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Abstract
Shapiro time delay is one of the fundamental tests of general relativity and post-
Newtonian theories of gravity. Consequently, its measurements can be used to
probe the parameter γ which is related to spacetime curvature produced by a
unit mass in the post-Newtonian formalism of gravity. To date all measure-
ments of time delay have been conducted on astronomical scales. It was asserted
in 2010 that gravitational wave detectors on Earth could be used to measure
Shapiro delay on a terrestrial scale via massive rotating systems. Building on
that work, we consider how measurements of Shapiro delay can be made using
next-generation gravitational wave detectors. We perform an analysis for mea-
suring Shapiro delay with the next-generation gravitationalwave detectors Cos-
mic Explorer and Einstein Telescope to determine how precisely the effect can
be measured. Using a rotating mass unit design, we find that Cosmic Explorer
and Einstein Telescope can measure the Shapiro delay signal with amplitude
signal to noise ratios upwards of ∼28 and ∼43 in 1 year of integration time,
respectively. By measuring Shapiro delay with this technique, next-generation
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interferometerswill allow for terrestrialmeasurements of γ in the paramaterized
post-Newtonian formalism of gravity with sub-percent precision.

Keywords: LIGO, Shapiro time delay, general relativity, Cosmic Explorer,
Cassini, Einstein Telescope, gravitational waves

(Some figures may appear in colour only in the online journal)

1. Introduction

The general theory of relativity suggests a number of observable properties as a consequence
of the equivalence principle and spacetime curvature [1]. Improved tests for general relativity
continue to be sought in physics to increase measurement precision and repertoire for testing
the theory [2, 3].

One of the long-known tests of these properties lies in measuring the time delay of light as
it passes close to massive objects, as first described by Shapiro in 1964 [4]. Shapiro proposed
using a radar pulse directed at a planet near the Sun and measuring the delay in the travel time
to and from the planet as a result of the presence of the Sun. In the limiting case where the
Earth and the planet are on nearly opposite sides of the Sun, the one-way time delay for this
experiment as predicted by general relativity is given by

δt =
2GM�
c3

ln

(
4r1r2
d2

)
(1)

where G is Newton’s gravitational constant, M� is the mass of the Sun, c is the speed of
light, r1 and r2 are the orbital radii of the Earth and the target planet, respectively, and d is
the closest distance the light pulse approaches to the center of the Sun, neglecting higher order
terms since GM�r1,2

c2d2 � 1 [1, 4]. In Shapiro’s original formulation there are a number of practical
uncertainties in obtaining an exact answer due to initial conditions such as the planetary speeds
and locations [5]. For planets in the solar system the time delay is substantial, on the order of
10−4 s [4].

In theweak field limit, alternative gravity theories can be characterized by the parameterized
post-Newtonian (PPN) formalism as deviations from Newtonian gravity [1]. The γ parameter
in the PPN formalism, which is related to spacetime curvature produced by a unit mass, can
be determined through Shapiro delay measurements. The generalized formulation for Shapiro
time delay in the PPN formalism for any metric theory is given by

δt = (1+ γ)
GM
c3

ln

(
4r1r2
d2

)
(2)

In general relativity, specifically, γ = 1. A number of experiments and observations have
placed limits on the value of γ including observations of planetary echos [6], the Viking rel-
ativity experiment [7], measurements of Shapiro delay from quasars due to the presence of
Jupiter [8, 9], lunar laser ranging experiments [10], and observations of Mercury’s perihelion
orbit [11]. The Cassini spacecraft has made the most precise measurement of γ to date, with
(1− γ) = (2.1± 2.3)× 10−5, which is in agreement with the predictions of general relativity
[12].

All measurements of Shapiro time delay and γ to date have been made on astronomical
scales. In 2010, Ballmer et al proposed a method for measuring Shapiro time delay on a ter-
restrial scale using an Advanced LIGO (aLIGO) [13] gravitational wave (GW) detector, which
could be accomplished by installing a rotating mass unit (RMU) to modulate the gravitational
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potential along one arm [14]. By building up a periodic change in the curvature of spacetime,
delays on the order of 10−32 s produced by an RMU with 104 kg masses were shown to be
measurable with an amplitude signal to noise ratio (SNR) of ∼8.7 over an integration time of
1 year, where the amplitude SNR is defined as the square root of the ratio of the average signal
power to the average noise power.

