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Abstract—In the canonical private information retrieval (PIR)
problem, a user retrieves a message from a set of databases
without allowing any individual database to obtain any knowl-
edge regarding the identity of the requested message. This perfect
privacy requirement may be too stringent in many cases, and the
user may only wish to control the amount of the privacy leakage
to below a given level, and in return, can retrieve the message at
a lower communication cost. In this work, we study the tradeoff
between the download cost and the amount of privacy leakage
under the maximal leakage metric. A new scheme is proposed
by allowing a more flexible query structure and probability
distributions in a code previously proposed by Tian et al., which
utilized a fixed query set and a uniform distribution. It is shown
that the optimal probability distribution in the proposed scheme
has a particularly simple structure, which leads to a closed
form achievability bound for the optimal tradeoff between the
download cost and the privacy leakage. The proposed scheme
includes several known schemes, such as those proposed by Lin
et al., by Samy et al., and by Jia, as special cases.

I. INTRODUCTION

In the canonical private information retrieval (PIR) prob-
lem, a user wishes to retrieve one out of K messages from
N replicated databases, without revealing any information
about the identity of the requested message to any individual
database. Efficient protocols need to be designed to minimize
the communication cost when completing this task. The PIR
capacity is defined as the maximum number of bits of desired
message that can be retrieved per bit of downloaded informa-
tion, which was characterized recently by Sun and Jafar [1]. A
class of capacity-achieving codes with a small query set was
proposed more recently by Tian, Sun, and Chen [2], which is
instrumental in our work and will be referred to as the TSC
scheme in the sequel. Many variations and extensions to the
canonical PIR problem have also been considered [3]–[10], for
example, using more general storage codes, allowing servers
to collude, or imposing other security constraints.

The perfect privacy required in the canonical PIR setting can
be overly stringent, and a small amount of privacy leakage
may be acceptable in practice; we refer to this setting as
weakly private information retrieval (WPIR). This relaxation
was considered in a few recent works for the case of two
databases. In [11], mutual information was used to measure
the privacy leakage, differential privacy was adopted in [12],
and a less explicit metric involving conditional entropy was
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used in [13]. Several codes were proposed in these works
to minimize the download cost, however, the case for more
general number of databases was not considered.

In this paper, we study the WPIR problem for systems with
a general number of databases, and adopt the maximal leakage
metric [14] to measure the amount of privacy leakage. The ad-
vantages of the maximal leakage metric, in contrast to others,
such as the mutual information [11], are as follows. Firstly,
as argued in [14], maximal leakage has a clear operational
meaning, which is also applicable in the PIR setting; secondly,
the amount of leakage under this metric depends only on the
retrieval strategy, but not the probability distribution of the
requested message, i.e., it is not necessary to assume a priori
a (uniform) probability distribution of the request.

We propose a new code construction by allowing a more
flexible query structure and a nonuniform probability dis-
tribution in the TSC scheme. In contrast to the symmetry-
guided code construction given in [1], the small query set in
the TSC scheme allows us to control more conveniently the
query probability distribution. The probability distribution in
the proposed scheme needs to be optimized, and we show
that the optimal distribution in fact has a particular simple
structure. To identify this optimal solution, we first provide
a reduced scheme that is shown to yield a lower bound to
the tradeoff achieved by the proposed scheme, then show that
this optimal solution to the reduced scheme is also a solution
in the proposed scheme. The optimal solution in the reduced
system can be obtained by analyzing the Karush-Kuhn-Tucker
(KKT) conditions, which yields the given optimal solution in
the proposed scheme. It should be noted that the proposed
scheme in fact includes the recently proposed schemes in [11]–
[13] as special cases.

The rest of the paper is organized as follows. In Section II,
we first fix the notations, and then review the maximal leakage
metric and the TSC scheme. The proposed scheme and its
performance are given in Section III. Section IV is devoted
to establishing the performance of the proposed system by
a combination of bounding and analysis of the optimization
problem. We conclude the paper in Section V.

