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Abstract—In this article, the terrain classifications of polari-
metric synthetic aperture radar (PolSAR) images are studied.
A novel semi-supervised method based on improved Tri-training
combined with a neighborhood minimum spanning tree (NMST)
is proposed. Several strategies are included in the method:
1) a high-dimensional vector of polarimetric features that are
obtained from the coherency matrix and diverse target decom-
positions is constructed; 2) this vector is divided into three
subvectors and each subvector consists of one-third of the
polarimetric features, randomly selected. The three subvectors
are used to separately train the three different base classi-
fiers in the Tri-training algorithm to increase the diversity of
classification; and 3) a help-training sample selection with the
improved NMST that uses both the coherency matrix and the
spatial information is adopted to select highly reliable unlabeled
samples to increase the training sets. Thus, the proposed method
can effectively take advantage of unlabeled samples to improve
the classification. Experimental results show that with a small
number of labeled samples, the proposed method achieves a much
better performance than existing classification methods.

Index Terms— Polarimetric synthetic aperture radar (PolSAR),
semi-supervised learning, terrain classification, Tri-training.

I. INTRODUCTION

N RECENT years, polarimetric synthetic aperture

radar (PolSAR) has attracted a great deal of attention
because of its wide application for Earth remote sensing in
many fields such as ocean dynamics, geoscience, agriculture,
and environmental monitoring [1]-[3]. A large number of
PoISAR systems (AIRSAR, ESAR, TerraSAR-X, Radarsat-2,
and ALOS2) have been developed in the past few decades
and some PolSAR images have been made publicly available.
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Amid the utilizations of PolISAR data, land cover classifica-
tion is much in demand. A number of PolSAR classification
methods, including target decomposition [4], [5], multiple
statistical distributions [6], [7], and sparse representation [8],
have been developed in recent years. In general, these methods
can be divided into unsupervised and supervised classifica-
tions [9]. An unsupervised classification is mainly based on
polarimetric target decomposition, for instance, Pauli decom-
position [4], H/A/Alpha decomposition [5], Freeman three-
component decomposition [6], Krogager decomposition [10],
Huynen decomposition [11], Touzi decomposition [12],
Yamaguchi four-component decomposition [13], and B&F
decomposition [14]. The parameters of the polarimetric target
decomposition are related to the physical properties of terrain
objects and can be used to identify terrain classes. In contrast,
a supervised classification is mainly based on machine learn-
ing. Several well-recognized classifications include k-nearest
neighbor (KNN) [15], decision tree (DT) [16], and support
vector machine (SVM) [17], where labeled samples are used
to train a classifier.

Recently, researchers have proposed a number of semi-
supervised classification (SSC) methods that use both labeled
and unlabeled samples in the training sets [18], [19]. These
methods include graph-based SSC [20], semi-supervised SVM
(S3VM) [21], generative adversarial networks-based SSC [22],
self-training-based SSC [23], and co-training-based SSC [24].
As a prominent SSC method, the co-training algorithm [25]
uses two independent sets of views to separately train two
different classifiers and enlarges the training set of one
classifier with the unlabeled samples predicted by the other
classifier. This semi-supervised method has been employed
in certain tasks, such as clustering [26] and hyperspectral
image classification [27]. In terms of that the two inde-
pendent views in the co-training method are difficult to
obtain in many applications, Zhou and Li [28] proposed a
Tri-training algorithm that only requires one sufficient view
but with three different base classifiers. Their method can
not only easily deal with the prediction problems of the
unlabeled samples but can also apply the idea of ensem-
ble learning to improve generalization ability. Ideas similar
to the Tri-training method have been used to solve certain
machine-learning problems, for instance, hyperspectral image
classification [29].
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It should be pointed out that the base classifiers in both
co-training and Tri-training methods receive further positive
training if proper unlabeled samples are selected. However,
if improper unlabeled samples are selected, the base classifiers
receive certain noisy labels and these noisy labels decrease the
accuracy of classification. Especially, when available labeled
samples are few, it is difficult to simulate the distribution
of the entire data and is a challenge to the selection of
proper unlabeled samples in both co-training and Tri-training.
The two independent views in the co-training and three base
classifiers in the tri-training are used for enough diversity as a
prerequisite for the effective operation of these two methods.
This diversity directly affects the reliability of selected unla-
beled samples. The quality of the base classifiers increases
with increasing the reliability of selected unlabeled samples.
The diversity of polarimetric features of the PolSAR data can
also enhance the reliability of the selected samples. In addition,
the spatial information in PoISAR images can further improve
the reliability of the selected samples, which has not been
considered in the methods.

In this article, we propose a novel SSC method based on the
Tri-training scheme with two improvements on the diversity
of classification and the reliability of the selected unlabeled
samples. To increase the diversity, a high-dimensional vector
of polarimetric features obtained from the coherency matrix
and various target decompositions is constructed. This vector
is divided into three subvectors and each subvector contains
one-third of the polarimetric features, randomly selected. The
three subvectors are used to separately train the three differ-
ent base classifiers in the Tri-training with different labeled
samples. The reliable unlabeled samples are selected with an
improved neighborhood minimum spanning tree (NMST) [30].
This selection scheme is similar to the minimum spanning
tree (MST) that exploits local spatial information [31].

The main contributions of this article are summarized as
follows: 1) the SSC method based on the Tri-training proposed
herein can effectively classify various PolSAR images with a
small number of labeled samples; 2) the partition of the high-
dimensional vector into three subvectors each containing one-
third of the polarimetric features increases the diversity of the
Tri-training, as the three different base classifiers in the Tri-
training are separately trained by the three different subsets of
randomly selected polarimetric features; and 3) the reliability
of selected unlabeled samples is increased with the NMST
method that utilizes the spatial neighborhood information
between pixels.