In 2015, aLIGO began its first observing run [15–17] and currently, several future interfer-
ometric GW detectors are proposed for 2030–2050 [18–25]. Proposed detectors in the design
stage include Cosmic Explorer (CE) [23, 24], the Einstein Telescope (ET) [21, 22], and space
based detector LISA [25]. New detectors with substantially better sensitivity will improve the
prospect of measuring GW signals [26] and gravitational effects with greater precision. For
example, it has been posited that a uniquemeasurement of Shapiro time delay from an asteroid
flyby could be made with LISA [27].

In this paper, we revisit the previous work on measuring Shapiro delay with RMUs and
laser interferometers [14, 28, 29] and investigate the improvements enabled by GW detectors
which are now being planned. In section 2, we introduce next-generation interferometric GW
detection and the suggested RMU extension. In section 3, we detail the expected time delay
signal from the RMU and compare the signal to the sensitivities of CE and ET. In section 4,
we discuss our results and the precision of the measurements we expect to make with this
experiment. Finally in section 5, we consider the implications of Shapiro delay measurements
with next-generation GW detectors and conclude.

2. Next-generation detectors and the RMU setup

Long-arm interferometers operate by making measurements of differences in the length of the
interferometer laser arms, making them ideal for measuring GWs, which change the spatial
distances during propagation in the weak field limit. GW observation functions via measur-
ing the differential change in the lengths of the arms of a Michelson-type interferometer as
a result of a passing GW [30]. Laser interferometers serve to achieve sensitivities capable of
detecting GWs on Earth with dimensionless strains on the order of 10−21 and smaller [30].
Interferometers are sensitive to time-varying signals. Therefore, in order for the Shapiro time
delay to be measured, the delay must be modulated [14]. An RMU provides a way to modu-
late the Shapiro delay because the rotation allows for a periodic change in the mass density
that produces a phase-coherent signal in the interferometer data stream. Figure 1 depicts the
basic design concept of a laser interferometer for GW detection, including the location of the
proposed RMU.

CE and ET are the proposed next-generation successors to current generation interferome-
ters aLIGO and Advanced Virgo (AdVirgo) [31] in the search for GWs, with much improved
sensitivity over aLIGO and AdVirgo [22–24]. CE utilizes a similar Michelson interferometer
design shown in figure 1, including Fabry–Perot cavities and signal recycling mechanisms that
increase sensitivity. In contrast, ET’s most current design ET-D is a triangular shaped compos-
ite detector, made up a high frequency (ET-D-HF) and a low frequency (ET-D-LF) detector
which are located parallel to one another in the triangle. The two component detectors are fur-
ther divided into three Michelson interferometers whose arms form a 60 degree angle rather
than the 90 degree angle shown in figure 1 [18]. These parallel detectors will have different
specifications in order to achieve their sensitivity goals, with the low frequency detector utiliz-
ing a low power laser to reduce acceleration noise and the high frequency detector utilizing a
high power laser to reduce quantum shot noise. The goal of these next-generation interferom-
eters is to have strain sensitivity noise floors a factor of 10 greater than the current aLIGO and
AdVirgo detectors [22, 24, 32] as well as expanded sensitivity at lower frequencies, with CE
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Figure 1. A diagram of a simplified Michelson interferometer design with TMs for
GW detection, including the location of the proposed RMU in the center of one of the
interferometer arms.

being sensitive at frequencies as low as 10 Hz and ET being sensitive even lower [18, 22]. CE
will have arm cavities that are 40 km in length, a factor of 10 greater than the length of aLIGO’s
arm cavities at 4 km, while each of ET’s component interferometers will have 10 km long arm
cavities. In addition to cavity length, CE is expected to employ a number of techniques to
reduce noise, including increased mirror reflectivity, increased laser power, and increased test
mass (TM) [23, 24]. At the low frequency limits, CE and ET will likely be limited by New-
tonian gravity gradient and seismic noise [18, 23], while exhibiting greater sensitivity in that
range than aLIGO [23].

