On the Storage Cost of Private Information Retrieval

Chao Tian
Department of Electrical and Computer Engineering
Texas A&M University
chao.tian@tamu.edu

Abstract—We consider the fundamental tradeoff between the
storage cost and the download cost in private information
retrieval systems, without any explicit structural restrictions on
the storage codes, such as maximum distance separable codes or
uncoded storage. Two novel outer bounds are provided, which
have the following implications. When the messages are stored
without any redundancy across the databases, the optimal PIR
strategy is to download all the messages; on the other hand,
for PIR capacity-achieving codes, each database can reduce the
storage cost, from storing all the messages, by no more than
one message on average. We then focus on the two-message two-
database case, and show that a stronger outer bound can be
derived through a novel pseudo-message technique.

I. INTRODUCTION

Private information retrieval [1], or simply referred to as
PIR, is a fundamental privacy-preserving information process-
ing primitive. PIR has deep connections to other well-known
communication and coding problems such as locally decodable
codes [2], [3] and interference alignment [4]. The PIR capacity,
i.e., the inverse of the minimum download cost, was recently
characterized by Sun and Jafar [5], and the PIR capacities
under other variations have also been considered [6]-[20].

Since the databases from which the information is retrieved
are basically storage nodes, designing efficient storage strate-
gies in PIR systems is of significant importance, and the
problem has received considerable attention recently. Some of
the existing efforts assume certain specific coding structures in
the storage side, such as using maximum distance separable
(MDS) codes [6], [15] or in an uncoded form [21]. In two
recent works [11], [22], the tradeoff was considered without
any structural constraints on the storage or retrieval codes for
the special case of two databases and two messages, and it was
found that non-linear codes can provide further improvement
over linear codes. Other notable efforts can be found in [23]-
[27] and references therein.

Despite these efforts, our understanding of the fundamental
tradeoff between the storage cost a and the download cost
B is still quite limited, mainly due to the lack of general
information theoretic converse results when the storage codes
are not required to follow any potentially restricting structural
constraint. In this work, we initialize such an effort and derive
several information theoretical outer bounds of the fundamen-
tal tradeoff between the storage cost and the download cost.
Instead of attempting to characterize the complete optimal
tradeoff curve, in this work we focus on the two extreme
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points: the point when the storage cost is minimal, and the
point when the download cost is minimal. For the former,
the question is when the storage has no redundancy, what the
minimum download cost can be; for the latter, the question is
for PIR capacity-achieving codes, what the minimum storage
cost can be.

Our main result is a precise characterization of the first
extreme point (no redundancy in storage), and an approximate
characterization of the second (capacity-achieving PIR codes).
More precisely, by providing two novel outer bounds, we
show that for the former, the optimal PIR strategy is in fact
to download all the messages, whereas for the latter, i.e.,
for PIR capacity-achieving codes, each database can reduce
the storage cost by no more than one message on average,
compared to the simple strategy of storing every message. In
order to better understand the second extreme point, we then
focus on the two-message two-database case, and show that
a stronger outer bound can be derived using a novel pseudo-
message technique, the origin of which can be traced back to
Ozarow’s bounding technique [28] of extending the original
probability space through Markov coupling, and is also related
to the derivation of non-Shannon type inequalities [29]-[31].

II. PROBLEM DEFINITION

The problem setting of private information retrieval is well
known, see e.g., [5], however in order to fix the notation
and derive the outer bounds in question, we first introduce
a rigorous version of the problem definition. We then provide
the formal definitions of the operational download cost and
storage cost, together with the informational version, in order
to unify the different conventions in the literature and avoid
confusion in subsequent discussions.

A. Encoding and Decoding Functions

There are a total of K messages Wi, Ws, ..., Wk in the
system, and there are a total of N databases that the messages
are to be retrieved; the messages (W;, Wit1,...,W;) will
sometimes be written together as W;.; for conciseness. Denote
the set of possible queries that server-n can accommodate as
Q,, and denote its cardinality as |Q,|. The cardinality of
a set A will be similarly denoted as |A| in the rest of the
paper. Assume that a random key F is uniformly distributed
on a certain finite set F, which is used by the user to
produce the (random) queries to the N databases. The servers,
after receiving the queries for message-k, denoted as QL’“ ],
will reply with an answer A,[f I A message Wy consists of



L symbols, each symbol belonging to a finite alphabet X.
The messages are mutually independent, each of which is
uniformly distributed on X'L. We further allow the query
answers to be represented as a variable-length vector, whose
elements are in the finite alphabet ). A mathematically precise
description of the problem is given next via a set of encoding
and decoding functions.