The remainder of the article is organized as follows.
Section II explains the proposed method. Section III shows
the experimental design with real PolSAR data, and the
experimental results and discussion are provided in Section IV.
This is followed by the conclusions in Section V.

II. PROPOSED METHOD

Fig. 1 shows the framework of the complete process
of the proposed method. As can be seen from the figure,
the proposed method consists of two processes: training and
classification. In the training process, there exist three steps.
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First, the polarimetric features are divided into three subsets
with the same dimension. Each subset contains one-third of the
polarimetric features, randomly selected. These three subsets
are used to separately train the three different base classifiers
that are depicted by three different colors in Fig. 1. Second,
the trained classifiers are combined with the NMST method
to test unlabeled samples in each data set. Finally, when the
tested results of unlabeled samples obtained from one classifier
are verified by the other two classifiers, these tested samples
are labeled and added into the training set. This step is marked
by two colors in one cell, as shown in Fig. 1. In this article,
the number of iterations ¢ is used to control the training
process. In the classification process, the three different trained
classifiers are employed to analyze all unlabeled samples and
determine their final labels.

A. Polarimetric Features

Two sets of polarimetric features are used in this article.
The first set of the polarimetric features is obtained from the
coherency matrix. In general, each pixel in PolISAR data can
be expressed in the form of the coherency matrix T as follows:

T T T
T=|Tn Tn Ts|. (1)
15y T3 T33

Since T is a complex conjugate matrix and the diagonal
elements are real numbers, the first set of the polarimetric
features is a 9-D vector as shown in the following:

vl = [Ty, T2z, T33, Re(T12), Im(T12),
Re(T13), Im(T13), Re(T23), Im(T23)]  (2)

where Re( ) and Im( ) represent the real and imaginary parts of
a complex number, respectively. Here, we chose the coherency
matrix rather than the scattering matrix because the coherence
matrix is a derivative of the scattering matrix and contains both
the fundamental scattering characteristics and the second-order
statistics of the scattering matrix [32].

The second set of polarimetric features is extracted
from various target decompositions, including the Pauli [4],
H/A/Alpha [5], Freeman [6], Krogager [10], Huynen [11],
Touzi decomposition [12], Yamaguchi four-component decom-
position [13], and B&F decomposition [14]. Thirty-six polari-
metric features depicting different scattering mechanisms are
listed in Table I and represented by a 36-D vector »2 as
follows:

v2=[lal®, b, |c|*, H,a, A, J1, }2, 73, Ps, Pa, Py, |K;s|?,
|Kal?, |Knl?, Ao, Bo — B, Bo+ B,C, D, E, F, G, Hy,
s, ¢S) Ts, lP’ Pysa Pyda Pyua Py;,, bes’ bed’ bev’ beh]
A3)

Combining v1 and v2 yields a 45-D PolSAR feature vector
v = [v1 v2] that is used in this article. It should be mentioned
that the vector of the 45 polarimetric features may be extended
as new polarimetric features are introduced from target decom-
positions. Also, some of those features mentioned above may
be exchanged with other features that are not selected in this
article, as discussed in Section III-B.
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Fig. 1. Framework of the proposed method.
B. Neighborhood Minimum Spanning Tree

It is commonly assumed that pixels with similar character-
istics can be assigned to the same category in image classi-
fication. In order to select highly reliable unlabeled samples,
the NMST that is based on the Prim algorithm is adopted in
this article. The NMST is an unsupervised clustering algorithm
and uses both the coherency matrix and the spatial information,
which is different from other existing clustering methods. The
NMST used in this article is to select data with the features
like a labeled sample. Herein, only a brief description of the
NMST is given; readers interested in a more detailed account
are referred to [30] and [31].

Let G = (V, B, W)G = (V, B, W) be a weight-connected
undirected graph, where V is the vertices in the graphic, B
represents all the possible paths, and W is the collection of the
weight of each path in G. A spanning tree, g = (V, b, W), g =
(V,b, W) is a subset that contains all the vertices in G and
only has one single path b between any two vertices. There
may exist several spanning trees in one graph because of dif-
ferent paths of traversing vertices. As for a weight-connected
graph, the MST refers to the spanning tree with a minimum
total weight of paths.

When applying the MST to a PolSAR image, one needs
to build an undirected weighted graph that contains all the
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TABLE I
POLARIMETRIC FEATURES

Method Dimensions Polarimetric features
. |lal’: Single scattering coefficient, |5|*: double scattering coefficient, and |c”: 7z / 4
Pauli[4] 3 . .
double scattering coefficient
H/A/Alphal5] 6 H: Entropy, a: Alpha, A: Anisotropy and A1, Az, As: three eigenvalues
Freeman[6] 3 Pg: Surface scattering power, Py doubh?-bounce scattering power, and P,: volume
scattering power
Krogager[10] 3 |K,|’: Sphere scattering, |K,|*: Diplane scattering, and |K,|*: Helix scattering

Ap: scattering power of target symmetry;

By: scattering power of target structure

B: scattering power of other types

By-B: scattering power of target non-symmetry;
B(+B: scattering power of target irregularity;
Huynen[11] 9 C: global shape;

D: local shape;

E: local twist or surface torsion;

F: global twist or target helicity;

G: local coupling;

