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We present twomethods that address the computational complexities arising in hydrogen

transfer reactions in enzyme active sites. To address the challenge of reactive rare events,

we begin with an ab initiomolecular dynamics adaptation of the Caldeira–Leggett system-

bath Hamiltonian and apply this approach to the study of the hydrogen transfer rate-

determining step in soybean lipoxygenase-1. Through direct application of this method

to compute an ensemble of classical trajectories, we discuss the critical role of

isoleucine-839 in modulating the primary hydrogen transfer event in SLO-1. Notably,

the formation of the hydrogen bond between isoleucine-839 and the acceptor-OH

group regulates the electronegativity of the donor and acceptor groups to affect the

hydrogen transfer process. Curtailing the formation of this hydrogen bond adversely

affects the probability of hydrogen transfer. The second part of this paper deals with

complementing the rare event sampled reaction pathways obtained from the

aforementioned development through quantum nuclear wavepacket dynamics.

Essentially the idea is to construct quantum nuclear dynamics on the potential surfaces

obtained along the biased trajectories created as noted above. Here, while we are able

to obtain critical insights on the quantum nuclear effects from wavepacket dynamics,

we primarily engage in providing an improved computational approach for efficient

representation of quantum dynamics data such as potential surfaces and transmission

probabilities using tensor networks. We find that utilizing tensor networks yields an

accurate and efficient description of time-dependent wavepackets, reduced

dimensional nuclear eigenstates and associated potential energy surfaces at much

reduced cost.
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I. Introduction

Hydrogen transfer reactions1–3 are prevalent in a wide range of chemical,
biological and materials systems. Yet these are some of the most complex and
challenging problems to study from a fundamental perspective. The chal-
lenges presented by these problems arise from the following: (a) while the
hydrogen transfer step may itself be expected to proceed on a pico-second
time-scale, the reorganization of the active-site and other facilitating degrees
of freedom that allow such a transfer may occur on a much slower time-regime
which in general makes the reactive process a rare event.4,5 Computing rare
events in such complex reactive processes is a great challenge. (b) Due to the
light nature of the nuclei involved in the reactive process, on many occasions
quantum nuclear effects, including hydrogen tunneling, become important to
consider and these are seen through anomalous H/D (primary and sometimes
secondary) kinetic isotope effects. (c) Furthermore, when these quantum
nuclear degrees of freedom become strongly dependent on the electronic
structure, this presents a serious challenge for computation requiring simul-
taneous treatment of electronic and nuclear motion. (d) In addition, the
motion of the active site is almost never strictly decoupled from the reactive
event. Thus, strictly speaking, both adiabatic and non-adiabatic limits become
relevant in terms of separation of the reactive degrees of freedom, where the
coupled dynamics of neighboring light nuclei can sometimes lead to non-
traditional secondary kinetic isotope effects; in such cases, coupled treat-
ment of the dynamics becomes essential.

In this publication we outline recent computational developments towards
addressing the above listed challenges. The paper is organized as follows: in
Section II we present an adaptation of ab initiomolecular dynamics to allow the
treatment of rare events. The method uses the Caldeira–Leggett6,7 approach
from quantum dissipation, and here we present a form of the method that is
appropriate for studies where a priori information is available with regards to
the reactive event (that is, with approximately pre-dened reactant and product
states which in this case correspond to pre-dened donor and acceptor groups).
The method is applied to the study of the rate-determining hydrogen transfer
step (Fig. 1) in the oxidation of linoleic acid by soybean lipoxygenase-1 (SLO-
1)8–27 and the role of the backbone carbonyl group in ILE-839 is discussed with
respect to contributions to the reactive process. As noted in ref. 28, on the
hydrogen-transfer donor side, the approach allows one to gauge the coupled
dynamics associated with secondary hydrogen nuclei to provide a qualitative
explanation for anomalous secondary isotope effects from Klinman and
Fig. 1 Hydrogen abstraction is the rate-determining step in the oxidation of linoleic acid
by SLO-1.
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Rickert.29 The discussion in Section IIA is classical in terms of treatment of
nuclei and the electronic structure is treated on-the-y with DFT. In Section III
we probe quantum nuclear effects in this system. In a previous publication16 we
have treated the problem using quantum wavepacket dynamics on ab initio
potential energy surfaces that depend on the classical coordinates of the active
site atoms, along the biased trajectories discussed in Section IIA. Given the
exponential scaling nature of such calculations, especially when the quantum
nuclear dimensions are fully correlated with the electronic structure (through
a grid-based approach for the quantum dynamics), in Section III we provide
a treatment of the quantum nuclear effects using tensor networks. We have
shown this approach to work accurately for smaller hydrogen transfer systems30

and here we write down the quantum mechanical wavepacket, eigenstates and
potential energy surface as matrix-product-states30–32 and the transmission
probabilities are recovered through the action on such matrix-product-states to
provide lower scaling methods in agreement with previous wavepacket studies.
Furthermore, tensor network descriptions for the potential surface greatly
reduce the computational effort and will in future be used for quantum nuclear
wavepacket dynamics in such complex systems. Conclusions are given in
Section IV. Appendices A and B complement the discussion in Sections IIA and
III.

II. Computing rare events in complex assemblies
through ab initio molecular dynamics

We introduce a Caldeira–Leggett-type6,7 system-bath Hamiltonian for a collective
electron nuclear system coupled to a set of bath degrees of freedom. We use this
to compute rare events in the hydrogen transfer step of the catalytic oxidation of
linoleic acid by SLO-1. We begin our discussion by introducing a Car–Parrinello-
like33 extended Hamiltonian with Lagrangian constraints, that uses atom-
centered electronic basis functions and single-particle density matrices and is
hence based on the atom-centered density matrix (ADMP) formalism:34–40

H S ¼ 1

2
Tr
�
VTMV

�þ 1

2
Tr
�h

m
1
4Wm

1
4

i2�
þ EðR;PÞ þ Tr½LðPP� PÞ�: (1)

Here M, R, V are the nuclear masses, atomic positions and velocities. The single-
particle electronic density matrix, density matrix velocity, and the ctitious inertia
tensor35 for the electronic degrees of freedom are P, W, and m respectively. The
function E(R,P) is the ab initio potential energy function assumed here to have
a QM/MM form where the QM portion is at a single particle level of theory such as
DFT. The potential energy, E(R,P), is a function of the single-particle electronic
density matrix, P and nuclear positions, R. The last term in eqn (1) imposes
constraints on the total number of electrons and on the idempotency of the
density matrix using a Lagrangian multiplier matrix L. See also ref. 40–44 where
eqn (1) has been generalized to include post-Hartree–Fock (CCSD) accuracy, on-
the-y, thus providing a Car–Parrinello-like dynamics method with CCSD40 and
MP2 (ref. 43) accuracy, along with on-the-y basis set extrapolation.44