II. PRELIMINARIES

A. System Setup

There are a total of K mutually independent messages
W0:K−1 = (W0,W1, · · · ,WK−1), each of which is uniformly



distributed over the same finite alphabet. Each message is
stored in N non-colluding databases. The user wishes to
retrieve a single message by querying the databases. The index
of the requested message can be viewed as a random variable
M , which follows an unknown probability distribution. From
here on, for positive integers n1, n2 where n1 ≤ n2, we denote
[n1 : n2] , {n1, n1 + 1, · · · , n2}.

A random key F, independent of everything else, is used
to generate the queries Q[k]

0:N−1 =
(
Q

[k]
0 , Q

[k]
1 , · · · , Q[k]

N−1

)
when M = k, i.e.,

H(Q
[k]
0:N−1|F) = 0, ∀k ∈ [0 : K − 1], (1)

where Q
[k]
n ∈ Qn is the query sent to the n-th database

when message Wk is requested. Upon receiving Q[k]
n , the n-th

database generates an answer A[k]
n as a deterministic function

of the query Q[k]
n and the stored messages W0:K−1, i.e.,

H(A[k]
n |Q[k]

n ,W0:K−1) = 0,

∀k ∈ [0 : K − 1], n ∈ [0 : N − 1]. (2)

Using all the answers A
[k]
0:N−1 =

(
A

[k]
0 , A

[k]
1 , · · · , A[k]

N−1

)
from the N databases, as well as F and k, the user must
be able to decode the desired message Wk, i.e.,

H(Wk|A[k]
0:N−1,F) = 0. (3)

The informational normalized download cost of this informa-
tion retrieval can be defined as

D , max
k∈[0:K−1]

∑N−1
n=0 H(A

[k]
n |F)

H(Wk)
. (4)

We can also define the operational download cost as the down-
loaded number of bits. The details of these two definitions and
their differences can be found in [15].

B. The Maximal Leakage Metric

We consider the problem of weakly-private information
retrieval (WPIR) where the identity of the requested message
may not be kept perfectly private, i.e., the user wishes to
control the amount of knowledge that a database can deduce
from the queries. The privacy leaked on M needs to be
measured by a meaningful metric, and we adopt the maximal
leakage metric in this work.

The maximal leakage from a random variable X to another
random variable Y has an operational meaning as follows.
When guessing a function of X upon observing Y , the leakage
is the logarithm of the ratio of the probability of a correct guess
when Y is observed, to the probability of a correct guess when
Y is not observed. The maximal leakage metric L(X → Y ) is
then defined as the maximum leakage over all such functions.
It was shown in [14] that

L(X → Y ) = log
∑
y∈Y

max
x∈X :

PX(x)>0

PY |X(y|x). (5)

For the WPIR system, we shall measure the leakage from

M to Q[M ]
n using this metric, which then by (5) reduces to

L(M → Q[M ]
n ) = log

∑
q∈Qn

max
k∈[0:K−1]:

PM (k)>0

P
Q

[M]
n |M (q|M = k)

= log
∑
q∈Qn

max
k∈[0:K−1]

P
Q

[k]
n

(q), (6)

assuming all messages will be requested with nonzero proba-
bilities. The worst-case maximal leakage among the databases
is then

ρ , max
n∈[0:N−1]

L(M → Q[M ]
n ). (7)

It is clear that there is a tradeoff between ρ and D, which is
the focus in this work.

We note that the perfect privacy requirement in the canonical
PIR problem stipulates the queries to be identically distributed

Q[k]
n ∼ Q[k′]

n , ∀k, k′ ∈ [0 : K − 1], ∀n ∈ [0 : N − 1], (8)

which implies the (independence) relation

L(M → Q[M ]
n ) = 0, ∀n ∈ [0 : N − 1]. (9)

C. The TSC Scheme

The TSC scheme was proposed in [2] for the canonical PIR
system to achieve perfect privacy, which we briefly review
here. Each message Wk consists of L = N − 1 binary
symbols, and thus the message Wk can be denoted as Wk =
(Wk,0,Wk,1, · · · ,Wk,N−1), where Wk,0 = 0 is a prepending
dummy element. Let the random key F = (F0, F1, · · · , FK−2)
be uniformly distributed in the set F , [0 : N − 1]K−1, i.e.,

