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Abstract—We consider constructing capacity-achieving linear
codes with minimum message size for private information
retrieval (PIR) from N non-colluding databases, where each
message is coded using maximum distance separable (MDS)
codes, such that it can be recovered from accessing the contents
of any T databases. It is shown that the minimum message size
(sometimes also referred to as the sub-packetization factor) is
significantly, in fact exponentially, lower than previously believed.
More precisely, when K > T/ gcd(N,T ) where K is the total
number of messages in the system and gcd(·, ·) means the greatest
common divisor, we establish, by providing both novel code
constructions and a matching converse, the minimum message
size as lcm(N − T, T ), where lcm(·, ·) means the least common
multiple. On the other hand, when K is small, we show that it is
in fact possible to design codes with a message size even smaller
than lcm(N − T, T ).

Index Terms—Data storage, information retrieval, privacy.

I. INTRODUCTION

The problem of private information retrieval (PIR), since
its introduction [1], has attracted significant attention from
researchers in the fields of theoretical computer science,
cryptography, information theory, and coding theory. In the
classical PIR model, a user wishes to retrieve one of the K
available messages, from N non-colluding databases, each of
which has a copy of these K messages. User privacy needs
to be preserved during message retrieval, which requires that
the identity of the desired message not be revealed to any
single database. To accomplish the task efficiently, good codes
should be designed to download the least amount of data per-
bit of desired message, the inverse of which is referred to as
the capacity of the PIR system. This capacity problem in the
classical setting was settled recently [2].

In practical systems, the databases may suffer from failures,
and are also constrained on the storage space. Erasure codes
can be used to improve both storage efficiency and failure re-
sistance. This consideration motivated the investigation of PIR
from MDS-coded databases [3]–[6], with coding parameter
(N,T ), i.e., the messages can be recovered by accessing any
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T databases. The capacity of PIR from MDS-coded databases
(MDS-PIR) was characterized [4] as

C =

(
1 +

T

N
+ · · ·+

(
T

N

)K−1
)−1

. (1)

In a given code, the smallest required number of symbols
in each message is called the message size L (sometimes
also referred to as the sub-packetization factor), which is
an important factor impacting the practicality and efficiency
of the code. A large message size implies that the message
(or the data file in practice systems) needs to be large for
such code to be applicable, which significantly restricts the
possible usage scenarios. Moreover, a large message size also
usually implies that the encoding and the decoding functions
are more complex, which not only requires more engineering
efforts to implement but also hinders the efficiency of the
system operation. From a theoretical point of view, a code
with a smaller message size usually implies a more transparent
coding structure, which can be valuable for related problems;
see, e.g., [7] for such an example. Thus codes with a smaller
message size are highly desirable in both theory and practice.

The capacity-achieving code given in [4] requires L =
TNK , which can be extremely large for a system with even
a moderate number of messages. The problem of reducing
the message size of capacity-achieving codes was recently
considered by Xu and Zhang [6], and it was shown that under
the assumption that all answers are of the same length, the
message size must satisfy L ≥ T (N/ gcd(N,T ))K−1. These
existing results may have left the impression that capacity-
achieving codes would necessitate a message size exponential
in the number of messages.

In this work, we show that the minimum message size
for capacity-achieving PIR codes can in fact be signifi-
cantly smaller than previously believed, by providing capacity-
achieving linear codes with message size L = lcm(N−T, T ).
Two linear code constructions, referred to as Construction-A
and Construction-B, respectively, are given. The two construc-
tions have the same download cost and message size, however
Construction-B has a better upload cost (i.e., a lower commu-
nication cost for the user to send the queries), at the expense
of being slightly more sophisticated than Construction-A. The
key difference between the two proposed constructions and
existing codes in the literature is that the proposed codes
reduce the reliance on the so-called variety symmetry [8],
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which should be distinguished from the asymmetry discussed
in [9], and the answers may be of different lengths1. We further
show that this is in fact the minimum message size when
K > T/ gcd(N,T ), the proof of which requires a careful
analysis of the converse proof of the information-theoretic
MDS-PIR capacity. Finally, we show that, when K is small,
it is in fact possible to design codes with a message size even
smaller than lcm(N − T, T ).

The code constructions and converse proof reflect a re-
verse engineering approach which further extends [8], [11].
Particularly, in [8], a similar approach was used to tackle the
canonical PIR setting with replicated databases and a capacity-
achieving PIR code with the minimum message size and up-
load cost was discovered, and in the current work the databases
are instead MDS-coded. The analysis technique and the code
construction in the current work, however, are considerably
more involved due to the additional coding requirements and
the several integer constraints.

The rest of the paper is organized as follows. In Section II,
a formal problem definition is given. Construction-A and
Construction-B are then given in Section III and Section IV,
respectively, where the correctness and performance are also
proved and analyzed. The optimality of message size is
established by first identifying several critical properties of
capacity-achieving codes in Section V-A, then lower-bounding
the minimum message size when K > T/ gcd(N,T ) in Sec-
tion V-B. A special code is given in Section V-C to show that
when K ≤ T/ gcd(N,T ), the message size can be even lower
than lcm(N − T, T ). Finally, Section VI concludes the paper.
Several technical proofs are relegated to the Appendices.

II. SYSTEM MODEL

There are a total of K mutually independent messages
W 0,W 1, . . . ,WK−1 in the system. Each message is uni-
formly distributed over XL, i.e., the set of length-L sequences
in the finite alphabet X . All the messages can be collected
and written as a single length-LK row vector W 0:K−1. Each
message is MDS-coded and then distributed to N databases,
such that from any T databases, the messages can be fully
recovered. Since the messages are (N,T ) MDS-coded, it is
without loss of generality to assume that L = M ·T for some
integer M .

When a user wishes to retrieve a particular message W k∗ ,
N queries Q

[k∗]
0:N−1 = (Q

[k∗]
0 , . . . , Q

[k∗]
N−1) are sent to the

databases, where Q
[k∗]
n is the query for database-n. The

retrieval needs to be information theoretically private, i.e.,
any database is not able to infer any knowledge as to which
message is being requested. For this purpose, a random key F

1The download cost is measured in this work as the expected number of
downloaded symbols (over all random queries), which is in line with the
prevailing approach in the literature when PIR capacity is concerned [2], [4],
where the download cost is viewed as being equivalent to certain entropy
term. However, if we instead measure the download cost by the maximum
number of downloaded symbols (among all possible queries), which was the
alternative and more stringent approach used in [10] and [6], then the optimal
minimum message sizes will need to be much larger. In a sense, having the
more stringent requirement that the maximum download cost needs to match
the PIR capacity forces certain symmetrization to be built in the code, which
necessitates a significant increase in the message size.

in the set F is used together with the desired message index
k∗ to generate the set of queries Q[k∗]

0:N−1. Each query Q
[k∗]
n

belongs to the set of allowed queries for database-n, denoted
as Qn. After receiving query Q[k∗]

n , database-n responds with
an answer A[k∗]

n . Each symbol in the answers also belongs to
the finite field X , and the answers may have multiple (and
different numbers of) symbols. Using the answers A

[k∗]
0:N−1

from all N databases, together with F and k∗, the user then
reconstructs Ŵ k∗ .

A more rigorous definition of the linear information retrieval
process we consider in this work can be specified by a set
of coding matrices and functions as follows. For notational
simplicity, we denote the cardinality of a set A as |A|.

Definition 1. A linear private information retrieval code
from linearly MDS-coded databases (a linear MDS-PIR code)
consists of the following coding components:

1) A set of MDS encoding matrices:

G̃n := diag(G̃0
n, G̃

1
n, . . . , G̃

K−1
n ),

n ∈ {0, 1, . . . , N − 1}, (2)

where G̃kn, k ∈ {0, 1, . . . ,K − 1} is an L×M matrix in
X for encoding message W k, i.e., each message is not
mixed with other messages during storage, and each G̃n
encodes the messages into the information to be stored
at database-n, denoted as Vn = W 0:K−1 · G̃n;

2) A set of MDS decoding recovery functions:

ΨT : XLK → XLK , (3)

for each T ⊆ {0, 1, . . . , N−1} such that |T | = T , whose
outputs are denoted as W̃ 0:K−1

T = ΨT ({Vn : n ∈ T });
3) A query function

φn : {0, 1, . . . ,K − 1} × F → Qn,
n ∈ {0, 1, . . . , N − 1},

i.e., for retrieving message W k∗ , the user sends the query
Q

[k∗]
n = φn(k∗,F) to database-n;

4) An answer length function

`n : Qn → {0, 1, . . .}, n ∈ {0, 1, . . . , N − 1}, (4)

i.e., the length of the answer from each database, a non-
negative integer, is a deterministic function of the query,
but not the particular realization of the messages;