Hy: global coupling due to target orientation;

a ;: Symmetric scattering type magnitude, ¢, Symmetric scattering type phase,

Touzi[12 4 L . .
ouzi[12] 7 helicity, and ¥:target orientation angle
. P, : Surface scattering power, Pyq : double-bounce scattering power,
Yamaguchi[13] 4 P, : volume scattering power, and Py, : Helix scattering power
Pysi - Surface scattering power, Py : double-bounce scattering power,
B&F[14] 4 ; . ; . .
Pysi - volume scattering power, and Py @ Helix scattering power
pixels in the PolSAR image. The weight W for each path, [l EE IEE 2lels
which is also called the feature distance between two pixels, s o : O " o - P
is computed as follows: el e e -
1 B B & ‘ Bl 5
Wi ; = ={In(T;)) + In(T;]) + Te(7, ' T; + 7' T; 4
i = AT + (T +Te(T' T+ 7' T) @) © o) © @

where T .ls the COherenCy mat.rlx and 7r( ) is the tr(flce Fig. 2. Schematic example showing the flowchart of the NMST. (a) Initial
of a matrix. It should be mentioned that this construction vertex Vj, and (b), (c), and (d), respectively, correspond to the first, second,

process requires a large amount Of Computation. Fortunately’ and third selected vertices (Vl, V2, and V3) with the NMST. The numeric
Wu et al. [33] sh d that for the PolSAR i di t value at each cell denotes the distance (the weight W) between the selected
‘u el ai. s 'Owe at tor the o lmage, adjacen vertices (blue) and their neighboring vertices (green).

pixels are more likely to have the same label as the central

pixel. Therefore, to reduce the computation and increase the
reliability of selected vertices, we adopt an improved NMST
method based on the Prim algorithm [30]. Fig. 2 is a schematic
example showing the flowchart of the NMST. The blue point
in Fig. 2(a) is the initial vertex Vp, while the green points o )
represent the neighboring vertices (paths) of Vo. The numeric ~ Sfép I: Select the training samples as vertices V, and com-

in Fig. 2(c). Repeat this process, until enough vertices are
selected. A brief outline of the NMST procedure is given as
follows.

value at each neighboring point (path) denotes the distance (the pute the set W for each vertex with its eight neigh-
weight W) between V) and that point. Select the point whose borhoods B.

distance is the shortest, like “1,” for example, in Fig. 2(a). Step 2: Select the nearest neighbor b of the eight neighbor-
This point is added to the vertex set V, and a new vertex is hoods of each training sample, and add it to the vertex
named V| [see Fig. 2(b)]. Next, select another point, marked set V.

Va, nearest the new vertex V] in its neighborhood, as shown Repeat steps 1 and 2 until enough vertices are selected.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on May 16,2020 at 00:03:42 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: SEMI-SUPERVISED PolSAR IMAGE CLASSIFICATION

C. Sample Selection and Training Process

To increase the reliability of selected unlabeled samples, a
help-learning algorithm that is based on the NMST is adopted.
The detailed algorithm is described as follows.

1) Define three different base classifiers (hl: SVM, h2:
KNN, and h3: DT) and set their initial labeled samples
L=Li=L,=Lsj.

2) Use Ly, Lo, and L3 to separately train the classifiers i1,
h2, and h3.

3) Use the trained classifiers 41, h2, and h3 to separately
test unlabeled samples and obtain three different sets of
test results Test;, Testp, and Tests.

4) Set the vertices of the labeled samples L as the initial
vertex sets V; (i = 1,2, 3) for each classifier. Use the
NMST to label certain unlabeled samples and obtain the
results Tree; (i = 1,2, 3), respectively.

5) Select sample sets R;(i = 1,2,3), which have
the same labels between Test; and Tree;, that is,
R; = {Test; = Tree;}.

6) Select a sample set L1’, which has the same label
between R, and Rj3, that is, L1’ = {R, = R3}. In the
same way, select two sample sets L2 = {R| = R3} and
L3’ = {R; = Ry}. Then, update the labeled sample sets
Ll=LIUL1,L2=L2UL2,and L3 =L3UL3.

7) Update the vertex sets with V1 = L1, V2 = L2, and
V3=1L3.

8) Repeat (from step 2 to step 7) ¢ times until a satisfactory
result is obtained.

D. Classification Process

L1 is employed to train the classifier 41. Then, the trained
h1 is used to test all unlabeled samples, and classl is the test
result. The confidence P;(m) = u(m)/8 is calculated for each
pixel m in classl. Here, u(m) is the number of neighboring
pixels that have the same label as the central pixel m.

Similarly, L2 and L3 are employed to train the classifiers
h2 and h3, respectively. Then, the trained 42 and A3 are used
to separately test all unlabeled samples, and their test results
are given in class2 and class3, respectively. The confidences
Py(m) = ux(m)/8 and P3(m) = u3z(m)/8 are calculated for
each pixel m in class2 and class3.

The test results are compared for each pixel among classl,
class2, and class3. If classl # class2 # class3, the final
class label of this pixel is decided by the highest confidence;
otherwise, the final class label of the pixel is decided by
majority of votes.

Table II shows the pseudocode describing the proposed
method. In addition, it should be mentioned that as the spread
of landcover type across the image is changed, the NMST
method prevents to pick points across the boundary of the
type spread because the method finds those points of the
minimum feature distance with the spanning tree at each
iteration. Also, there exists the extreme case that when all
the base classifiers have misclassified, the final classification
result will be wrong. To reduce the occurrence of such a situ-
ation, the base classifiers should be well-trained with reliable

TABLE 11
PSEUDOCODE DESCRIBING THE PROPOSED METHOD

The proposed method
Input: L: Original Labeled sample set
U: Unlabeled sample set
v: 33-dimensional features
h, ie{l.3}: three different classifiers
For ie {1..3} do
V; < randomly selected from v
L, = L « Original labeled samples
V. = L < Original vertices
End of for
Repeat 7 times
For ie {1..3} do

h; —trained by V; and L,
Test —results of U tested by /1,
Tree, <produced by V; with NMST
If (Test =Tree)
R, —Test. "Tree
End of if
For j,k,me {1..3} do
L, <R NR, (j#£k#m)
L <L UL,
Vie L

End of for
End of repeat

Output: Label : final label
For i€ {1..3} do

class, « Classified by h, with U

P —u(m)/8 % u(m)is the number of
neighboring pixels that have
the same % label as the
central pixel m.