If we now introduce a family of harmonic bath variables, ~R, external to the
system variables, R, with quantities ~M, ~R, and ~V representing the masses, posi-
tions and velocities of the bath variables, and if we further assume that these bath
This journal is © The Royal Society of Chemistry 2020 Faraday Discuss., 2020, 221, 379–405 | 381
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variables are linearly coupled to the system variables R, we obtain a system-bath
Hamiltonian,

H SB ¼ H S þ 1

2
Tr
h
~VT ~M~V

i
þ 1

2
Tr
h�
R� ~R

�T
k
�
R� ~R

�i
(2)

where we have introduced the bath kinetic energy,
1
2
Tr½~VT ~M~V� and the system-

bath coupling is captured by the second term,

1

2
Tr
h�
R� ~R

�T
k
�
R� ~R

�i ¼ 1

2
Tr
h
~RTk~R

i
� Tr

h
RTk~Rþ ~RTkR

i
þ 1

2
Tr
�
RTkR

�
: (3)

Here, k is a 3N� 3Nmatrix and both R and ~R are 3N length vectors. Thus, there is
potentially one set of bath variables to “drive” each system variable and as noted

above, we have combined the harmonic bath term,
1
2
Tr½~RTk~R�, the linear system-

bath coupling term, Tr[�RTk~R � ~RTkR], and the so-called “counter-term”,6,7

1
2
Tr½RTkR� together into eqn (2). This provides the picture of harmonic force

constants k that connect the system variables, R to the bath variables, ~R. The
quantities, k, also determine the spectral density of the bath degrees of freedom.
Eqn (2) represents an ADMP generalization to system bath coupling using the
Caldeira–Leggett theory. It is possible to have different values for the three k terms
in eqn (3) but we have found this not to be necessary in our benchmarks in ref.
45.

In ref. 28 and 45 we used eqn (2) to discover the role of active site amino acid
groups, specically ILE-839, in facilitating the hydrogen transfer process. In
addition, eqn (2) has also been used in ref. 16 to compute minimum energy paths
in the hydrogen transfer step of the oxidation of linoleic acid within SLO-1. In
Section IIA we summarize the critical features of ILE-839 participation in the H/D-
transfer processes. The precise rationale used in these studies is as follows. The
starting point is the hypothesis that it is the uctuations in the bath variables, ~R,
~V, that are in general responsible for rare events being sampled as part of the
system subspace dynamics. As a result, in ref. 16, 28 and 45, we bias the initial
conditions on ~R, ~V so as to nudge the system along a reaction barrier. Yet again, it
is critical to sample over a wide variety of initial conditions before one can
compute measurables and infer mechanistic conclusions. This aspect is carefully
dealt with in ref. 45.

In Section IIA the role of isoleucine-839 in the H/D transfer process is dis-
cussed. In ref. 28 and 45, through the rare events sampling protocols that follow
along the lines of ideas discussed above, we nd that there exists a positive
correlation between a hydrogen bond between ILE-839 and the acceptor hydroxyl
group, and the hydrogen transfer event. In Fig. 2 we depict the hydrogen bond
between the acceptor-OH and ILE-839 backbone carbonyl group. In Section III we
briey highlight our previous results on probing quantum nuclear effects along
these enhanced sampling ab initio molecular dynamics (AIMD) trajectory path-
ways, and then use tensor networks30 to effectively compute the time-dependent
quantum nuclear wavepacket and reaction coordinate-dependent potential
surfaces to efficiently represent the associated quantum wavepacket dynamics
data. This, we believe, will have a critical role in future steps in studying such
problems in large complex assemblies in an efficient manner.
382 | Faraday Discuss., 2020, 221, 379–405 This journal is © The Royal Society of Chemistry 2020
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Fig. 2 Part (a) shows the hydrogen bond between the acceptor-OH and ILE-839 back-
bone carbonyl group, whereas part (b) shows the hydrogen transfer donor acceptor
groups.
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A. Participation of ILE-839 in the hydrogen transfer process: insights from
rare-events sampling

We summarize the critical features that deal with ILE-839 participation in the
hydrogen transfer process. Critical simulation details are summarized in
Appendix A. Additional details may be found in ref. 28 and 45. Two sets of
extensive simulations were conducted. The rst was a set of QM/MM (B3LYP/
lan12dz:CHARMM) simulations using H SB as the governing Hamiltonian. This
set of calculations included the full enzyme within a QM/MM AIMD study, but
with asymptotic boundary conditions. Here an enzyme pocket of size 14 Å, from
the iron-cofactor, was allowed to evolve freely as per AIMD; atoms between 14 Å
and 16 Å were harmonically constrained; and beyond 16 Å, the system was frozen
in dynamics. In all there were 2174 atoms in the QM/MM region that were allowed
to evolve freely, and this system is shown in Fig. 3(a). Furthermore, Fig. 3(b) shows
the QM/MM classication of the system. Here all parts shown using a ball and
stick model are treated with the QM level of theory, whereas everything shown
with lines is treated at the MM level. In the next set of simulations, a smaller 50-
atom system was carved out from the QM/MM studies for DFT-based AIMD.
Through this study, the critical nature of the ILE-839–acceptor-OH hydrogen bond
was discovered. This system is shown in Fig. 3(c). We conducted28 over 400
different classical B3LYP/6-31+G** AIMD biased trajectories spanning a wide
range of initial conditions as depicted in Fig. 4(b). For the collection of trajectories
in Fig. 4(b), we also note the number of reactive simulations that result in
a hydrogen-transfer event, and by extension, the number of non-reactive simu-
lations as well. From the associated collection of hydrogen transfer trajectories we
are able to obtain a traditional minimum energy path which is shown in Fig. 4(a).
This path is also conrmed16 through standard techniques available in most
electronic structure packages.52 It may also be noted that while the range of
kinetic energies in Fig. 4(b) do coincide with regions of energy above the barrier in
Fig. 4(a), the transfer probability does not appear to progress in a monotonic
fashion, a reaffirmation of the rare events nature of the reactive process.
Furthermore, while some of these effects may arise also from the limited number
of AIMD trajectories used here (400 rare-events AIMD simulations, each roughly 1
This journal is © The Royal Society of Chemistry 2020 Faraday Discuss., 2020, 221, 379–405 | 383
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Fig. 3 Model systems of SLO-1 used for the computational validation, and predictions
obtained from both classical trajectories calculated using eqn (2) and quantum wave-
packet studies constructed on biased trajectories obtained from eqn (2). In ref. 45, Model-I
(a), Model-II (b) and Model-III (c) are used to validate the choice of k as well as initial
conditions applied on R̃ and Ṽ. See Appendix A. Furthermore, in ref. 16 and 46, quantum
wavepacket dynamics trajectories on the biased trajectories obtained from eqn (2) on
Model-III are constructed, using ab initio potential surfaces obtained using efficient
samplingmethods,47–50 to recover the anomalous kinetic isotope effects noted by Klinman
and coworkers.51 But the complexity of the quantum dynamics calculations reported in ref.
16 is expensive due to the accurate depiction of electron–proton correlations in these
studies. Here, in Section III, we present a new method, that utilizes tensor networks to
compress this correlation and accurately depict quantum dynamics data such as quantum
wavepackets, eigenstates, and potential energy surfaces.
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picosecond in length), it is also critical to note from Fig. 4(c) that there exists
a sharp divide in the hydrogen bonding propensity between isoleucine-839 and
the acceptor OH for productive versus non-productive events. Indeed, there
appears to be a direct correlation between the propensity of the isoleucine-839–
acceptor-OH hydrogen bond and the hydrogen transfer event. This effect, to our
knowledge, was shown for the rst time in ref. 28 through the set of computa-
tionally challenging AIMD simulations using the biased approach discussed in
Fig. 4 Part (a) provides the minimum energy reaction profile for the rate-determining
hydrogen abstraction step and the critical tunneling region, highlighted within a box, to be
discussed in Section III. Part (b) shows the range of initial kinetic energies examined during
the 400 different B3LYP/6-31+G** AIMD trajectories, where the number of reactive
trajectories in each case is highlighted in blue. Furthermore, for these 400 simulations, part
(c) summarizes the role of the ILE-839–acceptor-OH hydrogen bond in promoting the
hydrogen transfer process. The hydrogen bond distance distribution is shorter and nar-
rower for the reactive simulations. The figure is obtained from a set of 400 AIMD simu-
lations constructed across SLO-1 active-site primary and secondary (acceptor-OH)
isotopologues (see Fig. 2 for an illustration of this secondary hydrogen bond).

