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Abstract—Multilevel diversity coding is a classical coding
model where multiple mutually independent information mes-
sages are encoded, such that different reliability requirements
can be afforded to different messages. It is well known that
superposition coding, namely separately encoding the independent
messages, is optimal for symmetric multilevel diversity coding
(SMDC) (Yeung-Zhang 1999). In the current paper, we consider
weakly secure SMDC where security constraints are injected on
each individual message, and provide a complete characterization
of the conditions under which superposition coding is sum-
rate optimal. Two joint coding strategies, which lead to rate
savings compared to superposition coding, are proposed, where
some coding components for one message can be used as the
encryption key for another. By applying different variants of
Han’s inequality, we show that the lack of opportunity to apply
these two coding strategies directly implies the optimality of
superposition coding. It is further shown that under a set of
particular security constraints, one of the proposed joint coding
strategies can be used to construct a code that achieves the
optimal rate region.

I. INTRODUCTION

Symmetric multilevel diversity coding (SMDC) was intro-
duced by Roche et al. [1] for applications in distributed data
storage and robust network communication. Albanese et al. [2]
independently studied the problem of priority encoding trans-
mission (PET), which shares the same mathematical model
as SMDC. In a symmetric L-level diversity coding system,
there are L independent messages (M1,M2, . . . ,ML), where
the importance of messages decreases with the subscript l.
The messages are encoded by L encoders. There are totally
2L − 1 decoders, each of which has access to the outputs
of a distinct subset of the encoders. A decoder which can
access any α encoders, called a Level-α decoder, is required
to reconstruct the first α most important messages. The system
is symmetric in the sense that the reconstruction requirement
of a decoder depends on the set of encoders it can access only
via its cardinality.
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It was shown [1], [3] that separately encoding these indepen-
dent messages, referred to as superposition coding, is optimal
in terms of achieving the entire rate region. The characteri-
zation of the coding rate region therein involves implicit and
uncountably many inequalities, and an explicit characterization
of the coding rate region was recently obtained [4]. The
problem has also been extended and generalized, e.g., to allow
node regeneration [5] and to allow asymmetric decoders [6].
Li et al. [7] studied the multilevel diversity coding problem
with at most 3 sources and 4 encoders in a systematic way
and obtained the exact rate region of each of the over 7,000
instances with the aid of computation.

The SMDC problem with a strong security guarantee was
considered by Balasubramanian et al. [8] and Jiang et al. [9].
In this setting, a security threshold N is given, and the first N
messages are degenerate. For the remaining L−N messages
Mα, α = N + 1, N + 2, · · · , L, in addition to the standard
multilevel reconstruction requirement, it is also required that
all these messages need to be kept perfectly jointly secure if
no more than N encoders are accessible by an eavesdropper.
Despite the additional security constraints, it was shown that
superposition coding remains to be optimal in terms of both
the sum rate [8] and the entire rate region [9].

In this paper we consider a weakly secure setting of the
classical SMDC problem, where the security level of each
message is specified by a separate security parameter Nα.
More specifically, for any α = 1, 2, . . . , L, we require the
message Mα to be kept perfectly secure if the outputs of no
more than Nα encoders are accessible by an eavesdropper.
Such a security requirement is “weak” in the sense that the
eavesdropper is only prevented from obtaining any information
about the individual messages. By comparison, the security
requirement of [8]–[10] is strong in that it prevents the
eavesdropper to obtain any information about the entire set
of messages. The notion of weak security has been consid-
ered in various network coding settings [11]–[14] and also
channel coding perspectives [15]–[18] in the literature and
is generally considered to be more practical for protecting
individual messages. For example, when the messages are
video sequences, the user should not obtain information about
any individual video segment, but obtaining the binary XOR
of two video sequences may not be an issue since it will not
lead to a meaningfully decodable video sequence. Moreover,
a protocol with a weak security constraint can potentially be
implemented more efficiently in practical settings and may not
require encryption keys. Note that the notion of “weak/strong
security” here is different from the asymptotic notion of
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weak/strong security in [19]–[22], wherein asymptotic weak
security requires vanishing of the information leakage rate
and the corresponding strong security requires the vanishing of
leaked information content. Another notion of “weak security”
is defined in [23] which requires the eavesdropper to be unable
to obtain any meaningful information about the source.

On the one hand, the notion of weak security has signif-
icantly enriched the collection of secure SMDC problems:
Unlike the strongly secure setting where a single security
parameter is set for all the messages, for the weakly secure
setting, a different security parameter can be set for each
message. On the other hand, the notion of weak security
has also cast the optimality of superposition coding in much
greater doubt, as requiring the messages to be protected only
marginally (instead of jointly) significantly opens up the set
of feasible coding strategies. The main goals of this paper
are: 1) to understand under what configurations of the security
parameters (N1, N2, . . . , NL) superposition coding remains to
be optimal; and 2) to identify optimal coding strategies when
superposition coding is suboptimal.

The main message of this paper is that the optimality
of superposition coding depends critically on the security
parameters (N1, N2, . . . , NL). More specifically, we consider
a natural joint coding strategy that encodes a pair of messages
together by using one of the messages as part of the secret key
for securing the other. We term this coding strategy pairwise
encoding, and Sections IV-A and IV-B discuss two scenarios
for which pairwise encoding is possible. The main results of
the paper are:

1) We show that superposition coding can achieve the
minimum sum rate whenever pairwise encoding is not
possible between any two messages. This immediately
leads to a necessary and sufficient condition on the
security parameters (N1, N2, · · · , NL) for superposition
coding to be optimal in terms of minimizing the sum rate.

2) We consider a special class, referred to as differential-
constant secure SMDC (DS-SMDC), for which the more
important messages are maximally protected (Nα = α−
1) and the less important messages are not protected at
all (Nα = 0), and show that a simple extension of the
pairwise encoding strategy (from a pair of messages to
a pair of groups of messages and hence termed as group
pairwise encoding) can achieve the entire rate region.

Note that the min-cut capacity for multicasting a single
source is achievable using linear network codes [24]–[26]. It
was shown in [23] that the min-cut bound can also be achieved
for a single-source secure network coding model, where the
security measure is similar to the weak security notion we
used in this work. However, the min-cut bound may not be
achievable for general multi-source network coding problems
(even without any security measure), e.g., the example illus-
trated by Fig. 21.3 in [27]. In particular, the min-cut bound is
not achievable for the secure SMDC problem here.

The rest of the paper is organized as follows. We first
formulate the problem and state some preliminary results
in Section II. In Section III, we state the main results, i)
a precise classification of the cases where superposition is
sum-rate optimal; ii) the optimal rate region for DS-SMDC.

M1...
ML

K

Encoder Decoder M1,M2, · · · ,Mα

W1

W2
...

WL

Eaves-
dropper no information of Mα...

|A| ≤ Nα

|U| = α

Fig. 1: The Weakly Secure SMDC Model

In Sections IV and V, we describe the pairwise encoding
strategies that reduce coding rates and prove the optimality of
superposition under the conditions in i). Section VI is devoted
to the proof of the optimal rate region for DS-SMDC. We
conclude the paper in Section VII. Some technical proofs can
be found in the appendices.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Problem Formulation

Let L , {1, 2, · · · , L}, where L ≥ 2. Let M1,M2, · · · ,ML

be a collection of L mutually independent messages uniformly
distributed over the direct product of certain finite sets. For
simplicity, we assume the message set to be Fpm1 × Fpm2 ×
· · · × FpmL , where Fpm1 is a finite field of order pm1 and
p itself can be an integer power of some prime number. We
may also regard Mα (α ∈ L) as Mα = (M1

α,M
2
α, · · · ,Mmα

α )
where M i

α ∈ Fp for i = 1, 2, · · · ,mα.
The weakly secure SMDC problem is depicted in Fig. 1.

There are L encoders, indexed by L, each of which can access
all the L information messages. There are also 2L−1 decoders.
For each U ⊆ L such that U 6= ∅, Decoder-U can access the
outputs of the subset of encoders indexed by U . For α ∈ L and
any U such that |U| = α, Decoder-U can completely recover
the first α messages M1,M2, · · · ,Mα. In addition, there is
an eavesdropper who has access to the outputs of a subsets A
of encoders. Let N = (N1, N2, · · · , NL) be L non-negative
integers, where Nα < α for α ∈ L. Weak security requires that
each individual message Mα should be kept perfectly secure
from the eavesdropper if |A| ≤ Nα.

Let K be the key space. An
(m1,m2, · · · ,mL, R1, R2, · · · , RL) code is formally defined
by the encoding functions

El :
L∏
i=1

Fpmi ×K → FpRl , for l ∈ L (1)

and decoding functions

DU :
∏
l∈U

FpRl →
|U|∏
i=1

Fpmi , for U ⊆ L and U 6= ∅. (2)

Denote the shared key as K (accessible to all the encoders),
which is uniformly distributed in the key space K. Let
Wl = El(M1,M2, · · · ,ML,K) be the output of Encoder-l
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and WU = (Wl : l ∈ U) for U ⊆ L. Define the
normalized message rates ml , ml/

∑L
l=1ml, from which

it follows that
∑
lml = 1. A normalized non-negative rate

tuple R , (R1,R2, · · · ,RL) is achievable for the normalized
message rates (m1, . . . ,mL), if for any ε > 0, there exist an
integer a and an (am1, am2, · · · , amL, R1, R2, · · · , RL) code
such that

perfect reconstruction: DU (WU ) = (M1,M2, · · · ,M|U|),
∀ U ⊆ L s.t. U 6= ∅, (3)

perfect secure: H(Mα|WA) = H(Mα),

∀ α ∈ L and A ⊆ L s.t. |A| ≤ Nα, (4)

and

coding rate: Rl + ε ≥ a−1Rl, l ∈ L. (5)

The optimal coding rate region R is defined as the collection
of all achievable rate tuples.

Remark 1. Here each message Mα can be essentially rep-
resented in mα log2 p bits, and each codeword Wl can be
represented in Rl log2 p bits. Thus Rl can be viewed as the
coding rate of encoder El, when the definition of the entropy
function uses logarithm of base p, which will be adopted from
here on. The quantity Rl is then essentially the normalized Rl.

The minimum achievable normalized sum rate is defined
as R∗sum , min

∑L
l=1 Rl, and one of our main results is a

necessary and sufficient condition for superposition coding to
be sum-rate optimal. We also study an important case where
N is given by

Nα =

{
α− 1, for 1 ≤ α ≤ r
0, for r + 1 ≤ α ≤ L,

(6)

for certain parameters (L, r), where r ≥ 1. We refer to this
system as the (L, r) differential-constant secure SMDC (DS-
SMDC), where the more important messages (i.e., small α
values) are maximally secure (Nα = α − 1) and the less
important messages do not have any security guarantee at
all (Nα = 0). For the protected messages (1 ≤ α ≤ r),
while the security constraint Nα grows with the reconstruction
requirement α, the difference between Nα and α remains to be
a constant equal to 1. We refer to this feature as “differential-
constant secure”, in contrast to the “level-constant secure”
guarantee [8], [9] which requires Nα = N for all α > N .
Denote the optimal coding rate region of the (L, r) DS-SMDC
problem by RL,r, which is the collection of all achievable
normalized rate tuples. For r = 1, the problem reduces to the
classical SMDC.

B. An Achievable Rate Region via Superposition Coding

Let M be a message encoded by n encoders. For any
0 ≤ c < k ≤ n, the (c, k, n) ramp secret sharing problem [28],
also known as the secure symmetrical single-level diversity
coding (S-SSDC) problem in [8], requires that the outputs
from any subset of no more than c encoders provide no
information about the message, and the outputs from any
subset of k encoders can completely recover the message. The

optimal rate region for this problem can be found in [8], [29],
as stated in the following lemma.

Lemma 1. The optimal rate region of the (c, k, n) ramp
secret sharing problem is the collection of rate tuples
(R1, R2, · · · , Rn) such that∑

l∈B

Rl ≥ H(M), ∀B ⊆ {1, 2, · · · , n}, |B| = k − c. (7)

Remark 2. If k = c + 1, the (c, k, n) ramp secret sharing
problem reduces to the (k, n) threshold secret sharing problem
and the rate region reduces accordingly.

In light of this result, a natural coding scheme (i.e., super-
position coding) for the weakly secure SMDC problem formu-
lated above is to separately encode each message Mα using
an (Nα, α, L) ramp secret sharing code as shown in Fig. 2.
The rate region induced by superposition coding provides an
inner bound Rsup for R, and by Lemma 1, it can be written
as the set of non-negative rate tuples R = (R1,R2, · · · ,RL)
such that

Rl =
L∑
α=1

rαl , for l ∈ L (8)

for some rαl ≥ 0, l, α ∈ L, satisfying∑
l∈B

rαl ≥ mα, for B ⊆ L s.t. |B| = α−Nα. (9)

The induced sum rate provides an upper bound R̄sum for R∗sum,
and can be written simply as,

R̄sum ,
L∑
α=1

Lmα

α−Nα
. (10)

C. Properties of MDS Code for Secret Sharing

In this section, we describe in some details two (n, k)
maximum distance separable (MDS) codes for ramp secret
sharing that achieve the minimum sum rate in Lemma 1, and
provide important properties that are instrumental to the joint
coding strategy we later propose.