If (class, # class, = class;) do

Label« argmax(P)
else
Label«majority voting (class,)
End of if
End of for

training sets. Thus, selecting reliable unlabeled samples to
expand the training samples becomes essential.

II1. EXPERIMENTAL DESIGN

In this article, experiments are carried out with the MAT-
LAB 2014a on a desktop computer that runs Windows 7
operating system with an Intel(R) Core(TM) CPU processor
(3.20 GHz) and 4 G memory. The three different base clas-
sifiers of the improved Tri-training in the proposed method
are the DT, SVM, and KNN, respectively. The overall accu-
racy (OA) and kappa statistics (Kappa) of the classification
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Fig. 3. Flevoland I AIRSAR data set acquired in Flevoland,
August 1989 [32]. (a) Pauli RGB image. (b) Ground truth image.
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Fig. 4. Flevoland II RADARSAT-2 data acquired in Flevoland,
April 2008 [32]. (a) Pauli RGB image. (b) Ground truth image.

results are adopted to characterize the effectiveness of the
proposed classification method. Two real PolSAR data sets
are used as shown below.

A. Data Sets

The first data set (Flevoland I) is a L-band four-look PoISAR
data acquired by the NASA/JPL AIRSAR system in Flevoland,
the Netherlands, August 1989 [32]. Fig. 3 shows both the Pauli
RGB image and ground truth image of this data. The resolution
of the Pauli RGB image is 750 x 1024 pixels, while the size of
the ground truth data is around 167 712 pixels. The pixel size
of the Pauli RGB image is 6.6 m in the slant range direction
and 12.1 m in the azimuth direction. There are 15 terrain types,
also called categories, marked in the ground truth, and most
of which are related to agriculture, including water, rapeseed,
grasses, bare soil, potatoes, beet, wheat, lucerne, forest, peas,
and stem beans.

The second data set (Flevoland II) is a C-band single-look
fully PolSAR data acquired by the RADARSAT-2 system in
Flevoland, the Netherlands, April 2008 [32]. Fig. 4 shows both
the Pauli RGB image and ground truth image of the data. The
resolution of the Pauli RGB image is 1400 x 1200 pixels, while
the size of the ground truth data is around 947 262 pixels. The
pixel size of the Pauli RGB image is 10 m in the slant range
direction and 5 m in the azimuth direction. As shown in the
ground truth image [Fig. 4(b)], there are four different terrain
types, including water, urban, forest, and cropland.
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Fig. 5. (a) OA and (b) Kappa of two PolSAR data sets varying with the
dimension of polarimetric feature vector.

B. Key Parameters in the Proposed Method

The performance of the proposed method is dominated by
four key parameters: the dimension of polarimetric feature
vector, the number of vertices in the NMST, and the number
of iterations, and the number of labeled samples in the
training process. The effects of those four parameters on the
classification results of the proposed method are investigated
experimentally with the two abovementioned real POISAR data
sets. In these experiments, if not specified, the dimension of
the polarimetric feature vector is set to 33 and 10 labeled
samples from each terrain type, i.e., 150 labeled samples for
Flevoland I (15 types) and 40 for Flevoland II (four types),
are used in the initial training data sets. The number of the
initial vertices in NMST is 10 and 8 iterations are used in the
training process.

Fig. 5 shows the OA and Kappa of the classification results
given by the proposed method varying with the dimension
of the polarimetric feature vector. As can be seen from
Fig. 5(a), the OA values for both data sets rapidly increase
as the vector dimension increases from 3 to 18. Fig. 5 also
shows that both the OA and Kappa of Flevoland I are lower
than that of Flevoland II when the vector dimension of the
polarimetric features is less than 9. As the dimension of the
polarimetric feature vector increases, the increase rates of
the OA and Kappa of Flevoland I are greater than that of
Flevoland II. These differences might be caused by various
factors, including sensor type, wavelength of radar waves,
image resolution, and data acquisition time as well. Also,
the number of categories used in the classification may have
markedly effects. It is conjectured that the different rates of
the increase of both OA and Kappa between two data sets
shown in Fig. 5 are mainly due to different radar waves
and the different amount of terrain types in the ground truth
images used in these two data sets. Flevoland I data set
contains 15 types, while Flevoland II data set has only 4 types.
As a rule of thumb, the more categories there are, the more
difficult a classification will be in machine learning [33].
This is especially perceivable for a low-dimension vector of
polarimetric features because of lack of enough information
in the training process. However, when the dimension of the
polarimetric feature vector exceeds 24, the OA and Kappa
of the Flevoland I data set are greater than that of the
Flevoland II data set because enough features provide the
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Fig. 6. Effects of the number of vertices on the (a) OA and (b) Kappa of
two data sets given by the proposed method.

possibility of a fine classification, while the contribution to
coarse-grained classification is indistinct. When the vector
dimension is greater than 27, both OA curves become nearly
flat. Similar trends for the Kappa are shown in Fig. 5(b),
indicating that the improvement of the classification results
becomes insignificant when the dimension of the polarimetric
feature vector is beyond 27 because of the redundancy of
selected polarimetric features [34]. It should be mentioned that
the values of OA and Kappa for each data point in Fig. 5 are
computed with certain polarimetric features that are selected
from the pool of the 45 polarimetric features. This indicates
that the classification results are affected by the dimension of
the feature vector and that those polarimetric features are of
equal importance to the classification. Thus, a 33-dimension
vector is used in the late sections of this article.