384 | Faraday Discuss., 2020, 221, 379–405 This journal is © The Royal Society of Chemistry 2020
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Section II. Furthermore, this result holds across four different isotopic substitu-
tions studied in ref. 28 and appears to indicate that the hydrogen bond between
the backbone carbonyl belonging to ILE-839 and the acceptor OH may act as
a switch in promoting the hydrogen transfer process.

We also nd that, when such a hydrogen bond is formed, the acceptor
oxygen becomes more electro-negative by a Mulliken charge of about �0.1 a.u.
and the donor carbon becomes more electro-positive by about 0.3 a.u. The
additional charge is distributed between the transferring proton and the
carbonyl oxygen of ILE-839. The evolution of all these charges, averaged over
the entire set of productive and non-productive simulations is given in Fig. 5.
This net change in charge creates an electric eld that appears to drive the
transfer process. The extent of this associated perturbative electric eld is
similar in magnitude to that noted by Boxer and coworkers to power the
catalysis in other enzymes.53

In the next section we gauge the quantum dynamics of the transferring proton
on potential surfaces that are computed along the transfer path (Fig. 4(a)).
Fig. 5 Evolution of Muliken charge of active site atoms for a typical set of productive and
non-productive AIMD simulations: (a) transferring hydrogen (H), (b) acceptor oxygen (O),
(c) donor carbon (C11), and (d) the ILE-839-oxygen (IleO). As noted, for the productive
simulations (red) the acceptor oxygen acquires a slightly greater negative charge and the
donor carbon simultaneously acquires a greater positive charge. The transferring
hydrogen, with the acquired greater positive charge, then proceeds towards the acceptor
oxygen that is better positioned to accept the hydrogen as a result of its perturbative
increase in negative charge. All this, as may be clear from Fig. 4(c), is correlated with the
hydrogen bond formed with the backbone oxygen of ILE-839 and hence the associated
change in its charge is also noted here.

This journal is © The Royal Society of Chemistry 2020 Faraday Discuss., 2020, 221, 379–405 | 385
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Furthermore, we present a new approach to compress such quantum dynamics
information with the goal of reducing the scaling of such calculations.

III. Representation of electron–proton
correlation using tensor networks for nuclear
eigenstates, time-dependent wavepackets and
potential energy surfaces

In ref. 16, we studied the quantum dynamical evolution of the shared hydrogen/
deuterium nuclear degrees of freedom as part of the rate-determining step in the
catalytic cycle of the enzyme SLO-1 (Fig. 1). We computed the hydrogen tunneling
probabilities for a model system (Fig. 3(c)) constructed from the active site atoms
in close proximity to the iron cofactor in SLO-1. This simplication of the active
site is based on the assumption that only the immediate environment exerts an
electronic inuence on the hydrogen transfer. We described the tunneling
hydrogen nucleus (proton or deuteron) as a three-dimensional nuclear quantum
wavepacket16,47,48,54–59 coupled to the change in electronic structure that was
computed using hybrid density functional theory, benchmarked through MP2
calculations.16 At each step of the quantum dynamics, the potential surface was
obtained by including all electrons in our model system. As a result, the method
in ref. 16 is not restricted to a specic mode of transfer such as proton-coupled
electron transfer,11,60 proton transfer, hydrogen transfer or hydride transfer. In
addition, the transferring nuclear wavepacket is propagated via the time-
dependent Schrödinger equation, using an efficient and accurate “distributed
approximating functional” propagator.16,54,55,61,62 Hence all quantum effects per-
taining to the quantized H/D nucleus as well as those arising from the electronic
degrees of freedom within the model were included. The kinetic isotope effect in
ref. 16 was computed by considering a constrained ensemble average of the ratio
of transmission probabilities for hydrogen and deuterium. The constraint limits
the ensemble average to the portion of the phase space that is sampled during the
reactive process. The transmission for each case (H or D) was computed from
explicit quantum wavepacket dynamics of the transferring nucleus on potential
surfaces obtained from the active site geometry-dependent electronic structure, as
highlighted above. Thus, the electronic and quantum nuclear components are
both active site geometry-driven, dynamical quantities. Details regarding these
quantum dynamical aspects are provided in Appendix B.

