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Abstract

Exploration of photovoltaics materials has received enormous interest in a wide range of both
fundamental and applied research. Therefore, in this work, we identify a CsSi compound with a Zintl
phase for a promising candidate of photovoltaic materials by using global structure prediction method.
Electronic structure calculations indicate that this phase possesses a quasi-direct band gap of 1.45 eV,
suggesting that its optical properties could be superior to diamond-Si for capturing sunlight from the
visible to the ultraviolet range. In addition, a novel silicon allotrope is obtained by removing Cs atoms
from this CsSi compound. The superconducting critical temperature of this phase was estimated as a 7 of
9 K in terms of a substantial density of states at the Fermi level. Our findings represent a new promising
CsSi material for photovoltaic applications, as well as a potential precursor of a superconducting silicon

allotrope.
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Caption: The structure of /-4-CsSi, a potential photovoltatic material and precursor of a superconducting silicon
allotrope.

Introduction

The search for a candidate material for solar energy has attracted great attention, since it is a
promising and available renewable resource for its abundant, clean, and sustainable merits.!”
Photovoltaics (PV), as important one for solar energy, could directly convert sunlight into
electricity, where silicon-based materials are commonly accepted to be the most common PV
materials.%’ Compared to non-silicon-based PV materials, such as GaAs, CdS, CulnSe>,
silicon-based materials have their own advantages, including stability, nontoxicity and low cost.
However, due to silicon’s indirect fundamental band gap (1.1 eV) and much wider direct band gap
(3.4 eV)3, it is still far from the optimal value (around 1.4 eV) for solar cell applications.’ Silicon
can react with other elements to form a variety of stable binary Zintl phases, which were named
after the pioneering chemist Eduard Zintl.'° Zintl phases are intermetallic compounds that contain
a strongly electropositive metal, such as an alkali metal, alkaline earth metal, or lanthanoid, and a
somewhat less electropositive metal (typically from the late d block or the early p block).!!"!* In
Zintl silicides, electron charge could transfer to the silicon atoms from other elements, forming a
variety of sub-network structures with Si—Si covalent bonds.!*!® In past decades, Zintl silicides

have drawn much attention owing to their excellent physical and chemical properties.'’3?



Among Cs-Si Zintl silicides, CsSi, CssxSiss and Cs7Siize have been studied in
experimentally. The ambient pressure phase of CsSi is thought to adopt the KGe structure type

(space group P-43n, 7Z=32),333

while the high-pressure phase adopts the NaPb structure type
(space group I41/acd, Z=32).>> Meanwhile, it is found that the Clathrate-1 phase of Css-«Siss and
Clathrate-II phase of Cs7Si136 can be obtained using CsSi as a starting material via under high
pressure or thermal decomposition.?®3” Recently, a semiconducting /m-3m symmetry CsSis phase
is predicted.®® Moreover, alkali metal silicides are found to be important precursors in the
preparation of new silicon allotropes, which can be synthesized by oxidation or thermal
decomposition to remove the metal atoms.’* For example, a new Cmcm-Sis phase with a
quasi-direct band gap near 1.3eV was obtained by removing Na from NasSiz4.*° Furthermore, an
Im-3m symmetry Si allotrope with a band gap of 1.17eV is predicted to be stable after removing
Cs from Im-3m CsSis,*® and also, a metallic P6/m-Sis allotrope with an interesting 7 of 12.2K at
ambient pressure was proposed via a P6/m-NaSis compound as a precursor.*!

As mentioned above, it is still required to search for new PV materials for science interests
and potential application. In this work, we predict a new CsSi compound with a Zintl phase at
ambient pressure. Electronic structure calculations reveal that it is a semiconductor with a
quasi-direct band gap of 1.45 eV. Moreover, the optical properties of this phase exceeded those of
diamond-Si (dia-Si) as indicated from the simulations. CsSi, based on our simulations, could be a
precursor material to synthesize a Immm symmetry silicon allotrope by removing the Cs atoms.
Immm-Sis is dynamically and thermally stable, and also exhibits remarkable superconductivity

feature at atmospheric pressure.

Computational details

CsSi compounds are predicted at ambient pressure via the CALYPSO (Crystal structure

