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Abstract—Deep Neural Networks (DNN) are crucial compo-
nents of machine learning in the big data era. Significant effort
has been put into the hardware acceleration of convolution and
fully-connected layers of neural networks, while not too much
attention has been put on the Softmax layer. Softmax is used in
terminal classification layers in networks like ResNet, and is also
used in intermediate layers in networks like the Transformer. As
the speed for other DNN layers keeps improving, efficient and
flexible designs for Softmax are required. With the existence of
several ways to implement Softmax in hardware, we evaluate
various softmax hardware designs and the trade-offs between
them. In order to make the design space exploration more
efficient, we also develop a parameterized generator which can
produce softmax designs by varying multiple aspects of a base
architecture. The aspects or knobs are parallelism, accuracy,
storage and precision. The goal of the generator is to enable
evaluation of tradeoffs between area, delay, power and accuracy
in the architecture of a softmax unit. We simulate and synthesize
the generated designs and present results comparing them with
the existing state-of-the-art. Our exploration reveals that the
design with parallelism of 16 can provide the best area-delay
product among designs with parallelism ranging from 1 to 32.
It is also observed that look-up table based approximate LOG
and EXP units can be used to yield almost the same accuracy as
the full LOG and EXP units, while providing area and energy
benefits. Additionally, providing local registers for intermediate
values is seen to provide energy savings.

Index Terms—Softmax, DNN, Machine LearningDesign Space
Exploration

1. INTRODUCTION

Deep Neural Networks (DNN) have become one of the most
important technologies for machine learning. There has been
a rapid development of hardware for accelerating inference or
training process of DNNs. While most architectures focus on
speeding up the convolution and fully-connected layers, there
are only a few researchers who have proposed optimizations in
hardware for softmax layer, which serves as a key component
in DNNs. Therefore, more research is required to explore
efficient architectures for softmax.

Softmax is usually used for multi-category classification as
the last layer in neural networks like ResNet or MobileNet.
It is also used as an activation layer in intermediate layers
in some networks, for example in Transformer and Capsule
network.

The major challenge of the softmax hardware is to im-
plement efficient exponential units and division units. The

naive implementation is not very hardware friendly because
it easily causes overflow, requires large amounts of storage,
and includes divider and exponential units which are gen-
erally costly. Some researchers have proposed architectures
for softmax [6] [4] [8] [5] [12]. However, most of these
designs can only support a fixed number of inputs and the
hardware required increases proportional to the number of
inputs, and they generally support only one precision. Hence,
these designs are not flexible. The focus of many prior designs
is on providing efficient implementations of the exponent unit,
e.g. LUT based [6] or FSM based [5]. Geng et al. [4] uses
bit-shifts for division. The design in [12] is not pipelined. Li et
al. [8] uses FIFOs to store all input values increasing the area
significantly. Not all designs support fixed point and floating
point data types, limiting their application to either training or
inference.

Although existing designs may perform well with one
particular accuracy or parallelism in one scenario, the per-
formance may not remain when architects want to tune the
design. Additionally, tuning the existing hardware design may
be time-consuming and requires lots of extra work. There are
several limitations in the existing softmax hardware designs:

o The support for different parallelism values is poor, which
makes the performance of their designs not scale well
with increasing input data sizes.

o They do not support various precisions which limits their
design to machine learning training or inference.

o Designs may consume large area while the trade-offs
between area and accuracy is not clear.

There exist signification trade-offs in the aspects mentioned
above. Different DNNs have different number of inputs for the
softmax layer. Different accelerators have different budgets for
area and delay of softmax layer. Different applications have
different tolerance for classification accuracy. A one-size-fits-
all softmax architecture can not satisfy all the requirements in
a space with such diversity. Adhoc methods of exploration
can leave out efficient architectures leading to inefficient
accelerators. So, we believe a tunable generator that can
generate multiple designs with different architectures can be
very valuable to perform design space exploration. To the best
of our knowledge, no such tool exists in the open source
community. Our contributions in this paper are summarized
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Fig. 1: (a) Naive softmax architecture (as shown in [4] (on the left) (b) softmax architecture proposed in [13] with the required

EXP units (on the right)

as follows:

o We propose a base architecture that is amenable to ad-
justment based on various parameters such as parallelism,
accuracy and precision. This architecture can support any
number of input values and can work for the forward pass
of softmax for both inference and training.

o We develope a generator called SoftGen that generates
softmax designs. The generator is a software to generate
softmax verilog code. This generator is controlled by
various knobs - parallelism, accuracy, storage, precision
- that can take multiple values. Based on the values of
the knob, the generator dumps a design and a testbench.

o We perform design space exploration using our developed
generator and proposed base architecture. We evaluate the
various generated softmax designs and discuss the trade-
offs between area, delay, power and accuracy.