5) An answer generating matrix

Ĝ(qn)
n ∈ XMK×`n , qn ∈ Qn, n ∈ {0, 1, . . . , N − 1},

(5)

i.e., the answer A[k∗]
n = A

(qn)
n := Vn · Ĝ(qn)

n , when qn =
Q

[k∗]
n is the query received by database-n;

6) A reconstruction function

ψ :

N−1∏
n=0

X `n × {0, 1, . . . ,K − 1} × F → XL, (6)

i.e., after receiving the answers, the user reconstructs the
message as Ŵ k∗ = ψ(A

[k∗]
0:N−1, k

∗,F).
These functions satisfy the following three requirements:



3

1) MDS recoverable: For any T ⊆ {0, 1, . . . , N − 1} such
that |T | = T , we have W̃ 0:K−1

T = W 0:K−1.
2) Retrieval correctness: For any k∗ ∈ {0, 1, . . . ,K − 1},

we have Ŵ k∗ = W k∗ .
3) Privacy: For every k, k′ ∈ {0, 1, . . . ,K − 1}, n ∈
{0, 1, . . . , N − 1} and q ∈ Qn,

Pr(Q[k]
n = q) = Pr(Q[k′]

n = q). (7)

Note that Q[k∗]
n is in fact a random variable, since F is the

random key. It follows that even when the messages are viewed
as deterministic, A[k∗]

n is still not deterministic. In contrast, for
any specific query realization Q

[k∗]
n = qn, the corresponding

answer A(qn)
n is deterministic when the messages are viewed

as deterministic. The distinction between A
[k∗]
n and A

(qn)
n is

indicated by the bracket [·] and the parenthesis (·).
In order to measure the performance of an MDS-PIR code,

we consider the following two metrics, with the focus on
minimizing the latter while keeping the former optimal:

1) The retrieval rate, which is defined as

R :=
L∑N−1

n=0 E(`n)
. (8)

This is the number of bits of desired message information
that can be privately retrieved per bit of downloaded data.
It was shown [4] that the maximum retrieval rate, i.e., the
capacity of such MDS-PIR systems, is as given in (1).

2) The message size L, which is the number of symbols to
represent each individual message. This quantity should
be minimized, because in practical applications, a smaller
message size implies a more versatile code.

A third metric, the upload cost, is also of interest in practical
systems (also particularly in computer science literature, e.g.,
[1]), although it is not our main focus in this work. The upload
cost can be defined as

N−1∑
n=0

log2 |Qn|, (9)

which is roughly the total number of bits that the user needs
to send to the servers during the query phase.

We will need several more parameters before proceeding.
Define p := gcd(N,T ), then

N − T = p · r, T = p · s, (10)

for some positive integers r and s, which are co-prime.

III. NEW MDS-PIR CODE: CONSTRUCTION-A

In this section, we provide the first MDS-PIR code con-
struction with message length L = lcm(N − T, T ), which we
refer to as Construction-A.

A. The Coding Components of Construction-A

Each message W k can be divided into M sub-messages,
denoted as W k = (W k,0,W k,1, . . . ,W k,M−1), and each
sub-message contains T symbols in the alphabet X . The
construction relies on two novel ingredients: a new indexing on
the key (query) and the introduction of pseudo code symbols.

K

s
DB	0

... 7∗

.D"
1," .D#

1," .D*&#
1,"

s s
DB	1 DB	N-1

Fig. 1. The queries to different databases are illustrated. The parts of the
queries related to the interference signals are of the same pattern. As a
consequence, the induced interference signals in the answers will have the
same pattern, and T of them can be isolated to remove the interference signals
in all the answers.

The two elements were not present in other constructions in
the literature such as [2], [4], [6]. A simpler version of these
two ingredients were first used in [8] for replicated databases.
The generalized version used in the current work requires a
more complex translation between indexing and the answer, as
well as the introduction of more than one pseudo code symbol.

The first novel ingredient in the construction, which is
different from previous ones in the literature, is the random key
F = (F0,F1, . . . ,FK−1), which is a length-K vector uniformly
distributed in the set

F :=

{
(f0, . . . , fK−1) ∈ {0, . . . , r + s− 1}K∣∣∣∣

(
K−1∑
k=0

fk

)
r+s

= 0

}
, (11)

where (·)r+s indicates modulo (r+ s). In this code construc-
tion, we need to first choose a (in fact, any) linear (N,T )-
MDS code C, in the alphabet X as our base code. There are
many known techniques to construct such codes, such as Reed-
Solomon codes and Cauchy matrix based constructions; see
[12]. The coding functions can then be given as follows:

1) Each sub-message W k,m, m = 0, 1, . . . , r − 1 and
k = 0, 1, . . . ,K−1, is encoded by C into N coded sym-
bols V k,m0:N−1 = (V k,m0 , V k,m1 , . . . , V k,mN−1), with V k,mn =

W k,m · G̃∗n ∈ X placed at database-n, where G̃∗n is the
n-th column of the T × N generator matrix of code C

operated on each sub-message, which produces the stored
information at database-n.

2) The MDS decoding function is obvious which is naturally
induced by that of C.

3) For any n ∈ {0, 1, . . . , N − 1}, the query generating
function produces a length-K column vector as

φn(k∗,F) = Q[k∗]
n =

(F0, . . . ,Fk∗−1, (Fk∗ + n)r+s ,Fk∗+1, . . . ,FK−1)T .
(12)

4) Database-n first produces a K × s query matrix Q̃n

Q̃n =
(
Q[k∗]
n · 1Ts + 1K · [0, 1, . . . , s− 1]

)
r+s

, (13)

where 1t is the all-one column vector of length t, and
T indicates matrix transpose; the element of Q̃n on the
k-th row and i-th column is denoted as Q̃k,in . The query
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length function is then defined as:

`n =

s−1∑
i=0

1

(
min

k=0,1,...,K−1
Q̃k,in < r

)
, (14)

where 1(·) is the indicator function, i.e., `n is the number
of columns in Q̃n which has an element less than r.

5) The second novel ingredient, which is different from
previous ones in the literature, is the introduction of
pseudo code symbols and pseudo message symbols in
the sub-messages: V k,in = W k,i = 0 for i ≥ r. For
n ∈ {0, 1, . . . , N − 1}, an intermediate answer vector
Ã

[k∗]
n of length-s is formed as

Ã[k∗]
n :=

(
K−1⊕
k=0

V
k,Q̃k,0

n
n ,

K−1⊕
k=0

V
k,Q̃k,1

n
n ,

. . . ,

K−1⊕
k=0

V
k,Q̃k,s−1

n
n

)
, (15)

each component of which is the finite field addition of
some components of the vector Vn that are indicated by
the corresponding column of Q̃n. The eventual answer
A

[k∗]
n of length `n is formed by concatenating the com-

ponents of Ã[k∗]
n which are not constantly zero, i.e., those

corresponding to the positions indicated in (14).
6) For any i ∈ {0, 1, . . . , s − 1}, define the interference

database set Ti := {n| Q̃k∗,in ≥ r}. The i-th component
of Ã[k∗]

n , n ∈ Ti, can be written as
K−1⊕
k=0

V
k,Q̃k,i

n
n =

K−1⊕
k=0

(
W k,Q̃k,i

n · G̃∗n
)

=

(
K−1⊕
k=0

W k,Q̃k,i
n

)
· G̃∗n = W̄ [k∗],i · G̃∗n, n ∈ Ti,

where the length-T row vector W̄ [k∗],i is defined as

W̄ [k∗],i :=

(
k∗−1⊕
k=0

W k,Q̃k,i
n ⊕

K−1⊕
k=k∗+1

W k,Q̃k,i
n

)
.

Note that W̄ [k∗],i is not a function of n, since Q̃k,in = Q̃k,in′
unless k = k∗. Thus as long as |Ti| ≥ T , the vector
W̄ [k∗],i can be fully recovered by the MDS property of
the code C; see Fig. 1 for an illustration. Further note that
the i-th component of Ã[k∗]

n for n ∈ {0, 1, . . . , N−1}\Ti
can be written as(

W̄ [k∗],i · G̃∗n
)
⊕
(
W k∗,Q̃k∗,i

n · G̃∗n
)
, (16)

from which, since W̄ [k∗],i is known, we can recover(
W k∗,Q̃k∗,i

n · G̃∗n
)
, n ∈ {0, 1, . . . , N − 1} \ Ti. (17)

Denote Nm :=
{
n
∣∣Q̃k∗,in = m

}
. As long as |Nm| ≥ T ,

we can recover the vector W k∗,m by again invoking the
property of the MDS code C.