Figure 2 shows the sensitivity curves for CE and ET, including the sensitivity curve of
aLIGO for reference. CE will develop in two stages: CE1 (2030s) and CE2 (2040s), where
CE2 will be its design sensitivity [24]. For this study we adopt the sensitivity curves of CE2
and ET-D-HF, as the improved sensitivity at low frequencies even in ET-D-HF will allow us to
employ an RMU that rotates at lower frequencies and will provide a lower noise floor at each
signal’s primary harmonic than was the case for aLIGO [14].

The proposed RMU would operate as follows: a bar structure suspended by its middle with
masses concentrated at the ends of the bar would be placed alongside the center of one of
the arms of these two detectors and rotate in the plane perpendicular to the laser beam, as
described in Ballmer et al [14]. As the assembly rotates, the curvature of spacetime through
which the laser beam passes changes due to variation in the distance to the masses, thus pro-
ducing periodic Shapiro delay. To improve precision, a line of synchronized parallel RMUs
arranged alongside and orthogonal to the center of one of the GW detector arms may be used
(see figure 1 in Ballmer et al [14]). The RMU’s rotation would be constantly monitored, ensur-
ing that the data analysis of the Shapiro delay can be done with excellent phase-coherence and
precision over long periods of time.

We consider whether a symmetric RMU (i.e. one where the center of mass is located at the
center of the bar) is the optimal geometry for measuring the Shapiro delay. The time delay is
proportional to a line integral of the Newtonian potentialU. The Newtonian potential behaves
∝ M

r , whereM is the mass generating the gravitational field and r is the distance from the mass
to the point of interest. For an asymmetric rotor system, the ratio of rotation radii of the end
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Figure 2. The proposed one-sided strain noise amplitude density curves for next-
generation GW detectors. This plot includes both stages of the CE GW observatory [23,
24], the total curve for ET-D, labeled ET-D-Sum as well as its component detectors ET-
D-HF and ET-D-LF [18], and aLIGO [13] at design sensitivity. The sensitivities shown
for ET assumes a 90 degree detector with ET’s specifications.

masses would need to be proportional to the inverse ratio of the endmasses to maintain a stable
axis of rotation, thus making the smaller mass’s minimum distance to the interferometer laser
beam closer than the largermass’s minimumdistance. Keeping constant the minimumdistance
to the beam, total mass, and total rotor length, the maximal contribution to the gravitational
potential from the smaller mass in the asymmetric rotor reduces by the factor of the mass ratio
when compared with the symmetric rotor since its minimum distance to the beam does not
change. However the maximal contribution from the large mass does not increase by the same
factor since its minimum distance to the beam will be larger. Hence we expect the symmetric
design to produce the highest SNR and adopt the symmetric RMU geometry which was used
in Ballmer et al [14]. Figure 3 shows a sketch of the symmetric RMU proposed in Ballmer
et al.

For our analysis, we propose three possible RMU models using the symmetric geometry
described above: an advanced science model, the Ballmer et al model, and a cost conscious
model. We label these three models A, B, and C for convenience. All three models are 3.0
m in length [14]. The distance of closest approach to the laser beam remains at 30 cm as
depicted by figure 3. We design model A to have end masses of 2.5× 104 kg and rotate at
a frequency of 25 Hz to most effectively induce detection as it places the fundamental and
subsequent signal frequency components in the most sensitive frequency range of both CE
and ET. To account for the greater steel mass in model A, we propose extending the width of
the rotor in the direction parallel to the laser beam to satisfy size constraints. Model B is the
exact one described in the example presented by Ballmer et al with 1.5× 104 kg steel weight
end masses, rotating at a frequency of 25 Hz. Model C possesses end masses of 6500 kg and
rotates at a lower frequency of 15 Hz, requiring substantially less energy to be stored in the
heavy rotating masses, and therefore decreasing material strength and cost requirements. A
lower rotational frequency and mass better ensure the safety of operation. Additionally, the
substantially improved sensitivity of both CE and ET over aLIGO at lower frequencies allows
for a signal to be measured whose primary harmonic is below 50 Hz.