Our design space exploration reveals observations from
three aspects. For the parallelism ranging from 1 to 32,
the energy-delay product of the design decreases with the
increasing parallelism until the parallelism reaches 16. It is
also observed that the approximate LUT-based LOG and EXP
units yield almost the same accuracy but are more energy and
area efficient compared to the full accurate implementations.
Additionally, local registers used to store the intermediate
results can reduce the number of memory accesses, therefore,
provide energy savings, however, extra area overhead is re-
quired.

The rest of paper is organized as follows: Section II gives
the backgound information of the softmax hardware design.
In Section III, we describe the details of the base architecture
used by our generator. Section IV introduces how we automate
the designs generation and tools used for evaluation.V presents
the various exploration experiments we conducted along with
the results observed from these experiments. Section VI con-
cludes this paper and points out the future work.

II. BACKGROUND
The formula to calculate the M-th neuron in a softmax layer
is described as below:

eXm

Yy e
where X; is the output of the L-th neuron and N is
the number of categories. The most straightforward way to

P(Mth category) = (1
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implement it is shown in Figure 1(a). However, several prob-
lems exist in such a design: first of all, this kind of design
requires significant amount of storage to store the exponential
results because the number of classification outputs can be
in thousands or millions. Secondly, such a design includes
expensive division units. Normal division unit can consume
large area and requires significant amounts of time to execute
which increases the power consumption and cause difficulties
to the further pipeline the design. Thirdly, it cannot leverage
the parallelism existing in softmax calculation, therefore, it
performs poorly when the number of inputs increases.

Researchers have tried several approaches to tackle the
above problems, Kouretas et al. [6] uses LUT to approximate
the exponential calculation. Hu et al. [5] leverage the stochastic
computing to conduct the softmax execution.

Yuan [13] introduced an efficient hardware architecture for
softmax layer as shown in Figure 1(b). Equation 1 is adapted
into a more hardware friendly form:

Xm *Xmax)*ln():y:] g(XL’thtX))

P(Mth category) = e 2

This avoids large silicon area consumption and accuracy
loss caused by division units, and down-scaling technique is
applied to exponential units to overcome the potential overflow
problem. However, several problems remain. For DNNs with
large number categories, this design will require large number
of exponential units, which is not realistic. Additionally, the
architecture modifies the meaning of outputs; it generates the
magnitude of each classification rather than the probability
(the last exponential stage is missing). Lastly, no quantitative
evaluation of the design is provided in the paper.

Du et al. [3] optimized Yuan’s architecture [13] to process
the data serially so that it can perform classification of infinite
categories. But the total cycles to accomplish the softmax
operation increases exponentially with the number of input
values. FIFOs are utilized to store intermediate data. The
depth of these FIFOs increases proportionally to the input size
indicating a large area requirement. The authors take advantage
of the distribution of inputs in softmax layers to avoid some
calculations for input values that are out of range, but that
does not work in all cases, e.g. training.

We create our base architecture based on Yuan’s design due
to its scalability and pipelining features.
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Fig. 2: Baseline Architecture used for design exploration. Softmax generator allows knobs: PA: Parallelism, PR: Precision,
AC: Accuracy, ST: Storage. The diagram shows the hardware with PA=4. The value of ST controls the presence of buffer and

dotted path.

III. ARCHITECTURE

Our baseline architecture allows the generator Softgen to
create various designs based on the knobs. This architecture
is shown in Fig. 2. The architecture is logically divided into
3 stages and physically divided into 7 blocks:

o Stage 1: This stage includes block 1 (max). It finds the
largest value from all the input values. X,
« Stage 2: This stage includes blocks 2, 3, 4.

— Block 2 (subtraction) finds the difference between each
input value and the max value. X; — Xy
— Block 3 (exponent) generates the exponential of the
results from Block 2. e(Xt—Xmax)
— Block 4 (adder tree) adds all the exponential values up.
22]:1 e(XL_Xmax)
« Stage 3: This stage includes blocks 5, 6, 7.