P (F = f) = N−(K−1), ∀f ∈ F . (10)

The query Q̃[k]
n is then generated as

Q̃[k]
n =

(
F0,· · ·,Fk−1,

(
n−

K−2∑
i=0

Fi

)
N
, Fk,· · ·,FK−2

)
,

(11)
where (·)N denotes the module N operation. Since each query
is a length-K vector, we can denote it by Q̃

[k]
n,0:K−1. Upon

receiving the query, the answer Ã[k]
n can be generated as

Ã[k]
n = W

0,Q̃
[k]
n,0
⊕W

1,Q̃
[k]
n,1
⊕ · · ·W

K−1,Q̃
[k]
n,K−1

(12)

= Wk,(n−
∑K−1

i=1 Fi)
N

⊕I , (13)

where ⊕ is addition in the binary field and

I ,W0,F0
⊕ · · · ⊕Wk−1,Fk−1

⊕Wk+1,Fk
⊕ · · ·WK−1,FK−2

(14)

is the interference signal. Since the answers Ã[k]
1:N only differ

at the element of message Wk and Wk,0 = 0, the user can
retrieve Wk by recovering each element Wk,i for all i ∈ [1 :
N−1]. The scheme is private because the uniform distribution
of F on F induces a uniform query distribution regardless of
the requested message.
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Fig. 1: Between the extreme case of (a) where download cost is
minimized and the other extreme case of (c) where the privacy
is prefect, we can adjust the probability distribution to achieve
the tradeoff between ρ and D.

III. THE PROPOSED WEAKLY-PRIVATE INFORMATION
RETRIEVAL SCHEME

A. Motivation
The TSC scheme uses a uniformly distributed random key

F, which leads to ρ = 0. To reduce the download cost and
allow a certain amount of privacy leakage, a natural gener-
alization is to let the random key F take other distributions.
Particularly, in the extreme case of perfect privacy, a uniform
distribution is required, and for the other extreme of minimum
download, we can directly download the requested message,
i.e., P (F = 0) = 1. Our question is thus how to adjust the
probability distribution in the intermediate regime to achieve
a meaningful tradeoff; see Fig. 1 for an illustration.

B. The Weakly-Private TSC (WP-TSC) Scheme
Intuitively speaking, in addition to allowing more general

probability distributions on the queries, we also wish to allow
a permutation of the query strategy across the databases, such
that the unbalance among the databases in the TSC scheme
does not adversely affect the performance. For this purpose,
more notations need to be introduced first. Let P be the set
of all permutations of [0 : N − 1]. For each k ∈ [0 : K − 1],
let Πk be a random variable in P , with a distribution P (Πk =
π) = wkπ . Additionally, for any π ∈ P and k ∈ [0 : K −
1], let F k,π , (F k,π0 , F k,π1 , · · · , F k,πK−2) be a random vector
distributed as follows

P (F k,π = f) = pk,πf , ∀ f ∈ F . (15)

The random key F in the WP-TSC scheme is

F ,

{
{F k,π, π ∈ P, k ∈ [0 : K − 1]},

{Πk, k ∈ [0 : K − 1]}
}
, (16)

i.e., F has a total of N !K +K components. It is clear that F
is indeed independent of M and the messages.

Similar to (11), the query Q[k]
n can be now generated using

F k,Πk directly,

Q[k]
n =

(
F k,Πk

0 , · · · , F k,Πk

k−1 ,

(
Πk(n)−

K−1∑
i=1

F k,Πk

i

)
N

,

F k,Πk

k , · · · , F k,Πk

K−2

)
. (17)

The answers are also generated in the same way as in (13),
with Q[k]

n,i replacing Q̃[k]
n,i, i.e.,

A[k]
n = W

0,Q
[k]
n,0
⊕W

1,Q
[k]
n,1
⊕ · · ·W

K−1,Q
[k]
n,K−1

. (18)

The random variable Πk essentially selects a permutation to
apply on the original TSC scheme, when message Wk is re-
quested; then for this permuted TSC scheme, the set of queries
is exactly the same as that in the original scheme, however,
with a non-uniform distribution specified by pk,πf . Following
this view, the correctness of the scheme is immediate. Note
that the query Q[k]

n can take any possible values in [0, N−1]K ,
i.e., Qn = [0, N − 1]K for any n ∈ [0, N − 1], therefore, we
shall simply write it as Q in the sequel.