B. An Example for Construction-A

Let us first consider an example (N,T,K) = (3, 2, 3),
which induces (p, r, s, L) = (1, 1, 2, 2) in the code. We omit
the index i since here r = 1. The possible queries Q0, Q1,
and Q2 are listed in the corresponding columns in Table I.
With a given query Qn, the expanded query Q̃n is given to
its right, the second column of which is by adding 1 to each
component and then taking modulo-3, as specified in Step-4
of the protocol. The answer An is then simply constructed by
taking each column of Q̃n, and forming the addition of the
corresponding V symbols, by however, taking advantage of
the fact that V kn = 0 whenever k ≥ 1.

Consider the case to retrieve message k∗ = 1, and the key
is F = (0, 1, 2)T . Then the queries are

Q0 = (0, 1, 2)T , Q1 = (0, 2, 2)T , Q2 = (0, 0, 2)T . (18)

The corresponding queries (and query matrices such induced)
and answers are marked bold in Table I. In these Q̃ matrices,
each column has at least one element being 0, and thus the
total number of transmission symbols is 6. It is seen that
from (V 0

0 , V
0
1 ), the symbol V 0

2 can be recovered by the MDS
property, and thus V 1

2 . Similarly, we can recover V 1
1 . Using

both (V 1
1 , V

1
2 ), we can then recover the original message W1

by decoding the MDS code C.

C. Correctness, Privacy, and Download Cost

According to the last coding component function (the re-
construction function) in Construction-A, the correctness of
the proposed code hinges on two conditions: |Ti| ≥ T for all
i = 0, 1, . . . , s− 1 and |Nm| ≥ T for all m = 0, 1, . . . , r− 1.
We establish these two conditions in the following lemma,
whose proof can be found in Appendix A.

Lemma 1. In Construction-A, for any request of message-k∗

and any random key F,
1) |Ti| = T for any i ∈ {0, 1, . . . , s− 1};
2) |Nm| = T for any m ∈ {0, 1, . . . , r − 1}.

We have the following main theorem for Construction-A.

Theorem 1. Codes obtained by Construction-A are both
private and capacity-achieving.

Proof. The fact that the code is private is immediate, by
observing that Q[k∗]

n is uniformly distributed on the set

Qn =

{
(f0, . . . , fK−1)T ∈ {0, . . . , r + s− 1}K∣∣∣∣

(
K−1∑
k=0

fk − n

)
r+s

= 0

}
, (19)

regardless of the value of k∗.
The expected lengths of the answers is
N−1∑
n=0

E(`n) =

N−1∑
n=0

s−1∑
i=0

Pr

(
min

k=0,1,...,K−1
Q̃k,in < r

)

=

s−1∑
i=0

N−1∑
n=0

Pr

(
min

k=0,1,...,K−1
Q̃k,in < r

)
, (20)
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TABLE I
QUERIES AND ANSWERS FOR (N,T,K) = (3, 2, 3).

database-0 database-1 database-2
Q0 Q̃0 A0 Q1 Q̃1 A1 Q2 Q̃2 A20

0

0


01

01

01

 (
V 0
0 ⊕ V 1

0 ⊕ V 2
0 , ∅

) 0

0

1


01

01

12

 (
V 0
1 ⊕ V 1

1 , ∅
) 0

0

2


01

01

20

 (V0
2 ⊕V1

2, V2
2

)
0

1

2


01

12

20

 (
V0

0, V2
0

) 0

1

0


01

12

01

 (
V 0
1 ⊕ V 2

1 , ∅
) 0

1

1


01

12

12

 (
V 0
2 , ∅

)
0

2

1


01

20

12

 (
V 0
0 , V 1

0

) 0

2

2


01

20

20

 (V0
1, V1

1 ⊕V2
1

) 0

2

0


01

20

01

 (
V 0
2 ⊕ V 2

2 , V 1
2

)
...

...
...

...
...

...
...

...
...2

2

2


20

20

20

 (
∅, V 0

0 ⊕ V 1
0 ⊕ V 2

0

) 2

2

0


20

20

01

 (
V 2
1 , V 0

1 ⊕ V 1
1

) 2

2

1


20

20

12

 (
∅, V 0

2 ⊕ V 1
2

)

assuming an arbitrary message k∗ is being requested. The
probabilities involved in the summand i = i∗ depend on(

Q̃0:K−1,i∗

0 , Q̃0:K−1,i∗

1 , . . . , Q̃0:K−1,i∗

N−1

)
. (21)

By the definition of Q̃k,in , it is clear that if any item in

(F0 + i∗, ...,Fk∗−1 + i∗,Fk∗+1 + i∗, . . . ,FK−1 + i∗)r+s

is less than r, then mink=0,1,...,K−1 Q̃
k,i∗

n < r for all n =
0, 1, . . . , N − 1, which will induce N transmitted symbols in
the retrieval from all databases for i = i∗; this event E occurs
with probability 1− (s/(r+s))K−1. On the other hand, when
the event E does not occur, in the vector

(Fk∗ + i∗ + 0,Fk∗ + i∗ + 1, . . . ,Fk∗ + i∗ +N − 1)r+s

the number of elements that are less than r is N − T , which
induces (N − T ) symbols being transmitted. Therefore

N−1∑
n=0

E(`n) = s [Pr(E)N + (1−Pr(E)) (N − T )]

= sN − sT
(
T

N

)K−1

= sN

[
1−

(
T

N

)K]
, (22)

from which it follows that the code is indeed capacity achiev-
ing, by taking into account (10).

The following lemma is also immediate, and we state it as
a lemma below.

Lemma 2. The upload cost of Construction-A is N(K −
1) log [N/ gcd(N,T )].

Proof. Consider any k∗. By (12), we see that |Qn| = |F| =
(N/ gcd(N,T ))K−1, and it follows that the upload cost is∑N−1
n=0 log(|Qn|) = N(K − 1) log [N/ gcd(N,T )].

IV. NEW MDS-PIR CODE: CONSTRUCTION-B

In this section, we provide an alternative code construction,
namely Construction-B. This construction requires a lower
upload cost than Construction-A, however, it relies on two
different coding strategies for the two cases of high rate codes
T ≥ N − T and low rate codes T ≤ N − T . The high rate
code construction is essentially built on a product code, while
the low rate codes bear more similarity to Construction-A.

A. Construction-B for T ≥ N − T
In this construction, the same random key F =

(F0,F1, . . . ,FK−1) as in Construction-A is used, and the MDS
encoding matrices and decoding functions are also exactly
the same as in Construction-A. We need a second generic
(s, r)-MDS code Cc in the alphabet X in this construction.
Construction-B essentially utilizes a product code with row
code C and column code Cc [12]. In this context, it is more
convenient to view the message W k as being represented as
an r × T matrix, denoted as W̆ k

W̆ k =


W k,0

W k,1

...
W k,r−1

 . (23)

Next we provide the coding components (3 − 6) in
Construction-B.

3) The query generating function at server-n produces the
following K × 1 query vector

φn(k∗,F) = Q[k∗]
n = (Q

[k∗]
0,n , Q

[k∗]
1,n , . . . , Q

[k∗]
K−1,n)T

= d(F0,F1, . . . ,Fk∗−1, (Fk∗ + n)s+r ,

Fk∗+1, . . . ,FK−1)T es, (24)

where dxes := min(x, s), and it operates on a vector by
operating on each component individually.
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4) Define an s× (s+ 1) query pattern matrix P as

P :=


1 1 1 · · · 1 0 0 · · · 0 0
0 1 1 · · · 1 1 0 · · · 0 0
...

...
...

...
...

...
... 0

1 1 · · · 1 0 0 · · · 0 1 0

 ,
(25)

where the first row has the first r elements being 1’s and
the rest (s − r + 1) being 0’s, and the remaining rows
are obtained by cyclically shifting the first s elements in
the first row but keeping the last 0 in place. The query
length function is then defined as

`n =

s−1∑
i=0

1

(
K−1∑
k=0

P
i,Q

[k∗]
k,n

> 0

)
, (26)

i.e., it is the number of columns in the matrix P selected
by the vector Q[k∗]

n that have non-zero elements.
5) Recall that coded message W k at database-n is a length-r

vector V kn

V kn =


V k,0n

V k,1n
...

