
Brief Announcement: Efficient Distributed Algorithms for the
K-Nearest Neighbors Problem

Reza Fathi

University of Houston

Houston, Texas, USA.

rfathi@uh.edu

Anisur Rahaman Molla
∗

Indian Statistical Institute

Kolkata, India

molla@isical.ac.in

Gopal Pandurangan
†

University of Houston

Houston, Texas, USA.

gopalpandurangan@gmail.com

ABSTRACT
The K-nearest neighbors is a basic problem in machine learning

with numerous applications. In this problem, given a (training)

set of n data points with labels and a query point q, we want to
assign a label to q based on the labels of the K-nearest points to
the query. We study this problem in the k-machine model,1 a model

for distributed large-scale data. In this model, we assume that the n
points are distributed (in a balanced fashion) among the k machines

and the goal is to compute an answer given a query point to a

machine using a small number of communication rounds.

Our main result is a randomized algorithm in the k-machine

model that runs in O(logK) communication rounds with high suc-

cess probability (regardless of the number of machines k and the

number of points n). The message complexity of the algorithm is

small taking only O(k logK) messages. Our bounds are essentially

the best possible for comparison-based algorithms. We also imple-

mented our algorithm and show that it performs well in practice.

CCS CONCEPTS
• Theory of computation→ Distributed algorithms; •Math-
ematics of computing → Probabilistic algorithms; Discrete
mathematics;

KEYWORDS
K-Nearest Neighbors, Randomized selection, k-Machine Model,

Distributed Algorithm, Round complexity, Message complexity

ACM Reference format:
Reza Fathi, Anisur Rahaman Molla, and Gopal Pandurangan. 2020. Brief

Announcement: Efficient Distributed Algorithms for the K -Nearest Neigh-

bors Problem. In Proceedings of Proceedings of the 32nd ACM Symposium on
Parallelism in Algorithms and Architectures, Virtual Event, USA, July 15–17,
2020 (SPAA ’20), 3 pages.
https://doi.org/10.1145/3350755.3400268

∗
Research supported by DST Inspire Faculty research grant

DST/INSPIRE/04/2015/002801.

†
Supported, in part, by NSF grants IIS-1633720, CCF-1540512, and CCF-1717075, and

by BSF grant 2016419.

1
Note that parameter k stands for the number of machines in the k -machine model

and is independent of K -nearest points.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SPAA ’20, July 15–17, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6935-0/20/07.

https://doi.org/10.1145/3350755.3400268

1 INTRODUCTION
TheK-nearest neighbors is a well-studied problem inmachine learn-

ing with numerous applications. (e.g., [10]). It is a non-parametric

method used for classification and regression, especially in appli-

cation such as pattern recognition. The algorithmic problem is as

follows. We are given a (training) set of n data points (n can be po-

tentially very large and/or each point can be in a high dimensional

space) with labels and a query point q. The goal is to assign a label

to q based on the labels of the K-nearest points to the query. In the

classification problem, one can use the majority of the labels of the

K-nearest neighbors to assign a label to q. In the regression problem,

one can assign the average of the labels (assuming that these are

values) to q.
In this paper (see full version [4]), we study distributed algo-

rithms for the K-nearest neighbors problem motivated by Big Data

and privacy applications. When the data size is very large or natu-

rally distributed at k-sites (e.g., patients data in different hospitals),

then distributed computation using multiple machines is helpful.

Model:We study theK-nearest neighbors problem in thek-machine
model, a model for distributed large-scale data. (Henceforth, to avoid

confusion, between K and k , which are unrelated we will say ℓ-

nearest neighbors). The k-machine model was introduced in [5]

and further investigated in [1, 2, 7, 8]. The model consists of a set

of k ≥ 2 machines {M1,M2, . . . ,Mk } that are pairwise intercon-

nected by bidirectional point-to-point communication links. Each

machine executes an instance of a distributed algorithm. The com-

putation advances in synchronous rounds where, in each round,

machines can exchange messages over their communication links

and perform some local computation. Each link is assumed to have

a bandwidth of B bits per round, i.e., B bits can be transmitted

over each link in each round; unless otherwise stated, we assume

B = Θ(logn). Machines do not share any memory and have no

other means of communication. We assume that each machine has

access to a private source of true random bits.

