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Abstract—We consider information leakage to the user in
private information retrieval (PIR) systems. Information leakage
can be measured in terms of individual message leakage or
total leakage. Individual message leakage, or simply individual
leakage, is defined as the amount of information that the user can
obtain on any individual message that is not being requested, and
the total leakage is defined as the amount of information that the
user can obtain about all the other messages except the one being
requested. In this work, we characterize the tradeoff between the
minimum download cost and the individual leakage, and that for
the total leakage, respectively. New codes are proposed to achieve
these optimal tradeoffs, which are also shown to be optimal in
terms of the message size. We further characterize the optimal
tradeoff between the minimum amount of common randomness
and the total leakage. Moreover, we show that under individual
leakage, common randomness is in fact unnecessary when there
are more than two messages.

I. INTRODUCTION

The problem of private information retrieval (PIR) [1],
[2] addresses the retrieval of one out of K messages from
N replicated databases, without revealing the identity of the
desired message to any individual database. The goal is to
find an efficient protocol, i.e., with the minimum download
cost, to privately retrieve the desired message. The capac-
ity of a PIR system is defined as the maximum number
of bits of desired message that can be retrieved per bit
of downloaded information, which was shown in [3] to be
Cor = (141/N+1/N2+ ... 4 1/NE-1)71,

The problem considered in this work is closely related to the
symmetric private information retrieval (SPIR) problem [4],
where “symmetric" refers to the fact that both user privacy
and database privacy need to be preserved. Database privacy
requires that the user obtains no information on other messages
beyond the requested message; strictly speaking, this is a
security requirement rather than a privacy requirement, and
we shall refer to it as such in the sequel. It was shown in
[4] that to ensure perfect security, the databases need to share
common randomness (a common key) which is independent
of the messages and only available to the databases. The
common key is used for randomizing the answers such that
no information about the non-desired messages is leaked. The
capacity of SPIR was shown to be Cspr = 1 — 1/N =
(1+1/N+1/N?+--- + 1/N°°)71, as long as the amount
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of common randomness is at least —

message bit.

If the user can instead obtain some information about
the non-desired messages, then the system is said to have
information leakage [5]-[7]. This is the type of systems that
we wish to understand in this work. Allowing a small amount
of information leakage lets us control the system security
level in a finer grain manner. In this context, SPIR essentially
requires strictly zero information leakage, while the classical
PIR does not have a security constraint at all. Thus our goal is
to understand the tradeoff between the download cost and the
amount of information leakage in the regime other than these
two extreme cases. Two different notations of information
leakage can be defined: the individual leakage is defined as
the amount of information that the user can obtain about any
individual non-desired message, and the total leakage as the
amount of information that the user can obtain about all the
non-desired messages. The former is similar to the weak-
security constraint cases seen in the literature [8]-[11], while
the latter to the standard strong-security constraint cases.

The main result of this work is the characterizations of
the optimal tradeoffs between the download cost and the
amount of information leakage for both individual leakage
and total leakage. By adapting the capacity-achieving PIR
code (referred to as the TSC code) in [12] and the SPIR
code in [4], we provide code constructions that can achieve
these optimal tradeoffs; moreover, they are also shown to have
the minimum message sizes. For the individual leakage case,
the constructed codes do not require common randomness
(unless there are only two messages). At the extreme case
with perfect individual message security, the download cost
is in fact the same as that with perfect total security. This
is rather reassuring since it implies that the stronger security
requirement does not induce any additional download cost.

The rest of the paper is organized as follows. We formally
define the problem in Section II. Section III is devoted to
our main results on the optimal tradeoffs and the minimum
message size. The achievability proofs are given in Section IV,
Section V. We conclude the paper in Section VL

bits per desired

II. PRELIMINARIES
A. Problem Statement
For positive integers K, N, let [1 : K] & {1,2,--- K}
and [1: N] £ {1,2,--- ,N}. For any k € [1 : K], define the



complement set by k& = {1,2,---, K}\{k}.

