
Experience: Towards Automated Customer Issue Resolution
in Cellular Networks

Amit Sheoran
Purdue University

asheoran@purdue.edu

Sonia Fahmy
Purdue University

fahmy@purdue.edu

Matthew Osinski
AT&T Labs Research

mosinski@research.att.com

Chunyi Peng
Purdue University

chunyi@purdue.edu

Bruno Ribeiro
Purdue University

ribeiro@cs.purdue.edu

Jia Wang
AT&T Labs Research

jiawang@research.att.com

ABSTRACT

Cellular service carriers often employ reactive strategies to assist

customers who experience non-outage related individual service

degradation issues (e.g., service performance degradations that do

not impact customers at scale and are likely caused by network pro-

visioning issues for individual devices). Customers need to contact

customer care to request assistance before these issues are resolved.

This paper presents our experience with PACE (ProActive customer

CarE), a novel, proactive system that monitors, troubleshoots and

resolves individual service issues, without having to rely on cus-

tomers to first contact customer care for assistance. PACE seeks to

improve customer experience and care operation efficiency by au-

tomatically detecting individual (non-outage related) service issues,

prioritizing repair actions by predicting customers who are likely

to contact care to report their issues, and proactively triggering

actions to resolve these issues. We develop three machine learning-

based prediction models, and implement a fully automated system

that integrates these prediction models and takes resolution actions

for individual customers. We conduct a large-scale trace-driven eval-

uation using real-world data collected from a major cellular carrier

in the US, and demonstrate that PACE is able to predict customers

who are likely to contact care due to non-outage related individual

service issues with high accuracy. We further deploy PACE into this

cellular carrier network. Our field trial results show that PACE is

effective in proactively resolving non-outage related individual cus-

tomer service issues, improving customer experience, and reducing

the need for customers to report their service issues.
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1 INTRODUCTION

Cellular service providers (carriers) are constantly pushing the

boundaries to deliver a positive, meaningful and unique experience

for each customer (user or subscriber). The vast majority of cellular

network outages that impact customers at scale are proactively

detected and resolved without waiting for customers to report

them. However, service degradation caused by individual customer

provisioning and device configuration errors still largely rely on

customers to make the the first move. To meet customer needs,

an unprecedented number of traditional and digital channels have

been made available, as customer support can be provided over

the phone, through social media, and by online virtual assistants.

While these omni-channel strategies have transformed how cus-

tomer experience is managed, many of these strategies are largely

reactive . Carriers tend to investigate and resolve these non-outage

related individual customer service performance issues only after

the customer initiates a trouble request.

In this experience paper, we report on our first attempt to im-

prove each individual customer’s experience and increase cellular

service operation efficiency by shifting from a reactive strategy to

a proactive strategy when dealing with individual customer issues.

We develop PACE (ProActive customer CarE), a novel proactive

framework that automatically detects non-outage related service

issues that impact individual customers’ experience, and predicts a

future customer care interaction as a result of these service issues

to prioritize resolution actions. PACE further triggers resolution

actions to remedy the detected issues before customers contact

support agents. This not only improves customer experience by

minimizing the impact of service issues, but also increases opera-

tion efficiency of cellular service providers by reducing the number

of customer care contacts and the subsequent investigation and

mitigation process.

We present our experience with PACE through a field trial in a

major cellular carrier network in the US.We focus on non-outage re-

lated technical issues (e.g., user equipment (UE) and service related

issues) that impact individual customer experience (e.g., network
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shows a typical customer care investigation with three steps. First,

the customer contacts the care center and is directed through an

automated interactive voice response system to the appropriate

first-tier team. Second, according to the issue type (e.g., billing,

administration, technical), the first-tier team performs a number of

routine troubleshooting and resolution actions, such as checking

customer account and billing status, service provisioning status,

known outages and hardware/software issues. If the issue is not

easily diagnosed and resolved, it is escalated to the second-tier tech-

nical team for further investigation of network and service logs,

along with performing additional resolution actions. All the actions

are automatically recorded in this process. The customer care agent

who is responsible for this customer-reported issue also provides a

written summary, including the troubleshooting steps (resolution

actions) taken and their results.