Fig. 6 shows the OA and Kappa of the classification results
of two real PolSAR data sets given by the proposed method
as a function of the number of vertices used in the NMST.
In the figure, the left data point (the number of vertices is
equal to zero) of each curve corresponds to the case that
the NMST is not used in the training process. The OA and
Kappa at this point have the lowest values for each curve.
Data points with a vertex number greater than zero refer to
cases where the proposed NMST is applied. As can be seen
from Fig. 6, the OA and Kappa of the classification results
increase rapidly with increasing vertex number until 8. As the
number of vertices is greater than 8, both curves become
nearly flat. When the number of vertices exceeds 14, the OA
and Kappa slightly decrease with increasing vertex number.
These slight decreases are likely due to the fact that the
similarity between the root nodes and their subnodes might
be weakened as the number of selected vertices increases.
This results in certain improper unlabeled samples selected.
Thus, the optimum number of vertices per category is between
8 and 10 in the proposed method. Herein, we would like to
point out that the optimum number of vertices is only for the
two PolarSAR data mentioned above. It might vary a little
bit when the proposed method is applied to another data set
because there will be problematic if the initial labeled pixels
fail to include all the polarimetric features for each category.
Therefore, a pretest like Fig. 6 should be given for new data.

On the other hand, as the number of labeled samples
increases the label error increases as well, which greatly
reduces the accuracy of classification and may even cause
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Fig. 7. (a) OA and (b) Kappa of the two PolSAR data sets vary with the
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Fig. 8. (a) OA and (b) Kappa statistics of the classification results of the two
PoISAR data sets vary with the number of labeled samples for each terrain
type used in the proposed method.

the entire classification to collapse. Thus, selecting the most
similar samples and improving the confidence of the selected
unlabeled samples are important to improve the classification.
Since the proposed method considers both the classification
accuracy and the diversities of sample training and selection
diversity, the strict sample expansion strategy like the NMST
can be used.

Fig. 7 shows the OA and Kappa of the classification results
of two PolSAR data sets varying with the number of iterations
in the training process. As can be seen from Fig. 7, both
OA and Kappa increase rapidly as the number of iterations
increases until the iteration number reaches 4. This indicates
that the performance of the classifiers is improved significantly
within the first several iterations of the training process. When
the number of iterations exceeds 4, slight increases of both the
OA and Kappa occur. These slight increases are likely due
to the fact that both proper and improper unlabeled samples
might be added into the training process, resulting in a slow
improvement in the classification accuracy. Therefore, eight
iterations are suggested in the proposed method for efficiency.
It should be mentioned after 10 iterations with 10 labeled
samples in the initial training sets, the final number of the
training samples can reach more 100000 for each classifier.

Fig. 8 shows the OA and Kappa of the classification results
of two PolSAR data sets as a function of the number of labeled
samples (V) per category used in the proposed method. The
total number of labeled samples for Flevoland I is 150
(15 categories) and 4N; for Flevoland II (four categories).
As can be seen from Fig. 8, the OA and Kappa are 78.96%, and
0.7709, respectively, when four labeled samples per category
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TABLE III

CLASSIFICATION ACCURACY (%) OF THE FLEVOLAND |
DATA SET WITH AND WITHOUT FILTER

ata With filer | Original
region

Stembeans 96.40 85.14
Rapeseed 81.95 37.53
Bare soil 99.31 60.23
Potatoes 65.31 56.07
Beet 93.45 10.98
Wheat 2 72.48 9.75
Peas 92.29 65.96
Wheat 3 90.50 0.44
Lucerne 95.07 37.80
Barley 95.64 81.38
Wheatl 87.09 1.53
Grasses 72.13 0.07
Forest 90.32 7.30
Water 96.30 78.75
Building 76.87 73.06
OA 87.01 38.47
Kappa 0.8542 0.3424

(the left point in the figure) are used for the data set of the
Flevoland I. The values of the OA and Kappa become 87.31%
and 0.8577, respectively, as the number of labeled samples is
ten per category. When the number of labeled samples is 20 per
category, the OA is 88.78% and the kappa statistic is 0.8788.
The OA increases 8.35% as the number of labeled samples
per category used increases from 4 to 10, but only increases
1.47% as the number increases from 10 to 20. This is mainly
because the fewer the labeled samples used in the training
process, the greater the role of the semi-supervised method,
resulting in greater changes in the classification results. Thus,
the proposed method is effective for the PoISAR data where
labeled samples are few. Similar conclusions are obtained from
the Flevoland II data set. For efficiency, the optimum number
of labeled samples per category is between 10 and 12 in the
training process of the proposal method.

C. Effects of Speckle Filtering

To investigate the effects of speckle noise suppression on
the classification results, the method proposed in this article is
applied to the original PolSAR data of Flevoland I, without the
speckle noise suppression. The results are given in Fig. 9 and
Table III. For comparison, the classification results of the
same data despeckled by the Lee filter [36] with a window
size of 7 x 7 are also shown in the figure and table. These
results are obtained with ten labeled samples per terrain type,
ie., a total of 150 labeled samples, in the initial training
process.

As can be seen from Fig. 9 and Table III, the classification
results are very poor when the algorithm is directly applied to
the PolSAR data without the speckled noise suppression, indi-
cating that the proposed method is extremely sensitive to noise.
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Fig. 9. Classification results of the Flevoland I data acquired by AIRSAR.
(a) Pauli RGB image without filter [Fig. 3(a)]. (b) Denoised Pauli RGB image.
(c) Classification results from the image data without filter. (d) Classification
results of the denoised data. (e) Masked results corresponding to the ground
truth of (c). (f) Masked results according to the ground truth of (d).