In a private information retrieval (PIR) system, there are K
independent messages Wy.x = (W, Wa,--- , W), each of
which is comprised of L i.i.d. symbols uniformly distributed
over a finite alphabet X' In log y|-ary units, this implies that

HWi.g)=HW1)+HW2) +--+ HWk), (1)
HW))=H(W,)=---=H(Wg) = L. 2)
There are a total of N databases, each of which stores
all the messages Wi.x. A user aims to retrieve a message
Wi, k € [1: K] from the N databases without revealing the

identity k£ of the desired message to any individual database.
An independent random key F is used to generate queries

k k k kN .
Q[I:JN:< [1]7 [2],"-,QEV]>,1.6.,
HQYF) =0, vk e [1: K], 3)

where Q¥ € Q, for n € [1 : N]. For n € [1 : N, the
n-th query QL{C] is sent to the n-th database. Since we wish
to protect the non-desired messages from unintentional access,
the databases may need to share a common random key S € S
that is not accessible to the user, which induces the condition

HWy.x,F,S)=HWy.k)+ H(F)+H(S). &

UFOH receiving ng ], the n-th database generates an answer
Af ] from the query Q%C ], the stored messages Wi.x, and the
common key S, i.e.,

ARl = o (QIF] W, S), Yk € [1: K], Yn e [L:N], (5)
which implies
HAMQW Wik, S) =0, Vk € [1: K],¥n € [1: N]. (6)

The answer symbols are from a finite alphabet ), i.e., AL{C | S
Vi, where ¢, is the length of the answer. Using all the
answers A[lk]N = (A[lk],Agk], a ,AE@] from the N databases
and the values of F and k, the user perfectly decodes the
desired message Wy, which further implies that
HW,|AM  F) = 0. (7

To satisfy the privacy requirement of keeping the desired
message index private to any one of the databases, the received
queries should be identically distributed, i.e.,

QM ~ QI Wk K €[1: K], Yne[l:N].  (8)

Since Wi.k, S, and F are independent, we have by (3) that
(@, Wi, S) ~ (@), Wik, 9),

Vk, k' € [1: K], Vn € [1:N]. 9

Since AL{C I'is a deterministic function of (QW, Wi.k, S), the
following identical distribution constraint must also hold

(Q'[f]vAchWl:Ka S) ~ (Q%/]7A£{CI]7W1:Ka S)7
ViK' € [1: K], Yne[1: N].  (10)

In contrast to the perfect security of the non-desired mes-
sages Wi = (Wi, , W1, Wigr, -+, Wk) in [4], we

allow information leakage in this work. Define the total
leakage as I (W,;;Q[llf}N,A[llf]N,F), which is the amount of
information that the user can obtain about all the non-desired
messages. Define the individual message leakage for message
K ell: K] (K #k)as I(Wk/;Q[llf]N,A[llf]N,F), which is
the amount of information that the user can obtain about the
individual non-desired message-%’. The total leakage and the

individual leakage in the systems are constrained as follows
LW QYN AN F) <5, vhe[1: K] (D)

LW QFN, AN F) <w, WK £ ke [1: K], (12)

where the parameters s and w are used to indicate the
strong security requirement and the weak security requirement,
respectively. For K = 2, since I(Wjg; [f]N, A[llf]N, F) =
I(Wy; [1k]N, A[lk]N, F), the total leakage constraint is equiva-
lent to the individual leakage constraint.

In a PIR system, the download cost is defined as

N
D £logjx) [V Y E(ln), (13)
n=1
where the expectation is taken over the possible query set Q,,.
Note that D is a deterministic function of queries and query
distribution, but neither the particular realization of messages
nor the requested message index k. The amount of common
randomness is normalized by the message length L as
H(S)
A
= —. 14
pE =7 (14)

B. Performance of Several Existing PIR Codes

Before presenting our main result, we provide a simple
analysis on the TSC code [12] and the SPIR code [4].

e The TSC code [12]:

L=N-1, (15)
NK 1
D=—rx=> (16)
1 k] 1 1
ZI(WE;AI:NVF): N —1 (1_NK—1>’ (17
1 k
EHM@qAHWFy:NKAJVH#ke[Llﬂ. (18)
e The SPIR code [4]:
L=N-1, D=N, p=1. (19)

III. MAIN RESULTS
A. Total Leakage

The following theorem characterizes the optimal tradeoff
between the minimum download cost D,,;, and total leakage
constraint s. For notational convenience, define

1 1
0 2

Theorem 1. If the amount of common randomness satisfies
P > Priny Where

(20)

K—-1
,oa 1 N
Pmin = "5

N_-1 NE-1_1

2n



then the minimum download cost Dy, of the PIR system is
given by

N 1 :
Do — L-(m—m-s), f0<s<sy 22)
- otherwise,
where the threshold is defined by s; £ ﬁ (1 — ﬁ) and
DO is defined in (20). If p < p’.;., then Dy, = oo.
Proof. The proof is given in Section IV. O

Remark 1. The case where D,.;, = oo indicates that it is
impossible to simultaneously meet all the system requirements,
i.e., i) retrieval; ii) privacy; iii) total leakage constraint. In this
case, the capacity C' = 0.