The resultant transmission probabilities are shown using the curves in Fig. 6.
The black vertical line represents the classical transition state, and as noted both
hydrogen and deuterium nuclei show substantial probability transfer prior to the
classical transition state. Here, the potential surfaces are computed on a coordi-
nate-space grid, �x, depicting the hydrogen nuclear degrees of freedom, and the
propagated wavepacket J(�x;t) h J(�x,{RC};t) is explicitly a function of the
quantum-nuclear grid representation, �x, but is also parametrically a function of
the classical coordinates of atoms belonging to the reaction coordinate, RC. As
a result, the quantum nuclear degrees of freedom are completely correlated with
the change in electronic structure.57 In this section we provide a method where
such correlation can be tailored as required and this approach leads to enormous
compression in the amount of quantum nuclear wavefunction data and potential
386 | Faraday Discuss., 2020, 221, 379–405 This journal is © The Royal Society of Chemistry 2020
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Fig. 6 The transmission probability, when computed using quantum wavepacket
dynamics. The black vertical line represents the classical transition state.
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surface data, and hence has the potential to greatly reduce the complexity of such
quantum dynamics calculations in large systems. We demonstrated the appli-
cability of this approach in ref. 30, to hydrogen transfer reactions of signicance
to atmospheric chemistry, and here we utilize this approach for the hydrogen
transfer rate-determining step in SLO-1.
A. Tensor decomposition of the nuclear wavepacket, potential and eigenstates

We begin by introducing the multi-congurational form of the quantum
mechanical wavefunction

JðxÞ ¼
X
k1

X
k2

.
X
ki

.
X
kD

Ck1 ;k2 ;.;ki ;.;kD

"YD
i

ji;ki
ðxiÞ

#

¼
X
k

C
k

"YD
i

ji;ki
ðxiÞ

# (4)

and similarly the potential surface. The quantity �k is a vector index, with
components khfk1; k2;.; ki;.; kDg with ki being the index to a specic basis
function, ji,ki(xi), along the ith dimension. Similarly, xhfx1; x2;.; xi;.; xDg. The
sum over �k signies an independent set of summations over the individual
dimensions within {ki} as explicitly indicated. The quantity C�k in eqn (4) is
a tensor of rank D, comprising of ND elements, where we have assumed, without
loss of generality, that there exists N basis elements per dimension.

In ref. 30, eqn (4) is written as a tensor network31 decomposition, that is,

C
k
¼
X
a

"
~C
1

k1 ;a1
�
(YD�1

i¼2

~C
i

ai�1 ;ki ;ai

)
� ~C

D

aD�1 ;kD

#
(5)

or in turn,

JðxÞ ¼
X
a

"
c1
a1
ðx1Þ �

(YD�1

i¼2

ci

ai�1 ;ai
ðxiÞ

)
� cD

aD�1
ðxDÞ

#
: (6)

This also applies for the potential energy surface:
This journal is © The Royal Society of Chemistry 2020 Faraday Discuss., 2020, 221, 379–405 | 387
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VðxÞ ¼
X
a

"
V1

a1
ðx1Þ �

(YD�1

i¼2

V i
ai�1 ;ai

ðxiÞ
)

� VD
aD�1

ðxDÞ
#

(7)

and the specic kind of tensor network used in eqn (5)–(7) is called matrix
product states (MPS).31,32,63–65 In ref. 30, we demonstrated the power of this
formalism in the study of hydrogen transfer reactions of signicance to atmo-
spheric chemistry, but we also introduced additional tensor decoupling approx-
imations,30 that exploit the system-bath nature of the problem. Here we utilize the
above approximations in the study of the hydrogen transfer step in SLO-1. The
summation vector index a�h {a1, a2, ., ai, .} in the expressions above. Eqn (5)
represents the decomposition of a rank-D tensor, C�k, into a set of lower rank
tensors where, for example, ~Ck1,a1

1 is a rank-2 tensor, ~Ca1,k2,a2

2 is a rank-3 tensor,
and so on. Similarly in eqn (6) and (7) ca1

1(x1), {cai�1,ai

i(xi)}, and cD
aD�1

ðx0DÞ and in an
analogous manner for the potential surface, V1

a1
ðx1Þ, Vi

ai�1;ai
ðxiÞ and VD

aD�1
ðxDÞ are

lower-dimensional (one-dimensional) functions and hence the approach used
here provides an adaptive (through iterative singular value decomposition30)
decomposition of multi-dimensional data into lower dimensions. Specically,
while the full rank C�k is a tensor of rank D with ND elements, the lower rank
tensors in eqn (5) include only

O½N � fNa � ½2þ ðD� 2Þ �Na�hO½N �Na�g� (8)

elements. Here Na is the maximum value for the summation indices ai and
Nah½2þ ðD� 2Þ � Na� is the total summation index for all a�. Furthermore, Na is
an adaptive quantity that is computed on the y and captures the correlation
between dimensions, as necessary. Eqn (8) is potentially linear in N, and in fact as
we will see in this paper this approach certainly greatly compresses the amount of
information in quantum mechanical wavepackets and potential surfaces and as
we will also see, provides a rationale for faster quantum dynamical algorithms.
This compression of data arises from the so-called “area-law” of entanglement
entropy31,64,65 where it is noted that most practical systems only occupy a small
portion of the exponentially scaling direct-product space that is available to the
fully correlated system. Indeed the span of a�provides us with a measure of the
entanglement entropy captured within this algorithm.
B. Adaptively gauging and compressing the extent of correlation in
wavefunctions and coupled potentials

The sequential singular value decomposition (SVD) approach provides an adap-
tive tool to gauge this correlation. The precise nature in which the decomposition
above is performed is illustrated here for C�k, but applies to all functions. We begin
by treating C�k, which is a rank-D tensor, as a matrix reshaped such that all trailing
dimensions are concatenated, i.e., CkhCk1;ðk2�.�ki�.�kDÞ. We next perform
a singular value decomposition of C�k to obtain:

C
k
¼
X
a1

C1
k1 ;a1

� s1
a1
� Ca1 ;ðk2�.�ki�.�kDÞh

X
a1

C1
k1 ;a1

� s1
a1
� Ca1 ;k2 ;k3 ;.;kD: (9)

Here, {sa1

1} are the singular values with associated le and right singular vectors,
{Ck1,a1

1} and fCa1;ðk2�.�ki�.�kDÞg. In performing the operation in eqn (9) we have
recovered a new dimension, a1, which is interpreted as an internal correlation
388 | Faraday Discuss., 2020, 221, 379–405 This journal is © The Royal Society of Chemistry 2020
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dimension since the number of signicant a1 values indicates the deviation of the
right side in eqn (9) from a simple product approximation. The tensor, Ca1;k2;k3;.;kD

is then interpreted (or reshaped) as a matrix:

Ca1 ;k2 ;k3 ;.;kDhCða1�k2Þ;ðk3�.�ki�.�kDÞ (10)

and carrying out a second singular value decomposition yields:

C
k
¼
X
a1 ;a2

C1
k1 ;a1

� s1
a1
� C2

a1 ;k2 ;a2
� s2

a2
� Ca2 ;k3 ;k4 ;.;kD: (11)

Continuing this process D� 1 times results in eqn (5) (note that in eqn (5), we
have absorbed the {sai

i} into the Ci and ~C
i
h

ffiffiffiffiffiffi
siai

q
� Ci).