Customer care agents handle a large variety of individual cus-

tomer issues, which are roughly divided into two categories: tech-

nical and non-technical. A technical issue means that it is likely a

result of provisioning/configuration issues in the network/device,

for example, "Unable to make/receive voice calls," "Unable to connect

to data services," and "Cellular Data Connectivity." Non-technical

issues are related to routine customer engagement or information

inquiries, such as inquires about new services or plans, activa-

tion/deactivation, billing-related inquires, and device/hotspot setup.

In general, technical issues are difficult to resolve and may impact

customer experience, so we focus on the automated resolution of

technical issues in this paper.

2.2 Data Sources

Our aim is to replace the reactive strategy with a proactive one

that automatically detects and resolves non-outage related service

issues that impact only individual customers, in order to reduce

the resolution time and improve customer experience. We detect

performance degradation issues faced by a customer through lever-

aging network, service, and customer care logs collected by the

cellular service provider.

As illustrated in Figure 1, we have several data sources collected

and aggregated from existing networking interfaces. The main data

sources used in this work can be summarized as follows.

1. Care Logs (CL). Care logs record interactions between cus-

tomers and care agents, and include (but are not limited to): (1)

user ID (UID), (2) timestamp, (3) care contact channel including

online chats, phone calls, and store walk-ins, (4) issue type which

is manually provided by the interacting care agents, (5) description,

which is in free text format added by the agent, and (6) sequence of

actions taken for troubleshooting and resolution of customer issues.

Note that the care logs are collected after obtaining customers’ per-

mission. In this paper, we only consider customer feedback received

from care calls, and we do not use customer feedback received from

other channels such as online chat, store walk-ins, or user posts

on social media sites. Our analysis only considers customers who

have called customer care to report service quality degradation.

2. Customer Account Information (CAI): Customer account

information contains information regarding the customer service

Table 1: Attributes in the VCR dataset.

Attribute Description

UID User identifier (anonymized)

Start Time Time when the Charging Collection

Function (CCF) started the session

End Time Time when the CCF terminated the session

Cause for Reason for the release of the session

Record Closing (0) for successful sessions

Status Abnormal status information of the session

(if applicable) SIP (4XX/5XX) code (Blocked/Dropped)

Table 2: Attributes in the DCR dataset.

Attribute Description

UID User identifier (anonymized)

Start Time Time when the PDN session starts

End Time Time when the PDN session ends

CFT Code Cause for termination (CFT) for a PDN session

APN ID APN name of failed PDN session

subscription such as UID , the device manufacture and model, hard-

ware and software version, activation time, and last update to the

account.

3. Network Logs (NL). The network logs contain information

regarding how a customer device uses each data/voice service over

the network. It consists of two datasets:

3a. Voice Call Records (VCR). This records information for each

voice call. Data is collected by the IMS for VoLTE calls, and by

the 3G CS network elements for CSFB calls. Table 1 lists its main

attributes (additional attributes can be found in the standards [1, 3]).

The dataset covers both successful voice calls and failures. In case

of failures, additional information are recorded to capture the status

and cause of record closing.

3b. Data Connection Records (DCR). This records information

for each data service. It is collected from the gateways for each

packet data network connectivity (PDN) session organized by its

Access Point Name (APN). Table 2 lists the main attributes [2, 3].

In case of packet-switched (PS) calls (VoLTE), a predesignated APN

is used to tunnel a voice call from the PDN network to IMS, and

the sessions are recorded in the VCR dataset. If a session fails, the

cause of termination is recorded as a CFT code.

3 OBSERVATIONS AND CHALLENGES

Our approach to automating customer issue resolution applies

machine learning techniques to proactively identify individual cus-

tomers who are experiencing a degraded service experience which

is non-outage related, and predict if they will contact care in the

near future. We use customer care contact as a measure of sever-

ity of impact and prioritize automated repair actions accordingly.

This problem can be modeled as a classification problem using the

features extracted from datasets collected by the service provider.