V k,r−1
n

 =


W k,0

W k,1

...
W k,r−1

 · G̃∗n. (27)

In order to generate the answer, each V kn vector is
encoded by Cc into a length-s intermediate code vector

Ṽ kn = (Ṽ kn,0, Ṽ
k
n,1, . . . , Ṽ

k
n,s−1) = (Ĝ∗)T · V kn , (28)

where Ĝ∗ is the generator matrix of the code Cc. An
intermediate answer vector is then produced

Ã[k∗]
n :=

(
K−1⊕
k=0

Ṽ k,0n · P
0,Q

[k∗]
k,n

,

K−1⊕
k=0

Ṽ k,1n · P
1,Q

[k∗]
k.n

,

· · · ,
K−1⊕
k=0

Ṽ k,s−1
n · P

s−1,Q
[k∗]
k,n

)T
. (29)

The eventual answer A[k∗]
n of length `n is formed by

concatenating the components of Ã[k∗]
n which are not

constantly zero, i.e., those indicated by (26).
6) For any i ∈ {0, 1, . . . , s − 1}, define the interference

database set T̃i := {n| P
i,Q

[k∗]
k∗,n

= 0}. For n ∈ T̃i, the

i-th symbol in the intermediate answer is

Ã
[k∗]
n,i =

K−1⊕
k=0

Ṽ k,in · P
i,Q

[k∗]
k,n

=

K−1⊕
k=0

(Ĝ∗i )
T · V kn · Pi,Q[k∗]

k,n

=

K−1⊕
k=0

(Ĝ∗i )
T · W̆ k · G̃∗n · Pi,Q[k∗]

k,n

=

K−1⊕
k=0

(Ĝ∗i )
T ·
(
W̆ k · P

i,Q
[k∗]
k,n

)
· G̃∗n

= (Ĝ∗i )
T ·

(
K−1⊕
k=0

W̆ k · P
i,Q

[k∗]
k,n

)
· G̃∗n

= (Ĝ∗i )
T · W̄ [k∗]

i · G̃∗n,

where the r × T matrix W̄ [k∗]
i is defined as

W̄
[k∗]
i :=

(
k∗−1⊕
k=0

W̆ k · P
i,Q

[k∗]
k,n

)

⊕

(
K−1⊕

k=k∗+1

W̆ k · P
i,Q

[k∗]
k,n

)
.

Note that W̄ [k∗]
i is not a function of n, since Q

[k∗]
k,n =

Q
[k∗]
k,n′ unless k = k∗. Thus as long as |T̃i| ≥ T , the

vector (Ĝ∗i )
T · W̄ [k∗]

i can be fully recovered by the MDS
property of the code C. Further note that Ã[k∗]

n,i for n ∈
{0, 1, . . . , N − 1} \ T̃i can be written as(

(Ĝ∗i )
T · W̄ [k∗]

i · G̃∗n
)
⊕
(

(Ĝ∗i )
T · W̆ k∗ · G̃∗n

)
, (30)

from which, since (Ĝ∗i )
T ·W̄ [k∗]

i is known, we can recover

(Ĝ∗i )
T · W̆ k∗ · G̃∗n, n ∈ {0, 1, . . . , N − 1} \ T̃i. (31)

Denote Sn :=

{
i
∣∣∣P
i,Q

[k∗]
k∗,n

= 1

}
and N :=

{n | |Sn| ≥ r}, the latter of which is the set of databases
that provide at least r symbols of the requested messages
in the form (31). For any n ∈ N , we can recover W̆ k∗ ·G̃∗n
by invoking the property of MDS code Cc. Then as long
as |N | ≥ T , W̆ k∗ can be fully recovered by invoking the
MDS property of code C.

1) An Uncompressed Description of Construction-B: The
description of the coding components above is in a compressed
form, and offers little intuition. The following equivalent
description, on the other hand, can provide better intuition at
the expense of more redundant items. Let the extended pattern
matrix P̄ of size s× (s+ r) be defined as

P̄ = [P |0s×(r−1)], (32)

i.e., expanding the original pattern matrix P by appending
an all-0 matrix of size s × (r − 1). The same query answer
can now be equivalently produced at each server by using the
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following auxiliary query

Q̄[k∗]
n = (F0,F1, . . . ,Fk∗−1,

(Fk∗ + n)s+r ,Fk∗+1, . . . ,FK−1)T , (33)

i.e., without using the d·es function mapping, and then follow-
ing the same manner in answer generating, using the extended
patter matrix P̃ . The stored contents of message W k across
all the databases can be visualized as follows

Ṽ k,00 Ṽ k,01 · · · Ṽ k,0N−1

Ṽ k,10 Ṽ k,11 · · · Ṽ k,1N−1
...

...
...

...
Ṽ k,r−1

0 Ṽ k,r−1
1 · · · Ṽ k,r−1

N−1

Ṽ k,r0 Ṽ k,r1 · · · Ṽ k,rN−1
...

...
...

...
Ṽ k,s−1

0 Ṽ k,s−1
1 · · · Ṽ k,s−1

N−1


, (34)

where each column corresponds to a database, and the contents
below the horizontal line are not stored physically, but can be
generated as part of the answer computation.

It is straightforward to verify that with the auxiliary query
Q̄

[k∗]
n as the queries, the extended pattern matrix P̄ in the

answer generation, and the uncompressed stored contents Ṽ k,00

as the stored content, the answer is precisely the same as the
uncompressed version described above.

2) An Example of Construction-B: Consider an example
N = 5, T = 3, K = 4, which induces the parameters
(p, r, s, L) = (1, 2, 3, 6). The pattern matrix P and the
extended pattern matrix P̄ are

P =

1 1 0 0
0 1 1 0
1 0 1 0

 , P̄ =

1 1 0 0 0
0 1 1 0 0
1 0 1 0 0

 . (35)

Let the messages be W 0:3 = (A,B,C,D). Consider the case
when message W 0 = A is being requested, and the key is
F = (4, 1, 2). Then the auxiliary queries are

[Q̄0, Q̄1, Q̄2, Q̄3, Q̄4] =


3 4 0 1 2
4 4 4 4 4
1 1 1 1 1
2 2 2 2 2

 , (36)

and the compressed queries are

[Q0, Q1, Q2, Q3, Q4] =


3 3 0 1 2
3 3 3 3 3
1 1 1 1 1
2 2 2 2 2

 . (37)

The answers from the five databases are then C0
0 C0

1 A0
2 + C0

2 A0
3 + C0

3 C0
4

C1
0 +D1

0 C1
1 +D1

1 C1
2 +D1

2 A1
3 + C1

3 +D1
3 A1

4 + C1
4 +D1

4

D2
0 D2

1 A2
2 +D2

2 D2
3 A2

4 +D1
4

 ,
(38)

where we have used Amn to denote Ṽ 0,m
n , as the corresponding

coded message W 0 = A, and similarly for B,C,D. Observer
that in the first row (C0

0 , C
0
1 , C

0
4 ) can be used to recover C0

n,
n = 0, 1, . . . , 4, and thus to obtain (A0

2, A
0
3); similarly, in the

second row and third row, we can recover information on the
A message. The information on A we can recover is thus as
given in the following message matrix where each column
corresponds to a database ∗ ∗ A0

2 A0
3 ∗

∗ ∗ ∗ A1
3 A1

4

∗ ∗ A2
2 ∗ A2

4

 . (39)

It is now straightforward to see that through the product code
based on the (5, 3) MDS code C and the (3, 2) MDS code Cc,
the message A can be fully recovered.

3) Correctness, Privacy, and Communication Costs: Simi-
lar to Construction-A, the correctness of Construction-B relies
on the following two facts established as Lemma 3, whose
proof can be found in Appendix A.

Lemma 3. In Construction-B, for any request of message-k∗

and any random key F,

1) |T̃i| = T for any i ∈ {0, 1, . . . , s− 1};
2) |N | = T .

We also have the follow main theorem for Construction-B.

Theorem 2. The codes obtained by Construction-B for T ≥
N − T are both private and capacity-achieving.

Proof. To see that the code is private, observe that for
database-n, the auxiliary query vector Q̄[k∗]

n follows a uniform
distribution in the set defined in (19) for any requested
message k∗ ∈ {0, 1, . . . ,K − 1}. The query Q[k∗]

n is obtained
through an additional mapping d·es regardless of k∗, and thus
the query at database-n follows the same distribution for all
k∗.