Definition 1. An N-server private information retrieval (PIR)
storage code for K messages, each of L-symbols in the
alphabet X, consists of

1) N storage encoding functions:

o, XKL .S, ne{l,2,..,N}, (1)

i.e., the stored information at database-n is S, =
(I)n(leK);
2) N query functions:

on:{1,2,... K} xF—>Q,,  ne{l,2, .., N}

2

i.e., the user chooses the query Q%C] = o¢n(k,F) for
server-n, using the index of the desired message and the
random key F;

3) N answer length functions:
by Qn—{0,1,2,...},

i.e., the length of the answer at each server, a non-
negative integer, is a deterministic function of the query,
but not the particular realization of the messages;

ne{l,2,..,N}, (3

4) N answer functions:
$n - Qn X Sn — y€n7

where £, = 0,(qn) with q, € Q, being the (random)
query for server-n, Y is the coded symbol alphabet,
and in the sequel we write the query answer as A%c 2
wn(QE{C ], Sy ) when the message index k is relevant;

ne{l,2,...N}, (@

5) A reconstruction function using the answers from the
servers together with the desired message index and the
random key:

N
¢ [V x{1,2,., K} x F = &%, (5)
n=1
ie, Wy, = w(A[lIf]N, k,F) is the retrieved message.

These functions should satisfy the following two requirements:

1) Correctness: For any k € {1,2,..., K}, Wi, = W
2) Privacy:  For every kK € {1,2,..,.K}, n €

{1,2,..., N}, and q € Q,,
Pr(Ql = q) = Pr(Q!F = ¢). ©6)

It should be noted that A%f ] is a function of both the
messages and the query Q%ﬁ I, Sometimes we need to refer
to the answer for a fixed query Q,[f I = q, and this shall be
written as A%q) .. As a consequence of the privacy requirement

and the coding requirement, the following joint distributions

must also be identical for any n =1,2,... N,
(AL{C]’Q%:]>WI;K751:N) ~ (A%/LQEC/],WLK,SLN),
kK €{1,2,...,K}, 7

which implies that their marginal distributions will also be
identical.
B. Operational and Informational Costs
The operational normalized storage cost for database-n is
o logs Syl
Ap = 77—
Llog, |X|
which is the amount of stored data per bit of individual
message; the average storage (per node) cost is defined as

|
a:N;an. 9

The operational normalized download cost for database-n is
log, [V[E(£n)
A 2 n
h = —————— =12,...,N,
o= Liog ¥ "
which is the expected amount of downloaded data per bit

desired message at database-n, and the average per node
download cost is

n=1,2,...,N, (8)

(10)

1N
B=1D bn (11)
n=1
Note that 3,, does not depend on k, since the privacy require-
ment stipulates that the random variable ¢,, has an identical
distribution for all k =1,2,..., K.
In the literature (e.g., [11]), the informational storage cost
is sometimes used directly in place of the operational storage
cost, i.e.,

H(S,
al & #, n=1,2,...,N,
Llog, |X]
and correspondingly the average informational storage cost can
be defined as

12)

N
r_ 1
o = N nE:1 o, . (13)

Similarly the informational download cost can be given as

H(A|F)
e =1,2,...,N 14
ﬂn L 10g2 ‘Xl ) e ) ) ( )
and the average informational download cost
N
r_ /
8= b (15)

n=1

Note 8!, does not depend on k, which can be justified as

HAVF)  HAQM)

Llog, |X| - Llog, | X]
_HAIRE)  HAYTR)
Llog, |X]| Llog, |X|’

(16)



where the first and last equality are due the Markov string
F < Q%ﬂ [N A% ], and the equality in the middle is due to the
privacy condition (7).