To construct these RMUs a number of constraints exist, particularly in rotating such heavy
steel masses at frequencies exceeding 15 Hz. Model A will require 690 MJ of energy stored
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Figure 3. A sketch of the RMU proposed by Ballmer et al [14]. Each dimension is
measured in centimeters. The circle to the left of the rotating mass represents the inter-
ferometer laser beam, placed 30 cm from the closest point of the mass. We adopt
the same symmetric design, but vary the steel mass size to either reduce the expense
or maximize the scientific output of such a device. Figure taken from Ballmer et al
figure 3 [14].

in each half of the RMU to rotate the system, while models B and C will require 420 MJ and
65 MJ each. It should in principle be possible to accomplish this feat by constructing the RMU
with a light weight structure and a carbon fiber frame and decomposing the RMU into sections
supported by multiple bearings and operated by multiple motors as considered in Ballmer et al
[14]. Prior to construction, a finite element analysis would need to be conducted on the RMU
to quantitatively study the stresses on the system over time. More specific studies into the
construction of this system are beyond the scope of this paper.

Additionally, a number of factors will constrain use of the RMU once constructed. Nar-
rowband features at various frequencies in the amplitude spectral density of the real detec-
tor, caused by power lines, mechanical resonances, and calibration noise [33–35], must be
accounted for in selecting the frequency of the RMU. To avoid these lines interfering with
the Shapiro delay signal, one can simply modify the frequency of the RMU so that it and its
subsequent harmonics do not overlap with the lines. Additionally, it may be possible for the
RMU to interfere with the detection of continuous astrophysical GW sources which may be
discovered in future observing runs [36–38]. If this should occur, the RMU frequency can
either be changed or the RMU can simply be turned off so that the potential continuous GW
signal may be distinguished. For this study, we do not consider the interferometer lines beyond
those present in the design sensitivity curves for ET and CE.

One additional consideration we account for in calculating the Shapiro delay is the gravita-
tional coupling attraction between the RMU and the TM at the end of the laser arm. Ballmer
et almake this consideration, but do not account for the resonances of the TM suspension. Tak-
ing L to be the length of the detector arm, this acceleration behaves∝ L−6 (see the appendix A
for details). Solving for the position of the interferometer TM as a function of time assuming
the TM to be a harmonic oscillator with resonance frequency f r, we obtain the amplitude of
oscillation for each of the three spatial degrees of freedom. The amplitude of oscillation in the
axis along the laser pathway dz is as follows:

dz =
384
4π2

GMl2(d + l)2

L6( f 2r − 4 f 2)
(3)
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where M is the RMU end mass, d is the closest distance the center of the RMU end mass
approaches to the interferometer laser beam, l is half the length of the RMU, and f is the
frequency of the RMU. The frequencies chosen for all 3 models exceed the greatest reso-
nance frequency of the TM suspensions for aLIGO [39], making the ( f 2r − 4 f 2)−1 factor no
greater than order∼ 1 s2, since the resonance frequencies for next-generation detectors will be
even lower. Thus, the dz coupling can be neglected, as L is of order 104 m for next-generation
detectors, making the effect on the order of at most 100 Planck lengths. In the directions per-
pendicular to the laser path (i.e. dx and dy), the coupling behaves ∝ L−5 (see appendix A);
however, this coupling has a negligible effect on the motion of the TM in the direction of the
laser arm [40].

3. Signal analysis

The time delay of a light signal passing near a massive object is given by

δt =
∫
(1+ γ)U ds (4)

in the weak field limit [1] where the integral is over the signal path and U is the Newtonian
potential scaled with the reciprocal of the cube of speed of light as follows:

U =

N∑
i=1

GMi

c3ri
(5)

for N masses, where c is the speed of light and ri is the distance to each mass Mi. For this
arrangement of one RMU, it corresponds to the distance from the interferometer’s laser beam
to the masses at the ends of the rotor, and N = 2. To produce a signal with a larger amplitude
one can determine the potential for an arrangement of multiple RMUs. For this principle study
we calculate the signals produced by one RMU.

To evaluate the time delay for this proof of concept demonstration,we simplify the geometry
of each RMU for our calculations, assuming the end masses to be spherically symmetric with
radii of 20 cm and the support systems holding them up to have negligible mass as the end
masses will be substantially larger than the support system. We note that this will likely yield
a conservative estimate as much of the mass will be further away from the beam than is shown
in figure 3 (Ballmer et al do not make this assumption in their paper, leading to a difference in
SNR of about 20% from what we report here).

