

1 **Chemistry under high pressure**

2 *Maosheng Miao,^{a,†} Yuanhui Sun,^a Eva Zurek^b, Haiqing Lin^{c,d}*

3 ^a *Department of Chemistry and Biochemistry, California State University Northridge, Northridge,*
4 *California, 91330, USA*

5 ^b *Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-*
6 *3000, USA*

7 ^c *Beijing Computational Science Research Centre, Beijing 100193, China*

8 ^d *Department of Physics, Beijing Normal University, Beijing, 100875, China*

9 [†] *email: mmiao@csun.edu*

10 **Abstract** Thanks to the development of experimental high-pressure techniques and methods for
11 crystal structure prediction based on quantum mechanics, in the past decade numerous new
12 compounds, mostly binary, with atypical compositions have been predicted, and some have been
13 synthesized. Differing from conventional solid-state materials, many of these new compounds
14 are comprised of various homonuclear chemical species such as dimers, trimers, pentagonal and
15 heptagonal rings, polymeric chains, atomic layers and three-dimensional networks. Strikingly, it
16 has been shown that pressure can alter the chemistry of an element by activating its (semi)core
17 electrons, unoccupied orbitals and even the non-atom centered quantum orbitals located on the
18 interstitial sites, leading to many new surprising phenomena. This Review provides a summary
19 of atypical compounds that result from the effects of high-pressure either on the chemical bonds
20 or the local orbitals. We describe various unusual chemical species and motifs, show how the
21 chemical properties of the elements are altered under pressure, and illustrate how compound
22 formation is favored even in situations in which chemical bonds are not formed. An
23 extraordinary new picture of chemistry emerges as we piece together these unexpected high-
24 pressure phenomena. In marked contrast to the previously held beliefs regarding the behavior of
25 solids under pressure, we are learning that the quantum mechanical features of electrons, such as
26 those that lead to the formation of directional bonds, inhomogeneous distributions of electrons
27 and atoms, as well as variations in symmetry might be magnified under pressure. We discuss the
28 influence of these phenomena on future studies that will probe chemistry at higher pressures, and
29 explore more complex chemical compositions than those that have been studied to date.

30 **[H1] Introduction**

31 Many of us have been inspired by Jules Verne's 135-year old novel "Journey to the Center of the
32 Earth" and amazed by the 2008 adapted film that pictorialized Verne's mind-boggling creatures
33 and ancient species living in deep Earth caverns. Different to other Verne's novels, this story is
34 purely fictional because Earth's interior is a place of extremely high pressures and temperatures.
35 However, where this fantasy of paleontology ends is where the truth of chemistry begins. As we
36 show in this Review, high pressure can greatly enrich the chemistry of matter by catalyzing the
37 formation of many unusual chemical species and promoting many new phenomena that are just
38 as stunning as the underground T-Rex and carnivorous plants, except this time they are real.

44 Although an actual journey to the center of the Earth is impossible, we can explore how matter
45 changes under high pressure by performing laboratory experiments and computer simulations.
46 Since Bridgeman proposed his first pressure sealing approach at 1905, the hydrostatic pressure
47 that can be accessed in the laboratory has been increased from a few hundred atmospheres to
48 1000 GPa, especially thanks to the development of diamond anvil cell (DAC) techniques^{1–5}. This
49 has been accompanied by progress in many essential auxiliary techniques^{6–10} that can accelerate
50 chemical reactions (such as laser heating methods) or help to characterize the new compounds
51 (such as X-ray and neutron scattering, IR and Raman spectroscopy). In contrast to experiments,
52 computer simulations are fast and low-cost, and can go beyond the pressure limit of current
53 techniques; therefore, they have often been at the forefront of the exploration of chemistry under
54 pressure. Recently, crystal structure prediction (CSP) methods^{11–25} based on first principles
55 calculations (Box 1) have flourished owing to the dramatic advances in computer power and
56 algorithmic development, providing scientists the tools to explore emergent chemical behavior
57 under pressure. In the last decade, the structures and thermodynamic stabilities of numerous new
58 compounds have been predicted without any experimental input, and some of the predicted
59 compounds have been later verified by high-pressure experiments.

60 Various new phenomena have emerged as higher pressures have become attainable, and
61 correspondingly the focus of high-pressure research has also progressed with time. Early
62 investigations have been geared towards studying structural transitions^{26–33}, and changes in
63 physical properties such as magnetism^{34–36}, metal–insulator transitions³⁷ and superconductivity^{38–}
42, because these phenomena can occur at relatively low pressure. Although such studies remain
65 an important part of mainstream research, the possibility to reach higher pressures has driven
66 research into other areas. Of particular interest is the synthesis of atypical compounds — those
67 with compositions different from ‘textbook’ stoichiometries that are common at atmospheric
68 conditions. For example, instead of forming H₂S, H and S can yield an H₃S compound that is
69 superconducting with a critical temperature, T_c , as high as 203 K under pressure^{43–49}. Similarly, a
70 large variety of atypical compounds, such as NaCl₃(Ref.⁵⁰), LiN₅ (Refs^{51,52}), LaH₁₀ (Refs^{53–58}),
71 Fe₃Xe (Ref.⁵⁹), CsF₃(Ref.⁶⁰) and Na₂He (Ref.⁶¹) have been predicted or synthesized under high
72 pressure. The discovery of a plethora of atypical compounds and their non-intuitive structural
73 variations show how strikingly pressure can alter and enrich chemistry.