42,43

Analysis by Particle Swarm Optimization) methodology, combined with first-principles

calculations. This method has been successfully used for the prediction of new stable and
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mestastable materials.**%’ The ab initio structural relaxations and electronic properties
calculations were performed within the framework of density functional theory (DFT) as
implemented in the Vienna Ab-initio simulation package (VASP).*® The generalized gradient
approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE)* functional was used to
approximate the electronic exchange and correlation interaction. We used projector augmented
wave (PAW)>® potentials with 5s25p®6s! and 3s?3p? electrons treated as valence for Cs and Si
atoms, respectively. An energy cutoff of 700 eV and dense Monkhorst—Pack k-meshes were used
to ensure the total energies were converged to within around 1 meV/atom in the structural
optimizations. Phonon calculations were performed to determine the dynamical stability of the
predicted structures using a supercell approach as implemented in the PHONOPY package.”!
Since the semi-local DFT PBE functional is known to underestimate the band gap of predicted
structures, the hybrid Heyd-Scuseria-Ernzerhof functional (HSE06)>* was used to calculate the
electronic and optical properties. The electron phonon coupling constant was obtained from
first-principles density-functional perturbation theory as implemented in the QUANTUM
ESPRESSO package.>® Ultrasoft pseudopotentials and an energy cutoff of 80 Ry were employed,
with a 3 x 5 x 5 g-grid and 12 x 20 x 20 k-grids. The broadening for which was converged to

within 0.001 was 0.04Ry.

Results and discussion

Herein, the computational prediction of novel CsSi structures was carried out using the
particle swarm method with simulation cells of up to four formula units at ambient pressure. Our
structure search identified a previously unknown orthorhombic CsSi Zintl phase (space group /-4,
16 atoms/cell), as shown in Fig. 1. In our predicted /-4-CsSi structure, silicon atoms form isolated
tetrahedra, corresponding to the typical characteristics of Zintl monosilicides with an alkali metal.
At ambient pressure, the optimized lattice parameters are a = 10.107A and ¢ = 7.022A, with Cs

atoms occupying the 8g (0.112, 0.259, 0.909) and Si atoms occupying the 8g (0.115, 0.96,



0.619)Wyckoff sites. A Bader charge analysis®* revealed that 0.68¢ are transferred from the Cs
atoms to the Si atoms in /-4-CsSi.

The phase stability of /-4-CsSi was investigated by calculating the enthalpy of formation,
which is given via AH = [H(CsSi) —H(Cs)—H(S1)]/2, where H(CsSi) is the enthalpy of /-4-CsSi,
H(Cs) is the enthalpy of elemental bcc Cs, and H(S1) is the enthalpy of elemental Si in the
diamond structure. The formation enthalpies of the known P-43n and /41/acd-CsSi phases were
also considered in our simulations. The enthalpy of /41/acd-CsSi is lower than that of the P-3n
structure above 3.3 GPa, indicating that the /41/acd phase becomes stable above this pressure,
which is consistent with the experimental preparation of /41/acd-CsSi at 4 GPa.?®> Our results
revealed that AH of I-4-CsSi is -0.032 eV/ atom at ambient pressure, which is 27 and 50
meV/atom higher than that of /41/acd and P-43n-CsSi, respectively. To investigate the dynamic
stability of 7-4-CsSi, we computed the phonon dispersion curves at ambient pressure, as shown in
Fig.2a. There is no imaginary frequency in the whole Brillouin Zone, demonstrating the
dynamically stable nature of our predicted /-4-CsSi. The /-4-CsSi compound is thus a low-lying
metastable phase. With increasing the pressure to 49.2 GPa, I-4-CsSi becomes enthalpically more
favorable than P-43n-CsSi, although 741/acd still remains the most stable phase.

For materials used in PV devices, the band gap is a critical parameter because the conversion
efficiency from sunlight into electrical power is a function of the band gap. The electronic band
structure of 7-4-CsSi was calculated, as shown in Fig. 2b. It is well known that the PBE functional
normally underestimates the band gap, while the screened hybrid functional of Heyd, Scuseria,
and Ernzerhof (HSE) usually gives more accurate electronic band gaps. 7-4-CsSi was calculated to
have a band gap of 1.42 eV with the HSE06 functional, and 0.92 eV with the PBE functional,
from the minimum of the conduction band at the M-point to the maximum of the valence band

close to the I'-point along the I'-Z direction. The direct band gap of /-4-CsSi, which is located at



the M-point, was 1.45 eV with the HSEO06 functional (0.93 eV with PBE), indicating that /-4-CsSi
is a semiconductor with a quasi-direct band gap.

To further explore the potential applications for photovoltaic devices, we simulated the
optical absorption spectrum of /-4-CsSi using the HSEO06 functional, as shown in Fig. 3. The
calculated absorption spectrum of the dia-Si phase is also simulated for comparison with the
reference air mass (AM) 1.5 solar spectral irradiance.’® For /-4-CsSi, the absorption of low-energy
photons starts from ~1.5 eV, which i1s close to its band gap. The /-4-CsSi phase exhibits
considerably stronger absorption than dia-Si in the visible light range of 1.7-3.2eV, and the
absorption spectrum overlaps significantly with the solar spectrum. The decrease of the direct
optical band gap as compared to that of dia-Si is beneficial for improving the absorption, thus, the
photo current of the solar cell. This suggests that the 7/-4-CsSi phase could potentially be
employed in highly efficient Si-based solar cells.