Following the same ideas as above, the coordinate space wavefunctions and
potentials can be written as

JðxÞ ¼
X
a

"
j1
a1
ðx1Þ � sa1

(YD�1

i¼2

ji
ai�1 ;ai

ðxiÞsai

)
� jD

aD�1
ðxDÞ

#

¼
X
a

" YD�1

i¼1

sa1

!
j1
a1
ðx1Þ*

(YD�1

i¼2

ji
ai�1 ;ai

ðxiÞ
)

� jD
aD�1

ðxDÞ
# (12)

and similarly,

VðxÞ ¼
X
a

"
V1

a1
ðx1Þ � sa1

(YD�1

i¼2

V i
ai�1 ;ai

ðxiÞsai
)

� VD
aD�1

ðxDÞ
#

¼
X
a

" YD�1

i¼1

sa1

!
V1

a1
ðx1Þ �

(YD�1

i¼2

V i
ai�1 ;ai

ðxiÞ
)
VD

aD�1
ðxDÞ

#
:

(13)

From the second expression in eqn (12) and (13) it is clear how the compu-
tational reduction and efficiency in storage really materializes. While the coeffi-
cients for a fully multi-congurational (that is completely correlated) scheme are
tensorial and contain ND elements, the coefficients in eqn (12) and (13) contain as
many terms as in eqn (8) which could potentially be linear in N if Na � N. In
practice we nd that Na is a small but non-negligible fraction of N; this certainly is
the case for the nuclear wavepackets obtained for the SLO-1 calculations here.

Another interpretation of eqn (12) and (13) is one where a family of direct
product bases

V1
a1
ðx1Þ5V2

a1 ;a2
ðx2Þ5V3

a2 ;a3
ðx3Þ5.5V i

aD�1
ðxDÞ (14)

and

j1
a1
ðx1Þ5j2

a1 ;a2
ðx2Þ5j3

a2 ;a3
ðx3Þ5.5ji

aD�1
ðxDÞ (15)

are found with coefficients that do not appear to possess the complexity of a fully
correlated expansion, since they appear as ðQD�1

i¼1 sa1Þ in eqn (12) and ðQD�1
i¼1 sa1Þ

in eqn (13). Furthermore, these direct product bases are adaptively determined
and the extent of correlation is determined by the size of the set a�. The quantity
a�has also been used in the literature as a measure of the entanglement entropy in
the system.31,64,65
This journal is © The Royal Society of Chemistry 2020 Faraday Discuss., 2020, 221, 379–405 | 389
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Fig. 7 An illustration of the tensor decomposition in eqn (12) and (13).
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The process above is described through illustration in Fig. 7. Three dimen-
sions are considered: �x h {x1, x2, x3}, with internal correlator dimensions a1 and
a2, that are obtained from SVD. Thus, Fig. 7 depicts the transformation:

Jðx1; x2; x3Þ ¼
X
a1 ;a2

h
j1
a1
ðx1Þ � sa1 � j2

a1 ;a2
ðx2Þ � sa2 � j3

a2
ðx3Þ

i
: (16)

The singular values, sa1
and sa2

are absorbed as part of the one-dimensional
functions in the illustration in Fig. 7, as done in eqn (6).

It may also be clear from the above discussion that the decomposition in eqn
(11)–(13) is not unique and will change if the dimensions are permuted which
may be effected by the order in which the SVD operations are conducted. Ideas
similar to eqn (12) and (13) have been used to gauge emerging trends in time-
series medical image data66 and in digital signal processing67–69 applications.
These ideas have also been exploited towards the development of faster MCTDH
methods,70–74 quantum dynamics on a grid much like what is done here75 and to
construct a vibrational approximation to DMRG.76
C. Accuracy of eqn (12) and (13) in efficiently representing the SLO-1
potentials, time-dependent wavepackets and hydrogen nuclear eigenstates

For the remaining part of this paper, we provide numerical benchmarks that
compare the efficiency and accuracy of the scheme presented above with respect to
the quantum wavepacket description in ref. 16. We begin our discussion by
analyzing the hydrogen nuclear potential energy surfaces obtained as a function of
the reaction coordinate. These potential energy surfaces have a double-well char-
acter, where the relative stability of the donor and acceptor side wells changes as the
H/D nuclear wavepacket proceeds from donor to acceptor. This may be clear upon
inspection of Fig. 8. Furthermore, the curvature of the potential changes both along
the donor–acceptor direction as well as in the orthogonal direction. As noted in ref.
16, it was found that the hydrogen and deuterium nuclear wavefunctions were
affected by the presence of curve-crossings in the nuclear eigenstate energies along
the reaction coordinate. This leads to the dynamics being non-adiabatic16 in terms
of coupling between the hydrogen-transfer dimensions and the larger-scale active
site dynamics dimensions. Here we rst gauge the accuracy and efficiency of the
hydrogen nuclear potential surface representation as a function of the reaction
coordinate. Hence, for the discussion here, the potential in eqn (13): V(�x)h V(�x;RC),
where as noted before, �x represents the quantum nuclear grid at a given value of the
reaction coordinate, RC.

In Fig. 9 we present the relation between accuracy of the potential (horizontal
axis) and data compression (vertical axis). Specically, the horizontal axis is the
390 | Faraday Discuss., 2020, 221, 379–405 This journal is © The Royal Society of Chemistry 2020
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Fig. 8 Fig. 4(a) is reproduced in part (a) for convenience in defining the reaction coor-
dinate and energy profile. In parts (b)–(d), hydrogen nuclear potential surfaces are pre-
sented at three different points along the reaction coordinate defined by the horizontal
axis in part (a), and the double-well nature of the problem is clear from the relative position
and stability of the donor and acceptor side minima. Here RCO is the donor–acceptor
coordinate, RCH is the distance between the donor C11 and transferring hydrogen and
similarly ROH is the distance between the acceptor oxygen and transferring hydrogen
nucleus. The potential surfaces in (b)–(d) are obtained on a grid containing 408 321 points
for the specific configuration of the active site depicted by the reaction coordinate value.
Details are provided in Appendix B.