Let M = (U1, U2, · · · , Uk−c) be a length-(k − c) message
where each symbol is chosen uniformly and independently
from the finite field Fp. Let Z1, Z2, · · · , Zc be independent
random keys chosen uniformly from the same finite field Fp.
For i = 1, 2, · · · , k, define the following length-k vectors:

fi = [0 · · · 0︸ ︷︷ ︸
i−1

1 0 · · · 0]T . (11)

Let g1, g2, · · · , gn be length-k vectors with entries from Fp
such that any k vectors {hj1 , hj2 , · · · , hjk} chosen from
the set {f1, f2, · · · , fk, g1, g2, · · · , gn} satisfy the full rank
condition over Fp, i.e.,

rank [hj1 hj2 · · · hjk ] = k. (12)

It can be shown that as long as p ≥ n + k, there exist such
vectors g1, g2, · · · , gn, e.g., it can be chosen as the columns
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Messages Encrytion Keys Codewords+

+

+

M1

M2

M3

Z2

Z1
3 Z2

3

M1 M1 M1

M2 + Z2 M2+2Z2 Z2

M3 + Z1
3 M3 + Z2

3 Z1
3 + Z2

3

W1 W2 W3

Fig. 2: The superposition coding scheme for (3, 3) DS-SMDC with (m1,m2,m3) = (1, 1, 1), (N1, N2, N3) = (0, 1, 2), and
p = 3.

from a Cauchy matrix. The generator matrices of the two MDS
codes of interest are given, respectively, as

G(1) = [fk−c+1 · · · fk g1 g2 · · · gn−c] , (13)

G(2) = [g1 g2 · · · gn] . (14)

Then the codewords of two MDS codes are, respectively,

[Y1, Y2, · · · , Yn] =
[
U1 · · · Uk−c Z1 · · · Zc

]
G(1), (15)

[Y1, Y2, · · · , Yn] =
[
U1 · · · Uk−c Z1 · · · Zc

]
G(2). (16)

We shall refer these two codes as MDS-A and MDS-B,
respectively. By the definition of fk−c+1, · · · , fk in (11),
MDS-A has the random keys explicitly as part of the coded
message,

[Y1, Y2, · · · , Yc] =
[
Z1 Z2 · · · Zc

]
. (17)

It is obvious that for both codes, M and Z1, Z2, · · · , Zc can
be perfectly recovered from any k coded symbols.

Since all the coded symbols are linear combinations of the
messages and the random keys that are uniformly distributed,
we have the following lemma.

Lemma 2. Any k coded symbols of MDS-A and MDS-B are
uniformly distributed over Fpk .

The main difference between the two codes, which is the
most relevant to this work, is given in the following two
lemmas.

Lemma 3. For any integer t such that c ≤ t ≤ k, let E ⊆
{1, 2, · · · , n} where |E| = t, and A ⊆ {1, 2, · · · , k−c} where
|A| = k − t. The codewords of MDS-A has the following
property:

I(YE ;UA) = 0, (18)

where YE , {Yi : i ∈ E} and UA , {Ui : i ∈ A}.

Proof. We consider the following chain of equality

I(YE ;UA)

=H(YE)−H(YE |UA) (19)
=H(YE)−H(YE |UA) +H(YE |UAUĀZ1Z2 · · ·Zc) (20)
=H(YE)−H(UĀZ1Z2 · · ·Zc|UA) (21)

+H(UĀZ1Z2 · · ·Zc|YEUA) (22)
=H(YE)−H(UĀZ1Z2 · · ·Zc) (23)

=
t

k − c
H(M)− t− c+ c

k − c
H(M) (24)

=0, (25)

where (20) follows from (15), and both (23) and (24) follow
from the full rank condition in (12) and the uniform and
mutually independent distribution of the messages and the
encryption key.

Remark 3. For t = c, Lemma 3 reduces to the stated security
constraint of parameter c; on the other hand, for t > c (but
t ≤ k), any t coded symbols reveal no information about any
subset of k − t message symbols.

Lemma 4. For any integer t such that 0 ≤ t ≤ k, let E ⊆
{1, 2, · · · , n} where |E| = t, and A1 ⊆ {1, 2, · · · , k− c}, and
A2 ⊆ {1, 2, · · · , c} where |A1|+ |A2| = k−t. The codewords
of MDS-B has the following property:

I(YE ;UA1 , ZA2) = 0, (26)

where YE , {Yi : i ∈ E}, UA1 , {Ui : i ∈ A1}, and
ZA2

, {Zi : i ∈ A2}.

Proof. This is direct from the full-rank condition in (12)
and the uniform and mutually independent distribution of the
messages and the encryption key.

From the above two lemmas, in contrast to MDS-A, MDS-
B has the additional advantage that part of the keys can also
be made secure against some t eavesdroppers. This property
becomes important to us in the sequel.
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III. MAIN RESULTS

A. Sum-rate Optimality Conditions of Superposition

The main question we seek to answer here is under what
condition the equality R∗sum = R̄sum will hold, and the follow-
ing theorem provides the exact answer to this question.

Theorem 1. R∗sum = R̄sum, if and only if for any α < β ∈ L
where mα,mβ > 0, we have

either Nα < α ≤ Nβ < β, or Nα = Nβ = 0. (27)

Remark 4. If all L messages are non-degenerate, i.e., all
the message entropies are non-zero, the condition in (27) is
equivalent to that there exists a Ts ∈ {1, 2, · · · , L} such that
for all α ∈ L,

Nα =

{
0, for α ≤ Ts
α− 1, for α > Ts.

(28)

If we do not assume non-degeneration, then the following
necessary condition for optimality can be induced from (27):
There exists a Ts ∈ {1, 2, · · · , L} such that for any α ∈ L
satisfying mα > 0,{

Nα = 0, for α ≤ Ts
Nα > 0, for α > Ts.

(29)

Remark 5. The following are two examples that superposition
coding is optimal in terms of achieving the entire rate region
and thus Theorem 1 reduces correctly.
• If the threshold in (28) is Ts = L, the security constraints

are given as

Nα = 0, for all α ∈ L, (30)

then the problem reduces to the classical SMDC prob-
lem without security constraints, where superposition is
known to be optimal [3].

• If the threshold in (28) is Ts = 1, the security constraint
becomes

Nα = α− 1, for all α ∈ L, (31)

and the problem reduces to the special case of DS-SMDC
for r = L in Section III-B.

The following definition will be used in the sequel.

Definition 1. For any α < β ∈ L, we define two conditions.

Condition 1 : Nα < Nβ < α; (32)
Condition 2 : Nβ ≤ Nα & Nα > 0. (33)

Theorem 1 can be alternatively written in the following
form, by taking the complement of the conditions in (27).

Theorem 1’. R∗sum < R̄sum, if and only if there exist α < β ∈ L
where mα,mβ > 0 such that either Condition 1 in (32) or
Condition 2 in (33) holds.

We prove Theorem 1 in two parts. In Section IV, we show
that superposition is suboptimal under the security constraints
in (32) or (33), by providing joint coding strategies that
can reduce coding rates. In Section V, the optimality of

superposition coding is established by proving that the sum
rate is lower bounded by R̄sum in (10).

Remark 6. Superposition coding is optimal for classical
SMDC where there is no security constraints, i.e., subopti-
mality only happens when there is a security constraint. In
view of the suboptimality in Sections IV-A and IV-B, we see
intuitively that joint encoding helps only when some message
can perform as the secret key of another message.

B. Rate Region of DS-SMDC

When superposition is not optimal, it is generally hard to
characterize the coding rate region or even the minimum sum
rate, since it is difficult to find the optimal code structures.
In this section, we study the (L, r) DS-SMDC problem for
which we fully characterize the optimal rate region. The
pairwise coding strategy in Section IV-B can be generalized
to a multi-message regime, and we obtain a group pairwise
coding scheme that achieves the entire rate region of the DS-
SMDC problem.

We first present an example that motivates the general group
pairwise coding scheme.

Example 1. Let L = 4, (m1,m2,m3,m4) = (1, 1, 1, 4), and
p = 11. The security constraint for the (4, 3) DS-SMDC
problem should be (N1, N2, N3, N4) = (0, 1, 2, 0). We can
follow a naive strategy as illustrated in (34): use generator
matrices G2 and G3 generated from MDS-B to encode M2 and
M3 separately with encryption keys Z2 and Z1

3 , Z
2
3 ; equally

partition M4 into four pieces M1
4 ,M

2
4 ,M

3
4 ,M

4
4 .

W1 = (M2 + Z2, M3 + 2Z1
3 + 9Z2

3 ,W
1
4 ),

W2 = (M2 + 2Z2, 9M3 + 8Z1
3 + 6Z2

3 ,W
2
4 ),

W3 = (M2 + 3Z2, 6M3 + 10Z1
3 + 7Z2

3 ,W
3
4 ),

W4 = (M2 + 4Z2, 7M3 + 9Z1
3 + 7Z2

3 ,W
4
4 ); (34)

The first part of the group pairwise coding scheme is simply to
use M4, specifically M1

4 ,M
2
4 ,M

3
4 , to replace Z2 and Z1

3 , Z
2
3

as secret keys to encrypt M2 and M3, as given in (35).

W ′1 = (M2 +M1
4 , M3 + 2M2

4 + 9M3
4 ),

W ′2 = (M2 + 2M1
4 , 9M3 + 8M2

4 + 6M3
4 ),

W ′3 = (M2 + 3M1
4 , 6M3 + 10M2

4 + 7M3
4 ),

W ′4 = (M2 + 4M1
4 , 7M3 + 9M2

4 + 7M3
4 ,W

4
4 ). (35)

The second part of the group pairwise coding scheme simply
encodes M4

4 as part of the fourth coded message. Since
M1

4 ,M
2
4 ,M

3
4 does not need to be separately encoded, rate

saving is obtained compared to the naive version. The recon-
struction and security requirements of M2 and M3 are imme-
diate from the MDS-B code. The reconstruction requirement
of M4 is straightforward since M1

4 ,M
2
4 ,M

3
4 is recovered with

any three coded symbols.

Coding scheme for general parameters:
The group pairwise coding scheme is illustrated in Fig. 3.
For each α ∈ {1, 2, · · · , r}, we will use an (α,L)-threshold
secret sharing scheme to encode Mα and use the last L − r
messages Mr+1, · · · ,ML as keys. It is proved in [28] that the

Authorized licensed use limited to: Chao Tian. Downloaded on October 07,2020 at 22:06:06 UTC from IEEE Xplore.  Restrictions apply. 



0018-9448 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2020.3004482, IEEE
Transactions on Information Theory

6

Messages + Encrytion Keys Codewords
Encoder

M1M2 · · ·Mr

M2
η∗Mη∗+1 · · ·ML

K =
Mr+1 · · ·Mη∗−1M

1
η∗

W 1
l

W 2
l

sub-system 1

sub-system 2

Fig. 3: The group pairwise coding scheme.

minimum key size for Mα is (α− 1)mα. Thus the total size
of keys needed is

|K| =
r∑

α=1

(α− 1)mα. (36)

For notational simplicity, we define an auxiliary message1

ML+1, which is independent with other messages and uni-
formly distributed over FpmL+1 with

mL+1 =

[
r∑

α=1

(α− 1)mα −
L∑

α=r+1

mα

]+

, (37)

where for any x ∈ R, [x]+ , max{0, x}. It is easy to check
that

L+1∑
α=r+1

mα ≥
r∑

α=1

(α− 1)mα. (38)

Thus, there exists a unique η∗ ∈ {r + 1, r + 2, · · · , L + 1}
such that

η∗−1∑
α=r+1

mα <
r∑

α=1

(α− 1)mα ≤
η∗∑

α=r+1

mα. (39)

The parameter η∗ determines which messages of
Mr+1,Mr+2, · · · ,ML+1 will be used as the encryption
keys. In light of the definition of η∗ in (39), denote

the first
∑r
α=1(α−1)mα−

∑η∗−1
α=r+1mα

mη∗
fraction of Mη∗ by

M1
η∗ , and the rest by M2

η∗ . Then we use the messages
(Mr+1,Mr+2, · · · ,Mη∗−1,M

1
η∗) to replace the keys of

M1, · · · ,Mr. The messages M2
η∗ ,Mη∗+1,Mη∗+2, · · · ,ML

are separately encoded in the same way as in classical SMDC.
Next, we verify the reconstruction and security constraints.

Reconstruction: By the code construction in Section II-C,
the reconstruction requirements of all messages
(M1,M2, · · · ,Mr), (Mr+1,Mr+2, · · · ,Mη∗−1,M

1
η∗),

and (M2
η∗ ,Mη+1, · · · ,ML) are satisfied immediately.

Security: The security constraints of (M1,M2, · · · ,Mr)
is straightforward, and there is no security constraint for
(Mr+1,Mr+2, · · · ,ML).
Remark 7. The first r messages M1,M2, · · · ,Mr are encoded
separately, and the last r messages Mr+1,Mr+2, · · · ,ML

are also encoded separately. The reason why we call the

1We use the auxiliary message ML+1 to perform as encryption keys for
the first r messages if the messages Mr+1, · · · ,ML are not enough. Thus,
ML+1 is non-vanishing (i.e., mL=1 > 0), only when the total key size
needed is strictly larger than the total size of messages Mr+1, · · · ,ML.

coding scheme “group pairwise” is that joint encoding are
only performed between the two groups of messages{

M1,M2, · · · ,Mr

}
and

{
Mr+1,Mr+2, · · · ,Mη∗

}
. (40)

The group pairwise coding scheme can also be interpreted
as superposition coding of the messages M1,M2, · · · ,Mr,
M∗r+1, · · · ,M∗L, where the independent pseudo-messages
M∗α(r + 1 ≤ α ≤ L) are defined by the message size m∗α
as

m∗α =


0, for r + 1 ≤ α ≤ η∗ − 1
η∗∑

j=r+1

mj −
r∑
j=1

(j − 1)mj , for α = η∗

mα, for η∗ + 1 ≤ α ≤ L.
(41)

Then the coding rate region RL,rgp induced by group pairwise
coding is the set of R ≥ 0 such that

Rl =
L∑
α=1

rαl , for l ∈ L, (42)

where rαl ≥ 0 and

rαl ≥ mα, for 1 ≤ α ≤ r, (43)∑
l∈B

rαl ≥ m∗α, for all B ⊆ L s.t. |B| = α, r + 1 ≤ α ≤ L.