74 The progress achieved by simulations and experiments has led to the advancement of conceptual
75 frameworks, including our understanding of how the behavior of matter changes under pressure.
76 Together with Pauling’s renowned rules of ionic crystal structures at atmospheric pressure⁶²,
77 rules such as those put forward by Prewitt and Downs⁶³, by Grochala, Hoffmann, Feng and
78 Ashcroft⁶⁴, and more recently by Zhang, Wang, Lv and Ma⁶, can be used to rationalize the ways
79 that structures, bonding features and electronic states change as pressure increases (Box 2).
80 Many of the trends that emerge from experiments or computations agree with expectations of
81 close-packing and homogeneity. For example, a large number of known compounds respond to
82 pressure by becoming more homogeneous by compressing the longer and weaker bonds to a
83 greater extend^{63,64,6}, assuming close-packed structures^{63,6}, increasing their coordination
84 numbers^{63,64}, achieving higher symmetry⁶⁴ and delocalizing their electrons to an extent that
85 eventually results in an insulator–metal transition^{64,6}. The propensity for electrons to attain
86 homogenous charge distributions is caused by an effect rooted in quantum mechanics: the kinetic
87 energy increases faster than the Coulomb energy with increasing electron density⁶⁵. Because the

88 kinetic energy of the electrons can be minimized by adopting a homogeneous density
89 distribution, electron delocalization and metallization appear to be the eventual fate of all matter
90 under extreme pressures.

91
92 However, phenomena that cannot be intuitively understood have been observed. For example,
93 not all matter becomes more homogeneous under pressure and deviation from close-packing of
94 spheres may be used to achieve higher density⁶⁴. It has been shown that many metals, such as Li
95 and Na, abandon a close-packed geometry and adopt complex open structures accompanied by
96 decreasing conductivity under high pressure^{26,66}. Remarkably, experiments and theory are
97 beginning to reveal that pressure may have a much more profound impact on the geometries and
98 properties of atypical compounds than could have previously been imagined. These compounds
99 often adopt quite surprising and unintuitive structures and bonding schemes. For example, in
100 some classes of compounds electrons can become more localized, sometimes even detaching
101 from all atoms and accumulating in the interstitial sites^{67,68}. Moreover, the crystal phases
102 observed under high-pressure are often non-homogeneous, with the most stable geometries
103 containing many molecular or polymeric species^{6,69}, and coordination numbers are shown to
104 decrease^{60,70}. More strikingly, the repopulation of the atomic orbitals might significantly change
105 the chemical behaviour of the atoms^{60,71}. Thus, high-pressure chemistry becomes far more
106 complex, with a large variety of compositions and structures being possible that often exhibit
107 unpredictable properties. In addition, the chemical bonding in seemingly comparable materials
108 such as NaCl₃ (Ref.⁵⁰) and CsF₃ (Ref.⁶⁰) can be very different.

109
110 In this Review, we show that the responses of the atomic orbitals and chemical bonds to
111 increased pressure are key to classifying high-pressure compounds. Based on this framework, we
112 describe a plethora of chemical species that contain homonuclear bonds, the reactivity of non-
113 valence electrons and orbitals, the chemistry of non-atomic orbitals in electrides, and forces that
114 drive compound formation without the creation of any local chemical bonds.

115

116 [H1] How pressure enriches chemistry

117
118 Most of the widely known inorganic compounds, such as NaCl, MgO and SiO₂ exhibit ‘typical’
119 compositions⁷², which are primarily dictated by the ‘typical’ oxidation states of their constituent
120 elements and by valence electrons and orbitals that determine the behavior of each element .
121 Furthermore, heteronuclear bonds are often stronger than homonuclear bonds because charge
122 transfer between different elements results in large binding energies. This effect is so strong for
123 many strong oxidizing elements that at 1 atm only compounds with typical compositions are
124 found. Any other composition would feature homonuclear bonds, which are less favourable.
125 Interestingly, although typical compounds may adopt a wide variety of crystal structures, they
126 often exhibit similar local structural features. For example, many oxides adopt structures
127 consisting of tetrahedra or octahedra with non-oxygen atom at their centres. Nonetheless, plenty
128 of compounds formed at ambient pressure have atypical compositions,⁷³ such as polyborides,
129 polysulphides and polyphosphides, many of which are known as Zintl compounds.^{74,75} Such
130 compounds may form if the constituent elements are strongly inclined to cluster (for example, in
131 the case of B, Si, S and P) or if the electronegativities of the constituent elements are not
132 significantly different.