— Block 5 (log) calculates the natural logarithm of the
result from Block 4. In(YY_, eXt=Xmax) ) Let’s call this
XLOG.

— Block 6 is composed of two sets of subtractors (called
presub and logsub) to calculate Xy, — X0 — XLOG

— Block 7 calculates the final result. ¢*¥~Xnax—XLOG

Stage 2 can only be triggered once the max value is found
by Stage 1. Stage 3 can be triggered only when Stage 2 is
finished (i.e. the Adder tree has finished adding all values).
The timeline for a design generated by SoftGen can be seen
in Fig. 3. Within each stage, operations are pipelined to reduce
the latency significantly. In other words, blocks within a stage
start before the previous block is finished (e.g. ADD in stage
2 starts before SUB in stage 2 is finished). There are latches
after each block in the design. Some blocks like the adder tree,
max block, exponential unit are pipelined internally as well.

Note that the number of inputs for softmax operation can
be different than the amount of parallelism in the design. For
example, a design could have a parallelism of 4 (4 values read
and processed together in the design, 4 subtractors in block 2,
4 exponential units in block 3, etc.), but still process a tensor
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Fig. 3: Timeline for the architecture (Parallelism=4, Number
of input values=64, Storage=mem)

with, say, 512 input values. In these cases, the control unit
orchestrates the data movement such that all 512 values are
processed in groups, with 4 values entering the design at a
time.

The following sections provide details of how the designs
of various blocks in the architecture are modified to enable
the knobs of the generator:

A. Max block (block 1) and Adder tree (block 4)

The Parallelism and Precision knobs affect the architecture
of the Max block. Based on the precision, floating point or
fixed point comparators are instantiated in this block. In a
fully serial implementation, the Max block only requires 1
comparator. For Parallelism >= 2, the generated Max block
is composed of a comparator tree. The number of levels of
comparators in the Max block = logs(N)+ 1, where N is the
value of the Parallelism knob. The +1 is required to handle
the cases where the number of inputs values is larger than
the parallelism of the design. For the Parallelism=4 and input
values=512 case mentioned above, the max value from 4 input
values is stored in a buffer and is compared with the max
value from the next 4 values by this additional comparator.
The comparator tree is pipelined. Based on the delays of the
various blocks in the library we used [10] (more details can
be found in section IV) we add pipeline registers after every 3
comparator levels. The Adder tree is similar to the comparator
tree, except that we add pipeline registers in this tree after
every adder.
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B. Subtractors (block 2 and block 6)

The value of the Parallelism knob governs the number of
subtractors needed in these blocks. The type of the subtractors
(floating point or fixed point) depends on the value of the
Precision knob. Block 6 is divided into two parts: logsub and
presub. For each input, the value X; — X, is calculated by
block 2 and is required again by block 6 logsub (to calculate
Xy — Xinax — XLOG). In [3], the authors save the temporary
values X7, — Xjuqr in FIFOs in the design. In our architecture,
we add additional subtractors (block 6 presub) to calculate the
difference again. This saves significant area (for FIFOs), but
adds 1 cycle of latency and requires additional subtractor(s).

C. Exponential units (block 3 and block 7)

There are multiple ways for designing hardware to compute
exponent [14][4][12][5][8][3]. In our generator, we provide
the Accuracy knob to choose between two implementations
of the exponential unit. The first one is the exponential unit
provided by the DesignWare library ([10]). We provide a
second reduced-area, low-accuracy option that uses LUT-based
Piecewise Linear Function (PLF) approach from [4]. The
architecture utilizing PLF technique for 16-bit floating point
EXP unit is shown in Fig. 4. A user may also choose a fixed-
point data format using the Precision knob. For that, LUT-
based fixed-point EXP units have been implemented as well
that follow a similar architecture with LUTs storing fixed point
values and excludes the fixed to floating point converter.

Floati = Ym—axXn_ N R
putx t0°si;2§ ';g::t | LUT-PLF with [ 77 SN
16 | 6 depth =64 a axx
Converter i3 o

16

Fig. 4: Architecture of the floatl6 EXP unit used by the
generator

PLF is generally used to approximate non-linear functions
with a small number of linear pieces [2]. PLF technique ap-
proximates the computation of ¢* by using the linear equation
in N continuous intervals uniformly defined over a finite range

of x € [x,,,x}/], with each interval having a slope a".

f1(x) =d" X (x=xp) +yp = d" Xx+ (v, —d" X))

where x € [x%, x], Y, = &n, n € [1,N]

mrp

Following the implementation in [3], input data in the range
of [-8, 0] is considered as valid and data less than -8 is mapped
to the last entry in the Look up Table (LUT-PLF). There are
two reasons for this. 1) Values input to EXP unit will always
be either zero or negative because the maximum input value
is subtracted from each input in block 2. 2) Since €°/e8 ~
2980.958 and ¢~ = 0.0003335, it is deemed safe to ignore this
small value.