Let us illustrate the idea using an example where K =
2 and N = 3, and the two messages are a = (a1, a2) and
b = (b1, b2), respectively. For π = (0, 1, 2) and π = (1, 0, 2),
the retrieval strategy and the corresponding probabilities are
given in Tables I and II. Observe that in Table I, DB0 plays a
special role, and thus there is a natural unbalance among the
databases in the TSC scheme. The permutations Πk helps to
remove such unbalance.

Denote ‖·‖ as the zero norm of a vector and let Fj = {f ∈
F : ‖f‖ = j} for j ∈ [0 : K − 1]. Denote the set of cyclic
(round-robin) permutations by P0 = {π ∈ P : ∃ m s.t. π

(
[0 :

N − 1]
)

= (m : N − 1, 0 : m − 1)}. Denote the optimal
download cost of the canonical PIR problem by DPIR, which
is DPIR = 1 + 1

N + 1
N2 + · · ·+ 1

NK−1 .
The following theorem characterizes the optimal tradeoff

between the maximal leakage ρ and the normalized download
cost D of the WP-TSC scheme, as well as the optimal
probability distribution that achieves this tradeoff. The proof
can be found in Section IV.

Theorem 1. The optimal tradeoff between ρ and D of the
WP-TSC scheme is

ρ = log

[
1 +

(N − 1)(K − 1)(NK − 1)

NK −N

−N
K−1(N − 1)2(K − 1)

NK −N
D

]
, D ∈ [1, DPIR] (19)

which is achieved by the following distribution

wkπ =

{
1
N , ∀ k ∈ [0 : K − 1], π ∈ P0

0, otherwise
(20)

and

pk,πf =

{
N − (N − 1)D, ∀ k ∈ [0 : K−1], π ∈ P,f ∈ F0
1−[N−(N−1)D]

NK−1−1
, ∀ k ∈ [0 : K−1], π ∈ P,f /∈ F0.

(21)

The optimal probability distribution can be understood as
follows: 1) we only need to use the cyclic permutations of
the TSC scheme uniformly at random, instead of all possible
permutations among the databases, and 2) the probability of
retrieving the message directly is given a higher value, while



TABLE I: Retrieval strategy when π = (0, 1, 2)

Requesting message a Requesting message b
prob. DB0 DB1 DB2 prob. DB0 DB1 DB2
pa,012

(0) a1 a2 pb,012
(0) b1 b2

pa,012
(1) a2 ⊕ b1 b1 a1 ⊕ b1 pb,012

(1) a1 ⊕ b2 a1 a1 ⊕ b1
pa,012

(2) a1 ⊕ b2 a2 ⊕ b2 b2 pb,012
(2) a2 ⊕ b1 a2 ⊕ b2 a2

TABLE II: Retrieval strategy when π = (1, 0, 2)

Requesting message a Requesting message b
prob. DB0 DB1 DB2 prob. DB0 DB1 DB2
pa,102

(0) a1 a2 pb,102
(0) b1 b2

pa,102
(1) b1 a2 ⊕ b1 a1 ⊕ b1 pb,102

(1) a1 a1 ⊕ b2 a1 ⊕ b1
pa,102

(2) a2 ⊕ b2 a1 ⊕ b2 b2 pb,102
(2) a2 ⊕ b2 a2 ⊕ b1 a2

all the other possible query combinations in the TSC scheme
are given the same probability.