(44)

Our main result on DS-SMDC is the following theorem.

Theorem 2. RL,r = RL,rgp .

Proof. The achievability is immediate from the group pairwise
coding scheme. The converse is proved through a sophisticated
iteration of information inequalities, which can be found in
Section VI.

Remark 8. From the group pairwise code design and the
converse proof in Section VI, we see that both the group
pairwise coding scheme and the converse are compatible with
r = 1 and r = L. Nevertheless, in order to emphasize the
specificity of the case r = L and to distinguish superposition
and group pairwise joint coding, we discuss the optimality for
r = L separately in the following.

1) Optimality of Superposition Coding for (L,L)-DS-
SMDC: For r = L, all the messages are protected. We
separately encode the L independent messages, where each
Mα is encoded using an (α,L) threshold secret sharing
scheme. The induced superposition rate region RLsup can be
obtained from (8) and (9) by letting α − Nα = 1 for all
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α ∈ L. To be specific, RLsup is the set of nonnegative rate
tuples R such that

Rl =
L∑
α=1

rαl , for l ∈ L (45)

where rαl ≥ 0, and

rαl ≥ mα, for 1 ≤ α ≤ L. (46)

It is easy to eliminate rαl (l, α ∈ L) and obtain the following
equivalent characterization of the superposition region,

RLsup = {R : Rl ≥
L∑
α=1

mα, for all l ∈ L}. (47)

The following corollary of Theorem 2 states that superposition
coding is optimal for the (L,L) DS-SMDC problem.

Corollary 2.1. RL,L = RLsup.

Proof. The proof of the converse part is straightforward, so
we omit the details and derive the conclusion directly from
Theorem 2. It is easily seen by comparing (42)-(44) and (45)-
(46) thatRL,rgp reduces toRLsup for r = L. Thus, by Theorem 2,
we have RL,L = RL,rgp = RLsup.

IV. ACHIEVABILITY OF THEOREM 1: JOINT CODING
STRATEGIES

In order to prove the necessity part of Theorem 1, we instead
prove the sufficiency part of Theorem 1’, in the two separate
cases given in (32) and (33).

A. Low Security Level at Higher Diversity Level

In this section, we provide a joint coding strategy for
the case that Condition 1 in (32) holds which provides rate
saving, compared to superposition coding. We first discuss a
motivating example to illustrate the key insight on how such
rate saving is obtained.

Example 2. Let L = 3, (α, β) = (2, 3), (m2,m3) =
(2, 2), (N2, N3) = (0, 1), and p = 5. Let Z3 be an independent
random key uniformly chosen from Fp. Let the two messages
be encoded with generator matrices constructed using MDS-
A, which induce the coded symbols as shown in Table I(a)
through superposition. The important insight is that the coded
message of M2 can be used as the secret key to encode M3,
which reduces the coding rate. More precisely, we replace Z3

by Y 1
2 = Z1

2 + Z2
2 to serve as the key for M3. The coded

symbols for this joint coding strategy are shown in Table I(b).
By comparing the two tables, it is seen that the sum rate is
reduced since the coded symbol Z3 is eliminated.

The reconstruction requirements of both M2 and M3 are
straightforward. There is no security requirement on M2. For

TABLE I: Coding strategy for Example 2

W1 W2 W3

α = 2 Y 1
2 =M1

2 +M2
2 2M1

2 +M2
2 M1

2 + 2M2
2

β = 3 Z3 M1
3 + 2M2

3 + Z3 2M1
3 +M2

3 + Z3

(a) Superposition coding strategy

W1 W2 W3

α = 2
Y 1
2 =M1

2 +M2
2

2M1
2 +M2

2 M1
2 + 2M2

2

β = 3 M1
3 + 2M2

3 + Y 1
2 2M1

3 +M2
3 + Y 1

2

(b) Joint coding strategy

TABLE II: Coding strategy to replace encryption keys for Mβ

W1 W2 · · · Wθ Wθ+1 · · · WL

α Y 1
α Y 2

α · · · Y θα Y θ+1
α · · · Y Lα

β Y 1
β Y 2

β · · · Y θβ Y θ+1
β · · · Y Lβ

(a) Superposition coding strategy

W1 W2 · · · Wθ Wθ+1 · · · WL

α
Y 1
α Y 2

α · · · Y θα
Y θ+1
α · · · Y Lα

β Y
(θ+1)∗
β · · · Y L∗

β

(b) Joint coding strategy

M3, it is seen that any one coded symbol Wl reveals no
information about M3. For instance, eavesdropping W2 gives

H(M3|W2) = H(M3|M1
3 + 2M2

3 + Y 1
2 ,M

1
2 + Y 1

2 ) (48)

= H(M3,M
1
3 + 2M2

3 + Y 1
2 |M1

2 + Y 1
2 )

−H(M1
3 + 2M2

3 + Y 1
2 |M1

2 + Y 1
2 ) (49)

= H(M3,M
1
3 + 2M2

3 + Y 1
2 )−H(M1

3 + 2M2
3 + Y 1

2 ) (50)

= H(M3|M1
3 + 2M2

3 + Y 1
2 ) (51)

= H(M3), (52)

where (50) follows from that M1
2 is independent of M3,M

1
3 +

2M2
3 +Y 1

2 , Y
1
2 and M1

2 is independent of M1
3 +2M2

3 +Y 1
2 , Y

1
2 .

Coding strategy for general parameters:
First encode separately Mα and Mβ with generator matrices
Gα and Gβ using MDS-A in Section II-C. The coded symbols
for superposition coding strategy are as given in Table II(a).
The joint coding strategy we propose is then to replace
the first θ = min{Nβ , α − Nβ} encryption key symbols
(Z1

β Z
2
β · · · Zθβ) by the coded symbols (Y 1

α , Y
2
α , · · · , Y θα ). The

parameter θ is strictly positive, which is implied by Condition
1 in (32). Denote the corresponding codewords for Mβ thus
obtained as (Y 1∗

β , Y 2∗
β , · · · , Y L∗β ). The joint coding strategy of

Mα and Mβ is illustrated in Table II(b) and can be described
as follows:

Wi =

{
Y iα, for 1 ≤ i ≤ θ
[Y iα, Y

i∗
β ], for θ < i ≤ L.

(53)

By comparing Table II(a) and Table II(b), it can be seen that
the coding rate is reduced compared to superposition coding
because (Y 1

β , Y
2
β , · · · , Y θβ ) are removed from the codewords,

while the rates for all the others are unchanged. Next, we
verify the reconstruction and security constraints for the two
messages.
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Reconstruction: The verification of the reconstruction require-
ments of both Mα and Mβ is straightforward.

Security: We consider the security requirements for the two
levels separately.

1) Assume we can access Nα coded symbols WB, |B| =
Nα. Partition B into B1 and B2 such that B1 ⊆
{1, 2, · · · , θ} and B2 ⊆ {θ + 1, · · · , L}. Notice that

H(Y ∗B2

β |Mα, Y
B1
α Y B2

α )

≥ H(Y ∗B2

β |Mα, Y
1:θ
α , Y B2

α ) (54)

= H(Y ∗B2

β |Y 1:θ
α ) (55)

= H(Y ∗B2

β ), (56)

where the second equality follows from the fact that con-
ditioning does not increase entropy, and the last equality
follows from Lemma 2 because

|B2|+ θ ≤ Nα + θ (57)
= Nα + min{α−Nβ , Nβ} (58)
≤ α (59)
< β, (60)

where the second inequality follows from Nα < Nβ
which is part of Condition 1 in (32). Since conditioning
does not increase entropy, in light of (56), we obtain

H(Y ∗B2

β |Mα, Y
B1
α Y B2

α ) = H(Y ∗B2

β ). (61)

It follows that

I(WB;Mα)

= I(WB1
WB2

;Mα)

= I(Y B1
α Y B2

α Y ∗B2

β ;Mα) (62)

= I(Y B1
α Y B2

α ;Mα) + I(Y ∗B2

β ;Mα|Y B1
α Y B2

α ) (63)

= I(Y ∗B2

β ;Mα|Y B1
α Y B2

α ) (64)

= 0, (65)

where the last but one equality follows from Lemma 3
and the fact that |B1|+ |B2| = Nα, and (65) follows from
(61). Thus indeed WB reveals nothing about Mα.

2) Assume we can access Nβ coded symbols WB, |B| = Nβ .
Partition B into B1 and B2 such that B1 ⊆ {1, 2, · · · , θ}
and B2 ⊆ {θ + 1, · · · , L}. We first consider

H(Y B2
α |Y B1

α Y ∗B2

β )

≥ H(Y B2
α |Y B1

α Y ∗B2

β Mβ) (66)

≥ H(Y B2
α |Y 1

α · · ·Y θα , Zθ+1
β · · ·ZNββ ,MβY

∗B2

β ) (67)

= H(Y B2
α |Y 1

α · · ·Y θα , Zθ+1
β · · ·ZNββ ,Mβ) (68)

= H(Y B2
α , Y 1

α · · ·Y θα |Zθ+1
β · · ·ZNββ ,Mβ)

−H(Y 1
α · · ·Y θα |Zθ+1

β · · ·ZNββ ,Mβ) (69)

= H(Y B2
α , Y 1

α · · ·Y θα )−H(Y 1
α · · ·Y θα ) (70)

= H(Y B2
α ), (71)

where both (66) and (67) follow from the fact that condi-
tioning does not increase entropy, (68) follows from that

Y ∗B2

β is a function of (Y 1
α · · ·Y θα , Zθ+1

β · · ·ZNββ ,Mβ),
(70) follows from that (Zθ+1

β · · ·ZNββ ,Mβ) are indepen-
dent of (Y B2

α , Y 1
α · · ·Y θα ), and the last equality follows

from Lemma 2, since |B2| + θ ≤ α which is induced
by θ ≤ α − Nβ . Since conditioning does not increase
entropy, in light of (71), we obtain

H(Y B2
α |Y B1

α Y ∗B2

β Mβ)

= H(Y B2
α |Y B1

α Y ∗B2

β ) = H(Y B2
α ). (72)

Then we have

I(WB;Mβ) = I(WB1
WB2

;Mβ) (73)

= I(Y B1
α Y B2

α Y ∗B2

β ;Mβ) (74)

= I(Y B1
α Y ∗B2

β ;Mβ) + I(Y B2
α ;Mβ |Y B1

α Y ∗B2

β ) (75)

= I(Y B2
α ;Mβ |Y B1

α Y ∗B2

β ) (76)

= H(Y B2
α |Y B1

α Y ∗B2

β )−H(Y B2
α |Y B1

α Y ∗B2

β Mβ) (77)

= H(Y B2
α )−H(Y B2

α ) (78)
= 0, (79)

where (76) follows from Lemma 3 and the fact that |B1|+
|B2| = Nβ , and (78) follows from (72). Thus we obtain
that WB reveals nothing about Mβ .

B. Reversed Security Level

We next provide a joint coding strategy for the case that
Condition 2 in (33) holds.

Example 3. Let L = 4, (α, β) = (3, 4), (m3,m4) =
(1, 1), (N3, N4) = (2, 1), and p = 11. We use generator matrix
G3 generated using MDS-B to encode M3 separately with
encryption keys Z1, Z2, as given in (80). The joint coding
strategy is simply to use M4 to replace Z1 as secret keys to
encrypt M3, as given in (81).

M3 + 2Z1 + 9Z2, 9M3 + 8Z1 + 6Z2,

6M3 + 10Z1 + 7Z2, 7M3 + 9Z1 + 7Z2; (80)
−→M3 + 2M4 + 9Z2, 9M3 + 8M4 + 6Z2,

6M3 + 10M4 + 7Z2, 7M3 + 9M4 + 7Z2. (81)

Since M4 does not need to be separately encoded, rate sav-
ing is obtained. The reconstruction and security requirements
of M3 are immediate. The reconstruction requirement of M4

is straightforward since everything is recovered with any three
coded symbols. The security requirement of M4 can be easily
seen that any one coded symbol reveals nothing about M4.

Coding strategy for general parameters:
Next, we present the general coding strategy that Mβ

performs as secret keys for Mα so that we can reduce the
coding rates. Let Gα be a generator matrix generated using
MDS-B in Section II-C, which can be used to encode Mα

separately with encryption keys (Z1, Z2, . . . , ZNα). The joint
coding strategy is simply to use η = min{Nα, α − Nβ}
symbols of the message Mβ (i.e., M1

β ,M
2
β , · · · ,M

η
β ) to re-

place the encryption keys (Z1 Z2 · · · Zη) for encrypting
Mα. The parameter η is strictly positive, which is implied
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by Condition 2 in (33) as well as α > Nα. Denote the
corresponding coded symbols for Mα after this replacement as
(Y 1∗
α , Y 2∗

α , · · · , Y L∗α ). Since the η message symbols of Mβ do
not need to be separately encoded, rate saving is thus obtained.
Next, we verify the reconstruction and security constraints.

Reconstruction: By the code construction in Section II-C, both
the message Mα and the keys Mβ can be losslessly recovered
from any α coded symbols. Since α < β, the reconstruction
requirements of both Mα and Mβ are satisfied immediately.