For the 16-bit floating point exponential unit, the LUT-PLF
is built to store the 16-bit floating point value of the slope a”
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and the pre-computed (y), —a" x x}) for 64 equally divided
intervals in the data range of [-8, 0]. An input x is converted
from floating point to fixed point format that is used to select
the PLF-LUT entry closest to x. That is further followed by
a multiplication (a" x x) and an addition to compute f"(x) as
per equation 3.

D. Natural logarithm unit (block 5)

There are multiple ways for designing hardware to compute
natural log [12][3][11]. For the natural logarithm (LOG) unit,
we provide the Accuracy knob to choose between two imple-
mentations from our generator. The first one is the LOG unit
provided by the DesignWare library ([10]). We also provide
a second reduced-area, low-accuracy option that follows the
ICISLog algorithm mentioned in [11]. For the 16-bit floating
point LOG unit, we use a modified LUT-based architecture
of the ICISLog algorithm implementation in [1]. A user may
also choose a fixed-point data format using the Precision knob.
For that, fixed-point LOG units have been implemented as well
that follow a similar architecture with LUTS storing fixed point
values and includes a floating to fixed point converter. Since
real valued logarithm is only defined for positive numbers, a
positive floating point number can be represented as:

val =2%P x (1l.mantissa)

Using the multiplicative property of the logarithm function,
we get:

In(val) = In(2) X exp + In(1.mantissa) 4)
LUT-MANT  [&2/n)
75 with depth = 64 16 W
| Sign | Exponent | Mantissa | 697?
LUT-EXP with A
g depth =32 ln(]./flgnlissa)

Fig. 5: Architecture of the floatl6 LOG unit used by the
generator

In Fig. 5 we provide the block diagram of the LOG unit
based on Eq. 4. All the exponent bits and the first 6 mantissa
bits are used to select the [n(2) x exp and In(1.mantissa) 16-bit
floating point values from look up tables LUT-EXP and LUT-
MANT respectively. The outputs from the look up tables are
added to obtain the final output /n(x).

E. Comparison with existing architectures

Table I compares various attributes of our architecture with
existing designs. Our architecture overcomes many limitations
that are present in other architectures and through the gener-
ator, we provide exploration of various attributes to allow a
DNN hardware architect to make informed decisions within
the constraints of an application.

IV. EXPERIMENTAL METHODOLOGY

In this section, we discuss the tools we used to conduct
the experiment. The flow to conduct the experiment can be
summarized in the following steps:
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Feature

[ ous| 31 |31 [161 |1 |2 [0 |81 |

Support for any number of input values

Y

Y N N Y N N Y

Hardware increases proportional to input size

Needs costly/accurate division unit

Uses LOG based modified softmax formula

Uses LUT based EXP or LOG units

Uses internal storage to store input values for reuse

Supports fixed and floating point values

Is completely serial and hence has high latency

Is completely parallel and hence has high area

Redoes subtraction instead of storing temp results

Down scaling for EXP ("max - val”)

Adder tree used for additions

Uses stochastic computing methods

Applicable to both training and inference
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z|Z|z|zZz|Z|z2|<|Z|K|x|Z2|<|2Z

TABLE I: Comparing the features of various softmax architectures (Y=Yes, N=No, G=Provided through generator for trade-off

analysis)

o prepare the blocks of basic arithmetic

« synthesize, simulate and verify the blocks

« use the generator SoftGen to generate softmax designs

« synthesize, simulate and verify the softmax models

The circuit designs of the first step are already mentioned
in III. We used Synopsys tools for synthesis. All synthesis is
performed under 45nm technology with FreePDK45 academic
library [9]. The area values in our results are post-synthesis
and pre-placement/pre-routing areas. We used CACTI [7] to
analyze the energy consumption of memory accesses. A single
port on-chip memory is assumed to contain the input values
required by softmax. Each memory location is wide enough to
store the input values required in one memory read, based on
the parallelism knob. We also assume that read/write latency
for read/write from the on-chip memory is 1 clock.