It is clear that

n=1,2,...,N. (17)

!
Qp 2 Oy,

The relation between 3,, and 3/, is slightly more subtle. It can
be seen that for any n =1,2,... N,

_ logy [VIE(ln) _ E[E(fn|F)]logs, ||

O = Loy | ¥] Llog, X
EH(A|F =) _ H(AZF) as)
Llog, |X| Llog, | X|’
As a consequence, we have
a>d, B=>p, 19

but they may not be equal. In this work, we adopt from a first
principle the operational definitions, from which the informa-
tional definitions will emerge as the substitutes naturally.

It was shown [5] that the minimum download cost is

. 1 1 NE —1
min 3 = N+...+NK = NEN 1)
and codes that can achieve this minimal value are often
referred to as optimal private information retrieval codes, or
capacity-achieving private information retrieval codes. The
codes are optimal in the sense that the download cost is
minimal. Note that the capacity achieving code given in [5]
assumed fully replicated messages at all databases, however
in our setting the databases are not necessarily replicated.

(20)

III. EXTREME POINT CHARACTERIZATIONS

We consider the two extreme points in question in the
following two subsections, respectively.

A. Minimizing Download Cost without Storage Redundancy

The first main result we present is for the extreme case
when the messages are stored across the databases without any
redundancy, i.e., Na = K. With such compressed storage, we
shall provide a converse to confirm the folklore that the best
PIR download strategy is to download everything.

Theorem 1. The per-node retrieval cost 3 and per-node
storage cost o must satisfy

(N-1la+pB2>K. 1)

We omit the proof here, which can be found in [32]. This
bound is illustrated in Fig. 1, together with the achievable
tradeoffs with MDS-coded storage [9] and uncoded storage
[21]. It is seen that this bound is almost vertical, but it is
sufficient to characterize one of two extreme points. The next
corollary now follows directly from the theorem, which states
that when the storage code has no redundancy, the optimal
strategy is to download every message.

—*— MDS-coded PIR
—-+-—uncoded storage PIR
— ¥ —outer bound in Theorem 1
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Fig. 1. Bounds in Theorem 1 and Theorem 2 when N = 6 and K = 10,

where the arrow indicates the intercept of the bound in Theorem 2 and 8 =
1 1

5 — FxgT0 18 the minimum download cost.
Corollary 1. At the minimum storage point o = %, we must
have
K
B>~
N
Moreover, the equality can be achieved by downloading all
the information from the databases.

(22)

B. Minimum Storage Overhead for Capacity-Achieving Codes

The next main result is a novel lower bound on the
storage cost and download cost tradeoff, which leads to an
approximate characterization of the extreme point for capacity-
achieving codes.

Theorem 2. The per-node retrieval cost 3 and per-node
storage cost o when N > 3 must satisfy

a+(N-1)3 K1 K NK —1
—— "N > :
N_2 /B_N72+N(N71)

The proof of this theorem can be found in [32]. The
most important implication of this theorem is the following
corollary, which states that for capacity-achieving PIR codes,
each database must store at least ' — 1 messages on average.

(23)

Corollary 2. At the PIR capacity point 3 = % we
have
NE —1

An illustration of this bound can also be found in Fig.
1. It can be seen that the proposed bound in Theorem 2 is
almost horizontal, and its intersection with the horizontal axis
gives a lower bound on the minimum storage cost when the
code is capacity-achieving. Since a trivial storage solution is
to replicate all the messages at all the databases, this corollary
in fact provides a characterization of the minimum storage
cost for capacity-achieving codes within an additive gap of
one message.



In the proof of Theorem 2, the following auxiliary quantities
and their relation are important :

7% 2 gAY W, F), k=1,2,... K, (25)
V’rf 2 H(A[l}ﬂrL—l,n—i-l:N’ Sn| Wik, F),
n=12,....,.N, k=12,....K, (26)
N k
v
V’f:@ k=1,2,..., K. 27
N ) ) b ) ( )
Due to the definitions above, it is clear that
TE = VvE = . (28)

The following two auxiliary lemmas are instrumental to the
proof of the theorem, whose proofs can be found in [32]. The
first lemma is a recursive relation on T*.