Fig. 9 Accuracy and efficiency in representing the potential energy surfaces as a tensor
network. Clearly less than 1% of the grid data needs to be stored to obtain a root-mean-
squared error per grid point of 10�2 kcal mol�1 or a value of GErr

Na�:Nx� ¼ �2 (which is the
horizontal axis here) from eqn (17). All permuted forms of the grid, fx1; x2;.; xi;.; xDg, are
considered in eqn (13). For example, the donor–acceptor (DA) hydrogen transfer direction
may be featured as one of the peripheral directions of the MPS (the keys with DA at the
beginning or the end) or the donor–acceptor directionmay be the central MPS dimension.
In all cases the two orthogonal dimensions (OD1 and OD2) may in turn be permuted and
for all permuted sets the compression and accuracies are quite similar.
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order of magnitude of the per grid point error where the potential energy is
in kcal mol�1:

G
Na :Nx

Err hlog10

 
1

Nx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
dx

	
VðxÞ � V

Na :Nx

TN ðxÞ

2s !

: (17)

Here [V(�x) � VTN
Na�:N�x(�x)] is the difference between the grid potential discussed

above (and in Appendix B) and the tensor network representation of the same, Na�

is dened in eqn (8) and pertains to the total summation index for all a�(that is the
requisite amount of entanglement or correlation between the dimensions of the
shared hydrogen nuclear degrees of freedom) and N�x is the total number of grid
points, that is of the order of ND. The vertical axis in Fig. 9 is the percentage of the
fraction of the three-dimensional grid that is stored, that is,

Fraction of data storedh
Na

Nx

z
Na

ND

½N*fNa*½2þ ðD� 2Þ*Na�g�
ND

: (18)

Clearly the amount of compression is large and the error is well within the
acceptable range. The statistics in Fig. 9 includes all geometries along the reaction
coordinate. To further elucidate the method that leads to this level of compres-
sion, in Fig. 7 we present the precise set of matrix operations present in the tensor
network decomposition. The le side in Fig. 7 is the full grid potential, whereas
the right side shows the amount of information that remains aer the set of
singular value decomposition calculations are completed. Clearly as noted in eqn

(13) the extent of data compression is governed by the magnitude of
� QD�1

i¼1
sa1

�
since, from eqn (13), the 2-norm of the error in the expansion is given by

kVðxÞ �
(XNa

a¼1

" YD�1

i¼1

sa1

!
V1

a1
ðx1Þ*

(YD�1

i¼2

V i
ai�1 ;ai

ðxiÞ
)
VD

aD�1
ðxDÞ

#)
k ¼

k
XNx

a¼Naþ1

" YD�1

i¼1

sa1

!
V1

a1
ðx1Þ*

(YD�1

i¼2

V i
ai�1 ;ai

ðxiÞ
)
VD

aD�1
ðxDÞ

#
k

(19)

and this is reected in Fig. 9. Fig. 10(b) shows the impact of this result. While in
Fig. 10(a) we have the full grid potential, Fig. 10(b) shows one direct product
function with one-dimensional potentials (see eqn (13)) that model the full grid
potential. Of course, the number of one-dimensional potentials is adaptively
chosen here based on the desired accuracy.

We now proceed to gauge the behavior of accuracy and efficiency for the
ground eigenstates and time-dependent wavepackets. Our results are provided in
Fig. 11. In all cases, a 10�3 accuracy in the wavepacket and eigenstates can be
achieved by only storing 2% of the grid. The effect of this enormous compression
is already seen in Fig. 12 where even when 0.05% of data is stored, the qualitative
features of transmission are well recovered.
D. Quantum evolution with tensor networks

To efficiently compute the action of the Hamiltonian and quantum time-
evolution operator on a wavepacket represented using tensor networks, it is
required that kinetic, potential and time-evolution operators independently be
392 | Faraday Discuss., 2020, 221, 379–405 This journal is © The Royal Society of Chemistry 2020

https://doi.org/10.1039/c9fd00071b


Fig. 10 In part (a) the reduced dimensional hydrogen nuclear potential surface is pre-
sented where the left side of the DA axis represents the acceptor state. Part (b) only
includes the most significant singular vectors in eqn (13). That is, if Na ¼ 1, the compressed
potential would look as in part (b) and this would be a direct product function. The
respective one-dimensional basis functions computed from SVD, that is, V1

1ðx1Þ, V2
1;1ðx2Þ

and V3
1ðx3Þ (for a1 ¼ a2 ¼ 1 in eqn (13)), are shown along the axes lines in part (b). As seen in

Section IIIC, including additional SVD basis functions recovers the potential to high
accuracy.
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described in the same tensor network form. In the previous section we have
shown that the potential energy, quantum wavepacket and eigenstates can be
written in this form. The kinetic energy operator may always be written as a direct
sum over all dimensions and hence the action of the kinetic energy operator on
the wavepacket represented in tensorial form rigorously preserves this form at
every step according to

Vx
2F
�
x
� ¼X

a

2
4
0
@X

k0

~K
ð2Þ�

xk
1; x

k0
1

�
c1
a1

�
xk0
1

�1A�
(YD�1

i¼2

ci
ai�1 ;ai

ðxiÞ
)

� cD
aD�1

ðxDÞ
3
5

þ
X
a

2
4c1

a1
ðx1Þ �

0
@X

k0

~K
ð2Þ�

xk
2; x

k0
2

�
c2
a1 ;a2

�
xk0
2

�1A

�
(YD�1

i¼3

ci
ai�1 ;ai

ðxiÞ
)
� cD

aD�1
ðxDÞ

3
5þ.

¼
X
a

2
64c1;ð2Þ

a1
ðx1Þ �

(YD�1

i¼2

ci
ai�1 ;ai

ðxiÞ
)

� cD
aD�1

ðxDÞ

3
75

þ
X
a

"
c1
a1
ðx1Þ � c2;ð2Þ

a1 ;a2
ðx2Þ

(YD�1

i¼3

ci
ai�1 ;ai

ðxiÞ
)

� cD
aD�1

ðxDÞ
#
þ. (20)

where we have introduced in the second equation,

c
1;ð2Þ
a1 ðx1Þh

 X
k0

~K
ð2Þðxk1; xk

0
1 Þc1

a1
ðxk01 Þ

!
, c2;ð2Þ

a1;a2ðx2Þh
 X

k0
~K
ð2Þðxk2; xk

0
2 Þc2

a1;a2
ðxk02 Þ

!
and

so on, to exemplify the tensor network form of the second equation. Similarly for
free-propagation:
This journal is © The Royal Society of Chemistry 2020 Faraday Discuss., 2020, 221, 379–405 | 393
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Fig. 12 The transmission probabilities, (a) hydrogen and (b) deuterium, computed using
tensor networks.