By evaluating the integral in equation (4) over the arm-lengths of both CE and ET for each
of our three models, we obtain the Shapiro time delay as a function of time. The Shapiro time
delay from a general RMU configuration in one laser arm is

δt = 2(1+ γ)
GM
c3

arcsinh
L2

4d2
√
(1+ 2l

d + 2l2

d2 )
2 − 4l2(d+l)2

d4 cos2 2π f t
(6)

where L is the interferometer arm-length, l is half the length of the RMU, d is the closest
distance the RMU approaches to the laser beam plus the radius of the end mass, M is the end
mass of the RMU, and f is the frequency of oscillation of the RMU. We require all RMU
models to have 2l = 3.0 m and d = 50 cm, 30 cm from the minimum distance to the beam and
20 cm from the radius of the spherical end mass.

Because ET will be composed of multiple different interferometersworking in coincidence,
there are a number of possible laser beams to situate the RMU alongside. In practice, one must
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Figure 4. The oscillating component of the time delay in CE as a function of time for
all models over 67 ms, the period of rotation for model C. Models A and B rotate at 25
Hz and model C rotates at 15 Hz.

consider whether to place the RMU alongside the ET-D-HF beam, the ET-D-LF beam, or the
space between the two beams to produce the same signal in both detectors. Additionally, it
may be possible to increase the Shapiro delay signal’s total SNR by a factor of

√
2 by rotating

the RMU inside the arm cavity between the two parallel interferometer laser beams; however,
due to the uncertainty in the exact dimensions of the arm cavities at the time of this paper’s
writing and the fact that the RMU frequencies chosen will produce signals predominantly in
the high frequency band, we calculate the signal in only one ET-D-HF laser beam nearest to
the RMU, choosing the beam to be 50 cm away from the center of the spherical end mass.

Time delays for our three models are shown in figure 4. Only the time delay for CE is shown
in figure 4 as the difference in arm-length between CE and ET has a negligible impact on the
time varying component of the Shapiro delay. The time delay exhibits variations on the order
of 10−31 seconds for models A and B, and 10−32 seconds for model C. Multipying by a factor
of the speed of light, this corresponds to an optical distance change on the order of 10−23 m
for models A and B and 10−24 for model C, displacements that both interferometers will have
the capability to measure.

Because of the triangular shape of ET and its component interferometers, using the noise
curve to calculate SNR is in general nontrivial [18]. For the Shapiro delay case, however, the
time delay produced by the RMU in the far laser arm will be negligible since the amplitude of
oscillation falls off strongly with distance to the beam as equation (6) indicates. Consequently,
we can treat ET as a detector whose arms are perpendicular for this analysis since only one of
the laser arms will be affected by the Shapiro delay.

We calculate the SNRs over 1 year for the three models with the proposed noise curves for
CE and ET. Since we only calculate the ET Shapiro delay in the ET-D-HF beam, we calculate
the SNRs using ET-D-HF sensitivity rather than accounting for the effects of the other inter-
ferometers working in coincidence. As a result of this approximate treatment our ET SNRs are
likely conservative estimates.

To obtain the signal that would appear in the interferometer datastream, the time delay
is converted to an equivalent differential light path displacement. Since dimensionless strain
h(t) is defined as the differential change in the length of the light path divided by the resting
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Table 1. The 1 year total SNR and SNRs for the primary and sec-
ondary harmonics in both CE and ET for each of the three models. We
include the end mass and rotational frequency of each RMU model for
referential convenience.

Model A B C

End mass (kg) 2.5× 104 1.5× 104 6.5× 103

Rotational frequency (Hz) 25 25 15
CE total SNR 29 17 7.2
CE primary harmonic SNR 27 16 6.8
CE secondary harmonic SNR 7.8 4.7 2.0
ET total SNR 43 26 7.0
ET primary harmonic SNR 39 24 5.9
ET secondary harmonic SNR 17 10 3.4

interferometer arm-length, the strain produced by the Shapiro delay is

h(t) =
cδt(t)
L

(7)

where c is the speed of light, δt(t) is the time dependent component of the Shapiro delay, and
L is the length of the interferometer arm. As the quantity of interest is time delay, we use
the dimensionless strain purely as a calculating tool to determine the SNR. We calculate the
SNR of this strain signal by using matched filtering and assuming our signals are periodic, so
that their Fourier transforms have impulses. We compute the individual Fourier components
numerically and calculate their individual SNRs. The total SNR for CE is obtained from the
individual SNRs of the first five harmonics as this exceeds the number of harmonics that have
SNRs greater than 1 for all RMUmodels with CE, while the total SNR for ET is obtained from
the first 8 harmonics. We quote 1 year of integration time results as a basis since SNR grows
proportionally to the square root of time. (See 6 for note on long data taking).

