superconducting 

Immm-Si4 allotrope. 
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Figure Caption 

 

Fig. 1 Predicted CsSi structure. (a) A polyhedral view. (b) A view along the c axis. 

Fig. 2 Calculated (a) phonon dispersion, and (b) band structure of I-4-CsSi using the 

PBE (black lines) and HSE06 (red lines) functionals. 

Fig. 3 The optical absorption spectrum of I-4-CsSi and dia-Si. 

Fig. 4 (a) The crystal structure of Immm-Si4. (b) Energy vs volume curves of various 

silicon allotropes. (c) Phonon dispersion, Eliashberg spectral function, and electron 

phonon coupling integral, as well as (d) The band structure and total densities of 

states of the Immm-Si4 phase at ambient pressure. 
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Fig.4 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