Fig. 11 Compression of data versus accuracy: part (a) ground eigenstate, (b) and (c) real
and imaginary parts of the propagated wavepacket. Multiple matrix product state
morphologies have been used and these have the same description as in Fig. 9.
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Fðx; tþ DtÞ ¼
X
a

2
4
0
@X

k0

~K
�
xk
1; x

k0
1 ;Dt

�
c1
a1

�
xk0
1 ; t
�1A

�
8<
:
YD�1

i¼2

0
@X

k0

~K
�
xk
i ; x

k0
i ;Dt

�
ci
ai�1 ;ai

�
xk0
i ; t
�1A
9=
;

�
0
@X

k0

~K
�
xk
D; x

k0
D;Dt

�
cD
aD�1

ðxD; tÞ
1
A
3
5

¼
X
a

"
c1
a1
ðx1; tþ DtÞ �

(YD�1

i¼2

ci
ai�1 ;ai

ðxi; tþ DtÞ
)

� cD
aD�1

ðxD; tþ DtÞ
#

(21)

In light of the successful tensor decomposition of the grid potential along the
lines of eqn (7) and (13), one may also consider the reduced complexity of the
action of the potential energy operator on a wavepacket,
394 | Faraday Discuss., 2020, 221, 379–405 This journal is © The Royal Society of Chemistry 2020
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Table 1 Quantum wavepacket grid details

(RCH � ROH)/RCO NGeom
a NGrid

b Grid length

�0.204 through
�0.0586c

34 81d � 71 � 71 ¼
408 321

2 Åd � 2.1 Å � 2.1 Å

a Represents the number of active site geometries considered in the range given in column
1. b Represents the number of equally spaced proton coordinate grid points utilized to
discretize the quantum wavepacket at each active site geometry. c The classical transition
state occurs at (RCH � ROH)/RCO ¼ �0.0779 as noted in Fig. 4(a). d Donor acceptor axis.
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ð
dx0d

�
x� x0

�
~V
�
x0
�
J
�
x0
�
¼ ~VðxÞJðxÞ

¼
X
a;b

n
V1

a1
ðx1Þ � c1

b1
ðx1Þ

o

�
 YD�1

i¼2

n
V i

ai�1 ;ai
ðxiÞ � ci

bi�1 ;bi
ðxiÞ

o!

�
n
VD

aD�1
ðxDÞ � cD

bD�1
ðxDÞ

o

¼
X
a;b

c
1;V
a1 ;b1

ðx1Þ �
 YD�1

i¼2

c
i;V
ai�1 ;ai ;bi�1 ;bi

ðxiÞ
!
*cD;V

aD�1 ;bD�1
ðxDÞ:

(22)

It is clear upon inspection of this expression that there are [b1 � a1] one-
dimensional functions created in x1. Similarly, there are [bi � ai] one-
dimensional functions created in xi, thus presenting a potential increase in the
number of such one-dimensional functions. But we also note, as per eqn (5) and (7)
that the singular values have been absorbed into the one-dimensional functions
and hence, we expect the contributions from the higher product singular values to
progressively reduce. These aspects will be probed in future publications.

IV. Conclusion

We consider the rate-determining step in the catalytic oxidation of linoleic acid by
soybean lipoxygenase-1. This step involves a hydrogen transfer process that shows
a large primary kinetic isotope effect, kH/kD ¼ 81. From a computational stand-
point there are two main bottlenecks that deeply affect the accurate simulation of
such processes. On the one hand, while the hydrogen transfer process may occur
in the pico-second time-scale, the actual reorganization of the enzyme active site
that affects this process is, statistically speaking a rare event. We present two
methods in this paper to address such processes.

First, rare events sampling is incorporated into ab initio molecular dynamics
by starting from a Caldeira–Leggett system-bath Hamiltonian. Here the proton-
transfer system is linearly coupled to a harmonic bath and this Hamiltonian is
also a starting point in the derivation of other spin-Boson-type Hamiltonians used
in quantum dissipative theory. Using an ab initio molecular dynamics general-
ization of the Caldeira–Leggett system-bath Hamiltonian, we probe the reactive
hydrogen-transfer event and discuss the role of ILE-839 as a switch in modulating
This journal is © The Royal Society of Chemistry 2020 Faraday Discuss., 2020, 221, 379–405 | 395
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the transfer event. We nd that the formation of the hydrogen bond between the
backbone carbonyl group of ILE-839 and the acceptor hydroxyl group is positively
correlated with the hydrogen transfer process.

Aer providing a computationally efficient approach to rare event sampling,
that incorporates on-the-y ab initio potentials, we next consider the hydrogen
transfer process using quantum wavepacket dynamics. While the wavepacket
dynamics procedure is able to recover the large isotope effect accurately, using on-
the-y ab initio potentials, the exponential scaling nature of quantum dynamics
hinders the routine application of such rigorous methods. Here we utilize
a tensor-network form of the quantum wavepacket and potential surface to
present the quantum dynamics problem using tensor networks. We gauge the
accuracy of storage of quantum wavepackets and of potential energy surfaces and
nd that tensor networks are an efficient and accurate option for the represen-
tation and propagation of quantum dynamics data.

Appendix A. Simulation details for rare events
sampling

Details regarding the parameters used in the rare events dynamics simulations are
presented in ref. 28 and 45. We summarize the critical aspects here for complete-
ness. In ref. 45, Model-I, Model-II and Model-III in Fig. 3 are used to validate the
choice of k as well as initial conditions applied on ~R and ~V. In ref. 45, a monotonic
sequence of decreasing values for k and initial conditions on ~V are used to test the
validity of these parameters. In ref. 28, these parameters are used and in the process
the role of ILE-839 is elucidated in providing a control, or a switch, for the hydrogen
transfer process. In summary the donor (carbon), the acceptor (oxygen) and the
transferring proton (see Fig. 2) were tethered to bath particles, referred to as ~R in
eqn (2), where the respective constraint harmonic force constant values captured
within k are chosen to be 15 570 pN Å�1. The force constants used here are
commensurate with those in other rare events sampling studies5,77 and in the
atomic force microscopy literature.78 In units more commonly used in chemistry,
15 570 pN Å�1 �224.0965 kcal mol�1 Å�2. This harmonic force constant corre-
sponds to a frequency (n�) of about 450 cm�1 on the carbon and oxygen atoms and
roughly 1500 cm�1 on the transferring hydrogen. These frequencies are estimated
using the relation between force constant and frequency: k ¼ 4p2c2mn�2 where c is
the velocity of light, m is the mass of the particle in question and n�is the frequency
in cm�1. Consistent with the requirement of heavier bath particles to allow greater
sampling of the system during rare event sampling, the masses for the bath
particles tethered to donor and acceptor are 500 amu whereas the degrees of
freedom tethered to the transferring hydrogen have amass of 100 amu in our study.
Detailed benchmarks on these parameters can be found in ref. 45.