If a customer is predicted to call care, we take proactive action to

resolve the issue, which will reduce the severity and duration of

customer service quality degradation, and eliminate the need for

the customer to contact care.
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is unlikely to contact care if the issue is resolved. In addition, cus-

tomers are unlikely to contact care on consecutive days, as we see

in the CL dataset. (4) Reporting latency. Over 80% of customers

who contact care wait at least 24 hours after experiencing service

issues (Figure 2). It is insufficient to simply use previous day data.

Sliding window design. To account for behavioral aspects of care

contact, maximize utilization of samples of customers who contact

care, and exploit care contact seasonality, we propose a sliding win-

dow design to create the training/test data for our models. Figure 6

shows how features are aggregated to create the training/test set

using a sliding window of 7 time units,𝑊 = {T−7, T−6, T−5, T−4,

T−3, T−2, T−1}. As shown in Figure 6, using inputs of 10 time units

(T−9 to T−0), we create three slices of data, slice-1 using data from

T−9 to T−3 using which predictions for T−2 are generated, slice-2

(T−8 to T−2) using which predictions for T−1 are generated, and

so on.

This sliding window design allows us to (a) maximize the uti-

lization of positive samples (shortcoming (1) above): Data for each

time unit is used in multiple slices (𝑛 times with an 𝑛-unit sliding

window), and (b) handle seasonality and temporal dependencies

(shortcomings (2) and (3) above): We use care contacts made by a

customer per time unit as an additional input to the models. An-

other solution for addressing seasonality within the data is to create

a model for each day of the week (Monday through Sunday), and

use these day-of-week models to predict the outcome of a specific

day. We evaluated the performance of day-of-week models and

found that there is no significant difference in the performance

of these models versus the performance of models that use the

sliding window algorithm. Therefore, we omit the discussion of

day-of-week models in the rest of the paper. To address shortcom-

ing (4) above (unpredictable reporting time), we use a different time

window for predicting if a customer is likely to contact care, e.g.,

we predict if a customer is likely to contact care in the next |𝑅 | time

units as a result of service issues, where set 𝑅 = {T−0, T+1, T+2,

T+3, T+4}. The sliding window parameters |𝑊 | and |𝑅 | should be

carefully selected to meet operation requirements. The values of

|𝑊 | and |𝑅 | used by PACE are discussed in ğ5.

4.4 Problem Formulation

Let U be the stochastic process that generates our data 𝑈𝑖 =

(𝑈𝑖,1, . . . ,𝑈𝑖,𝑛), which are the records of the 𝑖-th user from a start-

ing time 𝑡0 = 1 until an end time 𝑡end = 𝑛, where 𝑛 > |𝑊 | + |𝑅 | is

assumed constant. Let 𝑁 > 0 be the number of users in our logs,

then {𝑈𝑖 }
𝑁
𝑖=1 is the data used to construct our training dataset. The

training dataset Dtrain is constructed through sliding windows of

length |𝑊 | + |𝑅 | over {𝑈𝑖 }
𝑁
𝑖=1, as depicted in Figure 6. More specifi-

cally, we consider the training dataset as Dtrain = {((X𝑖 ,Z𝑖 ),Y𝑖 )}𝑖 ,

where X𝑖 ∈ R |𝑊 |×𝑝stat is a matrix with 𝑝stat-dimensional static

features of each time unit in𝑊 , Z𝑖 ∈ R
|𝑊 |×𝑝dyn is a matrix with

𝑝dyn-dimensional dynamic features of each time unit in𝑊 , and

Y𝑖 ∈ {0, 1} |𝑅 | is a random variable vector containing the target

label (whether or not someone will contact the call center at each

of the next |𝑅 | time units in the future).