The expected lengths of the answers can be written as
N−1∑
n=0

E(`n) =

N−1∑
n=0

s−1∑
i=0

Pr

(
K−1∑
k=0

P
i,Q

[k∗]
k,n

> 0

)

=

s−1∑
i=0

N−1∑
n=0

Pr

(
K−1∑
k=0

P
i,Q

[k∗]
k,n

> 0

)

=

s−1∑
i=0

N−1∑
n=0

Pr

(
K−1∑
k=0

P̄
i,Q̄

[k∗]
k,n

> 0

)
, (40)

assuming an arbitrary message k∗ is being requested. The
probabilities involved in the summand for i = i∗ depend on
the vector(

Q̄
[k∗]
0:K−1,0, Q̄

[k∗]
0:K−1,1, . . . , Q̄

[k∗]
0:K−1,N−1

)
. (41)

By the definition of Q̄[k∗]
0:K−1,n, it is clear that if P̄i∗,Fk

=
1 for any k ∈ {0, 1, . . . , k∗ − 1, k∗ + 1, . . . ,K − 1}, then∑K−1
k=0 P

i,Q
[k∗]
k,n

> 0 for all n = 0, 1, . . . , N − 1. This will
induce N transmissions in the retrieval from all databases for
i = i∗. This event, denoted as E, occurs with probability
1− (s/(r+ s))K−1, since the i∗-th row of the matrix P̄ has r
entries of value 1, and Q̄[k∗]

k,n = Fk, k = 0, 1, . . . , k∗− 1, k∗+
1, . . . ,K−1, are mutually independent, identically distributed,
and each follows a uniform distribution on {0, 1, . . . , r+s−1}.
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On the other hand, when the event E does not occur, the
vector

(Fk∗ + 0,Fk∗ + 1, . . . ,Fk∗ +N − 1)r+s

is a permutation of the p-replicated vector of (0, 1, . . . , s +
r − 1), and thus the number of elements that satisfying
P̄i∗,(Fk∗+n)r+s

= 1, n = 0, 1, . . . , N − 1, is exactly N − T ,
implying that (N −T ) symbols will be transmitted for i = i∗.
Therefore, we have

N−1∑
n=0

E(`n) = s [Pr(E)N + (1−Pr(E)) (N − T )]

= sN − sT
(
T

N

)K−1

= sN

[
1−

(
T

N

)K]
, (42)

from which it follows that the code is indeed capacity achiev-
ing.

Lemma 4. The upload cost of Construction-B for T ≥ N−T
is upper-bounded by

min[N(K − 1) log(s+ r), NK log(s+ 1)].

Proof. For datebase-n, the query Q
[k∗]
n has K symbols, and

each symbol is from the alphabet {0, 1, . . . , s}, and thus the
the upload cost is clearly upper bounded by N log(s + 1)K .
However, observe that the query Qn is calculated by mapping
the random key F with log |F| = N(K−1) log(s+r) through
an surjective function d·es, whose image size is upper bounded
by log(s + r)K−1. If (s + 1)K > (s + r)K−1, then we can
simply use the auxiliary query Q̄[k∗]

n . Thus the upload cost is
at most the less of the two terms as given above.

If r > 1, the quantity NK log(s + 1) is clearly the less
of the two when K is large, and thus may lead to significant
savings in terms of the upload cost.

B. Construction-B for T ≤ N − T
Here the same random key F = (F0,F1, . . . ,FK−1) as

in Construction-A is again used, and the MDS encoding
matrices and decoding functions are also exactly the same as
in Construction-A. The other components of the codes are as
follows.

3) For any n ∈ {0, 1, . . . , N − 1}, the query generating
function produces a query with K symbols

φn(k∗,F) = Q[k∗]
n = (Q

[k∗]
0,n , Q

[k∗]
1,n , . . . , Q

[k∗]
K−1,n)T =

d(F0, . . . ,Fk∗−1, (Fk∗ + n)s+r ,Fk∗+1, . . . ,FK−1)T er.
(43)

4) The query length function is then defined as

`n = s · 1
(

min
k=0,...,K−1

Q
[k∗]
k,n < r

)
. (44)

5) Let V k,rn = W k,r = 0. Database-n first produces a K×s
query matrix Q̃n for i = 0, 1, . . . , s− 1

Q̃k,in =

 r if Q[k∗]
k,n = r(

Q
[k∗]
k,n + i

)
r

otherwise
. (45)

For n ∈ {0, 1, . . . , N−1}, an intermediate answer vector
Ã

[k∗]
n of length-s is formed (similar to Construction-A)

as

Ã[k∗]
n :=

(
K−1⊕
k=0

V
k,Q̃k,0

n
n ,

K−1⊕
k=0

V
k,Q̃k,1

n
n ,

. . . ,

K−1⊕
k=0

V
k,Q̃k,s−1

n
n

)T
. (46)

The eventual answer A[k∗]
n of length `n is formed by

concatenating the components of Ã[k∗]
n which are not

constantly zero, as indicated by (44).
6) The reconstruction function is the same as that of

Construction-A, and the desired message can be correctly
reconstructed as long as |Ti| ≥ T and |Nm| ≥ T .

For better visualization, we can again consider the (uncom-
pressed) auxiliary query

Q̄[k∗]
n = (F0,F1, . . . ,Fk∗−1, (Fk∗ + n)s+r ,

Fk∗+1, . . . ,FK−1)T . (47)

The query vector Q[k∗]
n is a compressed version of the auxiliary

query Q̄[k∗]
n .

1) An Example for Construction-B: Consider an example
N = 5, T = 2, K = 4, which induces the parameters
(p, r, s, L) = (1, 3, 2, 6). Let the messages be W 0:3 =
(A,B,C,D). Consider the case when message W0 = A
is being requested, and the key is F = (4, 1, 2). Then the
auxiliary queries and the queries are as given in (36) and (37),
respectively. The intermediate query matrix at all the databases
are

[Q̃0, Q̃1, Q̃2, Q̃3, Q̃4]

=


3 3 3 3 0 1 1 2 2 0
3 3 3 3 3 3 3 3 3 3
1 2 1 2 1 2 1 2 1 2
2 0 2 0 2 0 2 0 2 0

 . (48)

The answers from the five databases are then[
C1

0 +D2
0 C1

1 +D2
1 A0

2 + C1
2 +D2

2 A1
3 + C1

3 +D2
3 A2

4 + C1
4 +D2

4

C2
0 +D0

0 C2
1 +D0

1 A1
2 + C2

2 +D0
2 A2

3 + C2
3 +D0

3 A0
4 + C2

4 +D0
4

]
.

(49)

In the first row, (C1
0 +D2

0, C
1
1 +D2

1) can be used to recover
(C1

n + D2
n) for any n = 0, 1, . . . , 4, using the MDS property

of code C. Similarly, C2
n + D0

n can be recovered. Therefore,
the following information on the requested message A can be
obtained [

∗ ∗ A0
2 A1

3 A2
4

∗ ∗ A1
2 A2

3 A0
4

]
, (50)

from which message A can clearly be reconstructed.
2) Correctness, Privacy, and Communication Costs: The

following lemma establishes the correctness of Construction-
B when T ≤ N − T , the proof of which can be found in
Appendix A.

Lemma 5. In the construction above, for any request of
message-k∗ and any random key F,
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1) |Ti| = T for any i ∈ {0, 1, . . . , s− 1};
2) |Nm| = T for any m ∈ {0, 1, . . . , r − 1}.

Theorem 3. Construction-B is both private and capacity-
achieving for T ≤ N − T .

Proof. The fact that the code is private is immediate for the
same reason for the case T ≥ N − T . The expected length of
the answers is

N−1∑
n=0

E(`n) = s

N−1∑
n=0

Pr

(
min

k=0,1,...,K−1
Q

[k∗]
k,n < r

)
,

assuming an arbitrary message k∗ is being requested. By the
definition of Q[k∗]

n , if any item in

d(F0, ...,Fk∗−1,Fk∗+1, . . . ,FK−1)r+ser

is less than r, then mink=0,1,...,K−1Q
[k∗]
k,n < r for all n =

0, 1, . . . , N − 1, which will induce sN transmitted symbols
in the retrieval from all databases; this event E occurs with
probability 1− (s/(r + s))K−1.

On the other hand, when the event E does not occur, in the
vector

d(Fk∗ + 0,Fk∗ + 1, . . . ,Fk∗ +N − 1)r+ser

the number of elements that are less than r is exactly N −T ,
which induces s(N−T ) symbols being transmitted. Therefore

N−1∑
n=0

E(`n) = Pr(E)sN + (1−Pr(E)) s(N − T )

= sN − sT
(
T

N

)K−1

= sN

[
1−

(
T

N

)K]
, (51)

from which it follows that Construction-B is indeed capacity
achieving.

Lemma 6. The upload cost of Construction-B for T ≤ N−T
is upper-bounded by

min[N(K − 1) log(s+ r), NK log(r + 1)].

The proof follows the same argument as that of Lemma 4,
and it is omitted here for brevity.

V. MINIMUM MESSAGE SIZE FOR CAPACITY-ACHIEVING
LINEAR CODES

In this section, we establish the minimum message size as
lcm(N −T, T ) when K is above a threshold, then shows that
it is in fact possible to use an even smaller message size when
K is below this threshold.

A. Properties of Capacity-Achieving Linear MDS-PIR Codes

In this section, we provide two key properties of capacity-
achieving linear MDS-PIR codes, which play an instrumental
role in our study of the minimum message size.

Lemma 7. Any linear MDS-PIR code must have:
P0 For any T ⊆ {0, 1, . . . , N − 1} satisfying |T | = T ,
{A[k]

n }n∈T are mutually independent, given any subset
of messages W 0:K−1.