For p > pi.,, the dependency of Dp;, on (p,s) is
illustrated by the shaded area in Fig. 1. The dashed lines

Fig. 1. The dependency of Dyyin on (p, s).

project the corner points to the axises that show their values.
We see that for a given value of s, D, is a constant and
thus independent with p. The shaded area is projected onto
the Dyin-s plane, which is drawn in Fig. 2.

Fig. 2. Tradeoff curve between Dp,in and s.

The red line in Fig. 2 is the tradeoff curve between Dy
and s for p > p} ;. Codes that achieve points on this optimal
tradeoff curve will be referred to as Pareto optimal codes.
We see from Fig. 2 that for s = 0, the problem reduces to

SPIR [4] for which the capacity is Csplr = ﬁ

We further observe that i) the threshold s; is SeT]%al to the
normalized total leakage of the capacity-achieving TSC code

T =1+
min s=s;

_ 1
=1-1.

in (17); ii) for s > s;, the capacity C =

+ + -+ = is equal to Cpg.

B. Individual Leakage

The following theorem characterizes the tradeoff between
the minimum download cost D, and the individual leakage
constraint w.

Theorem 2. If the amount of common randomness satisfies
p = Py, where

. é{Nl_lNN_l'w if K =2
0

2
) ifK =3, @y

then the minimum download cost Dy, of the PIR system is

Dmm{L(NN_lNl‘lw)’ FOSwS e o)

otherwise,

where D?ni is defined in (20). If p < p¥. , then D = o0.

w
n min’

Proof. The proof is given in Section V. O

Remark 2. If p < py.., it is impossible to meet all the
requirements of the PIR system simultaneously. In this case,
the capacity C' = 0.

Remark 3. For K = 2, the individual leakage is equal to the
total leakage. We can see that Theorem I and Theorem 2 are
equivalent.

From (23), it is seen that p); = 0 for K > 3, which
is the case when one non-desired messages can be used as
the encryption key to protect another individual non-desired
message. For K = 2, there is only one non-desired message,
and this makes it impossible to have another non-desired
messages as the encryption key. For p > p¥. . similar to Fig. 1
and Fig. 2, we can illustrate the dependency of D, on (p, w)
by replacing s; with ﬁ in the figures.

Similar to the observations of Fig. 2, for w = 0, the problem
becomes weakly secure PIR (WS-PIR) which differs from
SPIR only in the type of security. The capacity of WS-PIR
can be obtained by calculating DLM at w = 0 from (24),
which is given in the following corollary.

Corollary 1. If the amount of common randomness satisfies

_1 if K =2
px v ¥ 25)
0, ifK >3,
the capacity of WS-PIR is given by
1
Cws.pir =1 — N (26)
If (25) is not satisfied, the capacity Cys.pir = 0.
From this corollary, it is seen that Cwspr = Cspr. It

is satisfying to see that requiring strong security does not
increase download cost compared to requiring weak security,
even though the required amount of common randomness is
larger. It is straightforward to verify that the optimal SPIR
code in [4] is also optimal for WS-PIR. In Section V-A, we
propose another optimal code for WS-PIR with K > 3, where
the databases do not need to share common randomness.



C. Minimum Message Size

The minimum message size (in log)y -ary unit) is highly
dependent on the download cost. It was shown in [12] that
the message size of a capacity-achieving PIR code is greater
than or equal to N —1 if the code is uniformly decomposable (a
generalization of linear code). For the definition of uniformly
decomposable code, we refer the readers to [12].

We can see from the Pareto optimal code constructions in
Sections IV and V that for most cases, we can simultaneously
achieve a message size of N — 1 and the minimum amount
of common randomness characterized in Theorems 1 and 2.
The only exception is the individual leakage case with K > 3
and |X| = N = 2, for which the message size is twice the
minimum. Except for this case, the following theorem shows
that the minimum message size is the same as that of the
classical PIR codes in [12].