This poor performance is mainly due to the reason that the
proposed method is based on 3-week classification training
strategies to achieve the semi-supervised learning, a very
important part of which is how to choose highly reliable
unlabeled samples and add the correct pseudo labels into
the training set. When this method is applied to an image
without despeckling, due to the influence of speckle noise,
certain deviation might occur in the selection of samples
and the determination of pseudo labels, thereby introducing
incorrect labels in the learning process. The introduction of
more incorrect labels will reduce the effectiveness of this
learning mechanism, especially when the number of labeled
samples is small. Similar conclusions are obtained from the
Flevoland II data set, but not shown herein.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, the classification results of the two above-
mentioned real PolSAR data sets given by the proposed
method are presented and verified by the ground truth mea-
surements of those PoISAR data sets. Before executing the
proposed method, the Lee filter with a window size of 7 x 7
is applied to reduce the effects of speckle noise on the polari-
metric features from the PolSAR images [35]. Thirty-three
polarimetric features selected from the 45-D feature vector
are used in the present experiment. These 33 polarimetric
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Classification results of the Flevoland I data acquired by AIRSAR. (a) Proposed method. (b) Proposed + Neighbor. (c¢) Tri-training + NMST.

(d) Tri-training. (e) Tri-training 4+ Neighbor. (f) SVM. (g) DT. (h) KNN. (al), (bl), (c1), (d1), (el) (f1), (gl), and (h1) Masked results according to the ground

truth of (a), (b), (c), (d), (e), (f), (), and (h), respectively.

features are randomly divided into three subsets with 11 polari-
metric features for each subset. The three subsets are used
to separately train the three different base classifiers (DT,
SVM, and KNN) of the improved Tri-training. We use ten
labeled samples per category. There are 15 categories for
Flevoland I data set; therefore, the total number of the labeled
samples used for Flevoland I data set is 150. In contrast,
40 labeled samples (four categories) are used for Flevoland IT
data set. The experimental results are also compared with that
obtained with a number of existing classification methods. For
a fair comparison, the same labeled samples are used as the
initial training set for all methods. To eliminate the instability
effects on the results of certain methods, the experiments are
repeated ten times and the average values are used as the final
classification results.

A. Classification Results of the Flevoland I Acquired by
AIRSAR in 1989

Fig. 10 shows the classification maps of the Flevoland I
data set with different classification methods. The results of
the proposed method are given in Fig. 10(a), while Fig. 10(b)
shows the classification results of a procedure similar to the
proposed method, but with the neighbor sample expanding
strategy (a certain amount of pixels in the surrounding local
area of a labeled pixel are added into the training data set),
denoted as Proposed plus Neighbor (Proposed + Neighbor).
Fig. 10(c) shows the classification results of the method of
the Tri-training plus the NMST (Tri-training + NMST), while
Fig. 10(d) shows the classification results of the Tri-training.
Fig. 10(e) shows the results of the method of the Tri-training
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TABLE IV
CLASSIFICATION ACCURACY (%) OF THE FLEVOLAND I DATA SET ACQUIRED BY AIRSAR

. ethod Proposed Prol?osed+ Tri-training Trl-tr-ammg Trictraining SVM DT KNN
Region Method Neighbor +NMST + Neighbor
Stem beans 96.40 90.44 97.14 91.56 90.47 16.96 30.47 52.49
Rapeseed 81.95 49.29 83.85 60.61 70.17 45.42 40.14 43.39
Bare soil 99.31 99.45 99.20 99.22 98.38 93.81 79.86 98.02
Potatoes 65.31 61.96 33.94 33.95 85.21 26.81 30.07 34.59
Beet 93.45 66.46 94.28 64.41 65.73 29.11 5.42 16.93
Wheat 2 72.48 81.12 75.66 71.59 26.60 49.20 52.24 37.76
Peas 92.29 74.24 91.15 40.04 22.80 24.19 64.52 37.18
Wheat 3 90.50 84.09 92.76 88.69 80.54 60.95 51.35 67.46
Lucerne 95.07 80.39 93.17 89.62 91.53 45.78 45.34 89.97
Barley 95.64 90.13 94.73 87.00 69.22 72.47 67.58 41.28
Wheat! 87.09 60.99 81.62 49.86 44.64 45.52 52.24 36.79
Grasses 72.13 53.30 72.51 57.48 63.49 52.00 50.77 51.80
Forest 90.32 40.06 88.28 24.28 49.27 5.19 56.26 33.93
Water 96.30 74.09 99.63 70.56 81.54 34.56 84.46 64.72
Building 76.87 81.36 70.88 88.44 67.48 93.88 86.26 67.21
OA 87.01 72.82 84.59 67.82 67.14 46.93 53.13 51.57
Kappa 0.8542 0.7056 0.8323 0.6525 0.6426 0.4294 0.4923 0.4754

The bold number indicates the best result in each row.

plus the Neighbor (Tri-training + Neighbor). Fig. 10(f)-(h)
shows the classification results of the SVM, DT, and KNN,
respectively. Table IV shows the classification accuracies of
each terrain type, also called category, with different classi-
fication methods and the OAs and Kappa for this entire data
set. The results shown herein are obtained with ten randomly
selected labeled samples per terrain type (150 labeled samples
for 15 categories) in the training process.

As can be seen from Table IV, the classification accuracies
of nine categories in the proposed method are higher than
90%, and the lowest classification accuracy of one category is
65.31%. In contrast, only eight categories in the Tri-training
+ NMST method can achieve classification accuracies above
90%, while the lowest classification accuracy of one category
is only 33.94%. In the Proposed + Neighbor method, the
classification accuracies of only three categories are higher
than 90%, and the classification accuracies of two categories
are below 50%. In the Tri-training method, the classification
accuracies of three categories are higher than 90%, and the
classification accuracies of four categories are lower than 50%.
In the Tri-training + NMST, there are two categories that
reach the accuracy of 90%, and four categories are below
50%. In the SVM method, the classification accuracies of
two categories are higher than 90%, while the classification
accuracies of ten categories are below 50%. In the DT method,
there is no category with accuracy higher than 90%, and the
classification accuracies of five categories are less than 50%.
In the KNN method, the classification accuracy of only one
category is higher than 90%, and the classification accuracies
of eight categories are under 50%. In addition, the Kappa of
the proposed method is 0.8542, which is higher than other
methods.