Lemma 8. Let π : {0, 1, . . . ,K − 1} → {0, 1, . . . ,K − 1} be
a permutation function. We have for any k = 0, 1, . . . ,K − 2,

N

[
N−1∑
n=0

H(A[π(k)]
n |Wπ(0:k−1),F)− L log |X |

]

≥ T
N−1∑
n=0

H(A[π(k+1)]
n |Wπ(0:k),F). (52)

Moreover, for any linear MDS-PIR code for which the equality
holds for any k and π(·) in (52), let q0:N−1 be a combination
of queries such that Pr(q0:N−1) > 0 for the retrieval of W k∗ ,
then the code must have:
P1 For any T ⊆ {0, 1, . . . , N − 1} such that |T | = T , and
J ⊆ {0, 1, . . . ,K − 1} satisfying k∗ ∈ J

H
(
A

(qn′ )
n′ , n′ ∈ T̄ |WJ , A(qn)

n , n ∈ T
)

= 0,

where T̄ is the complement of T .

Property P0 is a direct consequence of the linear MDS-
PIR code definition. Property P1 states that the interference
signals from the answers of any T databases in a capacity-
achieving code can fully determine all interference signals in
other answers. The inequalities in Lemma 8 are the key steps
in deriving the capacity of MDS-PIR codes; the proofs of these
properties are can be found in Appendix B. Conversely, for any
capacity-achieving linear MDS-PIR code, these inequalities
must hold with equality, implying the following theorem.

Theorem 4. Any capacity-achieving linear MDS-PIR code
must have the properties P0 and P1.

Proof. Let π : {0, 1, ...,K − 1} → {0, 1, ...,K − 1} be a
permutation. By applying Lemma 8 recursively, we can write

L log |X |
R

≥
N−1∑
n=0

H(A[π(0)]
n | F) (53)

≥ L log |X |+ T

N

N−1∑
n=0

H(A[π(1)]
n |Wπ(0),F) (54)

≥ · · · (55)

≥ L log |X |

(
1 +

T

N
+ · · ·+

(
T

N

)K−1
)
, (56)

and it follows that R ≥ C. For any capacity-achieving linear
MDS-PIR code, all the inequalities in Lemma 8 must be
equality. Therefore, any capacity-achieving linear MDS-PIR
code must have properties P0 and P1.

A similar set of properties for capacity-achieving PIR codes
on replicated databases was derived in [8], which holds for a
more general code class and in a more explicit form. For MDS
coded databases, firstly it is more meaningful to consider only
linear codes, and secondly, it is not clear whether the properties
stated in Lemma 7 and 8 can be extended to the more general
class of codes considered in [8].

B. Bounding the Minimum Message Size

The main result of this section is the following theorem.
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Theorem 5. When K > T/ gcd(N,T ), the message size of
any capacity-achieving linear MDS-PIR code satisfies L ≥
lcm(N − T, T ).

From Theorem 5, we can conclude that codes obtained by
Construction-A and Construction-B indeed have the minimum
message size when K > T/ gcd(N,T ). The proof of Theorem
5 relies on the delicate relation among a set of auxiliary
quantities Hk

n’s and Ikn’s which we define next. For any given
capacity-achieving linear MDS-PIR code, let (k̆, f̆) be the
maximizer for the following optimization problem for n = 0:

max
k=0,1,...,K−1

max
f∈F

H(A[k]
n |W k,F = f). (57)

Define for k = 0, 1, . . . ,K − 1 and n = 0, 1, . . . , N − 1,

Hk
n :=

H(A
[k̆]
n |W k,F = f̆)

log |X |
, Ikn :=

I(A
[k̆]
n ;W k | F = f̆)

log |X |
.

The following lemma implies that the optimization problem
in (57) has the same maximizer for all n ∈ {0, 1, . . . , N −1}.

Lemma 9. For any capacity-achieving linear MDS-PIR code,
∀n′ 6= n′′ where n′, n′′ ∈ {0, 1, . . . , N − 1}, any k∗ ∈
{0, 1, . . . ,K − 1}, any f ∈ F ,

H(A
[k∗]
n′ |W

k∗ ,F = f) = H(A
[k∗]
n′′ |W

k∗ ,F = f).

This lemma also implies that we can define H k̆ := H k̆
0 =

. . . = H k̆
N−1. The next two lemmas establish a critical property

of, and relevant relations between, Hk
n’s and Ikn’s.

Lemma 10.

L− (N − T )H k̆ =

N−1∑
n=0

I k̆n. (58)

Lemma 11. For any k ∈ {0, 1, . . . ,K − 1} and n ∈
{0, 1, . . . , N − 1}, Hk

n and Ikn are integers; moreover

H k̆
n ≥

∑
k 6=k̆

Ikn, (59)

and when K > s,

H k̆ ≥ s (60)

The proofs of Lemma 9-11 are given in Appendix B. We
are now ready to prove Theorem 5.

Proof of Theorem 5. When K > s, by (60) in Lemma 11 and
Lemma 10, we have

L− (N − T )s ≥ L− (N − T )H k̆ =

N−1∑
n=0

I k̆n ≥ 0. (61)

Substituting L = Mps and (N − T ) = pr into the left hand
side leads to the conclusion M ≥ r, implying that L ≥MT ≥
rT = lcm(N − T, T ).

C. Message Size Reduction for Small K
The following theorem confirms that for small K, it is in

fact possible to construct a capacity-achieving code with an
even smaller message size.

Theorem 6. When K = 2 and T ≥ N − T , the minimum
message size of capacity-achieving codes is T .

Proof of Theorem 6. Since L = MT > 0, it is trivial to see
that L ≥ T , and thus it only remains to provide a construction
of a capacity-achieving linear MDS-PIR code with such a
message size.

Let database-n store two symbols V 0
n , V

1
n ∈ X , which are

MDS-coded symbols of messages W 0 and W 1, respectively.
When the user wishes to retrieve message W k∗ where k∗ ∈
{0, 1}, two query strategies are used.

• With probability T
N , randomly partition N databases into

3 disjoint sets G(0), G(1) and G(2), with |G(0)| = N − T ,
|G(1)| = 2T −N and |G(2)| = N − T . The user requests
V 0
n ⊕V 1

n from databases in G(0), (V 0
n , V

1
n ) from those in

G(1), and V 1−k∗
n in G(2).

• With probability N−T
N , randomly partition N databases

into 2 disjoint sets G(3) and G(4), with |G(3)| = T and
|G(4)| = N − T . The user requests V k

∗

n from databases
in G(3), but no information from those in G(4).

It is straightforward to verify that the code is indeed correct,
private, and capacity-achieving.

Theorem 6 provides a code construction with a small
message size for the special case of K = 2 and T ≥ N − T ,
however, we suspect codes with small message sizes also
exist for other parameters when K is below the threshold,
but they may require certain more sophisticated combinatorial
structure. A systematic approach to construct such codes and
a converse result appear rather difficult to find.

VI. CONCLUSION

We proposed two code constructions for private informa-
tion retrieval from MDS-coded databases with message size
lcm(N − T, T ), and show that this is the minimum message
size for linear codes when K is above a threshold. For smaller
K it is in fact possible to design PIR codes with an even
smaller message size, which we show by a special example for
K = 2. This work generalizes our previous result on private
information retrieval from replicated databases [8] in a highly
non-trivial manner. We expect the code constructions and the
converse proof approach to be also applicable and fruitful in
other privacy-preserving primitives.

Independent of this work and inspired by our previous result
[8], Zhu et al. [13] discovered a different code construction,
and also derived a lower bound on the message size similar
to the one reported here. All three code constructions have
the same message size, however, the two constructions we
provided have a lower upload cost due to the queries being
better compressed. It is worth noting that in our previous work
[8], the proposed code was also shown to be optimal in terms
of the upload cost, however, proving the proposed codes in
the current work to be optimal appears more difficult due to
the more complex dependence stipulated by the MDS code.
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APPENDIX A
PROOFS OF LEMMA 1, LEMMA 3, AND LEMMA 5

Proof of Lemma 1. Fix a particular k∗. It is convenient to
represent the Q̃k

∗,i
n as a matrix given below
Q̃k
∗,0

0 Q̃k
∗,0

1 . . . Q̃k
∗,0
N−1

Q̃k
∗,1

0 Q̃k
∗,1

1 . . . Q̃k
∗,1
N−1

...
...

...
...

Q̃k
∗,s−1

0 Q̃k
∗,s−1

1 . . . Q̃k
∗,s−1
N−1

 . (62)

Since Q̃k
∗,i
n = (Fk∗ + i + n)s+r, N = p · (s + r), and T =

p · s, for any i and any given realization of key F, there are
exactly T elements in Q̃k

∗,i
0:N−1, which is a row of (62), that

are greater than or equal to r. This proves the first statement
that |Ti| ≥ T . For the second statement, consider a fixed m ∈
{0, 1, . . . , r + s − 1}. It is clear that each row in the matrix
(62) has exactly p positions being m. Therefore, there are a
total of p · s = T elements in the matrix being m. Since for
any i 6= i′ where 0 ≤ i, i′ < s, we have Q̃k

∗,i
n 6= Q̃k

∗,i′

n , due to
Q̃k
∗,i
n = (Fk∗+i+n)s+r, these T positions are all in different

columns, implying |Nm| = T .