Security: The security constraint of Mα is straightforward,
and thus let us consider Mβ . For any B ⊆ L such that |B| =
Nβ , let Y ∗Bα = (Y i∗α : i ∈ B). By Lemma 4, we have

I(Y ∗Bα ;M1
β ,M

2
β , · · · ,M

η
β ) = 0, (82)

since η ≤ α−Nβ .

V. CONVERSE OF THEOREM 1
To show the optimality of Theorem 1, we only need to prove

that under the condition in (27), the sum rate is lower bounded
by (10), i.e.,

L∑
l=1

Rl ≥
L∑
α=1

Lmα

α−Nα
. (83)

For any α ∈ L, let Bα be the set of disjoint subset pairs
(B1
α,B2

α) such that B1
α,B2

α ⊆ L,

|B1
α| = α−Nα and |B2

α| = Nα. (84)

For α ∈ L, let M1:α , (M1,M2, · · · ,Mα). Define µα by

µα =
L

α−Nα
1(

L
Nα

)(
L−Nα
α−Nα

) ∑
(B1
α,B2

α)∈Bα

H(WB1
α
|WB2

α
M1:α).

(85)

We need the following lemma to proceed.

Lemma 5. Under the condition in (27), for any α ∈ L, we
have

L∑
l=1

H(Wl) ≥
α∑
j=1

Lmj

j −Nj
+ µα. (86)

Proof. For α ≤ Ts, (86) is simply the inequality (27) in [1].
For α ≥ Ts, we prove the lemma by induction on α. Similar
to the proof of Theorem 2 in [1] where Han’s inequality plays
a key role, we apply Han’s inequality and its complementary
conditioning version. The details of the proof can be found in
Appendix B.

For α = L, in light of (86), we have
L∑
l=1

Rl =
L∑
l=1

H(Wl) ≥
L∑
α=1

Lmα

α−Nα
+ µL ≥

L∑
α=1

Lmα

α−Nα
,

(87)
from which we can obtain, by normalization, the sum rate
bound (83).
Remark 9. It is clear that superposition coding must induce
µL = 0 under the condition in (27). Since the messages are
encoded separately, we can indeed verify that for any α ∈ L,

H(Y
B1
L

α |Y B
2
L

α Mα) = 0, (88)

where Y 1
α , Y

2
α , · · · , Y Lα are coded symbols of Mα and Y Bα ,

(Y iα : i ∈ B) for any B ⊆ L. To see this, observe that
if the weakly secure SMDC problem reduces to classical
SMDC, (88) is true immediately. Otherwise, by (27), we have
NL ≥ Nα for any α ∈ L. Since we use an (Nα, α, L) ramp
secret sharing code to encode Mα, any α symbols from the
set {M1

α,M
2
α, · · · ,Mα−Nα

α , Y 1
α , Y

2
α , · · · , Y Lα } can completely

recover the whole set. Thus, (Y
B2
L

α ,Mα) provide complete
information about Y B

1
L

α , which verifies (88).

VI. CONVERSE PROOF OF THEOREM 2

Before proving Theorem 2, we introduce some terminolo-
gies and notations in [3]. Let λ = (λ1, λ2, · · · , λL) and

RL+ = {λ : λ 6= 0 and λi ∈ R, λi ≥ 0 for i ∈ L}. (89)

Let ΩαL =
{
v ∈ {0, 1}L : |v| = α

}
, where |v| is the Hamming

weight of a vector v = (v1, v2, · · · , vL). For any v ∈ ΩαL, let
cα(v) be any nonnegative real number. For any λ ∈ RL+ and
α ∈ L, let fα(λ) be the optimal solution to the following
optimization problem:

fα(λ) , max
∑
v∈ΩαL

cα(v) (90)

s.t.
∑
v∈ΩαL

cα(v) · v ≤ λ (91)

cα(v) ≥ 0,∀v ∈ ΩαL. (92)

A set {cα(v) : v ∈ ΩαL} is called an α-resolution for λ if (91)
and (92) are satisfied and it will be abbreviated as {cα(v)} if
there is no ambiguity. Furthermore, an α-resolution is called
optimal if it achieves the optimal value fα(λ). In the following
proof, we will take advantage of some lemmas and theorems
from [3] and [4], which are enclosed in Appendix A for
convenience.

To prove the converse of Theorem 2, we follow the idea of
Theorem 2 in [3], i.e., we provide an alternative characteri-
zation of the group pairwise region RL,rgp . For simplicity, let
fL+1(λ) = 0 for all λ ∈ RL+. For η ∈ {r+1, r+2, · · · , L+1},
let

gη(λ) =
r∑

α=1

f1(λ)mα +
L∑

α=η+1

fα(λ)mα

+ fη(λ)

[
η∑

α=r+1

mα −
r∑

α=1

(α− 1)mα

]
. (93)

In particular, for η = η∗ which is defined by (39), we have

gη∗(λ) =
r∑

α=1

f1(λ)mα +
L∑

α=r+1

fα(λ)m∗α, (94)

where m∗α is defined in (41). From the group pairwise coding
scheme in Fig. 3, we have the following intuitions on the
coding rates.

i. Superposition of M1,M2, · · · ,Mr induces the rate

L∑
l=1

λlRl =
r∑

α=1

f1(λ)mα. (95)
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ii. The messages Mr+1,Mr+2, · · · ,Mη∗−1,M
1
η∗ perform as

keys for M1,M2, · · · ,Mr. Thus, we do not need extra
rates to encode them beyond the rate given in (95).

iii. The other messages M2
η∗ ,Mη∗+1, · · · ,ML will be en-

coded in the same way as in classical SMDC, i.e.,
superposition coding. The coding rate is characterized
in [3] using the technique of α-resolution, which is

L∑
l=1

λlRl = fη∗(λ)

 η∗∑
α=r+1

mα −
r∑

α=1

(α− 1)mα


+

L∑
α=η∗+1

fα(λ)mα. (96)

Summing up the rates in (95) and (96), we obtain gη∗(λ)
which is the total rate of group pairwise coding. Let R∗L,r be
the set of all R ≥ 0 such that

λ · R ≥ gη∗(λ). (97)

In particular, for λ = (100 · · · ) and η∗ = L+1, the constraint
in (97) becomes the single rate bound

Rl ≥
r∑

α=1

mα. (98)

For λ = 1, the constraint in (97) becomes the sum rate bound

R∗sum =

r∑
α=1

(L−α+1)mα+

η∗∑
α=r+1

Lmα

η∗
+

L∑
α=η∗+1

Lmα

α
. (99)

For η∗ = r + 1, the constraint becomes

λ ·R ≥
r∑

α=1

[f1(λ)− (α− 1)fr+1(λ)]mα +
L∑

α=r+1

fα(λ)mα.

(100)
Inspired by the above intuitions on the group pairwise

coding rates, we can alternatively characterize RL,rgp in another
equivalent form, given in the following theorem.

Theorem 3. RL,rgp = R∗L,r.

Proof. See Appendix C.

To complete the converse proof of Theorem 2, in light of
the fact RL,rgp ⊆ RL,r as well as Theorem 3, we now only need
to show RL,r ⊆ R∗L,r, i.e., for any R ∈ RL,r, the following
inequality holds

λ · R ≥ gη∗(λ). (101)

The following lemma provides an alternative representation of
gη∗(λ).

Lemma 6. maxη=r+1,··· ,L+1

{
gη(λ)

}
= gη∗(λ).

Proof. See Appendix D.

By Lemma 6, it only remains to show that for any R ∈ RL,r
and η = r + 1, · · · , L + 1, the inequality λ · R ≥ gη(λ)
holds. The converse for SMDC in [3] is proved using iter-
ations to extract the entropies H(M1), H(M2), · · · , H(ML)
successively with coefficient f1(λ), f2(λ), · · · , fL(λ) which
have the same form of expression. In the secure setting here,

the desired inequality λ · R ≥ gη(λ) will have two forms of
coefficients, i.e., coefficients related to the secure messages
and those related to the non-secure messages. The latter is the
same as that in [3], but the former is different. For this reason,
the iterations in the converse proof in [3] do not apply to the
former, i.e., the secure messages. Therefore, we need to derive
new iterations to extract the entropies of the secure messages,
such that the r-th iteration can be connected with the iterations
in [3]. Specifically, the main idea of proving λ ·R ≥ gη(λ) is
as follows:

i) we extract the entropies H(M1), H(M2), · · · , H(ML)
with proper coefficients in (93) from

∑L
l=1 λlH(Wl)

successively and iteratively;
ii) when extracting H(Mα) for α ∈ {1, 2, · · · , r}, we

explicitly design the coefficients of each intermediate term
in closed-form so that we can finally connect to the r-th
iteration of the converse proof in [3];

iii) for α ≥ r + 1, since there is no security constraints, we
simply use the iterations in [3].

One of the main contributions of the converse proof com-
pared with that in [3] is the new technique of explicitly
designing the coefficients in closed-form in each iteration
for the secure messages. In contrast, in each iteration of the
non-secure messages which is simply the iteration in [3], the
coefficients in the iteration do not have a closed-form.

Instead of formally proving this inequality here, we provide
an example for (L, r) = (4, 2) and η = 3 to illustrate the
main idea, and relegate the formal proof to Appendix E. The
connection between this example and the formal proof will
be discussed in Remark 11, Remark 12, and Remark 13 in
Appendix E. For different i, j, k ∈ {1, 2, 3, 4}, we first present
two equalities that will be used in the example:

H(Wi|WkM1) = H(M2|WkM1) +H(Wi|WkM1:2)

−H(M2|WiWkM1)

= H(M2) +H(Wi|WkM1:2), (102)
H(WiWjWk|M1:2) = H(WiWjWkM3|M1:2)

= H(M3) +H(WiWjWkM1:3). (103)

Now we can write the following chain of inequalities without
much difficulty:

R1 +R2 +R3 +R4

= H(W1) +H(W2) +H(W3) +H(W4) (104)
= 4H(M1) +H(W1|M1) +H(W2|M1)

+H(W3|M1) +H(W4|M1) (105)

= 4H(M1) +

{
0H(W1|M1) +

2

3
H(W2|M1)

+H(W3|M1) +H(W4|M1)

}
,S1

+

{
H(W1|M1)

+
1

3
H(W2|M1) + 0H(W3|M1) + 0H(W4|M1)

}
,S2

(106)

≥ 4H(M1) +
8

3
H(M2)

+

{
1

3
H(W2W3|W1M1:2) +

1

3
H(W2W4|W1M1:2)
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+
1

3
H(W3W4|W1M1:2) +

1

3
H(W3W4|W2M1:2)

}
+

{
H(W1|M1:2) +

1

3
H(W2|M1:2)

}
(107)

= 4H(M1) +
8

3
H(M2)

+
1

3
H(W1W2W3|M1:2) +

1

3
H(W1W2W4|M1:2)

+
1

3
H(W1W3W4|M1:2) +

1

3
H(W2W3W4|M1:2) (108)

(103)
= 4H(M1) +

8

3
H(M2) +

4

3
H(M3)

+
1

3
H(W1W2W3|M1:3) +

1

3
H(W1W2W4|M1:3)

+
1

3
H(W1W3W4|M1:3) +

1

3
H(W2W3W4|M1:3) (109)

≥ 4H(M1) +
8

3
H(M2) +

4

3
H(M3) +H(M4) (110)

= 4m1 +
8

3
m2 +

4

3
m3 +m4, (111)

where (110) follows from the fact that ( 1
3 ,

1
3 ,

1
3 ,

1
3 ) is an

optimal 3-resolution for λ = (1, 1, 1, 1) (cf. (90)-(92)), and the
nontrivial step from (106) to (107) can be derived as follows

S1 =
2

3
H(W2|M1) +H(W3|M1) +H(W4|M1) (112)

=

[
1

3
H(W2|M1) +

1

3
H(W3|M1)

]
+

[
1

3
H(W2|M1) +

1

3
H(W4|M1)

]
+

[
1

3
H(W3|M1) +

1

3
H(W4|M1)

]
+

[
1

3
H(W3|M1) +

1

3
H(W4|M1)

]
(113)

≥
[

1

3
H(W2|W1M1) +

1

3
H(W3|W1M1)

]
+

[
1

3
H(W2|W1M1) +

1

3
H(W4|W1M1)

]
+

[
1

3
H(W3|W1M1) +

1

3
H(W4|W1M1)

]
+

[
1

3
H(W3|W2M1) +

1

3
H(W4|W2M1)

]
(114)

(102)
=

8

3
H(M2) +

[
1

3
H(W2|W1M1:2) +

1

3
H(W3|W1M1:2)

]
+

[
1

3
H(W2|W1M1:2) +

1

3
H(W4|W1M1:2)

]
+

[
1

3
H(W3|W1M1:2) +

1

3
H(W4|W1M1:2)

]
+

[
1

3
H(W3|W2M1:2) +

1

3
H(W4|W2M1:2)

]
(115)

≥ 8

3
H(M2)

+

{
1

3
H(W2W3|W1M1:2) +

1

3
H(W2W4|W1M1:2)

+
1

3
H(W3W4|W1M1:2) +

1

3
H(W3W4|W2M1:2)

}
,S′1

,

(116)

and

S2 = H(W1|M1) +
1

3
H(W2|M1) (117)

≥
{
H(W1|M1:2) +

1

3
H(W2|M1:2)

}
,S′2

. (118)

The main ideas of the example are as follows:
1) The two terms S1 and S2 have a similar form in

(106), but with different coefficient vectors (0, 2
3 , 1, 1)

and (1, 1
3 , 0, 0), respectively, which are chosen strate-

gically for this bound. The two terms are bounded in
rather different manners. We extract 8

3H(M2) from S1

(with S′1 left) and use S2 to convert S′1 from the form
H(WiWj |WkM1:2) to the form H(WiWjWk|M1:2).
This further generates the terms H(WiWjWk|M1:3) in
(109), which ensures that the α-resolution technique can
be applied subsequently.