A. SoftGen

Figure 6 provides an overview of the flow and architecture
of the generator. The inputs to the generator are values of
various knobs that control different aspects of the softmax
architecture described in Section III. The outputs of the
generator are a set of Verilog design files including module
definitions of each block and the top-level module. The top-
level module puts all the blocks together, along with the
control logic. The generator also produces a simple testbench
that can be used to verify the sanity of the design. The
Makefile available with the generator dumps the design and
the testbench, compiles and simulates the code, and generates
a CSV file that lists the observed output values from the
softmax Verilog design, the expected output values from a
Python based CPU model and the difference between the two.

The generation is composed of two components: Verilog
templates and python scripts. The Verilog templates contains
the skeleton design and testbench corresponding to our archi-
tecture with various tags present in it at various locations to
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Fig. 6: Flow and architecture of the softmax generator

customize the design. The Python scripts process the template,
replace the tags with Verilog code based on the knobs specified
when running the generator and dump Verilog files during the
process.

The Python scripts are organized hierarchically to make the
generator modular and easily changeable. There are separate
generator scripts for the adder tree and the max block. The
utility scripts generate inputs for the simulation, expected
outputs and the CSV containing the difference.

B. Design spaces of softmax

With the knob support of the SoftGen, we explore the
hardware implementation trade-offs of softmax in 4 different
aspects:

1) Parallelism: This knob controls the amount of paral-
lelism in the generated design. Currently, this knob can
take a value of any power of 2 (including 2°=1). A value
of 1 implies a fully serial design. Such a design has
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one compute unit in each block, and consumes the least
amount of area. But it takes the most amount of clock
cycles. As the value of this knob increases, the design’s
parallelism increases. That means more compute blocks
are added, increasing the area and power consumption.
As an example, a value of 4 will generate a design which
has more area but smaller latency. This knob is useful to
study the trade-off between area, power and delay.
Accuracy: This knob controls which EXP and LOG
implementations are used in the softmax design. All the
blocks in the design, except the EXP and LOG blocks,
have full accuracy. For EXP and LOG blocks, we support
choosing between a highly accurate implementation from
the Synopsys DesignWare [10] library, or a less accurate
implementation using LUTs (as described in the sections
II-C and III-D). The LUT based implementations are
more area efficient. This knob can be used to study the
trade-off between accuracy of results and the area of the
design.

Precision: This knob controls the precision (data type)
for all the compute units used by the design. We currently
support 4 data types: int8, int32, float16, float32. This
knob is driven by system requirements. For example, it
has been shown that for inference, int8 is sufficient, but
float16 is more optimal for training. This knob mainly
changes the compute blocks in the design. The control
logic remains the same. So, the area of the design and
the clock frequency is affected by this knob, but not the
latency in clock cycles.

Storage: As can be seen from the architecture described
in Section III, input values stored in the on-chip memory
are required 3 times during the softmax operation - for
calculating the max value, for calculating difference of
inputs from the max value and for finally calculating the
probabilities. These values can either be read from the
on-chip memory whenever required (consuming SRAM
access delay and energy every time), or they could be read
once from the on-chip memory and stored in registers
internal to the softmax unit (consuming area and static
power) and used directly. This knob is used to select
between these two choices (NOREG or REG), to study
the trade-off between delay, area, energy and power.
Internal storage is used by the design in [3].

2)

3)

4)

C. Implementation of the baseline design

We chose the design from Du et al. [3] as our baseline
since their design gives the best implementation of [13] to
our knowledge. However, we can not directly compare our
designs with the results their papers because they use a
different technology node (65 nm) and a different design
library. We instead use their architecture and our design blocks
and library to estimate various metrics for their design. An
approximation of the baseline design can be generated by
our generator with the settings: Parallelism=1, Accuracy=LUT,
Precision=fixed32, Storage=REG, except for one main differ-
ence. The authors of [3] take advantage of the distribution of
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inputs in softmax layers to avoid some calculations for input
values that are out of range, but that limits their circuit’s use
for training. Instead we support the full range of input values.

V. RESULTS AND DISCUSSION

In this section, we discuss the observations from the ex-
periments when we sweep the configurations of parallelism,
accuracy and storage in the first three subsections. We also
compared our generated designs with the state-of-the-art ar-
chitecture and the discussion is in the last subsection.