We now define a function (feature generator) 𝜙 : R
|𝑊 |×𝑝dyn →

R
|𝑊 |×𝑝dyn that takes Z𝑖 of user 𝑖 as input and outputs a set of

features in the same space. We then learn a classifier 𝑓 that takes

this feature matrix 𝜙 (Z𝑖 ) and X𝑖 and outputs ŷ ∈ [0, 1] |𝑅 | , an

estimate of the probability

𝑃 ((Y𝑖 )𝑑 = 1|X𝑖 ,Z𝑖 ) ≈ (ŷ𝑖 )𝑑 = 𝑓 (𝜙 (Z𝑖 ),X𝑖 )𝑑 (1)

that user 𝑖 will contact care and report an issue at the 𝑑-th time

unit of a window of size |𝑅 |, 𝑖 = 1, . . . , 𝑁 .

4.5 Ensemble Model Design

A straightforward approach for solving the problem described in

ğ4.4 is to build a binary classification model based a combination

of static and dynamic feature vectors. However, this simple binary

classificationmay not workwell (ğ5) due to the challenges discussed

in ğ3. We therefore investigate different feature vector generation

functions 𝜙 from Equation 1 designed to address these challenges.

Aggregated Feature Model (AFM): AFM uses a combination of

features extracted from (a) Static features in Customer Account

Information (Table 3), i.e., X𝑖 , and (b) Aggregated dynamic feature

vectors extracted from the NL and CL datasets (Table 4), i.e., Z𝑖 .

AFM defines the 𝜙AFM of Equation 1 as the identity function, i.e.,

𝜙AFM (𝑎) = 𝑎, which yields

ŷ
(𝐴𝐹𝑀)
𝑖 = 𝑓 (𝜙AFM (Z𝑖 ),X𝑖 ), (2)

where ŷ(𝐴𝐹𝑀) is the classifier described in Equation 1.

We also analyzed the feature importance scores generated by

XGBoost [23] for the AFM. The top five features in decreasing order

of feature importance scores are : Activation-Time, Call-Duration

{T-1,T-2,T-3}, #Calls {T-1,T-2,T-3}, #Failed-Calls {T-1,T-2,T-3}, #Data-

Sessions {T-1,T-2}. In case of dynamic features where each feature

consists of |𝑊 | entries (one entry corresponding to each time unit in

𝑊 ), the value in the parenthesis { } shows the prefix of the time unit

which had the highest feature importance score (sorted in decreas-

ing order). The feature importance scores of AFM are consistent

with the observations in ğ3.2.

Individual Variations Model (IVM): IVM is designed to lever-

age variations in individual usage/failure patterns. As an example,

consider a customer (in a low coverage area) who experiences an

average of 𝑛 voice call failures/day. While this customer may not

contact care if they continue to experience similar failures ratio per

day, they are likely to contact care when the number of failures

exceeds the average daily failures. The IVM model is designed to

detect such variations in individual usage.

The static features used by IVM model are the same as the AFM,

since there are no variations in the CAI datasets. Dynamic features

of the IVM are created by subtracting the actual values in a given

time unit from the mean value of the same feature, where the mean

value of a feature is calculated using all instances of a given feature

in the entire data D. The dynamic features used by IVM can be

described as

𝜙IVM (Z𝑖 ) = (z𝑖 − Z𝑖 , . . . , z𝑖 − Z𝑖 ), (3)

where z𝑖 is a vector whose 𝑚-th component is the row-average

(time average) of feature (column)𝑚 in matrix Z𝑖 .

The output of the classifier in Equation 1, using the features

created by 𝜙IVM, is then

ŷ
(𝐼𝑉𝑀)
𝑖 = 𝑓 (𝜙IVM (Z𝑖 ),X𝑖 ). (4)
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We find that for both cases (a) the number of care contacts

due to service issues (U=21987.5, p-value=0.048), and (b) the num-

ber of voice failures and data connectivity failures (U=22545.5, p-

value=0.028), the p-value is lower than 𝛼 . Therefore we reject the

null hypothesis 𝐻0 for both cases. That is, we conclude that the

P1 ≠ P2 for both (1) the number of care contacts due to service

issues, and (2) the number of voice/data connectivity issues experi-

enced by them.