2) When bounding S1, we reorganize its coefficient vec-
tor (0, 2

3 , 1, 1) as given in (113) for two purposes:
firstly, Han’s inequality can be applied as in (116);
secondly, H(WiWj |WkM1:2) in S′1 can be converted to
H(W1WjWk|M1:2) using S′2;

3) The coefficient ( 1
3 ,

1
3 ,

1
3 ,

1
3 ) in (108)-(109) is an optimal

3-resolution for (1, 1, 1, 1). In the general proof, the
α-resolution technique used in the converse proof for
SMDC [3] will be invoked in a more systematic manner.

VII. CONCLUSION

We studied the weakly secure SMDC problem and charac-
terized the condition that superposition coding is optimal in
terms of achieving the minimum sum rate. It is generally diffi-
cult to design the optimal coding schemes and characterize the
rate regions for those cases that superposition is suboptimal.
In this paper, we consider a special case called differential-
constant secure SMDC, for which the optimal rate region is
characterized. A group pairwise coding scheme is shown to
be optimal in terms of achieving the entire rate region.

The optimality condition is proved only for the minimum
sum rate, we conjecture that it is also the optimality condition
that superposition coding can achieve the entire rate region.
This is currently under our investigation.

APPENDIX A
SOME LEMMAS/THEOREMS FROM [3], [4]

In the following lemmas and theorem, we assume λ ∈ RL+
(c.f. (89)) is ordered, i.e., λ1 ≥ λ2 ≥ · · · ≥ λL. Let {c(v)} be
an α-resolution for λ (c.f. (91),(92)) and λ̃ =

∑
v∈ΩαL

c(v) ·v.
An α-resolution is called perfect if the equality in (91) holds,
i.e.,

∑
v∈ΩαL

c(v) · v = λ.
Lemma 2 in [3]: Let {c(v)} be an optimal α-resolution for λ.
Then there exists 0 ≤ l ≤ α− 1 such that λi − λ̃i > 0 if and
only if 1 ≤ i ≤ l.
Lemma 4 in [3]:

(i) fα(λ) ≤ α−1
∑L
i=1 λi;
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(ii)
∑

v∈ΩαL
c(v) = α−1

∑L
i=1 λi if and only if {c(v)} is

a perfect α-resolution for λ. In this case, fα(λ) =
α−1

∑L
i=1 λi.

Lemma 7 in [3]: For α ≥ 2, λ has a perfect α-resolution if
and only if λ1 ≤ λ2+···+λL

α−1 .

Theorem 1 in [4]: fα(λ) = min
β∈{0,1,··· ,α−1}

1
α−β

∑L
i=β+1 λi.

Lemma 1 in [4]: For α ≥ 2, if λ1 ≤ λ2+λ3+···λL
α−1 , then

fα(λ) = 1
α

∑L
i=1 λi.

For any permutation ω on {1, 2, · · · , L}, denote(
λω(1), λω(2), · · · , λω(L)

)
by ω(λ).

Lemma 2 in [4]: fα
(
ω(λ)

)
= fα(λ) for any α ∈ L.

Lemma 5 in [4]: Let λ1 = (λ1,1, λ1,2, · · · , λ1,L) and λ2 =
(λ2,1, λ2,2, · · · , λ2,L) be two ordered vectors such that λ1,1 >
λ2,1 and λ1,i = λ2,i for all 2 ≤ i ≤ L. For any α0 ∈ L, if
fα0

(λ1) = fα0
(λ2), then fα(λ1) = fα(λ2) for all α ≥ α0.

Let λ[1] be the length-L vector with the first component
being 1 and the rest being 0, i.e., λ[1] = (1, 0, 0, · · · , 0).
Lemma 6 in [4]: If λ1 >

∑L
i=2 λi, let λ′ =(∑L

i=2 λi, λ2, λ3, · · · , λL
)

. Then for all α ∈ L,

fα(λ) =

(
λ1 −

L∑
i=2

λi

)
fα

(
λ[1]
)

+ fα(λ′).

Lemma 7 in [4]: For any η ∈ {1, 2, · · · , L− 1},

(i) if λ1 ≤ 1
η

∑L
i=2 λi, then fα(λ) = 1

α

∑L
i=1 λi for α =

1, 2, · · · , η + 1;
(ii) if λ1 ≥ 1

η

∑L
i=2 λi, then fα(λ) = fα−1(λ2, λ3, · · · , λL)

for α = η + 1, η + 2, · · · , L.

APPENDIX B
PROOF OF LEMMA 5

When condition (27) is satisfied, there must exist a Ts as
defined in (29). For α ≤ Ts, since Nα = 0, we have

µα =
L

α

1(
L
α

) ∑
B1
α⊆L:|B1

α|=α

H(WB1
α
|M1:α). (119)

The claim in (86) is exactly inequality (27) in [1] which was
proved by applying Han’s inequality.

For any α ≥ Ts, we prove the claim by induction. Firstly,
the claim is true for α = Ts. Then we assume the claim is true
for α = ζ for some ζ ≥ Ts. We now show that it is true for
α = ϕ, which is the index of the next non-vanishing message
following Mζ . In light of (86), we only need to show that

µζ ≥
L

ϕ−Nϕ
H(Mϕ) + µϕ. (120)

Since now ϕ > ζ > 0, the first condition in (27) must hold,
i.e.,

Nζ < ζ ≤ Nϕ < ϕ. (121)

For any (B1
ϕ,B2

ϕ) ∈ Bϕ and (B1
ζ ,B2

ζ) ∈ Bζ such that B2
ζ ⊆ B2

ϕ,
from the reconstruction and security constraints of Mϕ, we
obtain

H(Mϕ) = H(Mϕ|WB2
ϕ

)−H(Mϕ|WB1
ϕ
WB2

ϕ
) (122)

= I(Mϕ;WB1
ϕ
|WB2

ϕ
) (123)

= H(WB1
ϕ
|WB2

ϕ
)−H(WB1

ϕ
|WB2

ϕ
Mϕ) (124)

= H(WB1
ϕ
|WB2

ϕ
M1:ζ)−H(WB1

ϕ
|WB2

ϕ
M1:ϕ)

(125)

where (125) follows from the fact that Nϕ ≥ ζ and the recon-
struction constraints of M1,M2, · · · ,Mζ . In the following, we
prove the iteration of (120) in two different situations:

i. ζ −Nζ ≤ ϕ−Nϕ;
ii. ζ −Nζ > ϕ−Nϕ.

Remark 10. It is easy to see by checking the following proof
that the case of ζ −Nζ = ϕ−Nϕ is compatible with both (i)
and (ii).
Case i. ζ −Nζ ≤ ϕ−Nϕ: Consider the following,

µζ =
L

ζ −Nζ
1(

L
Nζ

)(
L−Nζ
ζ−Nζ

) · ∑
(B1
ζ ,B

2
ζ)∈Bζ

H(WB1
ζ
|WB2

ζ
M1:ζ)

≥ L

ζ −Nζ
1(

L
Nζ

)(
L−Nζ
ζ−Nζ

) ·
∑

(B1
ζ ,B

2
ζ)∈Bζ

∑
V⊆L\(B1

ζ∪B
2
ζ):

|V|=Nϕ−Nζ

1(
L−ζ

Nϕ−Nζ

)H(WB1
ζ
|WB2

ζ∪VM1:ζ)

(126)

=
L

ζ −Nζ
1(

L
Nζ

)(
L−Nζ
ζ−Nζ

) ·
∑
B1
ζ⊆L:

|B1
ζ |=ζ−Nζ

∑
B2
ϕ⊆L\B

1
ζ :

|B2
ϕ|=Nϕ

(
Nϕ
Nζ

)(
L−ζ

Nϕ−Nζ

)H(WB1
ζ
|WB2

ϕ
M1:ζ)

=
L

ζ −Nζ

(
L−Nϕ−1
ζ−Nζ−1

)(
L
Nζ

)(
L−Nζ
ζ−Nζ

) (
Nϕ
Nζ

)(
L−ζ

Nϕ−Nζ

) ·
∑
B2
ϕ⊆L:

|B2
ϕ|=Nϕ

∑
B1
ζ⊆L\B

2
ϕ:

|B1
ζ |=ζ−Nζ

1(
L−Nϕ−1
ζ−Nζ−1

)H(WB1
ζ
|WB2

ϕ
M1:ζ)

≥ L

ζ −Nζ

(
L−Nϕ−1
ζ−Nζ−1

)(
L
Nζ

)(
L−Nζ
ζ−Nζ

) (
Nϕ
Nζ

)(
L−ζ

Nϕ−Nζ

) ·
∑

(B1
ϕ,B2

ϕ)∈Bϕ

1(
L−Nϕ−1
ϕ−Nϕ−1

)H(WB1
ϕ
|WB2

ϕ
M1:ζ) (127)

=
L

ϕ−Nϕ
1(

L
Nϕ

)(
L−Nϕ
ϕ−Nϕ

) · ∑
(B1
ϕ,B2

ϕ)∈Bϕ

H(WB1
ϕ
|WB2

ϕ
M1:ζ)

=
L

ϕ−Nϕ
1(

L
Nϕ

)(
L−Nϕ
ϕ−Nϕ

) ·∑
(B1
ϕ,B2

ϕ)∈Bϕ

[
H(Mϕ) +H(WB1

ϕ
|WB2

ϕ
M1:ϕ)

]
(128)

=
L

ϕ−Nϕ
H(Mϕ) + µϕ, (129)
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where (126) follows from the fact that conditioning does not
increase entropy, (127) follows from Han’s inequality and the
assumption that ζ − Nζ ≤ ϕ − Nϕ, and (128) follows from
(125).

Case ii. ζ −Nζ > ϕ−Nϕ: We derive the iteration as
follows,

µζ =
L

ζ −Nζ
1(

L
Nζ

)(
L−Nζ
ζ−Nζ

) · ∑
(B1
ζ ,B

2
ζ)∈Bζ

H(WB1
ζ
|WB2

ζ
M1:ζ)

≥ L

ζ −Nζ
1(

L
Nζ

)(
L−Nζ
ζ−Nζ

) ·
∑

(B1
ζ ,B

2
ζ)∈Bζ

∑
V⊆L\(B1

ζ∪B
2
ζ):

|V|=ϕ−ζ

1(
L−ζ
ϕ−ζ
)H(WB1

ζ
|WB2

ζ∪VM1:ζ)

=
L

ζ −Nζ
1(

L
Nζ

)(
L−Nζ
ζ−Nζ

) ·
∑
B1
ζ⊆L:

|B1
ζ |=ζ−Nζ

∑
V′⊆L\B1

ζ :

|V′|=ϕ−(ζ−Nζ)

(
ϕ−(ζ−Nζ)

Nζ

)(
L−ζ
ϕ−ζ
) H(WB1

ζ
|WV′M1:ζ)

=
L

ζ −Nζ
1(

L
Nζ

)(
L−Nζ
ζ−Nζ

) (ϕ−(ζ−Nζ)
Nζ

)(
L−ζ
ϕ−ζ
) ·∑

D⊆L:
|D|=ϕ

∑
B1
ζ⊆D:

|B1
ζ |=ζ−Nζ

∑
V′=D\B1

ζ

H(WB1
ζ
|WV′M1:ζ)

=
L

ζ −Nζ
1(

L
Nζ

)(
L−Nζ
ζ−Nζ

) (ϕ−(ζ−Nζ)
Nζ

)(
L−ζ
ϕ−ζ
) (

ϕ

ζ −Nζ

)
(ζ −Nζ)·

∑
D⊆L:
|D|=ϕ

∑
B1
ζ⊆D:

|B1
ζ |=ζ−Nζ

∑
B2
ϕ=D\B1

ζ

1(
ϕ

ζ−Nζ

)
(ζ −Nζ)

H(WB1
ζ
|WV′M1:ζ)

≥ L

ζ −Nζ
1(

L
Nζ

)(
L−Nζ
ζ−Nζ

) (ϕ−(ζ−Nζ)
Nζ

)(
L−ζ
ϕ−ζ
) (

ϕ

ζ −Nζ

)
(ζ −Nζ)·

∑
D⊆L:
|D|=ϕ

∑
B1
ϕ⊆D:

|B1
ϕ|=ϕ−Nϕ

∑
V′′=D\B1

ϕ

1/(ϕ−Nϕ)(
ϕ

ϕ−Nϕ

) H(WB1
ϕ
|WV′′M1:ζ)

(130)

=
L

ϕ−Nϕ
1(

L
Nϕ

)(
L−Nϕ
ϕ−Nϕ

) ·∑
D⊆L:
|D|=ϕ

∑
B1
ϕ⊆D:

|B1
ϕ|=ϕ−Nϕ

∑
B2
ϕ=D\B1

ϕ

H(WB1
ϕ
|WB2

ϕ
M1:ζ)

=
L

ϕ−Nϕ
1(

L
Nϕ

)(
L−Nϕ
ϕ−Nϕ

) · ∑
(B1
ϕ,B2

ϕ)∈Bϕ

H(WB1
ϕ
|WB2

ϕ
M1:ζ)

=
L

ϕ−Nϕ
1(

L
Nϕ

)(
L−Nϕ
ϕ−Nϕ

) ·∑
(B1
ϕ,B2

ϕ)∈Bϕ

[
H(Mϕ) +H(WB1

ϕ
|WB2

ϕ
M1:ϕ)

]
(131)

=
L

ϕ−Nϕ
H(Mϕ)

+
L

ϕ−Nϕ
1(

L
Nϕ

)(
L−Nϕ
ϕ−Nϕ

) ∑
(B1
ϕ,B2

ϕ)∈Bϕ

H(WB1
ϕ
|WB2

ϕ
M1:ϕ)

=
L

ϕ−Nϕ
H(Mϕ) + µϕ, (132)

where (130) follows from Han’s inequality (complementary
conditioning version), and (131) follows from (125). This
proves Lemma 5.