Our results are listed in table 1. In the case of CE, we find that the total SNR for 1 year
of integration time to be 29 for model A. Additionally, model B yields an SNR of 17, and
model C yields an SNR of 7.2. For model A, the fundamental frequency at 50 Hz (the factor
of 2 comes from the mass symmetry) is observable with an SNR of 27, while the second and
third harmonics have SNRs of 7.8 and 2.9 (including both the positive and negative frequency
components), respectively, over 1 year of integration time. For the signal produced by model
B, the SNR for the fundamental frequency is 16; the second and third harmonics have SNRs
of 4.7 and 1.7 respectively for 1 year of integration time. Model C generates a signal whose
fundamental frequency will be observable with an SNR of 6.8, and second harmonic with
an SNR of 2.0 in 1 year of integration time. We find the SNRs expected from making this
measurement with ET in 1 year to be more substantial. The total SNR calculated frommodel A
with ET is 43, while models B and C yield SNRs of 26 and 7.0. More harmonics are detectable
with ET than CE as the first 5 harmonics of the model A signal are detectable with ET. The
first 4 harmonics produced by model B are detectable while the first 3 harmonics from the
model C signal are detectable in 1 year.

We show the Fourier series coefficients of each model’s signal and compare them to the CE
and ET sensitivity curves for 1 year of integration time in figure 5. As strain is used simply
for SNR calculation, we present the signal components in terms of the equivalent light path
displacement and multiply the noise curves shown in figure 2 by a factor of L/

√
2T where

the factor of 1√
2
converts the one-sided amplitude spectral density to a two-sided amplitude
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Figure 5. The Fourier series coefficients of the Shapiro delay signal converted to the
equivalent light path displacement as a result of the delay produced by each of the three
RMU models. Also included are the two-sided noise amplitude curves for CE2 and ET-
D-HF over 1 year of integration time, scaled to be in units of displacement.

spectral density and T is integration time to obtain the amplitude curve in units of observable
displacement. Although ET has a higher noise floor in dimensionless strain than CE as shown
in figure 2, when scaled with a factor of arm-length its floor is lower than CE’s because ET’s
arms are a factor of 4 shorter than CE’s. Note that model C has Fourier series coefficients at
different frequencies than the other two models because it oscillates at 15 Hz rather than 25
Hz, making the Fourier components multiples of 30 Hz rather than 50 Hz.

4. Discussion

The prior analysis showed that aLIGO has has the capability to probe Shapiro delay on a ter-
restrial level; however, a rotor with 1.5× 104 kg end masses would only yield an SNR of 6.5
in 1 year of integration time (making the 20 cm radius spherical mass assumption). Observing
the Shapiro delay with that SNR would allow for a measurement of γ with ∼ ±25% precision
for one standard deviation [14].

Results for our three RMUmodels demonstrate the new experimental gravity test that can be
feasibly achieved with next-generation ground-based detectors. Our model A with 2.5× 104

kg end masses produces a Shapiro delay with a total SNR over ∼ 29 with CE and over ∼43
with ET in 1 year, noticeably better than the scenario considered by Ballmer et al. By directly
comparing the signal results produced by the model B to the results from Ballmer et al, we
find that both CE and ET yield superior measurement capabilities to aLIGO, as CE will record
a total SNR of ∼17 and ET will record a total SNR of ∼26 rather than ∼6.5 in 1 year of
integration time. This is∼2.6 and∼4 times larger. We note that although CE2 and ET are over
a factor of 10more sensitive than aLIGO in strain as shown in figure 2, the larger arm-lengths of
next-generation detectors with respect to aLIGO reduce the time delay signal’s dimensionless
strain amplitude and prevent the SNR obtained with the next-generation detectors from being
a factor of 10 greater.