It is well known that Zintl phases play a critical role as precursors for the synthesis of Si and
Ge allotropes or other metastable compounds using chemical oxidation and thermal
decomposition. Thus, the Cs atoms in the /-4-CsSi structure were removed to obtain the pure
silicon allotrope. After fully structural optimization, the phase evolved into a new orthorhombic
silicon allotrope with the Immm space group (Fig. 4a). This Immm-Sis phase contains open
channels formed from six-membered Si rings along the crystallographic ¢ axis, and differs
markedly from the tetrahedral motifs present in the /-4-CsSi structure.

The silicon sublattice of the product differs from that of the precursor has been found
experimentally in the formation of Ge allotropes by oxidation of Nai12Ge17 or NasGeo.’*>’ The Na
atoms template the formation of the Geiss framework as the [Ges4!* and [Ges]*- polyanions are
oxidized and are then emptied from the clathrate framework cages as the reaction progresses.*’
The transformation of polyanionic clusters into the Gei3s framework requires not only new Ge-Ge

bonds to be formed but also existing Ge-Ge bonds to be broken. ** At ambient pressure, the



optimized lattice parameters of Immm-Si4 are a = 6.195, b = 3.248, and ¢ = 3.496 A, with Si
atoms occupying the 4e (0.191, 0.5, 0.5) Wyckoff sites. The bond lengths of Sii-Si> and Sii1-Si3
are 2.495 and 2.368 A, respectively (Fig. 4a).

The total energies of the experimentally known dia-Si, R8,°%%° Cmecm-Sis,** and
Fd-3m-Sii36¢®° phases, and the theoretically predicted Immm-Sia, and P6/m-Sic*' phases of silicon
were calculated. Fig.4b shows that dia-Si is the most thermodynamically stable phase, as
expected. The total energies of Cmcm-Sic and P6/m-Sis are 0.09eV/atom and 0.35eV/atom higher
than that of dia-Si, respectively, which is in good agreement with previous computations.*!
Moreover, the energy of Immm-Sia is lower than that of Fd-3m-Siize, a phase that has been
synthesized using thermal decomposition.®® Fig. 4c shows no imaginary frequencies are observed
in Immm-Sia throughout the whole Brillouin zone, indicating that it is dynamically stable at
ambient pressure.

To further understand the electronic properties, we calculated the band structure and density
of states of Immm-Sia, as shown in Fig. 4d. The results indicate that /mmm-Sis exhibits metallic
behavior. The previously reported pure Si allotropes are almost semiconductors except the
recently proposed metallic P6-m Si phase with Tc of 12.2 K at ambient pressure.*! Therefore, we
calculated the electron-phonon coupling constant, A, from first-principles density-functional
perturbation theory, and the superconducting critical temperature, 7, was estimated using the
Allen-Dynes-modified McMillan formula,®*?> with a Coulomb pseudopotential x* of 0.1. The
logarithmic average of phonon frequencies, wiog, and A obtained from the Eliashberg spectral
function, a’F(w), were 259 K and 0.70, respectively. Our results predict that the Immm-Sis

allotrope is a superconducting phase with an estimated 7. of 9 K at ambient pressure.

Conclusions

In summary, we predicted an /-4-CsSi compound via crystal structure search carried out at

ambient pressure. Compared to the known CsSi phases, it is thermally metastable and
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dynamically stable. Electronic structure calculations indicate that /-4-CsSi has a quasi-direct band
gap of 1.45 eV, which perfectly matches the optimal value of ~1.4 eV for solar cell applications.
The calculated optical absorption of /-4-CsSi reveals that its optical properties are superior to
those of dia-Si. Moreover, a novel silicon allotrope of Immm-Sis was obtained by removing Cs
atoms from the /-4-CsSi compound followed by structural relaxation. /mmm-Sia is dynamically
stable at ambient pressure with an estimated 7c value of 9 K. Immm-Sia is 0.05¢V/atom more
stable than the previously synthesized Fd-3m-Siiz¢ phase, indicating that it is likely to be
synthesized in the lab. Our current results represent that /-4-CsSi is not only a new promising
material for photovoltaic applications, but also a potential precursor of a novel superconducting

Immm-Sia4 allotrope.
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Figure Caption

Fig. 1 Predicted CsSi structure. (a) A polyhedral view. (b) A view along the c axis.

Fig. 2 Calculated (a) phonon dispersion, and (b) band structure of /-4-CsSi using the

PBE (black lines) and HSE06 (red lines) functionals.

Fig. 3 The optical absorption spectrum of /-4-CsSi and dia-Si.

Fig. 4 (a) The crystal structure of /mmm-Sia. (b) Energy vs volume curves of various
silicon allotropes. (c) Phonon dispersion, Eliashberg spectral function, and electron
phonon coupling integral, as well as (d) The band structure and total densities of

states of the /mmm-Si4 phase at ambient pressure.
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