Lemma 1. Forany k=1,2... . K — 1

o Llogy |x| Tk

- N N
The second lemma is a refined recursive relation involving

both V* and T*.

Lemma 2. Forany k=1,2.... K—1landn=1,2,...,N,

Tk

(29)

vE 1 1 VhrL okl
TF > [ —— + — | Llogy |X| + ——

N_2 " _(N2+N> w5ty

(30)

Using the recursive relations among 7%’s and V*’s in these
two lemmas, an induction can be used to prove Theorem 2,
the details of which can be found in [32].

IV. AN IMPROVED OUTER BOUND VIA PSEUDO
MESSAGES

In this section, we shall take a closer look at the special
case N = K = 2. Theorem 1 in this case specializes to the
bound

a+p>2.

As a consequence, the minimum download cost 8 when the
storage cost is minimal is clearly 8 = 1, and this settles one
of the two extreme points. Since the messages must be held
in the databases as a whole, it is clear that o > 1 regardless
5, however, the more sophisticated bound in Theorem 2 does
not apply to N = 2. The question we wish to address in this
section is for this special case N = K = 2, whether the other
extreme point, where the download cost is minimal, can be
more accurately approximated. For this purpose, we present a
novel outer bound based on a pseudo-message technique.

The main result of this section is the following theorem,
which provides an improved outer bound for the storage cost
and download cost tradeoff.

Theorem 3. For N = K = 2, we must have 3a + 83 > 10.

€1y

Corollary 3. For N = K = 2, any capacity achieving codes,
i.e., codes with 8 = 0.75, must satisfy o > 4/3.

This bound is illustrated in Fig. 2, together with the best
known achievable tradeoff discovered in [22]. It can be seen

1
best known inner bound
— © — proposed outer bound
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Fig. 2. The proposed outer bound and the best known inner bound when
N=K=2.

that this new bound can indeed improve the accuracy of the
approximation for the extreme point on the horizontal axis.
The proof of this bound is rather technical, the details of which
can be found in [32], but the main proof idea is given and
discussed in the remainder of this section. The new bound in
Theorem 3 appears difficult to generalize to larger values of
N and K. Nevertheless, it can be viewed as a strong piece of

" evidence that the outer bounds we have at this point are likely

not tight, and more sophisticated techniques involving non-
Shannon type inequalities may provide additional improve-
ment. In fact, without using the pseudo-message technique,
we have indeed applied the computational approach [33], [34]
on this two-message two-database problem, i.e., invoking all
Shannon type inequalities, which did not produce any bound
stronger than that in Theorem 1.

In order to prove this bound, we need to first introduce
some necessary simplifications on the code structure used in
the derivation. With such simplification, we shall discuss the
main pseudo-message technique in some more details.

A. Symmetry Assumptions

It was shown in [19] that there are three types of symmetry
relations in this private information retrieval problem. By
applying the three types of symmetry relations, it can be shown
that in the setting of identifying the optimal storage cost and
the download cost, it is without loss of optimality to consider
only codes such that

H(S,) = H(S,), n,n €{l1,2,...,N}

H(AW) = H(AD),
n,n' €{1,2,....N}, q€Q,, ¢ €Qu

H (AW, W) = H(AS,),WIC'), n,n’ €{1,2,...,N},
4€Qn, ¢ €Qu, kke{l,2,...,K}. (32

In other words, for such symmetric codes, the databases use
the same amount of storage, the answers all have the same
entropy, and the combinations of any single answer and any
single message all have the same joint entropy. Moreover, for



such symmetrized codes, we also have
B=08, n=12,...,N. (33)
As a consequence, we have

B>H(AW), qeQ,, (34)

The symmetry in terms of the joint entropy can be extended
beyond that in (32), however in this work there is no need
for such generality. The discussion in the following in effect
utilizes the concept of answer variety introduced in [19],
though we will not explicitly invoke the concept, and the
discussion will be self-contained.

n=12,...,N.

B. A Subtle Dependence Structure

Our first step is to consider the relation among different

answers:

1) First consider an answer at database-1 for an arbitrary but
fixed qg; € Q1 which can be used to retrieve W7, denoted
as X1 = Ag‘h). Clearly there exists a query g2 € Qg such
that together with the answer Y; = A(qu), the message
W1 can recovered, i.e., H(W7|X1,Y7) =0.