Model C possesses the most conservatively sized masses: less than half of that of the rotor
system used in the Ballmer et al calculation, and still produces a signal with an SNR of 7.2
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with CE and 7.0 with ET. This would achieve a similar level of precision expected by Ballmer
et al in 1 year of integration time, but, because of CE and ET’s advanced sensitivities, will
cost less material and energy to operate and improve measurement precision as the integration
time increases. Additionally, our results for the low cost model demonstrate that the rotor can
operate at a lower frequency and still produce appreciable results. Because of CE’s flat noise
curve from 30 Hz onward as well as ET’s lower noise floor and the ability to place an RMU
next to the ET-D-LF interferometer, utilizing an RMU that rotates at a lower frequency would
be feasible.

ET achieves noticeably larger SNR measurements for models A and B than CE despite
having a higher strain noise floor. This is a consequence of strain from the Shapiro delay
being a factor of 4 larger in ET than in CE as the arm-length is 4 times shorter. Addi-
tionally, the lower metrology noise and dip in noise amplitude at high frequencies in the
ET-D-HF detector allows for the detection of the higher frequency harmonics with larger
SNRs.

Assuming additive zero mean Gaussian noise, the noise at the output of the matched filter
and consequently the total output will be Gaussian. Therefore, the delay measurements are
expected to yield a Gaussian distributed measurement of (1 + γ) whose mean is the average
filtered signal amplitude and standard deviation is the standard deviation of the filtered noise
probability distribution function. The amplitude SNRwill be the ratio of the mean of the Gaus-
sian to its standard deviation. We can thus find the standard errors in the estimation of both the
Shapiro delay and γ directly from SNRs. In real GW detectors the noise is not purely Gaus-
sian, mainly due to the Poisson-like impulsive noise known as glitches [41]. In astrophysical
transient searches the glitches can produce a comparable SNR to the SNR of an astrophysical
compact binary coalescence [42]. Therefore SNR is not used as the only threshold test statis-
tic in those searches [41]. However, in our case we do not use SNR as a threshold statistic to
answer the yes/no question of whether there is a real signal in the detector; rather, we use it to
estimate a real valued quantity. In our case, the effect of glitches would be the distortion of the
Gaussianity of the filtered output and a change in the estimated noise PSDs. Nevertheless, as
a known issue it can be mitigated by data cleaning if the glitch models are well understood, or
simply by omitting the regions with glitches.

With model B, the model used in Ballmer et al, CE can obtain a measurement of the Shapiro
delay with up to ± ∼ 5.8% standard error and γ with up to ± ∼ 12% standard error. ET can
achieve greater precision, measuring Shapiro delay from model B with a standard error of
±3.8% and γ with a standard error of ±7.7% in 1 year. Using our advanced science model
A, we expect to achieve measurements of γ with a standard error of ±6.9% with just 1 year
of observation with CE and a standard error of ±4.6% with ET. Precision also increases with
time7, so over longer times and with the use of multiple synchronized RMUs, this technique
can achieve sub-percent precision measurements. With an arrangement of two synchronized
model A RMUs, ET can measure γ with standard error below±1% in just over 5 years, while
three synchronizedmodel A RMUs can allow CE to measure γ with standard error under±1%
in the same interval.

7 The SNR grows with the square root of time. As such for longer observation times, we expect an even more substantial
increase in the precision of this measurement. Our model A will generate an SNR of 64 in 5 years and 90 in 10 years
with CE. These SNRs correspond to standard errors in the measurement of γ of ±3.1% and ±2.2%. With ET, model
A will generate an SNR of 97 in 5 years and 137 in 10 years, yielding γ measurements with standard errors of±2.1%
and ±1.5%.

11



Class. Quantum Grav. 37 (2020) 205005 Sullivan et al

5. Conclusion

We presented an analysis that details the use an RMU with the next-generation GW detectors
CE and ET to measure Shapiro time delay. Despite all prior Shapiro time delay measurements
being space-based experiments, we show that RMU models are capable of generating a sub-
stantial Shapiro delay signals measurable on Earth using these next-generation detectors. As
detailed in our discussion, our RMU produces a signal with an appreciable SNR in 1 year of
observation with both detectors. This corresponds to the most precise proposed Earth-based
measurement scheme of γ to date with a noticeable increase over the measurement precision
achievable with aLIGO, as CE and ET can measure γ with standard errors below ± ∼ 7% in
just 1 year with the installation of one RMU.