A. Exploration with the Parallelism knob

For this experiment, we varied the values of the Paral-
lelism knob across 1,2,4,8,16,32. The other knobs were kept
fixed (Accuracy=LUT, Storage=mem, Precision=float16). The
number of input values used in this experiment was fixed
at 1024. The normalized post-synthesis area and the number
of cycles consumed by each generated design are plotted in
Figure 7. Also plotted is the area-delay product. As expected,
with increasing parallelism, the number of cycles reduces,
but the area increases. We see the area delay product value
reduces and then starts to increase, implying the design with
Parallelism=16 is the best. However, designs with Parallelism
values of 8, 16 have very similar values of area-delay product
and hence are good choices. For larger values of Parallelism,
the power consumption of the design can also be expected to
increase, because more compute units are working in parallel.
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Fig. 7: Trade-off between area and number of cycles with
varying values of the Parallelism knob (1024 input values,
Accuracy=LUT, Storage=mem, Precision=float16))

B. Exploration with the Accuracy knob

To see the effect of the Accuracy knob, we generated two
designs - one with LUT based implementations of EXP and
LOG blocks, and another with DesignWare [10] implemen-
tations of these blocks. Other knobs were kept fixed (Par-
allelism=4, Storage=NOREG, Precision=float16). We chose
various ranges of inputs and generated random values in those
ranges and fed them to the two designs. We then compared
the results against the results obtained from a simple Python
based CPU model. Table II shows the comparison. LUT
based implementations are less accurate, but this is generally
acceptable for DNNs.
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Range Max error | Max error | Avg error | Avg error
with DW with LUT | with DW with LUT
-0.1to 0.1 | 8.80E-06 5.04E-05 7.21E-06 3.55E-05
-lto 1 2.40E-06 2.90E-04 5.31E-07 8.38E-05
-10to 5 5.70E-06 4.31E-03 3.11E-07 1.69E-03
5to 10 1.22E-03 1.23E-03 2.45E-04 4.93E-04
-8 to -4 5.70E-06 7.60E-04 6.69E-07 2.29E-04
-8to8 3.77E-03 4.65E-03 2.45E-04 2.05E-03

TABLE II: Accuracy evaluation for DesignWare and LUT-based im-
plementations (512 input values, Parallelism = 8, Storage=NOREG,
Precision=float16) LUT based implementations are less accurate but
generally still acceptable for DNNs

Table III shows the variation of area and delay of the whole
softmax design with these two Accuracy options. We can
see from the first two rows of the table that the LUT based
design has a smaller area, but delay is higher with the design
using DesignWare blocks because the DesignWare blocks are
not pipelined (our LUT based EXP unit has a pipeline stage
in it) and so the design could only run at a reduced clock
frequency. Since they are available as IP blocks, we could
not modify them. We also synthesized the design using LUTs
at the max frequency at which the design using DesignWare
could be synthesized. The area reduced significantly with this
optimization and the power reduced as well.

Design Cycles | Delay Power | Energy | Area
(us) (mW) (nJ) (um?)

Design with | 201 0.67 10.19 6.82 279711

LUT, max freq

(294MHz)

Design with | 199 0.79 8.38 6.67 283300

DW, max freq

(250MHz)

Design with | 201 0.80 6.87 5.52 220178

LUT, iso freq

(250MHz)

TABLE III: Trade-off between various metrics with different values
of the Accuracy knob (512 input values, Parallelism = 8, Stor-
age=NOREG, Precision=float16). Power/Energy numbers are from
Synopsys Design Vision.

C. Exploration with the Storage knob

There are two values of the Storage knob - NOREG and
REG - as described in Section IV. For this experiment, we
fix the Parallelism knob to 4, Accuracy knob to LUT and
Precision knob to float16. We vary the number of inputs from
32 to 1024, and generate two designs for each case - one that
re-reads inputs from on-chip memory whenever required and
another that stores the input values in registers after reading
them once. The resulting chart is shown in Figure 8. Registers
cause the area of the design to increase significantly with
increasing number of input values. But for the design with on-
chip memory re-reads, the area does not change as we increase
number of input values. We calculated energy consumed by
the additional registers in the design with Storage=REG and
the energy consumed by additional on-chip memory re-reads
in the design with Storage=NOREG. The energy consumed
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for re-reading inputs from on-chip memory is higher than the
energy consumed for reading/writing to/from internal storage
registers. Since the on-chip memory re-read latency can be
hidden behind other operations, the delay for the design with
on-chip memory re-reads is not different from the delay for the
design with registers. For the design with registers, the number
of registers required to store inputs is equal to the number of
input values, and so the design becomes less flexible. So, there
is a tradeoff between area, energy and flexibility.