C. Discussions
The WPIR problem was also studied in [11]–[13], where

only the case N = 2 was considered. Though they used
different leakage metrics, the schemes proposed in [11]–[13]
are very similar, which can be viewed as related to the TSC
scheme in different ways. The scheme in [11] is related
by reassigning non-uniform probabilities to all the possible
queries in the TSC scheme for each database when N = 2.
The proposed schemes in both [12] and [13] can be viewed as
a round-robin of the TSC scheme when N = 2. The WP-TSC
scheme proposed here allows arbitrary probability distributions
on the queries and also a permutation of the query strategy
across the databases. Thus, the WP-TSC scheme includes all
the existing schemes in [11]–[13] as special cases.

The random key F given in (16) is rather complicated, and
it is trivial to see that it is independent of everything else.
However, it is in fact not necessary to require this amount of
randomness in the protocol. Essentially, the randomness in F
needs to be sufficiently sophisticated to produce the random
variable Πk, and for each (k, π) also produce the required
distribution specified by pk,πf .

IV. OPTIMIZING THE WP-TSC SCHEME

The normalized download cost of the WP-TSC scheme can
be computed as

D = max
k∈[0:K−1]

∑
π∈Π

wkπ
(N − 1)pk,π0 +N(1− pk,π0 )

N − 1

=
N −mink∈[0:K−1]

∑
π∈P w

k
πp
k,π
0

N − 1
. (22)

For q ∈ Q, denote q|k , (q0, · · · , qk−1, qk+1, · · · , qN−1).
We can analyze the maximal leakage of the WP-TSC scheme,
which is

ρ
(
{wkπ}, {p

k,π
f }

)
, max
n∈[0:N−1]

{L(M → Q[M ]
n )} (23)

= log max
n∈[0:N−1]

∑
q∈Q

max
k∈[0:K−1]

P
Q

[k]
n

(q)

 (24)

= log max
n∈[0:N−1]

∑
q∈Q

max
k∈[0:K−1]

∑
π:π(n)=(

∑
i qi)N

wkπ · p
k,π
q|k

 .
(25)

For any q ∈ Q and k ∈ [0 : K−1], we have q|k ∈ F , and thus
ρ
(
{wkπ}, {p

k,π
f }

)
is indeed a function of {wkπ} and {pk,πf }.

Under the constraint of download cost D ≤ D∗ (1 ≤
D∗ ≤ DPIR), the problem of minimizing the leakage using
the proposed scheme can then be written as the following
optimization problem P1:

minimize: ρ
(
{wkπ}, {p

k,π
f }

)
(26)

subject to:wkπ ≥ 0, ∀k ∈ [0 : K − 1], π ∈ P (27)

pk,πf ≥ 0, ∀k ∈ [0 : K − 1], π ∈ P,f ∈ F (28)∑
π∈Π

wkπ = 1, ∀k ∈ [0 : K − 1] (29)∑
f∈F

pk,πf = 1, ∀k ∈ [0 : K − 1], π ∈ P (30)

N −mink∈[0:K−1]

∑
π∈P w

k
πp
k,π
0

N − 1
≤ D∗. (31)

Problem P1 in this form is not linear or convex, and it
is not easy to solve. In order to solve P1, we consider a
reduced scheme in Section IV-A, which belongs to the WP-
TSC scheme but has a simple representation. The performance
of the reduced scheme can be written as an optimization
problem P2, and we show in Section IV-B that the optimal
value of P1 is essentially equal to the optimal value of P2
which is solved in Section IV-C.



A. The Reduced WP-TSC Scheme

The random strategy F is chosen from F with the following
distribution

P (F = f) = pj , ∀f ∈ Fj , j ∈ [0 : K − 1]. (32)

The queries are generated by applying the original TSC
strategy in (11) in a cyclic manner uniformly at random, i.e.,

P
(
Q

[k]
0:N−1 = Q̃

[k]
m:N−1,0:m−1

)
=

1

N
, ∀m ∈ [0, N − 1].