This technique has its limitations, as it does not yet approach the level of precision achieved
by longer range, space-based experiments such as that of theCassini spacecraft,which achieved
a precision of ∼ 0.005% in 6 years of observation [12]. In 6 years of observation time with
ET and one RMU, this technique would yield a precision of±1.9%. An array of synchronized
RMUs, however, would increase the precision, achieving sub-percent measurements in half a
decade. Nevertheless, next-generationGW detectors promise to be capable of probing exciting
gravity science including precise measurements of Shapiro delay and γ on Earth.
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Appendix A. Newtonian coupling with the TM

The Newtonian coupling between the RMU and the TM is obtained by paramaterizing the
Newtonian gravitational force in terms of time in three spatial directions. Assuming the RMU
is at the center of the laser arm, the three components of the Newtonian force on the TM are

Fz =
−4GMm

L2

(
1

((1+ 4( d+lL )2 + 4l2

L2
)+ 8l(d+l)

L2
cos ωt)3/2

+
1

(1+ 4( d+lL )2 + 4l2

L2 − 8l(d+l)
L2 cos ωt)3/2

)
(A.1)

Fx =
8GMm
L3

(
d + l(1+ cos ωt)

(1+ 4( d+lL )2 + 4l2

L2
+ 8l(d+l)

L2
cos ωt)3/2

+
d + l(1− cos ωt)

(1+ 4( d+lL )2 + 4l2

L2 − 8l(d+l)
L2 cos ωt)3/2

)
(A.2)
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Fy =
8GMm
L3

(
l sin ωt

(1+ 4( d+lL )2 + 4l2

L2 + 8l(d+l)
L2 cos ωt)3/2

− l sin ωt

(1+ 4( d+lL )2 + 4l2

L2 − 8l(d+l)
L2 cos ωt)3/2

)
(A.3)

where z is the axis along the laser beam path, x is the axis formed by the laser beam and the
center of the RMU, y is the axis perpendicular to both x and z,M is the end mass of the RMU,
m is the TM, l is half the length of the RMU, d is the minimum distance between the RMU
and the laser beam, L is the length of the detector arm, and ω = 2π f where f is the frequency
of the RMU. Combining the denominators of all three forces, one obtains

Fz =
−4GMm

L2

(
(1+ 4( d+l

L )2 + 4l2

L2
+ 8l(d+l)

L2
cos ωt)3/2 + (1+ 4( d+l

L )2 + 4l2

L2
− 8l(d+l)

L2
cos ωt)3/2

((1+ 4( d+l
L )2 + 4l2

L2
)2 − ( 8l(d+l)

L2
)2 cos2 ωt)3/2

)

(A.4)

Fx =
8GMm
L3

(
(d + l(1+ cos ωt))(1+ 4( d+lL )2 + 4l2

L2
− 8l(d+l)

L2
cos ωt)3/2)

((1+ 4( d+lL )2 + 4l2

L2
)2 − ( 8l(d+l)

L2
)2 cos2 ωt)3/2

+
(d + l(1− cos ωt))(1+ 4( d+lL )2 + 4l2

L2 + 8l(d+l)
L2 cos ωt)3/2

((1+ 4( d+lL )2 + 4l2

L2
)2 − ( 8l(d+l)

L2
)2 cos2 ωt)3/2

)

(A.5)

Fy =
8GMml sin ωt

L3

(
(1 + 4( d+l

L )2 + 4l2

L2
− 8l(d+l)

L2
cos ωt)3/2 − (1 + 4( d+l

L )2 + 4l2

L2
+ 8l(d+l)

L2
cos ωt)3/2

((1 + 4( d+l
L )2 + 4l2

L2
)2 − ( 8l(d+l)

L2
)2 cos2 ωt)3/2

)

(A.6)

Assuming that L� d, l, we apply binomial approximations to both the numerator and denom-
inator of all the forces. After combining like terms and neglecting the constant component of
the force, we arrive at expressions for the periodic force terms of highest order in L for each
of the three translational degrees of freedom:

Fz =
384GmMl2(d + l)2

L6
cos 2ωt (A.7)

Fx =
96GmMl2(d + l)

L5
cos 2ωt (A.8)

Fy =
96GmMl2(d + l)

L5
sin 2ωt (A.9)
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