Appendix B. Simulation details for quantum
wavepacket dynamics calculations conducted
along the reaction coordinate

In ref. 16, the quantum dynamics of the H/D transferring nucleus, represented as
a wavepacket, evolves under the inuence of reaction coordinate-dependent
396 | Faraday Discuss., 2020, 221, 379–405 This journal is © The Royal Society of Chemistry 2020

https://doi.org/10.1039/c9fd00071b


Paper Faraday Discussions
Pu

bl
is

he
d 

on
 2

2 
Ju

ly
 2

01
9.

 D
ow

nl
oa

de
d 

by
 In

di
an

a 
U

ni
ve

rs
ity

 L
ib

ra
rie

s o
n 

10
/7

/2
02

0 
7:

24
:3

2 
PM

. 
View Article Online
potentials, V(�x;RC), where the quantum mechanical free-propagator is approxi-
mated in the coordinate representation using the distributed approximating
functional propagator (DAF):55,61,62

~Kk

�
xi; xj ; t

� ¼ 1

sð0Þ ffiffiffiffiffiffi
2p

p
 

�1ffiffiffi
2

p
sð0Þ

!k

exp

 
�
�
xi � xj

�2
2sðtÞ2

!

�
XM=2

n¼0

�
sð0Þ
sðtÞ

�2nþ1��1
4

�n
1

n!
H2nþk

 
xi � xjffiffiffi
2

p
sðtÞ

!
:

(B1)

The terms H2n+k are Hermite polynomials and s(t)2 ¼ s(0)2 + ıħt/m.55 Eqn (B1)
represents a formally exact representation of the quantum dynamical free-prop-
agator55,61,62 for k ¼ 0 and nite t, whereas it also serves as accurate derivative
operator functions known on a grid when k is chosen to be the order of the
derivative and t is set to zero. Details regarding the properties of eqn (B1) are
discussed in several publications.55,61,62,79–81 The variables M and s(0) determine
the accuracy and width respectively of the DAF. It has been shown54,55,61,82 that
these parameters are not independent and for a given value ofM there exists a s(0)
that provides optimal accuracy for the propagation. The accuracy of this method
in conjunction with ab initio dynamics has been benchmarked in ref. 48, 54 and
57–59. As discussed in previous publications,54,57,58,61,62 calculations are performed

for M ¼ 60 and
sð0Þ
Dx

¼ 2:5742. This provides a good compromise between accu-

racy and efficiency. Furthermore, to allow efficient calculation of the Hermite
polynomials in eqn (B1), the recursion relations are modied to allow the direct
evaluation of

~H2n

�
xffiffiffi
2

p
s

�
¼ exp



� x2

2s2

�
1

n!
H2n

�
xffiffiffi
2

p
s

�
; (B2)

using

~H2nðyÞ ¼ 2

n

��
2y2 � 4nþ 3

�
~H2n�2ðyÞ � 4ð2n� 3Þ ~H2n�4ðyÞ

�
: (B3)

Eqn (B3) only includes the even or odd polynomials as needed in eqn (B1). This
modied recursion allows numerically stable evaluation of the components
required in eqn (B1) even for very large values of M.

The quantum dynamical evolution of the wavepacket is constructed using
Trotter factorization.83,84 The grid description for the quantum wavepacket is
given in Table 1. The transmission amplitude is computed using the total prob-
ability density of the time-dependent wavepacket on the product-side of the
proton potential energy surface at each time step. Product-side functions are
taken as a Heaviside function and these aspects are along the lines of the
calculations discussed in ref. 30 and 50. Using this approach the kinetic isotope
effect was computed in ref. 16 with results that agree with the large KIE reported
by Klinman and coworkers.85

The potentials are computed on the grid described in Table 1. Details can be
found in ref. 16 and a summary is given here. All electrons in the active site model
This journal is © The Royal Society of Chemistry 2020 Faraday Discuss., 2020, 221, 379–405 | 397
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are treated together using DFT andMP2. In Table 1 we provide a list of geometries
or range of geometries (column 1) characterized by values of the reaction coor-
dinate described in Fig. 4(a), the number of geometries considered inside each
range (column 2) and the number of proton coordinate grid points utilized to
discretize the wavepacket for each active site geometry (column 3). The origin of
the proton coordinate grid space is taken to be the center of the donor–acceptor
distance. The three-dimensional Cartesian grid is oriented such that one axis is
along the donor–acceptor line and a second axis is oriented along the plane
comprising the donor carbon, the acceptor oxygen and the hydrogen bonded to
the donor carbon. The third axis is orthogonal to the plane comprising the other
axes.

The electronic structure calculations required for constructing the proton
potential surface at eachmodel system geometry were performed using the B3LYP
density functional and lanl2dz Gaussian-type basis set. The choice of functional
and basis set was based on a comparison of the proton potential energy surfaces
and eigenstates obtained at different levels of theory including MP2. The
benchmark data for DFT and MP2 are provided in the Appendix in ref. 16. It was
found that the B3LYP density functional and lanl2dz basis provided acceptable
accuracy at a limited computational expense. All calculations are performed using
a development version of the Gaussian series of electronic structure programs.86

Furthermore, due to the large computational overhead involved in obtaining the
full potential surface,47,48 we enforced the following approximations: we rst
computed the proton potential surfaces for seven geometries in the range
described in Table 1 by performing approximately 5000 B3LYP/lanl2dz electronic
structure calculations at each of the seven geometries. The energies obtained
from these calculations were then interpolated to an extremely ne grid of over
a million points viaHermite curve interpolation.47,48,87–89 We then compared these
potential surfaces to an approximate surface generated by: (a) computing the
energy, gradients and Hessian for cases where the transferring hydrogen was
donor-bound, acceptor-bound and at the transition state for each of the seven
geometries (b) and then constructing a smooth double well potential by inter-
polating between two harmonic curves centered on the donor and acceptor
minima with curvatures determined from ab initio force constants. The interpo-
lating function is a Gaussian parameterized to reproduce the ab initio barrier
height. The full ab initio surfaces for the seven geometries described above were
compared with the more approximate surface for a description of the localization
properties of the low-lying eigenstates in all three directions. Since the compar-
isons were found to be adequate with good qualitative agreement, we chose to use
the approximate surfaces for each geometry described in Table 1.
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