Theorem 3. Except for the case of K > 3,|X| = N = 2,
the minimum message size of any Pareto optimal uniformly
decomposable PIR codes achieving the minimum amount of
common random randomness with either individual leakage
constraint w or total leakage constraint s is (N —1) log x| [V
in particular, it equals to N — 1 if we restrict Y = X.

s

Proof. Except for the case of K > 3,|X| = N = 2, we
have designed Pareto optimal codes achieving simultaneously
the minimum amount of common random randomness and the
minimum message size. Thus, we only need to prove the lower
bound L > (N — 1)log)y| |Y|, for which the details can be
found in [13]. O]

IV. PROOF OF THEOREM 1

We only present the achievability here and the converse can
be found in [13]. Following the analysis of Fig. 2, we only
need to prove the theorem for s € [0, s;]. Consider a message
length of L = N —1. In addition to the query generation in (3),
now the random key F generates one more indicator bit Fj €
{0, 1}, according to probability P(Fy = 0) = % €
[0,1) and P(Fy =1) =1 - X =D For gy e [1: N,
it is useful to define the operation (z + y)n by

r+y, ifr4+y<N
+ - 27
@+ y)w {x—ky—]\ﬂ frty>n &
And similarly,
T -y, ifex—y>0
@—yn=2""" cey (28)
r—y+ N, ife—y<0.

Let (Fy,Fs,---,Fkg_1) be chosen uniformly from [1
N]E=1 For random key F = (Fy, Fy,Fa,--- ,Fx_1) €
0,1} x [1: NJK—1, let F* 2 (zfi;l F)
for the n-th database is generated as
QW = (Fo,F1,++ ,Fi1,(n— F*)n, Fi, -+, Fx_1)
nel[l:N,ke[l: K]. (29)

. Then th
- Then the query

Since the query is a length-(K + 1) vector, we can denote it
by Qgﬁ ]0: k- Upon receiving the queries, the databases generate
the answers using the TSC code for F{ = 0, and SPIR code
for Fy = 1. Specifically, the answer is

. N
AM = Wi @ ®Weom i Q’};’O " (30)
W, qu @& W, qm @8, if QL,]O =1,

where S is the common randomness shared among all
databases. The retrieval and privacy requirements are easily
seen from the TSC and SPIR codes. The performance of
information leakage, download cost, and amount of common
randomness can be easily verified. This proves the achievabil-
ity of Theorem 1 for s € [0, s¢].

Remark 4. The code is obtained by combining TSC code
and SPIR code probabilistically, which is done by sending one
more query bit as an indicator. The method is valid only when
the two codes have the same message length, and the message
length of the combined code remains the same, which is N —1
here. This combination method outperforms time-sharing in
the sense that, with real-valued combination coefficients, time-
sharing may require a much larger message size.

V. PROOF OF THEOREM 2

We only show the achievability here and the converse can
be found in [13].

A. Optimal code for WS-PIR

Even though the SPIR code in [4] achieves the capacity of
WS-PIR, it does not always achieve the minimum amount of
common randomness for WS-PIR. For K > 3, (25) indicates
that the databases do not need to share common randomness.
We consider the following three cases:

i) |[X| >3 and N > 2;

ii) |[X| =2and N > 3;

iii) |X|=N=2.
Next, we propose an optimal code for WS-PIR that uses the
sum of all message symbols as encryption key shared by
databases and no extra randomness is needed. The code design
is simply to modify TSC code by adding the shared encryption
key (sum of all message symbols) to each of the answers.

Case i): The code has a message length of L = N — 1.
Specifically, by appending dummy variables Wy, ny = 0, the
message Wy can be written as

Wi = Wi, Wika- ,Win—1, Wi N).

Let the random key F of the user be chosen uniformly from
[1: NJE=! which gives

F=(F,Fs, -, Frg_1).

€1y

(32)
For z,y € [1 : NJ, the operation (z + y)ny and (x — y)n
are defined by (27) and (28). Let F™* £ ZZK:Il Fi) . For

N
kEe[l: K]and n € [1 : N], the query is a deterministic
function of the random key F, defined as

QW = (Fi, Py, Fio1,(n—F*)n, Fy, -+, Fre—1). (33)



The sum of all message symbols is denoted by S, which is
K

S (Wit @ Wiz @@ Win-1).
k=1

S

(34)

Upon receiving the query QL’?], the n-th database generates an
answer Af using ng as linear combination indexes of all
the message symbols. We further add the encryption key .S to
each answer and obtain that

A=W p @ @ Wi p ) & Wi (nry
OWii1,r, @ @ Wik e, @S (35)
For simplicity, we define

B=Wip® - Wi_1,r,_ Wit1,7,0 - - OWk Fre_,. (36)

Substituting (36) into (35), we have
A =Wy gy ®B@®S. (37)
The user receives all the answers A[lk]N and we see that

Wi noryx = Al o Al — AlM o (Ba 9),

where © is the subtraction operation in the Abelian group X.
The message W), can be recovered by ranging n from 1 to N.