APPENDIX C
PROOF OF THEOREM 3

Similar to Lemma 11 in [3], the theorem can be obtained
by proving i) RL,rgp ⊆ R∗L,r; ii) for any λ ∈ RL+, there exists
R ∈ RL,rgp such that λ · R = gη∗(λ).

i) We first show that RL,rgp ⊆ R∗L,r. For any 1 ≤ α ≤ r, let
rα = (rα1 , r

α
2 , · · · , rαL). For any λ ∈ RL+ and R ∈ RL,rgp ,

we have from (43) that

λ · rα ≥ f1(λ)mα. (133)

For r+1 ≤ α ≤ L, let {cα(v)} be an optimal α-resolution
for λ, which implies that

λ ≥
∑
v∈ΩαL

cα(v)v. (134)

Then we have

λ · rα ≥

∑
v∈ΩαL

cα(v)v

 · rα (135)

=
∑
v∈ΩαL

(
cα(v)(v · rα)

)
(136)

≥
∑
v∈ΩαL

(cα(v)m∗α) (137)

=

∑
v∈ΩαL

cα(v)

m∗α (138)

= fα(λ)m∗α (139)

where (135) follows from (134), (137) follows from
(44), and (139) follows from the optimality of {cα(v)}.
Summing up (133) and (139) over α, we have

λ · R ≥
r∑

α=1

f1(λ)mα +
L∑

α=r+1

fα(λ)m∗α (140)

= gη∗(λ). (141)

This implies R ∈ R∗L,r and thus RL,rgp ⊆ R∗L,r.
ii) We now construct a rate tuple R for each λ ∈ RL+ such

that R ∈ RL,rgp and λ · R = gη∗(λ). For r + 1 ≤ α ≤ L,
let {cα(v)} be an optimal α-resolution for λ and let

λ̃ =
∑
v∈ΩαL

cα(v) · v. (142)

By Lemma 2 in [3], there exists 1 ≤ lα ≤ α−1 such that
λi > λ̃i if and only if 1 ≤ i ≤ lα. Let Rl =

∑L
α=1 r

α
l
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for l ∈ L. We construct R by designing the sub-rates rαl
as follows.

a) For 1 ≤ α ≤ r, let

rαl = mα, for all 1 ≤ l ≤ L. (143)

b) For r + 1 ≤ α ≤ η∗ − 1, let

rαl = 0, for all 1 ≤ l ≤ L. (144)

c) For η∗ ≤ α ≤ L, let

rαl =

{
0, for 1 ≤ l ≤ lα
m∗α
α−lα , for lα + 1 ≤ l ≤ L.

(145)

We first verify that such a construction implies R ∈ RL,rgp .
a) For 1 ≤ α ≤ r, it is obvious that (43) is satisfied.
b) For r+1 ≤ α ≤ η∗−1, since m∗α = 0, (44) is satisfied.
c) For η∗ ≤ α ≤ L, consider any B ⊆ L such that |B| =
α. Let eα be an L-vector with the first lα components
being 0 and the last L − lα components being 1. Let
vB = (v1, v2, · · · , vL) be such that vi = 1 if and only
if i ∈ B. Since

∑lα
i=1 vi ≤ lα, we have eα ·vB ≥ α−lα.

Thus, ∑
l∈B

rαl =

(
m∗α

α− lα
eα

)
· vB (146)

=
m∗α

α− lα
(eα · vB) (147)

≥ m∗α
α− lα

(α− lα) (148)

= m∗α. (149)

Thus, R ∈ RL,rgp . Now it remains to show that λ · R =
gη∗(λ). We consider the following cases.

a) For 1 ≤ α ≤ r, it is easy to check that

λ · rα = f1(λ)mα. (150)

b) For r + 1 ≤ α ≤ η∗ − 1, it is obvious that

λ · rα = 0. (151)

c) For η∗ ≤ α ≤ L, only the first lα components of λ− λ̃
are nonzero. Thus, we haveλ− ∑

v∈ΩαL

cα(v)v

 · rα = 0, (152)

which implies that

λ·rα =

∑
v∈ΩαL

cα(v)v

·rα =
∑
v∈ΩαL

(
cα(v)(v ·rα)

)
.

(153)
By Lemma 2 in [3], for any v ∈ ΩαL such that cα(v) >
0, the first lα components are equal to 1, (α−lα) of the
other L−lα components are equal to 1, and the rest are
equal to 0. On the other hand, the first lα components
of rα are equal to zero. Thus, for any v ∈ ΩαL such
that cα(v) > 0, we have

v · rα = (α− lα)
m∗α

α− lα
= m∗α. (154)

Then

λ · rα =
∑
v∈ΩαL

(
cα(v)(v · rα)

)
(155)

=
∑
v∈ΩαL

cα(v)m∗α (156)

=

∑
v∈ΩαL

cα(v)

m∗α (157)

= fα(λ)m∗α. (158)

Summing up (150), (151), and (158) over all 1 ≤ α ≤ L,
we obtain λ·R = gη∗(λ). Therefore, Theorem 3 is proved.

APPENDIX D
PROOF OF LEMMA 6

We prove the lemma by proving (i) for r + 1 ≤ η∗ ≤ L,∑r
α=1(α − 1)mα ≤

∑η∗

α=r+1 mα is equivalent to gη∗(λ) ≥
gη∗+1(λ) ≥ · · · ≥ gL+1(λ); (ii) for r + 2 ≤ η∗ ≤ L + 1,∑η∗−1
α=r+1 mα <

∑r
α=1(α − 1)mα is equivalent to gη∗(λ) >

gη∗−1(λ) > · · · > gr+1(λ).
(i) For η∗ ≤ η ≤ L, we have

gη(λ) ≥ gη+1(λ) (159)
m
L∑

α=η+1

fα(λ)mα + fη(λ)

[
η∑

α=r+1

mα −
r∑

α=1

(α− 1)mα

]

≥
L∑

α=η+2

fα(λ)mα

+ fη+1(λ)

[
η+1∑

α=r+1

mα −
r∑

α=1

(α− 1)mα

]
(160)

m

fη+1(λ)mη+1 + fη(λ)

[
η∑

α=r+1

mα −
r∑

α=1

(α− 1)mα

]

≥ fη+1(λ)

[
η+1∑

α=r+1

mα −
r∑

α=1

(α− 1)mα

]
(161)

m

(fη(λ)− fη+1(λ))

[
η∑

α=r+1

mα −
r∑

α=1

(α− 1)mα

]
≥ 0

(162)
m
η∑

α=r+1

mα ≥
r∑

α=1

(α− 1)mα. (163)

Thus, we conclude that

gη∗(λ) ≥ gη∗+1(λ) ≥ · · · ≥ gL+1(λ) (164)

is equivalent to
r∑

α=1

(α− 1)mα ≤
η∑

α=r+1

mα for all η∗ ≤ η ≤ L+ 1,

(165)
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which is also equivalent to

r∑
α=1

(α− 1)mα ≤
η∗∑

α=r+1

mα. (166)

(ii) For r + 1 ≤ η ≤ η∗, we have

gη(λ) > gη−1(λ) (167)
m
L∑

α=η+1

fα(λ)mα + fη(λ)

[
η∑

α=r+1

mα −
r∑

α=1

(α− 1)mα

]

>
L∑
α=η

fα(λ)mα

+ fη−1(λ)

[
η−1∑

α=r+1

mα −
r∑

α=1

(α− 1)mα

]
(168)

m

fη(λ)

[
η∑

α=r+1

mα −
r∑

α=1

(α− 1)mα

]

> fη(λ)mη + fη−1(λ)

[
η−1∑

α=r+1

mα −
r∑

α=1

(α− 1)mα

]
(169)

m

(fη−1(λ)− fη(λ))

[
η−1∑

α=r+1

mα −
r∑

α=1

(α− 1)mα

]
< 0

(170)
m
η−1∑

α=r+1

mα <
r∑

α=1

(α− 1)mα. (171)

Thus, we conclude that

gη∗(λ) > gη∗−1(λ) > · · · > gr+1(λ) (172)

is equivalent to
η−1∑

α=r+1

mα <
r∑

α=1

(α− 1)mα for all r + 1 ≤ η ≤ η∗,

(173)
which is also equivalent to

η∗−1∑
α=r+1

mα <
r∑

α=1

(α− 1)mα. (174)

APPENDIX E
CONVERSE PROOF OF THEOREM 2 (CONTINUING)

In order to prove the inequality in (97), i.e., λ ·R ≥ gη∗(λ),
we first introduce some lemmas and important parameters that
will be used. The connection between the example at the end
of Section VI and the general converse proof here will be
provided when the corresponding parameters are defined.

Similar to Lemma 6 in [4], the following lemma gives a
sufficient condition of redundancy in the characterization of
the rate region.

Lemma 7. For any η = r + 1, r + 2, · · · , L + 1, the rate
constraint λ ·R ≥ gη(λ) is redundant in the characterization
of R∗L,r if

λ1 >
λ2 + λ3 + · · ·+ λL

η − 1
. (175)

Proof. See Appendix F.

For any η ∈ {r + 1, r + 2, · · · , L + 1}, λ is called an η-
considerable coefficient vector if λ1 ≥ λ2 ≥ · · · ≥ λL and

λ1 ≤
λ2 + λ3 + · · ·+ λL

η − 1
. (176)

Denote the set of all η-considerable coefficient vectors by RLη .
Then let

RLcon =
L+1⋃
η=r+1

RLη . (177)

We have the following property on vectors in RLcon, for which
a simple proof is given in Appendix G.

Lemma 8. For η = r + 1, r + 2, · · · , L+ 1 and λ ∈ RLη , we
have fη(λ) ≥ λ1.

By Lemma 7, we only need to prove λ · R ≥ gη∗(λ) for
λ ∈ RLcon. Thus, we assume λ ∈ RLcon in the sequel. From
Theorem 1 in [4], we can verify that

L∑
i=1

λi = f1(λ) ≥ ηfη(λ), (178)

which implies that
L∑
i=1

λi − (r − 1)fη(λ) ≥ [η − (r − 1)] fη(λ) > 0. (179)

Let ξα ∈ L be the index of λ such that
ξα−1∑
i=1

λi < αfη(λ) ≤
ξα∑
i=1

λi. (180)

For simplicity, let ξ0 = 1. From Lemma 8, we can see that

fη(λ) ≥ λ1 ≥ λ2 ≥ · · · ≥ λL, (181)

which implies

ξ0 ≤ ξ1 < ξ2 < · · · < ξr. (182)

and
ξi ≥ i. (183)

Due to (179), we can subtract r − 1 of fη(λ) one by one
from the sequence λ1, λ2, · · · , λL. The subtraction process is
illustrated in Fig. 4. For α = 1, 2, · · · , r − 1, let γ(α) =(
γ

(α)
1 , γ

(α)
2 , · · · , γ(α)

L

)
be the α-th subtraction and λ(α) =(

λ
(α)
1 , λ

(α)
2 , · · · , λ(α)

L

)
be the α-th residue after the first α

subtractions such that

γ
(α)
i =



ξα−1∑
i=1

λi − (α− 1)fη(λ), if i = ξα−1

αfη(λ)−
ξα−1∑
i=1

λi, if i = ξα

λi, if ξα−1 < i < ξα

0, if i < ξα−1 or i > ξα.
(184)
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7 γ
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8 γ

(4)
9

γ
(5)
9 γ

(5)
10 γ

(5)
11 γ
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...

γ
(r−1)
ξr−2

γ
(r−1)
ξr−2+1 · · · γ

(r−1)
ξr−1−1 γ

(r−1)
ξr−1

Fig. 4: Illustration of γ(α)
i

and λ(α)
i = λi −

∑α
j=1 γ

(j)
i . Thus,

λ
(α)
i =


0, if i < ξα∑ξα
i=1 λi − αfη(λ), if i = ξα

λi, if i > ξα

(185)

It is easy to check that

ξα∑
i=ξα−1

γ
(α)
i = fη(λ) (186)

and
γ

(α)
ξα

+ γ
(α+1)
ξα

= λξα . (187)

Remark 11. In the example at the end of Section VI, the
subtraction and residue parameters are the coefficients in
(106), which is λ(1) = (0, 2

3 , 1, 1) and γ(1) = (1, 1
3 , 0, 0).

Let λ(r−1) =
(
λ

(r−1)
ξr−1

, λ
(r−1)
ξr−1+1, · · · , λ

(r−1)
L

)
. The follow-

ing lemma will be used in the converse. The detailed proof of
the lemma is given in Appendix H.

Lemma 9. fη−(r−1)

(
λ(r−1)

)
≥ fη(λ).

By the definition of fη−(r−1)

(
λ(r−1)

)
in (90), the value

of the objective function
∑

v∈Ω
η−(r−1)
L−ξr−1+1

cη−(r−1)(v) lies in

the range
[
0, fη−(r−1)

(
λ(r−1)

) ]
. The inequality in Lemma 9

implies fη(λ) ∈
[
0, fη−(r−1)

(
λ(r−1)

) ]
. Thus, there exists an

[η − (r − 1)]-resolution
{
cη−(r−1)(v) : v ∈ Ω

η−(r−1)
L−ξr−1+1

}
for

λ(r−1) such that ∑
v∈Ω

η−(r−1)
L−ξr−1+1

cη−(r−1)(v) = fη(λ). (188)

For v ∈ Ω
η−(r−1)
L−ξr−1+1 such that cη−(r−1)(v) > 0, let v =

(v1, v2, · · · , vL−ξr−1+1) and

Dv =
{
i ∈ {ξr−1, ξr−1 + 1, · · · , L} : vi−ξr−1+1 = 1

}
.