(33)

The answers are generated in the same way as in (13) with
Q

[k]
n,i replacing Q̃[k]

n,i, i.e.,

A[k]
n = W

0,Q
[k]
n,0
⊕W

1,Q
[k]
n,1
⊕ · · ·W

K−1,Q
[k]
n,K−1

. (34)

The scheme described above can be viewed as a reduced
version of the WP-TSC scheme by setting the permutation
weights following (20) and the random key distribution obey-
ing (32). Note that the query Q[k]

n can take any possible values
in Q. Denote tj , |{q ∈ Q : ‖q‖ = j}|, which is obtained as

tj =

(
K
j

)
(N − 1)j ,∀ j ∈ [0 : K]. (35)

For notational simplicity, let p−1 = pK = 0. The download
cost and maximal leakage of the reduced WP-TSC scheme is
given in the following lemma, whose proof can be found in
[16].

Lemma 1. The reduced WP-TSC scheme achieves the down-
load cost and maximal leakage pair (D, ρ) such that

D =
N − p0

N − 1
, (36)

ρ = log
1

N

 K∑
j=0

tj max{pj−1, pj}

 , (37)

for p0 ∈
[

1
NK−1 , 1

]
.

B. The Reduced Optimization Problem

We denote sj , |Fj |, which is

sj =

(
K − 1
j

)
(N − 1)j ,∀ j ∈ [0 : K − 1]. (38)

For a given download cost constraint D ≤ D∗ (1 ≤ D∗ ≤
DPIR), by Lemma 1, the problem of minimizing the leakage
in the reduced scheme can be written as the following opti-
mization problem P2:

minimize: log
1

N

 K∑
j=0

tj max{pj−1, pj}

 (39)

subject to: pj ≥ 0, ∀ j ∈ [0 : K − 1] (40)
K−1∑
j=0

sjpj = 1 (41)

N − p0

N − 1
≤ D∗. (42)

Denote the optimal value of P1 as (P1), and similarly for
P2. Then we have the following lemma.

Lemma 2. Under the same constraint D∗ where 1 ≤ D∗ ≤
DPIR, we have (P1) = (P2).

Proof. (Outline) On the one hand, for any valid parameters
{wkπ, p

k,π
f } for problem P1, we assign pj in problem P2 as

pj =
1

Ksj

K−1∑
k=0

∑
π∈P

∑
f∈Fj

wkπ · p
k,π
f . (43)

With relation (43), it can be shown that {pj} satisfies the
constraints (40)-(42), and the objective function in problem
P1 is lower bounded by that in P2, for which the detailed
proof is given in [16]. Thus, (P1) ≥ (P2).

On the other hand, since the reduced scheme is a special
case of the WP-TSC scheme, we have (P1) ≤ (P2). Com-
bining the other inequality, we arrive at (P1) = (P2).

C. The Optimal Solution and Optimal Value

The problem (P2) is not yet linear, however since log(·)
function is monotonically increasing, we can instead minimize
the function inside the logarithm, which becomes a linear
program. The following lemma gives an optimal solution to
P2, whose proof can be found in [16].

Lemma 3. An optimal solution to the optimization problem
P2 defined in (39)-(42) is given as

p0 = N − (N − 1)D∗, (44)

pj =
1− p0

NK−1 − 1
, for j ∈ [1 : K − 1]. (45)

By Lemma 3, the optimal maximal leakage of the reduced
scheme can then be calculated as

ρ = log
1

N

[
NK −K(N − 1)− 1

NK−1 − 1

+
NK−1(N − 1)(K − 1)

NK−1 − 1
p0

]
. (46)

With the constraint D ≤ D∗, we have

p0 ≥ N − (N − 1)D∗. (47)

Then Theorem 1 is proved by substituting (47) into (46).

V. CONCLUSION

In this paper, we studied the WPIR problem under the
maximal leakage metric. We propose a new coding scheme
where the probability distribution can be optimized to control
the privacy leakage. The optimal probability distribution turns
out to have a very simple structure, where only the retrieval
combination of directly obtaining the message itself is given a
higher probability, and all other combinations are given the
same probability. We prove the optimality of this solution
through a combination of lower bounding and analysis of the
KKT conditions.
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