(38)

Since F is chosen uniformly from [1 : N]¥~! and all the
queries are deterministic functions of F, we see that ng ] is
chosen uniformly from the query set for any k € [1 : K] and
n € [1 : N]. Thus Q'™ provides no information about the
message index k, which ensures the privacy.

The weak security (individual leakage) can be seen as
follows. The coefficient of each message symbol Wy ; (k €
[1:K],i€[1: N —1]) in the expression of B & S can only
be 1 or 2. Because of the assumption that |X| > 3, none of
the message symbols will vanish. Since K > 3, there is at
least one k" € [1 : K] such that k" # k, k’. Then the message
symbols of W~ randomizes the sum of symbols from Wj
and W/, and thus we obtain that

I(Be S; Wiy W) =0, (39)
which implies

I(B& S; W) =1(B& S; Wi [Wy) = 0.
Thus, we have

I(Wk/;BEBS,Wk) = I(Wk/;Wk) +I(Wk/;B@S|Wk) =0.

(40)

41)
To see the security, we consider the following,
[(Wi; AT QYNF) = I(Wi; AL QN WAE)  (42)
= [(Wi; AL\ WF) 3)
= [(Wk/;B@S, Wk|F) 44)
=0, (45)

where (42) follows from the recovery in (38), (44) follows
from the expression of answer in (37) and I(Wy/; F) = 0, and
the last equality follows from (41) and B @ S is a function of
messages Wi.x and the random key F.

Since each answer consists of one symbol, the download
cost is D = N. Since L = N — 1, the rate of the code is
simply R = % =1- % that matches the capacity in (26)
of Corollary 1. Lastly, the databases do not share common
randomness in addition to the messages themselves.

Case ii): It is easy to verify that the code also works for
|X| =2 and N > 3. We omitted the details here, which can
be found in [13].

Case iii): For the case that N = 2 and |X| = 2, let L =
2(N — 1) = 2. We can divide each message into two sub-
messages, i.e., Wy = (W,El),W,Ez)) for k € [1 : K]. Then
we apply the code in Case i) to each sub-message, where we
choose the same encryption key as S = Zle W,gl) @ W,gQ).
The parameters F(1), F() € {1,2}%~1 are chosen to be dual
of each other, i.e., F(!) and F(?) differ in every position. The
private retrieval requirement is easy. We can see the weak
security from the following example of K = 3. Let k = 2
and the random key to be chosen as F(!) = (2,1) and F(?) =
(1,2), then the queries are

¢ =(2,1,1), ¢¢” = (2,2,1) (46)
P =(1,1,2), ¢¥ = (1,2,2). (47)

Then BY @ S and B @ S of the two sub-codes are thus
BYas=wow)es=w" ow? ew?, @8
BYas=w? ew es=w" e w e w?. «9)

We can easily see that (B @ S, B(®) ¢ ) provides no infor-
mation about either W; or W3. Then using similar arguments
as (39)-(45), we can obtain the weak security.

B. Achievability of Pareto Optimal Points

We only need to prove the theorem for w € [0, w;]. Since
for K = 2, the WS-PIR code reduces to SPIR code, we
consider only K > 3 here. Similar to Section IV, consider
a message length of L = N — 1. The random key F' generates
one more indicator bit Fy € {0,1} according to probability
P(Fy =0)=wNE-1c0,1]and P(Fy = 1) = 1-wNE-L,
The queries and answers are generated similarly as that in
Section IV. The only difference is to replace S by the
encryption key using (34). The amount of leakage, download
cost, and common randomness can be verified accordingly.
This proves the achievability of Theorem 2 for w € [0, w].

VI. CONCLUSION

In this paper, we studied the PIR problem with total and
individual leakage constraints, respectively. Our main contri-
bution was the characterization of the tradeoffs between the
minimum download cost D,,;;, and the total leakage constraint
s and individual leakage constraint w. The minimum amount
of common randomness with respect to s and w was also
characterized. It was shown that the linear combination of TSC
code and SPIR (WS-PIR) code is Pareto optimal (achieving
the whole tradeoff curve). The proposed Pareto optimal codes
for both individual and total leakage were proved to have a
minimum message size of N — 1.
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