Summary. The observed reduction in the number of failures along

with the reduction in the number care contacts are promising, yet

these results are not exhaustive and more evaluation is required

to better understand the efficacy of our predictions models. While

it is infeasible to cover the entire customer base during our field

trial, PACE has achieved significant improvements for individual

customers, and done so without having the customer initiate a trou-

ble report with care. In addition, PACE enables operators to move

from a reactive to a proactive strategy when addressing non-outage

related individual customer issues and to prioritize resolution ac-

tions based on impact of service issues. The field trial demonstrated

that PACE is an effective solution to reduce the operational cost for

cellular carriers.

Our field experiments also highlight some of the challenges that

operators will face in deploying proactive care solutions: (a) Since

only a small percentage of customers who experience failures call

care to report their problems, it is important for the cellular network

providers to develop algorithms to select the candidate UIDs on

which predictions can be made so that network providers can pri-

oritize their repair tasks accordingly to reduce the care calls related

to these individual customer issues in addition to improve cus-

tomer perceived service performance. As shown in Table 5, merely

sampling the network failure and usage logs can yield low UID

coverage, which can have a significant impact on the performance

of the prediction models. (b) Diversity in customer behavior (as

discussed in ğ3.1) entails that predicting the exact date on which a

given customer will call remains a challenging problem. While we

believe that proactive resolution actions which lead to reduction

in failures experienced by customers (Figure 12b) will reduce the

need for customers to contact care, operators will also be required

to incorporate additional policies to prevent repeated resolution ac-

tions on the same customer device, either by a human or automated

agent. (c) Network operators must carefully consider the metrics

used to evaluate the efficacy of proactive care solutions. While our

observations (Figure 12b) indicate that proactive resolution actions

can reduce the need for reactive customer care, analyzing the extent

to which reduction in network level failures will influence customer

behavior remains an open problem.

7 RELATEDWORK

Although there has been extensive work on automating fault diag-

nosis, e.g., [11] and on mining customer care logs to classify and

infer problems and events, e.g., [7, 13, 16, 20], little work has at-

tempted to correlate network data and customer care contact data,

and use that to automatically take resolution action for individual

customers.

The work that comes closest to ours is the work by Diaz-Aviles

et al. [9] who investigate an African ISP and its 2G and 3G network

statistics. They use an ensemble of decision trees to process net-

work data in near real-time and predict whether a customer will

contact care. Unlike our work, they only consider data services, use

geographical data and detailed application information, use simpler

machine learning models, and do not proactively take resolution

actions. Our analysis of care calls shows that a significant num-

ber of care calls are triggered due to voice call problems, and the

techniques employed by [9] cannot be directly adopted to predict

voice call problems. Additionally, while it is possible for our work

to leverage fine-grained data session information and geolocation

information, we believe that there are considerable performance

overhead and user privacy concerns in using such fine-grained data,

and we therefore choose not to use it. Instead, we exploit patterns

in customer behavior, such as daily usage patterns and customer

care call behavior, to proactively detect and resolve customer issues

using a fully automated framework.

CableMon [10] also correlates network failures with customer

trouble tickets, using an anomaly detection algorithm to find ab-

normal events in the network and infer the subset of customers

impacted by each event. Unlike our work, the focus of CableMon

is on inferring failure thresholds that indicate network outages,

and not on detecting individual customer-level failures caused by

technical issues.

Venkataraman et al. [21, 22] proposed the LOTUS framework to

determine users impacted by a common root cause (such as a net-

work outage) from user feedback. LOTUS combines several modern

machine learning techniques (co-training, spatial scan statistics,

word vectors and deep sequence learning) in a semi-supervised

learning framework. Unlike our work, LOTUS is a reactive approach

that enables cellular service providers to relate customers who have

contacted care to any possible known issues.

Finally, Iyer et al. [11] use connection-level traces, collected from

an operational service provider, to diagnose performance problems

in radio access networks (RANs). event-based performance metrics,

such as connection failures and drops, they employ classification

techniques, such as decision trees, to build models that explain

the problem. For volume-based performance metrics, such as radio

link layer throughput, they employ regression models based on

physical and MAC layer information. This work is reactive and

only considers RAN information and simple models. Another, less

related, direction of work considers the problem of predicting churn

of wireless network customers by mining social network posts [15,

17, 19].