(189)
Let D =

{
Dv : v ∈ Ω

η−(r−1)
L−ξr−1+1, cη−(r−1)(v) > 0

}
and

|D| = b1. For simplicity, let D = {D1, D2, · · · , Db1}. For

k = {1, 2, · · · , b1}, if Dk = Dv for some v ∈ Ω
η−(r−1)
L−ξr−1+1,

let c(Dk) = cη−(r−1)(v). Then

b1∑
k=1

c(Dk) = fη(λ). (190)

For α ∈ {1, 2, · · · , r − 1}, let Aα = {i1, i2, · · · , iα−1},
where ij ∈ {ξj−1, ξj−1 +1, · · · , ξj} for j ∈ {1, 2, · · · , α−1}.
Let A(α) be the collection of all Aα. For Aα ∈ A(α), for
notational simplicity, let

HAα = min
j=1,2,··· ,α−1


ij∑

k=ξj−1

γ
(j)
k

 (191)

and

QAα = max
j=1,2,··· ,α−1


ij−1∑
k=ξj−1

γ
(j)
k

 . (192)

For each iα ∈ {ξα−1, ξα−1 + 1, · · · , ξα}, let

hα =

iα∑
k=ξj−1

γ
(α)
k (193)

and

qα =

iα−1∑
k=ξj−1

γ
(α)
k . (194)

Then for α ∈ {1, 2, · · · , r−1}, iα ∈ {ξα−1, ξα−1+1, · · · , ξα},
and Aα ∈ A(α), define γAαiα by

γAαiα , [min{hα, HAα} −max{qα, QAα}]
+
, (195)

where for any x ∈ R, [x]+ , max{0, x} as defined after (37).
For notational simplicity, we denote γ

(α)
iα

and γAαiα by γ
(α)
i

and γAαi respectively, where i ∈ {ξα−1, ξα−1 + 1, · · · , ξα}.
Let A(α)

0 be the collection of Aα such that γAαi > 0. We
can verify that for any i ∈ {ξα−1, ξα−1 + 1, · · · , ξα},∑

Aα∈A(α)
0

γAαi = γ
(α)
i . (196)

This means that γAαi , Aα ∈ A(α) is a partition of γ(α)
i . This

partition is the key idea of the converse proof in (225)-(227)
that we recursively partition the coefficient of an entropy term
into coefficients of entropies in a lower layer. For example,
the coefficient of H(W1,W2,W3|W4) is partitioned into co-
efficients of H(W1,W2|W3,W4), H(W1,W3|W2,W4), and
H(W2,W3|W1,W4).

For α = 1, we can see that A(1)
0 = {∅} and for i ∈

{1, 2, · · · , ξ1},
γA1
i = γ

(1)
i . (197)

If there is an Aα such that i ∈ Aα, then i = ξα−1. In particular,
for all Aα such that ξα−1 ∈ Aα, we have γAαξα−1

= 0 since

γ
(α+1)
ξα

= λξα − γ
(α)
ξα

≤ fη(λ)− γ(α)
ξα

=

ξα−1∑
i=ξα−1

γ
(α)
i , (198)
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where the inequality follows from Lemma 8. It is easy to check
that for i ∈ {1, 2, · · · , ξα−1 − 1},

ξα∑
k=ξα−1

∑
Aα∈A(α)

0 : i∈Aα

γAαk = λi (199)

and for i = ξα−1,

ξα∑
k=ξα−1

∑
Aα∈A(α)

0 : ξα−1∈Aα

γAαk = γ
(α−1)
ξα−1

. (200)

Thus,

ξα∑
k=ξα−1

∑
Aα∈A(α)

0 : ξα−1∈Aα

γAαk +
∑

Aα∈A(α)
0

γAαξα−1

= γ
(α−1)
ξα−1

+ γ
(α)
ξα−1

= λξα−1 , (201)

where the first equality follows from (200) and (196), and the
second equality follows from (187).

For any k ∈ {1, 2, · · · , α − 1} and Aα ∈ A(α)
0 , let Akα =

{i1, i2, · · · , ik} be the set of the first k smallest elements in
Aα. In particular, Aα−1

α = Aα. Then the condition γAαi =∑ξα+1

k=ξα
γ
{i}∪Aα
k implies that

γAαi =
∑

Aα−1
α+1∈A

(α+1)
0 : Aα−1

α+1=Aα

γ
Aα+1

j . (202)

For i ∈ L and α ∈ {1, 2, · · · , r − 1}, we have

λi = λ
(α)
i +

α∑
k=1

γ
(k)
i = λ

(α)
i +

α∑
k=1

∑
Ak∈A(k)

0

γAki . (203)

In particular, for α = r − 1,

λi = λ
(r−1)
i +

r−1∑
k=1

∑
Ak∈A(k)

0

γAki . (204)

Let A(r) =
{
{i}∪Ar−1 : γ

Ar−1

i > 0 for i ∈ {ξr−2, ξr−2 +

1, · · · , ξr−1} and Ar−1 ∈ A(r−1)
0

}
. Denote the cardinality of

A(r) by b2. For simplicity, let A(r) = {B1, B2, · · · , Bb2}. For
j ∈ {1, 2, · · · , b2}, (198) implies that

|Bj | = r − 1. (205)

Without loss of generality, let Bj = {i} ∪ Ar−1 for some
i ∈ {ξr−2, ξr−2 + 1, · · · , ξr−1} and Ar−1 ∈ A(r−1)

0 . For k ∈
{1, 2, · · · , r − 1}, let

Bkj =

{
Akr−1, if 1 ≤ k ≤ r − 2

Bj , if k = r − 1.
(206)

D1 D2 D3 D4 D5 D6 · · · Db1

B1 B2 B3 B4 B5 B6 · · · Bb2

Fig. 5: a one-to-one mapping

Note that Bkj is the set of the first k smallest elements in Bj .
Let γ(Bj) = γ

Ar−1

i which is the number of Bj . Then we have

b2∑
j=1

γ(Bj) =

ξr−1∑
i=ξr−2

∑
Ar−1∈A(r−1)

0

γ
Ar−1

i

=

ξr−1∑
i=ξr−2

γ
(r−1)
i (207)

= fη(λ) (208)

=

b1∑
k=1

c(Dk), (209)

where (207) follows from (196), (208) follows from (186),
and (209) follows from (190). This implies that we have a
one-to-one correspondence between fη(λ) of Dk’s and fη(λ)
of Bj’s. The mapping defined by overlap in Fig. 5 is a simple
one-to-one correspondence. The inequality in (198) ensures
that the number of Dk’s that contains ξr−1 is less than or
equal to the number of Bj’s that don’t contain ξr−1. Thus,
there exists a correspondence such that Bj ∩ Dk = ∅ if Bj
and Dk have overlap in Fig. 5. Without loss of generality,
assume the the mapping in Fig. 5 is such a correspondence.
Let

O =
{

(j, k) : Bj and Dk have overlap in Fig. 5
}
. (210)

Then we have for all (j, k) ∈ O that

Bj ∩Dk = ∅ (211)

and
|Bj ∪Dk| = η. (212)

For k ∈ {1, 2, · · · , b1}, let sk =
∑k
i=1 c(Di). For j ∈

{1, 2, · · · , b2}, let tj =
∑j
i=1 γ(Bi). For (j, k) ∈ O, let

c(Bj , Dk) be the length overlap of Bj and Dk in Fig. 5, which
is equal to

c(Bj , Dk) =



γ(Bj), if sk−1 ≤ tj−1 ≤ tj ≤ sk
sk − tj−1, if sk−1 ≤ tj−1 ≤ sk ≤ tj
c(Dk), if tj−1 ≤ sk−1 ≤ sk ≤ tj
tj − sk−1, if tj−1 ≤ sk−1 ≤ tj ≤ sk
0, otherwise.

(213)
It is easy to check that for k ∈ {1, 2, · · · , b1},

b2∑
j=1

c(Bj , Dk) = c(Dk) (214)

and for j ∈ {1, 2, · · · , b2},
b1∑
k=1

c(Bj , Dk) = γ(Bj). (215)
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Then we have∑
(j,k)∈O

c(Bj , Dk) =

b1∑
k=1

c(Dk) =

b2∑
j=1

γ(Bj) = fη(λ).

(216)
The following lemma states the relation between the coeffi-

cients c(Bj , Dk) and λ. The detailed proof of the lemma can
be found in Appendix I.

Lemma 10. For i ∈ L, we have∑
(j,k)∈O: i∈Bj∪Dk

c(Bj , Dk) ≤ λi. (217)

For any v ∈ ΩηL and v = (v1, v2, · · · , vL), if {i : vi =
1} = Bj ∪ Dk for some (j, k) ∈ O, let cη(v) = c(Bj , Dk).
Otherwise, if there is no (j, k) ∈ O such that {i : vi = 1} =
Bj∪Dk, let cη(v) = 0. Then by (212), (216), and Lemma 10,
we can see that {cη(v) : v ∈ ΩηL} is an optimal η-resolution
for λ.

For i ∈ {ξr−1, ξr−1 + 1, · · · , L} and j ∈ {1, 2, · · · , b2}, let

c({i} ∪Bj) =
∑

k∈{1,2,··· ,b1}: i∈Dk

c(Bj , Dk). (218)

It is easy to check that
b2∑
j=1

c({i} ∪Bj) =
∑

(j,k)∈O: i∈Dk

c(Bj , Dk) ≤ λ(r−1)
i (219)

and
L∑

i=ξr−1

c({i} ∪Bj) =
L∑

i=ξr−1

∑
k∈{1,2,··· ,b1}: i∈Dk

c(Bj , Dk)

=

b1∑
k=1

c(Bj , Dk) (220)

= γ(Bj). (221)

Remark 12. In the example at the end of Section VI, the pa-
rameter c(Bj , Dk) is the coefficients in (107)-(109), where for
example, the coefficient 1

3 of 1
3H(W2W3|W1M1M2) in (107)

and 1
3H(W1W2W3|M1M2) in (108)-(109) is c({1}, {2, 3}).

The fact that {c(Bj , Dk) : (j, k) ∈ O} is an optimal η-
resolution ensures us to proceed after the η-th iteration in the
converse proof. The parameter c({i} ∪ Bj) is the coefficient
in (113)-(115), where for example, 1

3 of 1
3H(W2|W1M1:2) in

(115) is c({i} ∪Bj) for i = 2 and Bj = {1};
Before proving the converse, we introduce two important

relations that will be repeated used in the proof. For α =
1, 2, · · · , r − 1, and i, j ∈ L, B ⊆ L such that |B| = α − 1
and i, j /∈ B, we have

H(Wi|WBM1:α) ≥ H(Wi|WjWBM1:α)

= H(Wi|W{j}∪BM1:α). (222)

and

H(Wi|WBM1:α−1)

= H(Wi|WBM1:α−1Mα) +H(Mα|WBM1:α−1)

−H(Mα|WiWBM1:α−1)

= H(Wi|WBM1:α) +H(Mα) (223)

For notational simplicity, let ξ−1 = 0. For α = 1, 2, · · · , r−1,
let

Iα ,
ξα−1∑
i=ξα−2

∑
Aα−1∈A(α−1)

0

γ
Aα−1

i H(WiWAα−1
|M1:α)

+
L∑

i=ξr−1

b∑
j=1

c({i} ∪Bj)H(Wi|WBα−1
j

M1:α)

+
L∑
i=1

r−1∑
k=α

∑
Ak∈A(k)

0

γAki H(Wi|WAα−1
k

M1:α)

 .

(224)

We have the following lemma which provides an iteration that
is useful in the sequel. The proof of the lemma can be found
in Appendix J.

Lemma 11. Iα ≥ Iα+1 + [f1(λ)− αfη(λ)]H(Mα+1) for
α = 1, 2, · · · , r − 1.

We prove the converse of DS-SMDC (i.e., λ · R ≥ gη(λ)
for all η = r + 1, r + 2, · · · , L+ 1) as follows.