By comparing the classification accuracies of all the cat-
egories shown in Fig. 10 and Table IV, one can see that
the classification accuracies of the proposed method in peas,
lucerne, barley, wheat, and forest are much higher than other
classification methods. The data set is an L-band PolSAR
data and the penetrability of L-band radar waves is stronger
than that of C-band radar waves [37]. Thus, the backscattering
signal from a crop canopy field may consist of different types
of contributions, such as volume scattering from plants, surface
scattering from the underlying soil, and plant—soil multiple-
bounce scattering, depending on the growth period of the
plants [38], [39]. The differences in scattering mechanisms
of different plants are often ultimately reflected in the radar
wavelength, and the overall roughness formed by the plants
and others. The high classification accuracies of peas, lucerne,
barley, wheat, and forest with this AIRSAR data indicate
that the proposed method can significantly improve the clas-
sification of the abovementioned regions where a complex
backscattering occurs.

On the other hand, the L-band AIRSAR data has a low
resolution and is unable to accurately capture the subtle
effects of plant size and features. For example, the accu-
racies of both potato and beet in the comparative methods
vary considerably because they are misclassified in a number
of methods. Both potatoes and beets are root plants and
their leaves are very similar when the data was acquired in
August. The leaves of potato in this growth period are oval
(10-20 cm long, and about 3 cm wide), while the leaves of
beet are also oval (10-20 cm long and 10-15 cm wide). As a
result, these two fields have very similar roughness under the
observation of AIRSAR, making them difficult to distinguish.
From Fig.10(d), one can see that many beet areas are
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Classification results of the Flevoland II data set acquired by RADARSAT-2. (a) Proposed method. (b) Proposed + Neighbor. (c) Tri-training +

NMST. (d) Tri-training. (e) Tri-training + Neighbor. (f) SVM. (g) DT. (h) KNN. (al), (bl), (cl), (d1), (el) (f1), (gl), and (h1) Masked results according to

the ground truth of (a), (b), (c), (d), (e), (), (g), and (h), respectively.

misclassified as potato areas with the traditional Tri-training.
However, in Fig. 10(a), the beet areas and potato areas have
been divided well. The classification accuracy of beet with
the proposed method is 93.45%, which is 27.72% higher than
that of the traditional Tri-training method. Also, the sum of
the accuracies of potatoes and beet in the proposed method is
7.82% higher than that given by the traditional Tri-training.
In addition, the Kappa of the proposed method is also higher
than the Tri-training + NMST and traditional Tri-training
methods, respectively.

From Table IV and Fig. 10(b)-(d), one can see that the
OA of the proposed method is 14.19% higher than the pro-
posed plus neighbor, while the OA of the Tri-training plus

NMST is 16.77% higher than the Tri-training + Neighbor.
Those substantial improvements in the OA of the classification
show the effectiveness of the selection strategy with the
NMST.

Table IV also shows that the OA of the proposed method
is 40.08%, 33.88%, and 35.44% higher than SVM, DT, and
KNN, respectively. As for Kappa, the proposed method is
0.4248, 0.3619, and 0.3788 greater than SVM, DT, and
KNN, respectively. Through analysis of the classification
accuracies of different crops, one can see that the pro-
posed method improves the representation of the model
and performs well in distinguishing categories with similar
characteristics.
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TABLE V
CLASSIFICATION ACCURACY (%) AND KAPPA OF THE FLEVOLAND II DATA SET ACQUIRED BY RADARSAT-2

Proposed+ i_traini Tri-trainin
Region thod Pl\rf;ﬁizd NeIi)ghbor Trﬁ;ﬁg? &, Neighbﬁ Tri-training | SVM DT KNN
Urban 68.00 39.52 87.68 65.68 88.85 79.47 67.31 48.50
Water 98.44 97.25 98.38 98.39 97.30 91.57 62.62 96.19
Forest 85.53 75.08 77.42 32.66 39.48 24.34 32.64 44.52
Cropland 83.17 73.30 65.24 23.86 49.79 18.70 66.21 24.27
OA 83.79 67.90 82.18 55.15 68.86 53.52 57.20 53.37
Kappa 0.7784 0.4807 0.7631 0.2619 0.5591 0.4123 0.4329 0.3854

The bold number indicates the best result in each row.

B. Classification Results of the Flevoland Il Acquired by
RADASAT-2 in 2008

Fig. 11 shows the classification maps of the Flevoland II
data set with different classification methods. The results of
the proposed method are given in Fig. 11(a), while Fig. 11(b)
shows the classification results of the procedure similar to the
proposed method, but with the Neighbor sample expanding
strategy, denoted as Proposed plus Neighbor (Proposed +
Neighbor). Fig. 11(c) shows the classification of the method
of the Tri-training plus the NMST (Tri-training + NMST),
while Fig. 11(d) shows the classification of the Tri-training.
Fig. 11(e) shows the classification of the Tri-training plus
the Neighbor (Tri-training + Neighbor). Fig. 11(f)—(h) show
the classifications of the SVM, DT, and KNN, respectively.
Table V shows the classification accuracies of each category
with different classification methods and the OA and Kappa
for this data set. The results shown herein are obtained with
10 randomly selected labeled samples per category (40 labeled
samples total for four categories) in the training process.

As can be seen from Table V and Fig. 11(a)—(d), the OA
of the proposed method is 15.89% higher than the Proposed
+ Neighbor, while the OA of the Tri-training + NMST
is 27.03% higher than the Tri-training + Neighbor. These
substantial improvements in the OA of the classification show
the effectiveness of the NMST for C-band data set as well.