Local computation within a machine is considered to happen in-

stantaneously at zero cost, while the exchange of messages between

machines is the costly operation. However, we note that in all the

algorithms of this paper, every machine in every round performs

lightweight computations. The goal is to design algorithms that

take as few communication rounds as possible.

The Selection Problem: We note that the ℓ-nearest neighbors

problem really boils down to the selection problem, where the goal

is to find the ℓ-smallest value in a set of n values. The selection

problem has a (somewhat non-trivial) linear time deterministic algo-

rithm [3] as well as simple randomized algorithm in the sequential

https://doi.org/10.1145/3350755.3400268
https://doi.org/10.1145/3350755.3400268

setting. For the ℓ-nearest neighbors, one can reduce it to the selec-

tion problem by computing the distance of the query point to all

the points and then finding the ℓ-smallest distance among these n
distance values. All these can be done in O(n) time sequentially.

Our Results: In this paper, we present efficient bounds for the

ℓ-nearest neighbors or equivalently to the ℓ-selection problem. Our

main result is a randomized algorithm in the k-machine model

that runs in O(log ℓ) communication rounds with high probability

(regardless of the number of machines k). The message complexity

of the algorithm is also small taking onlyO(k log ℓ)messages. Note

that if ℓ is not very large (which is generally true in practice),

then these bounds imply very fast algorithms requiring only a

small number of rounds regardless of the number of points and the

number of sites (machines).

Our bounds are essentially the best possible for comparison-

based
2
algorithms, i.e., algorithms that use only comparison opera-

tions (≤, ≥,=) between elements to distinguish the ordering among

them. This is due to the existence of a lower bound of Ω(logn) com-

munication rounds (if only one element is allowed to be exchanged

per round) for finding the median of 2n elements distributed evenly

among two processors [9].

We also implement and test our algorithm in a distributed cluster,

and show that it performs well compared to a simple algorithm

that sends ℓ nearest points from each machine to a single machine

which then computes the answer.

Definitions:We use the notation dis(p,q) to denote the distance
between two given points p and q where it can be any absolute

norm | |p − q | |.

Definition 1.1 (ℓ-NN problem). Given an input data set D, a query
data point q, and a number ℓ while ℓ ≤ |D |, the ℓ-Nearest Neighbors

(ℓ-NN) problem is finding a set of data points S such that (S ⊂

D) ∧ (|S | = ℓ) ∧ (dis(pi ,q) ≤ dis(pj ,q),∀pi ∈ S,pj ∈ D \ S).

2 THE ALGORITHM
First we present a distributed algorithm to solve a more general se-
lection problem: finding ℓ-smallest points among n points. Suppose

n points are distributed over k machines arbitrarily. The problem

is to find the ℓ-smallest points among those n points. In the end,

each machine i outputs a set of points Si such that ∪ki=1Si contains
the ℓ-smallest points. Then we use this algorithm to solve the ℓ-

nearest neighbors problem. For simplicity, let us assume that the

points are all distinct; later we explain a simple extension in the

algorithm to work for non-distinct points set. To solve this problem

we implement the idea of randomized selection in the k-machine

model.

We point out an implementation issue on the size of the messages

used by our algorithm for the nearest neighbors problem. For the

purpose of analysis, we can assume that each point (or value) is

of size O(logn) bits and hence can be sent through an edge per

round in the k-machine model. However, for the ℓ-nearest neighbor

problem, points can be high-dimensional and can incur a lot of bits.

But it is easy to see that one need not actually transfer points, but

only distances between the query point to the given (training set)

points. In fact, one can use randomization to choose a unique ID

for each of the n points (choose a random number between say

2
We conjecture that the lower bound holds even for non-comparison based algorithms.

[1,n3] and they will be unique with high probability). Then one

needs to transfer only the ID of the point (of size O(logn) bits) and
its corresponding value (distance between the point and the query

point) which we assume can be represented in O(logn) bits, i.e., all
distances are polynomial in n.3 Note that choosing unique IDs also

takes care of non-distinct points as we can use IDs to break ties

between points of equal distances.