λ ·R = λ1H(W1) + λ2H(W2) + · · ·+ λLH(WL)

= (
L∑
i=1

λi)H(M1) +
L∑
i=1

λiH(Wi|M1) (225)

= f1(λ)H(M1)

+
L∑
i=1

λ(r−1)
i +

r−1∑
k=1

∑
Ak∈A(k)

0

γAki

H(Wi|M1)

(226)

≥
r∑

α=1

[f1(λ)− (α− 1)fη(λ)]H(Mα)

+

ξr−1∑
i=ξr−2

∑
Ar−1∈A(r−1)

0

γ
Ar−1

i H(WiWAr−1
|M1:r)

+
L∑

i=ξr−1

b2∑
j=1

c({i} ∪Bj)H(Wi|WBr−1
j

M1:r) (227)

=
r∑

α=1

[f1(λ)− (α− 1)fη(λ)]H(Mα)

+

b2∑
j=1

γ(Bj)H(WBj |M1:r)

+
L∑

i=ξr−1

b2∑
j=1

c({i} ∪Bj)H(Wi|WBjM1:r) (228)

≥
r∑

α=1

[f1(λ)− (α− 1)fη(λ)]H(Mα)

+
∑

(j,k)∈O

c(Bj , Dk)H(WBj |M1:r)

+
∑

(j,k)∈O

c(Bj , Dk)H(WDk |WBjM1:r) (229)
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≥
r∑

α=1

[f1(λ)− (α− 1)fη(λ)]H(Mα)

+
∑

(j,k)∈O

c(Bj , Dk)H(WDkWBj |M1:r) (230)

=
r∑

α=1

[f1(λ)− (α− 1)fη(λ)]H(Mα)

+
∑

(j,k)∈O

c(Bj , Dk)H(WBj∪DkM
η
r+1|M1:r) (231)

≥
r∑

α=1

[f1(λ)− (α− 1)fη(λ)]H(Mα)

+ fη(λ)

η∑
α=r+1

H(Mα) +
∑
v∈ΩηL

cη(v)H(Wv|M1:η)

(232)

≥
r∑

α=1

[f1(λ)− (α− 1)fη(λ)]H(Mα)

+ fη(λ)

η∑
α=r+1

H(Mα) +

L∑
α=η+1

fα(λ)H(Mα)

(233)

=
r∑

α=1

(f1(λ))H(Mα) +
L∑

α=η+1

fα(λ)H(Mα)

+ fη(λ)

[
η∑

α=r+1

H(Mα)−
r∑

α=1

(α− 1)H(Mα)

]

=

r∑
α=1

f1(λ)mα +

L∑
α=η+1

fα(λ)mα

+ fη(λ)

[
η∑

α=r+1

mα −
r∑

α=1

(α− 1)mα

]
, (234)

where (226) follows from (204), (227) follows by applying
Lemma 11 for α = 1, 2, · · · , r−1 successively, (228) follows
from the definition of Bj , (232) follows from (216), (233)
follows from the fact that {cη(v) : v ∈ ΩηL} is an optimal
η-resolution for λ and the iteration in the converse for SMDC
in [3], and (229) follows from (215) and

L∑
i=ξr−1

b2∑
j=1

c({i} ∪Bj)H(Wi|WBjM1:r)

=

b2∑
j=1

 L∑
i=ξr−1

c({i} ∪Bj)H(Wi|WBjM1:r)

 (235)

=

b2∑
j=1

 L∑
i=ξr−1

∑
k∈{1,2,··· ,b1}: i∈Dk

c(Bj , Dk)H(Wi|WBjM1:r)


(236)

=

b2∑
j=1

[
b1∑
k=1

c(Bj , Dk)

(∑
i∈Dk

H(Wi|WBjM1:r)

)]
(237)

≥
b2∑
j=1

b1∑
k=1

c(Bj , Dk)H(WDk |WBjM1:r) (238)

=
∑

(j,k)∈O

c(Bj , Dk)H(WDk |WBjM1:r). (239)

Dividing both sides of (234) by a, we obtain by the definition
of gη(λ) in (93) that for any η = r + 1, r + 2, · · · , L+ 1,

L∑
l=1

λl(Rl + ε) ≥ gη(λ). (240)

Letting ε→ 0, the inequality λ · R ≥ gη(λ) is proved.

Remark 13. The step-by-step correspondence between the
general proof in (225)-(234) and the example in (105)-(110)
is as follows:

• The iteration in (227) is the generalization of the step in
(107);

• The transform of conditional entropies in (228)-(232)
play the same role as (108);

• The application of the α-resolution technique in (233) is
the generalization of that in (109).

APPENDIX F
PROOF OF LEMMA 7

Let λ′ = (λ′1, λ
′
2, · · · , λ′L), where

λ′i = λi, for all i = 2, 3, · · · , L (241)

and

λ′1 =
λ′2 + λ′3 + · · ·+ λ′L

η − 1
. (242)

By Lemma 7 in [4], (175) implies that

fη(λ) = fη−1(λ2, λ3, · · · , λL), (243)

and similarly, from (242),

fη(λ′) = fη−1(λ2, λ3, · · · , λL). (244)

Thus, we have

fη(λ) = fη(λ′), (245)

which by Lemma 5 in [4] implies that

fα(λ) = fα(λ′), for all η ≤ α ≤ L. (246)

The rate constraint λ′ · R ≥ gη(λ′) is the following,

λ′ · R ≥
r∑

α=1

f1(λ′)mα +
L∑

α=η+1

fα(λ′)mα

+ fη(λ′)

[
η∑

α=r+1

mα −
r∑

α=1

(α− 1)mα

]
. (247)
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This implies

λ · R = λ′ · R + (λ1 − λ′1)R1

≥
r∑

α=1

f1(λ′)mα +
L∑

α=η+1

fα(λ′)mα

+ fη(λ′)

[
η∑

α=r+1

mα −
r∑

α=1

(α− 1)mα

]

+ (λ1 − λ′1)

(
r∑

α=1

mα

)
(248)

=
r∑

α=1

f1(λ)mα +
L∑

α=η+1

fα(λ)mα

+ fη(λ)

[
η∑

α=r+1

mα −
r∑

α=1

(α− 1)mα

]
, (249)

which is exactly the constraint λ ·R ≥ gη(λ). This proves the
lemma.

APPENDIX G
PROOF OF LEMMA 8

For any λ ∈ RLη , we have

λ1 ≤
1

η − 1

L∑
i=2

λi, (250)

which by Lemma 1 in [4] implies that

fη(λ) =
1

η

L∑
i=1

λi. (251)

It is easy to check that (250) is equivalent to

λ1 ≤
1

η

L∑
i=1

λi. (252)

Thus, we have fη(λ) ≥ λ1, which proves the lemma.

APPENDIX H
PROOF OF LEMMA 9

For α = 1, 2, · · · , r − 1, we have

L∑
i=ξα

λ
(α)
i =

L∑
i=1

λi − αfη(λ) ≥ (η − α)fη(λ). (253)

where the inequality follows from (178) and the fact that
f1(λ) =

∑L
i=1 λi. In particular, for α = r − 1,

L∑
i=ξr−1

λ
(r−1)
i ≥ [η − (r − 1)] fη(λ). (254)

Denote the ordered permutation of λ(r−1) by λ̃(r−1) =(
λ̃

(r−1)
ξr−1

, λ̃
(r−1)
ξr−1+1, · · · , λ̃

(r−1)
L

)
. Then from (181), we obtain

1

η − (r − 1)

L∑
i=ξr−1

λ̃
(r−1)
i ≥ fη(λ) ≥ λ̃(r−1)

ξr−1
, (255)

which implies

λ̃
(r−1)
ξr−1

≤ 1

[η − (r − 1)]− 1

L∑
i=ξr−1+1

λ̃
(r−1)
i . (256)

By Lemma 4 and Lemma 7 in [3], this implies that λ̃(r−1)

has a perfect [η − (r − 1)]-resolution (c.f. Appendix A) and

fη−(r−1)

(
λ̃(r−1)

)
=

1

η − (r − 1)

L∑
i=ξr−1

λ̃
(r−1)
i . (257)

From Lemma 2 in [4] and (255), this implies that

fη−(r−1)

(
λ(r−1)

)
= fη−(r−1)

(
λ̃(r−1)

)
≥ fη(λ). (258)

This proves the lemma.

APPENDIX I
PROOF OF LEMMA 10

Consider the following five cases where the set L is parti-
tioned into five subsets.

i. For i ∈ {1, 2, · · · , ξr−2 − 1}, we have

∑
(j,k)∈O: i∈Bj

c(Bj , Dk) =
∑
i∈Bj

b1∑
k=1

c(Bj , Dk)

=
∑
i∈Bj

γ(Bj) (259)

=

ξα∑
k=ξα−1

∑
Aα∈A(α)

0 : i∈Aα

γAαk

= λi, (260)

where (259) follows from (215) and (260) follows from
(199).

ii. For i = ξr−2, it follows from (201) that∑
(j,k)∈O: i∈Bj

c(Bj , Dk)

=

ξr−1∑
k=ξr−2

∑
Ar−1∈A(r−1)

0 : ξr−2∈Ar−1

γ
Ar−1

k

+
∑

Ar−1∈A(r−1)
0

γ
Ar−1

ξr−2

= γ
(r−2)
ξr−2

+ γ
(r−1)
ξr−2

= λξr−2 . (261)

iii. For i ∈ {ξr−2 + 1, ξr−2 + 2, · · · , ξr−1 − 1}, we have∑
(j,k)∈O: i∈Bj

c(Bj , Dk) =
∑

Ar−1∈A(r−1)
0

γ
Ar−1

i

= γ
(r−1)
i (262)

= λi, (263)

where (262) follows from (196) and (263) follows from
(184).
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iv. For i = ξr−1,∑
(j,k)∈O: i∈Bj

c(Bj , Dk)

=
∑

Ar−1∈A(r−1)
0

γ
Ar−1

ξr−1
+

∑
ξr−1∈Dk

b2∑
j=1

c(Bj , Dk)

=
∑

Ar−1∈A(r−1)
0

γ
Ar−1

ξr−1
+

∑
ξr−1∈Dk

c(Dk) (264)

≤ γ(r−1)
ξr−1

+ γ
(r)
ξr−1

(265)

= λξr−1
, (266)

where (264) follows from (214), (265) follows from (196)
and the fact that {c(Dk) : k = 1, 2, · · · , b1} is an [η−(r−
1)]-resolution for λ(r−1), and (266) follows from (184).

v. For i ∈ {ξr−1 + 1, ξr−1 + 2, · · · , L}, we have

∑
(j,k)∈O: i∈Dk

c(Bj , Dk) =
∑
i∈Dk

b2∑
j=1

c(Bj , Dk)

=
∑
i∈Dk

c(Dk) (267)

≤ λi, (268)

where (267) follows from (214) and (268) follows from
the fact that {c(Dk) : k = 1, 2, · · · , b1} is an [η−(r−1)]-
resolution for λ(r−1).

APPENDIX J
PROOF OF LEMMA 11

For α = 1, 2, · · · , r − 1, we have the following iteration,

Iα =

ξα−1∑
i=ξα−2

∑
Aα−1∈A(α−1)

0

γ
Aα−1

i H(WiWAα−1
|M1:α)

+
L∑

i=ξr−1

b∑
j=1

c({i} ∪Bj)H(Wi|WBα−1
j

M1:α)

+
L∑
i=1

r−1∑
k=α

∑
Ak∈A(k)

0

γAki H(Wi|WAα−1
k

M1:α)

 (269)

=

ξα−1∑
i=ξα−2

∑
Aα−1∈A(α−1)

0

γ
Aα−1

i H(WiWAα−1
|M1:α)

+

ξα∑
i=ξα−1

∑
Aα∈A(α)

0

γAαi H(Wi|WAαM1:α)

+

L∑
i=ξr−1

b∑
j=1

c({i} ∪Bj)H(Wi|WBα−1
j

M1:α)

+
L∑
i=1

 r−1∑
k=α+1

∑
Ak∈A(k)

0

γAki H(Wi|WAα−1
k

M1:α)


(270)

=

ξα∑
i=ξα−1

∑
Aα∈A(α)

0

γAαi H(WAα |M1:α)

+

ξα∑
i=ξα−1

∑
Aα∈A(α)

0

γAαi H(Wi|WAαM1:α)

+
L∑

i=ξr−1

b∑
j=1

c({i} ∪Bj)H(Wi|WBα−1
j

M1:α)

+
L∑
i=1

 r−1∑
k=α+1

∑
Ak∈A(k)

0

γAki H(Wi|WAα−1
k

M1:α)


(271)

=

ξα∑
i=ξα−1

∑
Aα∈A(α)

0

γAαi H(WiWAα |M1:α)

+
L∑

i=ξr−1

b∑
j=1

c({i} ∪Bj)H(Wi|WBα−1
j

M1:α)

+
L∑
i=1

 r−1∑
k=α+1

∑
Ak∈A(k)

0

γAki H(Wi|WAα−1
k

M1:α)


(272)

≥
ξα∑

i=ξα−1

∑
Aα∈A(α)

0

γAαi H(WiWAα |M1:α+1)

+

L∑
i=ξr−1

b∑
j=1

c({i} ∪Bj)H(Wi|WBαj
M1:α)

+
L∑
i=1

 r−1∑
k=α+1

∑
Ak∈A(k)

0

γAki H(Wi|WAαk
M1:α)

 (273)

=

ξα∑
i=ξα−1

∑
Aα∈A(α)

0

γAαi H(WiWAα |M1:α+1)

+ [f1(λ)− αfη(λ)]H(Mα+1)

+
L∑

i=ξr−1

b∑
j=1

c({i} ∪Bj)H(Wi|WBαj
M1:α+1)

+
L∑
i=1

 r−1∑
k=α+1

∑
Ak∈A(k)

0

γAki H(Wi|WAαk
M1:α+1)


(274)

= Iα+1 + [f1(λ)− αfη(λ)]H(Mα+1), (275)

where (271) follows from

ξα−1∑
i=ξα−2

∑
Aα−1∈A(α−1)

0

γ
Aα−1

i H(WiWAα−1 |M1:α) (276)

=

ξα−1∑
i=ξα−2

∑
Aα−1∈A(α−1)

0

ξα∑
j=ξα−1

γ
{i}∪Aα−1

j H(W{i}∪Aα−1
|M1:α)

(277)
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=

ξα∑
j=ξα−1

ξα−1∑
i=ξα−2

∑
Aα−1∈A(α−1)

0

γ
{i}∪Aα−1

j H(W{i}∪Aα−1
|M1:α)

(278)

=

ξα∑
j=ξα−1

∑
Aα∈A(α)

0

γAαj H(WAα |M1:α), (279)

(273) follows from the fact that conditioning does not increase
entropy, and (274) follows from (223).
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