Proof of Lemma 3. For each fixed i ∈ {0, 1, 2, . . . , s−1}, we
have

T̃i =

{
n
∣∣ P

i,Q
[k∗]
k∗,n

= 0

}
=

{
n
∣∣ P̄

i,Q̄
[k∗]
k∗,n

= 0

}
, (63)

however, the vector

(Q̄
[k∗]
k∗,0, Q̄

[k∗]
k∗,1, . . . , Q̄

[k∗]
k∗,n−1) (64)

is simply a permutation (in fact, a cyclic shift) of p-replicated
vector of (0, 1, . . . , r + s− 1), and thus(

P̄
i,Q̄

[k∗]
k∗,0

, P̄
i,Q̄

[k∗]
k∗,1

, . . . , P̄
i,Q̄

[k∗]
k∗,N−1

)
(65)

is in fact is a permutation of [P̄i, P̄i, . . . , P̄i], i.e., a p-replicated
version of the i-th row of P̄ . It is now clear that |T̃i| = T ,
because each row of P̄ has exactly s zeros, and the replication
gives a total of ps = T zeros in the vector in (65).

To see that |N | = T , let us focus on any single database-
n such that |Sn| > 0, i.e., P̄

i,Q̄
[k∗]
k∗,n

= 1 for some i ∈

{0, 1, . . . , s − 1}. This condition is equivalent to Q̄
[k∗]
k∗,n < s,

and moreover, it also implies |Sn| = r because the vector(
P̄

0,Q̄
[k∗]
k∗,n

, P̄
1,Q̄

[k∗]
k∗,n

, . . . , P̄
s−1,Q̄

[k∗]
k∗,n

)T
, (66)

is the j = Q̄
[k∗]
k∗,n-th column of the extended pattern matrix P̄ ,

and for any j < s, such a column has exact r positions being
1. It is also immediately clear that among the N databases,
there are a total of sp = T of them with Q̄

[k∗]
k∗,n < s, again

because the vector (64) is a permutation of the p-replicated
vector of (0, 1, . . . , r + s− 1).

Proof of Lemma 5. Define T :=
{
n|Q[k∗]

k∗,n = r
}

, and notice
that in Construction-B, Ti = T for all i = 0, 1, . . . , s − 1.

Moreover

T =
{
n
∣∣Q[k∗]

k∗,n = r
}

=
{
n
∣∣Q̄[k∗]

k∗,n ≥ r
}
. (67)

Notice that the vector(
Q̄

[k∗]
k∗,0, Q̄

[k∗]
k∗,1, . . . , Q̄

[k∗]
k∗,N−1

)
(68)

is a permutation of p-replicated vector (0, 1, . . . , r + s − 1),
and thus it has exactly ps = T items that are greater or equal
to r. This directly implies |T | = T .

By definition, for any Q̃k
∗,i
n = m where m < r, to hold,

we must have (Fk∗ + n)s+r < r. It is also clear that Q̃k
∗,i
n =

((Fk∗ + n)s+r + i)r. For any m ∈ {0, 1, . . . , r− 1}, there are
in fact exactly ps = T pairs of (n, i)’s such that Q̃k

∗,i
n = m.

This can be seen as follows: the vector

(Fk∗ + 0,Fk∗ + 1, . . . ,Fk∗ +N − 1)s+r (69)

has rp = (N−T ) items less than r, and these items are a per-
mutation of p-replicated vector (0, 1, . . . , r−1). The symmetry
of these values indeed implies that there are (N −T )s/r = T
such (n, i) pairs for each m ∈ {0, 1, . . . , r − 1}. We next
show that such pairs do not have any common n. To see this,
suppose there are two distinct pairs (n, i) and (n, i′), which
satisfy

((Fk∗ + n)s+r + i)r = ((Fk∗ + n)s+r + i′)r = m, (70)

for certain m ∈ {0, 1, . . . , r − 1}. However, notice that 0 ≤
i, i′ < s ≤ r, we therefore must have i = i′, which contradicts
our supposition. It follows that indeed |Nm| = T for any
m ∈ {0, 1, . . . , r − 1}.

APPENDIX B
PROOFS OF LEMMAS 8-11

Proof of Lemma 8.

N

[
N−1∑
n=0

H(A[π(k)]
n |Wπ(0:k−1),F)− L log |X |

]
(71)

≥ N
[
H(A

[π(k)]
0:N−1 |W

π(0:k−1),F)− L log |X |
]

(72)

= N
[
H(A

[π(k)]
0:N−1 |W

π(0:k−1),F)

− I(Wπ(k);A
[π(k)]
0:N−1 |W

π(0:k−1),F)
]

(73)

= NH(A
[π(k)]
0:N−1 |W

π(0:k),F) (74)

(b)

≥
N−1∑
n=0

H(A
[π(k)]
ρ((n:n+T−1)N ) |W

π(0:k),F) (75)

(c)
=

N−1∑
n=0

T−1∑
s=0

H(A
[π(k)]
(n+s)N

|Wπ(0:k),F) (76)

= T

[
N−1∑
n=0

H(A[π(k)]
n |Wπ(0:k),F)

]
(77)

= T

[
N−1∑
n=0

H(A[π(k+1)]
n |Wπ(0:k),F)

]
, (78)

where ρ : {0, 1, . . . , N−1} → {0, 1, . . . , N−1} in inequality
(75) is a permutation over {0, 1, . . . , N − 1}. Equality (78) is



12

due to the privacy constraint, which is

H(A[π(k)]
n |Wπ(0:k),F) (79)

=
∑
f∈F

Pr(F = f)H(A[π(k)]
n |Wπ(0:k),F = f) (80)

=
∑

qn∈Qn

Pr(Qn = qn)H(A(qn)
n |Wπ(0:k)) (81)

= H(A[π(k+1)]
n |Wπ(0:k),F) (82)

For the equality (b) to hold for an MDS-PIR code, i.e.,

H(A
[π(k)]
0:N−1 |W

π(0:k),F) = H(A
[π(k)]
ρ((n:n+T−1))N

|Wπ(0:k),F).

the equality must hold for each F = f , which concludes the
proof of property P1.

Proof of Lemma 9. Let T ′, T ′′ ⊆ {0, 1, . . . , N − 1} such that
|T ′| = |T ′′| = T , and n′ ∈ T ′, T ′′ = T ′ \ {n′} ∪ {n′′}. By
P1, any capacity-achieving linear code must have

H(A
[k∗]
T ′ | A

[k∗]
T ′′ ,W

k∗ ,F = f)

= H(A
[k∗]
T ′′ | A

[k∗]
T ′ ,W

k∗ ,F = f) = 0, (83)

which implies

H(A
[k∗]
T ′ |W

k∗ ,F = f) = H(A
[k∗]
T ′′ |W

k∗ ,F = f). (84)

Invoking P0 leads to∑
n∈T ′

H(A[k∗]
n |W k∗ ,F = f) =

∑
n∈T ′′

H(A[k∗]
n |W k∗ ,F = f),

which further implies that

H(A
[k∗]
n′ |W

k∗ ,F = f) = H(A
[k∗]
n′′ |W

k∗ ,F = f).

This completes the proof.

Proof of Lemma 10. For any capacity-achieving code, (71)
must equal to (76). The equality should also hold when F = f̆ ,
k = 0 and π(0) = k̆. Substituting the definition of H k̆

n and I k̆n
directly, we have

N

[
N−1∑
n=0

(
H k̆ + I k̆n

)
− L

]
=

N−1∑
n=0

T−1∑
s=0

H k̆,

which simplifies to the desired equality.

Proof of Lemma 11. Let qn = φn(k̆, f̆). The linearity of the
code implies that

Hk
n =

H(A
[k̆]
n |W k,F = f̆)

log |X |
=
H(A

(qn)
n |W k)

log |X |
(85)

is an integer. Notice that Ikn + Hk
n is also an integer by the

same argument, from which we conclude that Ikn is also an
integer.