2.1 Distributed Selection Algorithm
This algorithm is a distributed implementation of a well-known

randomized (sequential) selection algorithm (see e.g.,[3]). The algo-

rithm first elects a leader machine (among the k machines) which

propagates the queries and controls the search process. Since thema-

chines have unique IDs, the leader (say, the minimum ID machine)

can be elected in a constant number of rounds andO(
√
k log3/2(k))

messages [6]. The leader repeatedly computes a random pivot which

partitions the points set into two parts and reduces the search space,

i.e., the set of points on which the algorithm executes. Let us now

discuss how the leader computes a random pivot and partitions the

search space in O(1) rounds. This constitutes one “iteration" of the
selection algorithm. The leader maintains two boundary variables,

namely, min and max such that the search points belong to the

range [min,max]. Initially, min and max are assigned respectively

the minimum (denoted by min) and maximum (denoted by max)

value among all the data points. Notice that the leader can get this

global minimum and maximum point by asking all the machines

their local minimum and maximum in 2 rounds.

The leader asks the number of points that each machine holds in

the range [min,max]. The leader randomly picks a machine i with
probability proportional to the number of points a machine holds

within the range of [min, max], i.e., with probability ni/
∑k
i=1 ni ,

where ni is the number of points machine i holds in the range. The

selected machine i chooses a point p randomly from its set of points

in the range [min,max]. Then it replies back to the leader machine

with the pivot p. In the next round, the leader asks the number of

points eachmachine holds within the range [min,p]. Then it gathers

all machines’ count ni and accumulates it to s =
∑k
i=1 ni . If s = ℓ, it

found the correct upper boundary value and terminates the search

process. If s < ℓ, it means the algorithm needs to increase the lower

boundary min to p and adjust the ℓ value by subtracting s from ℓ,
i.e., ℓ = ℓ−s . On the other hand, if s > ℓ, it can discard all the points
greater than p by setting max to p. The leader iterates this process
until it finds the correct upper boundary. Once the leader finds the

correct upper bound (max), it broadcasts a ‘finished’ message with

parameter max so that each machine outputs all the points less

than or equal to max from its input set.

Correctness: In Lemma 2.1, we show that the leader machine com-

putes the pivot p uniformly at random among all the search points

in the range. The algorithm updates boundary values min,max

and the ℓ-value according to the randomized selection algorithm.

The boundary initialization makes sure that it includes all the data

points in the beginning. Thus the algorithm correctly computes the

ℓ-smallest points.

3
We note that if distances are very large, one can use scaling to work with approximate

distances which will be accurate with good approximation.

2

Algorithm 1 Distributed ℓ-NN Computation

Input: Query point q , the parameter ℓ.
Output: ℓ-nearest neighbors to the query point q.

1: Elect a leader machine among k machines (using the leader election algorithm

in [6]).

2: If a machine i has more than ℓ data points, it keeps ℓ points whose distance from

q is minimum and discards other points. Let’s denote this remaining points set

by Si .
3: Each machine i samples 12 log(ℓ) points randomly and independently from the

set Si .
4: Each machine sends its sampled points to the leader machine.

5: Leader sorts these 12k log(ℓ) based on their distance from q and stores in an

array. Let r be the point at index 21 log(ℓ) in the sorted array.

6: Leader broadcasts point r .
7: Each machine i removes any point larger than r from the set Si .
8: Each machine i computes di j = dis(pi j , q) for all pi j ∈ Si and stores them as

(pi j , di j).
9: The leader machine runs the distributed selection algorithm where the input to

the algorithm is those di j points.
10: Each machine outputs the pi j points corresponding to the output points di j of

the selection algorithm.

Lemma 2.1. The leader machine selects the pivot p uniformly at
random from all the points in the range [min,max].

Using the above lemma, we show (in the full paper [4]) that

the number of elements in the search process (i.e., in the range

[min,max]) drops by a constant factor with constant probability.

This implies that the algorithm stops in O(logn) rounds with high

probability.

Theorem 2.2. The above selection Algorithm computes the ℓ-
smallest points among the n points in the k machine model inO(logn)
rounds with high probability, and incurs O(k logn) messages with
high probability.