8 DISCUSSION

Predictingwhen a customer will contact care. In this paper, we

have considered the problem of predicting individual customers

who will contact care for non-outage related service issues (which

can be modeled as a binary classification problem) in order to pri-

oritize proactive action for these customers. Due to missing data

and lack of well-known indicators in the NL dataset, our models do

not currently predict when a customer is likely to contact care. In-

stead, we identify UIDs experiencing failures during the prediction

window, and classify these UIDs into customers who are likely or

unlikely to contact care. While it is possible that a small percentage

of customers contact care to report issues which are not observable
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from the NL dataset, predicting the care contact behavior of such

customers is not possible without access to rich behavioral features.

Telemetry analysis. We do not currently use telemetry data to

estimate individual user service disruptions. In our experience,

telemetry data aggregated at the network function level, such as at

the eNodeB level, is sensitive to scale. A single rogue device gener-

ating hundreds of abnormal events can impact an entire eNodeB’s

performance, and falsely report that the experience is negative for

all customers attached to this eNodeB. Our focus in this work is on

identifying and invoking resolution actions on individual customer

devices experiencing service quality degradation.

Location data. The work by Diaz-Aviles et al. [9] observes that a

higher number of care contacts originates from customers whowere

located in congested or poor coverage areas and hence experienced

a large number of packet retransmissions. One possible avenue

for future work is to leverage location information in our models.

For instance, a customer who is experiencing problems at their

residence or employment location is more likely to contact care

than a customer who experiences connectivity problems while

driving in a national park during a vacation.

Data granularity. In this paper, we do not use fine-grained event

information collected directly from Evolved Packet Core (EPC) con-

trol plane network functions. While we believe that fine-grained

events, such as radio signaling events collected from the eNodeB,

can increase the prediction accuracy, they can incur significant pro-

cessing overhead. Since the radio signaling messages are routinely

exchanged between user devices and cellular networks functions,

such data is typically at least an order of magnitude larger than

the NL data currently used by PACE. We therefore do not use fine-

grained data in our current field trails.

Input data quality.We do not explore the impact of incomplete

data in predicting customer behavior. While we use simple tech-

niques such as ignoring failures caused by known network outages,

completely isolating invalid and redundant data remains a chal-

lenging problem. One avenue of future work is to explore creating

NLs by correlating and merging records generated by each element

involved in processing user traffic.

Feature adaptation over time. The feature extractors in PACE

primarily focus on voice (circuit-switched and VoLTE) and data ser-

vices used by customers. While these services may originate from

and terminate to devices attached to different networks (3G/4G/5G),

such variations do not have a significant impact on the feature vec-

tors used by PACE, so we expect the features of PACE to seamlessly

handle the transition of existing services to 5G networks. Addition-

ally, as 5G networks introduce changes to the endpoint/network

state machine, and as customers adopt 5G-capable devices, changes

in device type features may improve prediction performance.

Special events. As can be expected, customer usage, perceived

service performance, and care contact patterns considerably change

during holidays and special events, as well as when new devices

or operating system releases become available. For example, we

have noted different patterns during manufacturer device launches,

and on holidays such as Mother’s Day when higher call volumes

are typically seen. In our future work, we plan to incorporate the

impact of these events into our prediction model.

9 CONCLUSIONS

Cellular service carriers are constantly striving to improve the

customer quality of experience. In this work, we proposed and

described our experience with PACE, a fully automated framework

to enable carriers to shift from a reactive to a proactive customer

care strategy for non-outage related individual service issues. We

developed three machine learning-based models, including a novel

feedback model, to predict customers who are likely to contact

customer care, using a combination of customer and network data

logs. Using our predictions, we prioritize proactive resolution of

these individual customer service issues (non-outage related) to

improve customer quality of experience and to reduce customer

care contacts. We report on the experience gained from a large-scale

trace-driven evaluation based on real-world data collected from

a major cellular service provider in the US, as well as with field

trial experiments after deploying PACE into the cellular service

provider’s network.
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