To see the inequality in (59), we write

H(A(qn)
n ) ≥ I(A(qn)

n ;W 0:K−1)

=

K−1∑
k=0

I(A(qn)
n ;W k|W 0:k−1)

(a)

≥
K−1∑
k=0

I(A(qn)
n ;W k) = log |X |

K−1∑
k=0

Ikn, (86)

where (a) is because

I(A(qn)
n ;W k|W 0:k−1)

= H(W k|W 0:k−1)−H(W k|W 0:k−1, A(qn)
n )

≥ H(W k)−H(W k|A(qn)
n )

= I(A(qn)
n ;W k). (87)

It follows that

H k̆
n log |X | = H(A(qn)

n )− I k̆n log |X |
≥ log |X |

∑
k 6=k̆

Ikn. (88)

Next we prove the inequality (60). First define the following
query support set at database-n

Q∗n = {qn|qn = φn(k = 0, f) for some f ∈ F}, (89)

and since the code is privacy preserving, it is also the query
support set for all other k = 1, . . . ,K − 1. We can then write

H k̆ log |X | = max
k=0,1,...,K−1

max
f∈F

H(A[k]
n |W k,F = f)

= max
k=0,1,...,K−1

max
qn∈Q∗n

H(A(qn)
n |W k)

≥ max
qn∈Q∗n

H(A(qn)
n |W k) ≥ H(A[k̆]

n |W k,F = f̆)

= Hk
n log |X | (90)

for any n = 0, 1, . . . , N − 1 and k = 0, 1, . . . ,K − 1.

Plugging T = ps, N − T = pr, and L = MT into (58)
gives

N−1∑
n=0

I k̆n = L− (N − T )H k̆ = p[Ms− rH k̆]. (91)

Since I k̆n ≥ 0, the left hand side is strictly positive unless
(N − T ) is a factor of L. If the left hand side is zero, then
L ≥ lcm(T,N − T ), implying H k̆ ≥ s. If (N − T ) is not a
factor of L, implying that the left hand side is indeed strictly
positive, then there exists at least one n∗ ∈ {0, 1, . . . , N − 1}
such that I k̆n∗ ≥ 1. For any k = 0, 1, . . . ,K − 1,

Ikn∗ +Hk
n∗ = H(A

[k̆]
n∗ | F = f̆)/ log |X |, (92)

however, the right hand side of (92) is independent of k, and
thus Ikn∗ +Hk

n∗ is in fact a constant. Furthermore, H k̆ ≥ Hk
n∗

by (90), it follows that Ikn∗ ≥ I k̆n∗ for all k = 0, 1, . . . ,K − 1.
By (59), we can write

H k̆
n∗ ≥

∑
k 6=k∗

Ikn∗ ≥ (K − 1)I k̆n∗ ≥ (K − 1) ≥ s, (93)
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when K > s.

REFERENCES

[1] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private informa-
tion retrieval,” Journal of the ACM (JACM), vol. 45, no. 6, pp. 965–981,
Nov. 1998.

[2] H. Sun and S. A. Jafar, “The capacity of private information retrieval,”
IEEE Transactions on Information Theory, vol. 63, no. 7, pp. 4075–
4088, Jul. 2017.

[3] N. B. Shah, K. Rashmi, and K. Ramchandran, “One extra bit of down-
load ensures perfectly private information retrieval,” in 2014 Proceedings
of IEEE International Symposium on Information Theory (ISIT), 2014,
pp. 856–860.

[4] K. Banawan and S. Ulukus, “The capacity of private information
retrieval from coded databases,” IEEE Transactions on Information
Theory, vol. 64, no. 3, pp. 1945–1956, Mar. 2018.

[5] R. Tajeddine, O. W. Gnilke, and S. El Rouayheb, “Private information
retrieval from MDS coded data in distributed storage systems,” IEEE
Transactions on Information Theory, vol. 64, no. 11, pp. 7081–7093,
Nov. 2018.

[6] J. Xu and Z. Zhang, “On sub-packetization and access number
of capacity-achieving PIR schemes for MDS coded non-colluding
databases,” SCIENCE CHINA Information Sciences, vol. 61, no. 7, pp.
100 306:1–100 306:16, 2018.

[7] H.-Y. Lin, S. Kumar, E. Rosnes, A. G. i Amat, and E. Yaakobi, “Weakly-
private information retrieval,” in 2019 Proceedings of IEEE International
Symposium on Information Theory (ISIT), 2019, pp. 1257–1261.

[8] C. Tian, H. Sun, and J. Chen, “Capacity-achieving private information
retrieval codes with optimal message size and upload cost,” IEEE
Transactions on Information Theory, vol. 65, no. 11, pp. 7613–7627,
Nov. 2019.

[9] K. Banawan and S. Ulukus, “Asymmetry hurts: Private information
retrieval under asymmetric traffic constraints,” IEEE Transactions on
Information Theory, vol. 65, no. 11, pp. 7628–7645, Nov. 2019.

[10] H. Sun and S. A. Jafar, “Optimal download cost of private information
retrieval for arbitrary message length,” IEEE Transactions on Informa-
tion Forensics and Security, vol. 12, no. 12, pp. 2920–2932, Dec. 2017.

[11] C. Tian, “Symmetry, outer bounds, and code constructions: A computer-
aided investigation on the fundamental limits of caching,” MDPI En-
tropy, vol. 20, no. 8, pp. 603.1–43, Aug. 2018.

[12] S. Lin and D. J. Costello, Error control coding, 2nd ed. Prentice Hall,
2004.

[13] J. Zhu, Q. Yan, C. Qi, and X. Tang, “A new capacity-achieving private
information retrieval scheme with (almost) optimal file length for coded
servers,” IEEE Transactions on Information Forensics and Security,
vol. 15, pp. 1248–1260, 2020.

Ruida Zhou (S’19) received the B.S. degree in Electronic Engineering and
Information Science from the University of Science and Technology of China,
Hefei, China, in 2018. He is currently working toward his doctor degree in the
Department of Electrical and Computer Engineering, Texas A&M University,
College Station, TX. His research interests include information theory and
statistical learning.

Chao Tian (S’00–M’05–SM’12) received the B.E. degree in Electronic
Engineering from Tsinghua University, Beijing, China, in 2000 and the M.S.
and Ph. D. degrees in Electrical and Computer Engineering from Cornell
University, Ithaca, NY in 2003 and 2005, respectively. Dr. Tian was a
postdoctoral researcher at Ecole Polytechnique Federale de Lausanne (EPFL)
from 2005 to 2007, a member of technical staff–research at AT&T Labs–
Research in New Jersey from 2007 to 2014, and an Associate Professor in the
Department of Electrical Engineering and Computer Science at the University
of Tennessee Knoxville from 2014 to 2017. He joined the Department of
Electrical and Computer Engineering at Texas A&M University in 2017. His
research interests include data storage systems, multi-user information theory,
joint source-channel coding, signal processing, and compute algorithms.

Dr. Tian received the Liu Memorial Award at Cornell University in 2004,
AT&T Key Contributor Award in 2010, 2011 and 2013. His authored and co-
authored papers received the 2014 IEEE ComSoc DSTC Data Storage Best
Paper Award and the 2017 IEEE Jack Keil Wolf ISIT Student Paper Award. He
was an Associate Editor for THE IEEE SIGNAL PROCESSING LETTERS from
2012 to 2014, and is currently an Editor for THE IEEE TRANSACTIONS ON
COMMUNICATIONS and an Associate Editor for THE IEEE TRANSACTIONS
ON INFORMATION THEORY.

Hua Sun (S’12–M’17) received his B.E. in Communications Engineering
from Beijing University of Posts and Telecommunications, Beijing, China,
in 2011, M.S. in Electrical and Computer Engineering from University of
California Irvine, USA, in 2013, and Ph.D. in Electrical Engineering from
University of California Irvine, USA, in 2017. He is an Assistant Professor
in the Department of Electrical Engineering at the University of North Texas,
USA. His research interests include information theory and its applications to
communications, privacy, networking, and storage.

Dr. Sun received the IEEE Jack Keil Wolf ISIT Student Paper Award in
2016, an IEEE GLOBECOM Best Paper Award in 2016, and the University
of California Irvine CPCC Fellowship for the year 2011-2012.

Tie Liu (S’99–M’06–SM’15) received his B.S. (1998) and M.S. (2000)
degrees, both in Electrical Engineering, from Tsinghua University, Beijing,
China and a second M.S. degree in Mathematics (2004) and a Ph.D. degree
in Electrical and Computer Engineering (2006) from the University of Illinois
at Urbana-Champaign. Since August 2006 he has been with Texas A&M
University, where he is currently a Professor in the Department of Electrical
and Computer Engineering. His research interest is in the areas of information
theory, statistical signal processing, and pattern recognition.

Dr. Liu received an M. E. Van Valkenburg Graduate Research Award
(2006) from the University of Illinois at Urbana-Champaign, a CAREER
Award (2009) from the National Science Foundation, and an Outstanding
Professor Award (2018) from Texas A&M University. He was a Technical
Program Committee Co-Chair for the 2008 IEEE GLOBECOM, a General
Co-Chair for the 2011 IEEE North American School of Information Theory,
and an Associate Editor for Shannon Theory for THE IEEE TRANSACTIONS
ON INFORMATION THEORY during 2014-2016.