2.2 Distributed ℓ-NN Algorithm
We extend the above algorithm to compute ℓ-nearest neighbors (or,

ℓ-NN) of a given query point q from a large data set D distributed

over the k machines. Assume the machine i gets the set of points
Di as input. We assume that |Di | ≤ ℓ for all the machines, since,

if a machine i gets more than ℓ data points as input, it keeps only

ℓ points whose distance from q is minimum and discards the rest

of the data points. Each machine i locally computes the distance

di j = dis(pi j ,q) such that all the points pi j ∈ Di and maintains

the pair (pi j , di j). Then we apply the selection algorithm on the

distance values ∪ki=1di j and output the corresponding points pi j s.
This takes O(log(kℓ)) = O(logk + log ℓ) rounds, since the number

of candidate points is at most kℓ.
We now present a randomized algorithm (Algorithm 1) whose

running time isO(log(ℓ)) rounds, which is independent of the num-

ber of machines k . The main idea of the algorithm is to apply

a sampling technique to reduce the search space (i.e., candidate

points) from (at most) kℓ to O(ℓ). Then we apply the distributed

selection algorithm on these reduced set of candidate points to

obtain our main result (proof in full paper [4]).

Theorem 2.3. Algorithm 1 computes ℓ-NN in O(log(ℓ)) rounds
and uses O(k log(ℓ)) messages with high probability.

Figure 1: Run-time performance of our algorithm 1 compared to the simple
method. X-axis shows the number of ℓ-nearest neighbors w.r.t. a query point
and Y-axis shows the execution time ratio of the simplemethod over our algo-
rithm1. It shows that the higher the ratio, the higher the algorithm’s speedup.

3 EXPERIMENTAL RESULTS
We ran the Algorithm 1 using Crill cluster from the University of

Houston
4
which has 16 NLE Systems nodes. Each node has four

2.2 GHz 12-core AMD Opteron processor (48 cores total) and 64 GB

main memory. We used a (synthetic) random data set. Each process

generated 2
22

random points independently between 0 and 2
32 − 1.

We compare the performance of our ℓ-NN algorithm with the

following simple method: each machine finds its local ℓ-NN. Then

it transfers all of them to a leader machine that finds the final ℓ-

NN among those points. For each simulation, the leader machine

chooses a random number between 0 and 2
32 − 1 as the query point.

We ran each simulation 30 times.

REFERENCES
[1] S. Bandyapadhyay, T. Inamdar, S. Pai, and S. V. Pemmaraju. Near-optimal cluster-

ing in the k-machine model. In Proceedings of the 19th International Conference
on Distributed Computing and Networking, page 15. ACM, 2018.

[2] F. Chung and O. Simpson. Distributed algorithms for finding local clusters using

heat kernel pagerank. In International Workshop on Algorithms and Models for
the Web-Graph, pages 177–189. Springer, 2015.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms.
MIT press, 2009.

[4] R. Fathi, A. R. Molla, and G. Pandurangan. Efficient distributed algorithms for

the k-nearest neighbors problem. CoRR, abs/2005.07373, 2020.
[5] H. Klauck, D. Nanongkai, G. Pandurangan, and P. Robinson. Distributed compu-

tation of large-scale graph problems. In Proceedings of the twenty-sixth annual
ACM-SIAM symposium on Discrete algorithms, pages 391–410. Society for Indus-

trial and Applied Mathematics, 2015.

[6] S. Kutten, G. Pandurangan, D. Peleg, P. Robinson, and A. Trehan. Sublinear

bounds for randomized leader election. Theoretical Computer Science, 561:134–
143, 2015.

[7] G. Pandurangan, P. Robinson, and M. Scquizzato. Fast distributed algorithms

for connectivity and mst in large graphs. In In Proceedings of the 28th ACM
Symposium on Parallelism in Algorithms and Architectures, pages 429–438. ACM,

2016.

[8] G. Pandurangan, P. Robinson, and M. Scquizzato. On the distributed complexity

of large-scale graph computations. In Proceedings of the 30th on Symposium on
Parallelism in Algorithms and Architectures, pages 405–414. ACM, 2018.

[9] M. Rodeh. Finding the median distributively. Journal of Computer and System
Sciences, 24(2):162–166, 1982.

[10] S. Shalev-Shwartz and S. Ben-David. Understanding machine learning: From
theory to algorithms. Cambridge university press, 2014.

4
http://pstl.cs.uh.edu/resources/crill-access

3

	Abstract
	1 introduction
	2 The Algorithm
	2.1 Distributed Selection Algorithm
	2.2 Distributed -NN Algorithm

	3 Experimental Results
	References