2) Because of the privacy constraint, the answer X; = qul)
from database-1 can be used, together with an query ¢}, €
Q,, to retrieve W, i.e., with the answer Yy = A;q;) we
have H(W5|X1,Y5) = 0. Note that the answer Y; and
Y, are not necessarily distinct. )

3) Continuing the same argument, an answer Xo = qul)
must exist such that H(VI/'2|)/(:27 Y1) =0.

4) Finally, an answer X3 = qul) must also exist such that
H(W1|X3,Ys) = 0.

Clearly, (X1, X2, X35,Y1,Ys) are functions of Wy, Ws, ie.,
H(Xl,XQ,Xg,Yl,Y2|W1, WQ) = 0

Since the answers must come from the stored content,
H(X1, X5, X3|51) =0, we must have

QZH(S1) > H(X1, X2, X3), 35)

and similarly

a > H(Sy) > H(Y1,Y). (36)

This is the dependence structure and constraints in the original
problem setting that we shall avail. Note that in this line of
proof, the random key F is not playing any significant role,
unlike in the proofs for Theorem 1 and 2.

C. A Pseudo Message Technique

Our next step is to extend the random variable space,
by introducing some random variables not in the original
problem. The random variables Vi, Vs, referred to as the
pseudo messages, are introduced into the setting using the so-

called Markov coupling
(V1,V2) ¢ (Y1,Y2) > (Wi, Wa, X3, X, X3). (37

Moreover, the two sets of random variables have the identical
marginal distribution

(Y17Yv2aV1>V2) ~ (Ylu}/Q7W17W2>‘ (38)

Similarly, the second set of pseudo message random variables
(U1, Us) are also introduced such that

(UlaUQ) A4 (X17X2aX3) A4 (W13W27Y17Y27‘/17‘/2)7 (39)

and the two sets of random variables have the identical

marginal distribution
(X1, X2, X3,U1,Uz) ~ (X1, X2, X3, W1, W2). (40)

As a consequence, the extended set of random variables can
be factorized as

P(Wy, Wy, X1, X2, X3,Y1,Y2)

- P(Uy,Uz| X1, Xo, X3)P(V1, Va|Y1, Ya). 41
The proof of Theorem 3 utilizes the symmetry,
the Markov condition in the extended random

variable space, as well as the encoding and decoding
constraints. The basic idea is to bound or substitute the
conditional entropy involving (Wi, Wa, X7, Xo, X3,Y7,Y3)
using  conditional  entropy  involving  subsets  of
(Uy,U2, V1, Vo, W1, Wa, X1, X5, X35,Y7,Y2) in  matching
forms, and then to cancel terms using the identical distribution
relations.

The proof technique of introducing pseudo messages can
be viewed as being closely related to non-Shannon type
inequalities, since all known non-Shannon type inequalites are
essentially produced by introducing certain mirrored copies.
This proof was obtained with the assistance of the computa-
tional tool that the author developed previously, which was
found valuable in the investigation of the regenerating code
problem [33] and the coded caching problem [35]. The main
difference between the technique we use in this work and
those seen in generating non-Shannon type inequalities is that
instead of introducing a single-sided mirrored set, we introduce
mirrors on two sides—one side being (V1,V%), and the other
being (U1, Us)-both of which through the Markov coupling.

V. CONCLUSION

We investigated the fundamental tradeoff between the stor-
age cost and the download cost in general private information
retrieval systems. Several novel outer bounds are provided.
On the one hand, we were able to confirm the folklore that
when the messages are stored without any redundancy, the
retrieval must download all the messages. On the other hand,
when the code is PIR capacity-achieving, we establish the
somewhat surprising result that the storage cost cannot be too
much lower than storing all the messages at each database.
Moreover, we show that for the two-message two-database
case, a more elaborate pseudo-message technique can be used
to derive a stronger outer bound. As an ongoing work, we are
investigating more general outer bounds of the fundamental
tradeoff between the storage cost and the download cost.
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