Comparing Fig. 11(a) with Fig. 11(f)—(h), one can see that
the classification results of the proposed method are much
better than other methods. Table V shows that the classification
accuracies of the water areas are exceptionally well (more than
90%) for all the methods, except DT. This is likely due to that
the scattering type of water is mainly surface scattering, which
is distinctly different from the scattering types of other areas.
As for the forest areas and cropland areas, the classification
accuracies of the proposed method are much higher than other
methods. In contrast, the class accuracy of urban (red color)
of the proposed method is only 68%, which is 20.85% lower
than the classification accuracy of the traditional Tri-training
method. This is mainly because the urban areas usually contain
some trees and vegetation, which have similar scattering
types to the forest and cropland areas; as a result, urban,
forest, and cropland are difficult to differentiate from each

other with the traditional methods. For instance, Fig. 11(d)
shows that the forest areas are misclassified as urban areas
with the Tri-training method, resulting in a high classification
accuracy of the urban areas, as shown in Table V. However, the
classification accuracy of the forest areas with the Tri-training
method is only 39.48%, which is 49.05% lower than that of the
proposed method because these three areas (forest, cropland,
and urban) are separated well with the proposed method, as
shown in Fig. 11(a) and Table V.

In summary, the proposed method is very effective for those
regions where multiple scattering mechanisms are involved.
One evidence is that the classification accuracies of cereal
crops (Wheatl, Wheat2, Wheat3, Barley, and Grasses) for the
Flevoland I data set with the proposed method are significantly
improved in comparison with other methods. The Flevoland I
data set is a L-band four-look PolSAR data acquired by
the NASA/JPL system in August 1989. The L-band radar
has stronger penetrability than C-band radar, so cereals in
August in this region are generally considered to include a
hybrid scattering mechanism composed of a two-layer medium
(soil + stalks) before heading and a three-layer medium (soil
+ stalks + heads) after heading [39]. For the Flevoland II
data set, the proposed method significantly improves the
classification of Forest and Cropland. These two categories
are generally considered to have certain mixed scattering
mechanisms [40].

C. In Comparison With the Existing Methods in Terms of the
Number of Labeled Samples

To test the proposed method and compare it with other
methods, we experimentally study the effects of the number
of labeled samples (N;) on the classification results. Herein,
only the results for the data set of Flevoland I are presented,
while similar conclusions are obtained from the data set of
Flevoland II. Fig. 12 shows the classification accuracies of
different methods varying with the initial number of labeled
samples used in the training process. In order to better show
the effect of the number of labeled samples on the classi-
fication, the abscissa of Fig. 12 is expressed in logarithmic
form. In Fig. 12, the color notation (N;, OA) on each curve,
corresponding to each method, represents a point that the
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Fig. 12.  Overall accuracies of different classification methods varying with
the number of labeled samples for the Flevoland I data set. In (N;, OA),
Ny refers to the number of labeled samples and OA refers to classification
accuracy.

number of labeled samples N; per category (the total number
of labeled samples of 15N; for 15 categories) is required to
reach the OA of about 88% for the method.

As can be seen from Fig. 12, in order to reach the
classification accuracy of about 88%, the proposed method
only needs 14 (14 =~ 10'146) labeled samples per cat-
egory, while the Tri-training + NMST method needs 20
(20 ~ 10'301) labeled samples per category. In contrast,
the traditional Tri-training method needs 400 (400 a2 102-902)
labeled samples per category, the SVM method needs 400,
the DT method needs 2000 (2000 ~ 103-392), and the KNN
method needs 4000 (4000 &~ 103-992). Note that when labeled
samples are smaller than 20 per category, the classification
accuracy of the Tri-training + NMST method is slightly lower
than the proposed method, but is much higher than other
methods. This indicates that the proposed sample selection
method in the NMST is very effective. In other words,
the selected unlabeled samples with the NMST improve the
performances of both the base classifiers and the final classi-
fication processes.

Fig. 12 also shows that the classification accuracies of
the proposed method and Tri-training + NMST method are
nearly the same, as the number of the labeled samples per
category exceeds 12. Even though the classification accuracies
of the traditional methods (Tri-training, SVM, DT, and KNN)
increase with increasing the number of the labeled samples,
the rates of their increases with the number of labeled samples
are much slower than that of the proposed method and the Tri-
training plus NMST. This is mainly because the Tri-training,
SVM, DT, and KNN require sufficient labeled samples as
training samples. When labeled samples are few, the classifi-
cation accuracies of these four methods are poor. For the pro-
posed method and the Tri-training + NMST method, training
samples gradually increase during the iteration of the training
process, and the proposed selection method for unlabeled
samples ensures the reliability of those samples added into
the training sample set. The enlarged training samples provide
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sufficient information for the proposed method and Tri-training
+ NMST method.

V. CONCLUSION

This article presents an improved SSC method for PoISAR
image, which combines the advantages of the co-training
and Tri-training methods. For the co-training and Tri-training
method, the diversities of both classifiers and features are
important, and these diversities determine whether the co-
training and tri-training methods can work effectively. Herein,
we propose a new sample selection method to produce three
different feature subsets to increase the diversity among the
base classifiers. Then, an improved tri-training process is used
to choose reliable samples from the selected sample set and
improve the three base classifiers. In this process, in order
to increase the reliability of the selected samples, we adopt
the improved NMST method to select the unlabeled samples
based on spatial neighborhood information between the pixels
of PoISAR image. Finally, we apply these three base classifiers
to classify the whole PoISAR image, and use major voting and
confidence to decide the final class label.

The experiments with two real PolSAR data sets show
that the proposed method is able to achieve satisfactory
classification accuracy, especially when the training labeled
samples are few. The unlabeled samples selected as training
samples with our proposed method are reliable, and the per-
formance of the classifiers is gradually improved by selecting
unlabeled samples to expand the label samples set. As for
these two data sets, not only is the overall classification
accuracy of the proposed method higher than other existing
methods, but also the accuracy on most individual classes.
In addition, we analyze the influence of the initial number
of labeled samples in the training process on the results of
the classification.
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