0.9
0.8
0.7
0.6
0.5

0.4

Area (mm~2)
a
8
3
Energy (pJ)

0.3

0.2

128
Number of input values

256 1024

==g==Area for the design with internal storage registers
==g==Area for the design without internal storage registers
= @ = Dynamic energy consumed by reads/writes to internal storage registers

Dynamic energy consumed by additonal reads from on-chip memory

Fig. 8: Area and energy evaluation with different values of the
Storage knob with various number of input values (Parallelism
= 4, Accuracy=LUT, Precision=float16)

D. Comparison with the state-of-the-art

Table IV compares various metrics of the design from [3]
with some variations of the designs generated by our generator.
The ”Add. energy” column refers to the additional energy con-
sumed because of internal storage registers in the designs with
Storage=REG, and the additional energy consumed because of
memory re-reads in the designs with Storage=NOREG. We can
see that a design with Parallelism=1, Storage=NOREG (second
row in the table) is much more area efficient, but consumes
more energy. Changing Parallelism=2 and Storage=NOREG
(fourth row) results in a faster design, but with more area
consumption.

Design Area Cycles | Add. en-
(mm?) ergy (pJ)
Design in [3] 0.807 1542 830.24
Design with PA=1, ST=NOREG 0.059 1542 4351.48
Design with PA=2, ST=REG 0.828 775 830.24
Design with PA=2, ST=ENOREG 0.085 775 4351.48
Design with PA=4, ST=REG 0.835 392 830.24
Design with PA=4, ST=NOREG 0.138 392 4351.48

TABLE IV: Comparing various metrics for some designs generated
by the generator with the design in [3]. PA=Parallelism, ST=Storage,
PR=Precision, AC=Accuracy. All designs were synthesized for a
clock frequency of 250 MHz, processed 512 input values, have the
same precision (fixed32) and have the same accuracy (LUT). .
One of the important issues mentioned in “[3] is that in
their design, as the number of input values increases, the total
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Fig. 9: Cycle consumption in each stage of the generated design with various values of the Parallelism knob (x-axis: number
of input values, y-axis: percentage of cycles consumed) Stages defined in Section III-E.

computing time increases exponentially, and the time taken by
the Max block dominates the total computing time because
of the poor scalability of sorting logic in the Max block.
Figure 9 shows the results from a similar study we conducted
using various designs generated by our generator. In this
case, the other knobs were Storage=NOREG, Accuracy=LUT,
Precision=float32. We can see that these designs are easily
pipelineable to handle multiple data sets during Training since
we can keep each stage busy at the same time. For larger
input sizes, the designs are very balanced. We spend almost
equal time in each stage. For smaller input sizes, stage 2 does
consume relatively more time especially with high values of
Parallelism, but these scenarios are not very common.

VI. CONCLUSION

There are many tradeoffs in the design of softmax, the
multi-category classification layer in neural networks. In this
paper, we perform design tradeoff evaluation of softmax using
SoftGen, an open-source tool! that we created that generates
softmax designs by controlling the values of parallelism,
accuracy, precision and storage. The architecture used by our
generator eliminates the shortcomings in existing designs such
as limited parallelism, limited precision options, etc. We show
the results of trade-off analysis using these knobs in the paper.
In terms of parallelism, it is found that the architecture with
parallelism of 16 can provide the best area-delay product
among all the parallelism ranging from 1 to 32. It is also
observed that LUT-based EXP and LOG units can help to
make the design more energy and area efficient with almost
the same accuracy. Additionally, providing local registers to
store the intermediate results are seen to yield energy savings.

This work can be extended in many ways. Currently, we
only support input sizes that are a power-of-2 (including
20 = 1). We plan to add support for other knobs and other
values of the existing knobs. While variations of LOG and
EXP units, and bfloatl6 or other precision settings can be
added to the framework, this paper presents several important
insights on softmax designs and demonstrates a methodology
for parameterizable design generation and design space explo-
ration of softmax.

The tool is available at https://github.com/georgewzg95/softmax
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