133

134 Knowing how the quantized states of electrons respond to reduced volume is the key to
135 understanding the intricate and convoluted chemical phenomena that emerge under pressure. In
136 this regard, we can classify the effects of pressure in two major categories: those that perturb the
137 molecular orbitals and chemical bonds, and those that influence the atomic or other local orbitals.
138 Both of these effects can lead to the formation of atypical compounds that exhibit new structural
139 features and chemical properties (Figs 1 and 2). This rich chemistry not only alters the
140 stoichiometries and geometries adopted by materials under pressure, but also drastically changes
141 their physical properties, opening up new routes towards the design of novel materials with
142 unique properties.

143
144 The strength of homonuclear bonds (whether they be diatomic, polyatomic or multicentered),
145 relative to heteronuclear bonds, can be greatly enhanced under compression (Box 3). Pressure
146 works against the interatomic repulsions and causes a decrease of the volume and the average
147 interatomic distances. Consequently, the resonance integrals increase, resulting in a larger gap
148 between bonding and antibonding states (Box 3), and stronger bonds. This effect is less
149 significant for heteronuclear bonds, therefore pressure is expected to promote the formation of
150 atypical compounds and structures that contain homonuclear bonds (Table 1 and Fig. 1),
151 enriching chemistry in many ways. First, it enables the formation of a plethora of homonuclear
152 clusters that do not exist at ambient conditions. Second, although some elements, such as B,
153 might form many homonuclear species while reacting with various elements at 1 atm, pressure
154 can cause the appearance of these species in one type of compounds formed with the same
155 elements, as in the case of B species in compounds formed with Li^{76,77}. Third, a large variety of
156 homonuclear species may be found in different phases that emerge during the structural
157 evolution of one compound with a fixed composition as a function of pressure.

158
159 Pressure has a pronounced effect on local orbitals and can lead to fascinating chemical
160 phenomena that are not seen at atmospheric pressures. Pressure can change the difference in
161 energies and the energy orderings of local quantum orbitals. The energies of all of the atomic
162 orbitals generally increase with increasing pressure, just as one would expect for the particle in a
163 box, because the electrons are more confined in the compressed solid. However, the energies of
164 orbitals with lower principal quantum numbers and higher angular momenta, especially those
165 having no corresponding core orbitals such as 2p and 3d, increase less significantly than the
166 energies of orbitals with higher principal quantum numbers or lower angular momenta. As a
167 result of this orbital energy reordering, the electrons are redistributed in different quantum
168 orbitals under pressure. Although in many cases this redistribution of electronic charge leads to
169 an increased delocalization, as well as an increased homogeneity of the electron density, in other
170 cases, it does not. Therefore, the reordering of the energy levels is one of the main origins of the
171 increasing inhomogeneity of electron density under pressure, as we discuss later in this article
172 under heading 'Chemistry of non-valence electrons and orbitals'.

173
174 **Compounds featuring new homonuclear species**

175
176 A large variety of atypical high-pressure compounds are formed from the enhancement of the
177 strength or the number of homonuclear bonds. Many of the compounds that have been studied to
178 date are binary, consisting of a metal (alkali, alkaline or transition metal) and a light element (H,
179 B, C, N, O or F). Binaries containing heavier main group elements such as Cl, Si, Ge and S, have

180 also been studied, but to a somewhat lesser extent. One striking structural feature of these
181 atypical compounds is that the anionic elements form various homonuclear species and moieties
182 ranging from dimers, trimers, pentagonal and hexagonal rings, to polymeric chains, single and
183 multiple layers and 3D networks (Table 1 and Fig. 1). The actual motifs that are formed in
184 atypical compounds depend on the composition and pressure.

185
186 At atmospheric pressure, hydrogen forms typical compounds with the stoichiometry MH for the
187 alkali metals, and MH_2 for the alkaline earth metals. The search for new hydrogen-rich materials
188 was inspired by Ashcroft's prediction that the metallization pressure of hydrogen could be
189 lowered through 'chemical pre-compression', which could be achieved by adding a dopant⁷⁸.
190 The resulting hydride would have all of the properties required to be a high-temperature
191 superconductor at pressures that are currently accessible by DAC experiments^{79,78}. Many metal
192 hydrides with atypical compositions have been predicted to be stable (MH_n , $M=Li, Na, K, Rb, Cs$
193 and $n > 1$; $M=Mg, Ca, Sr, Ba$ and $n > 2$) and some have already been synthesized (for example,
194 NaH_3 and NaH_7 (Ref.⁸⁰), LiH_2 and LiH_6 (Ref.⁸¹), and CaH_4 (Ref. ⁸²)). These compounds contain
195 various H motifs, including molecular species such as H_2 , linear and slightly bent H_3^- (Fig. 1Aa)
196 (Ref⁸³⁻⁸⁵), triangular H_3^+ (not in a metal hydride, Ref⁸⁶), as well as extended species such as 1D
197 helical chains (Ref.^{87,88}) and 3D sodalite-like structures (Fig. 1Ab) (Refs^{89,54-57}). They are
198 comprised of electropositive elements, such as alkali, alkaline earth and rare earth metals, which
199 donate their valence electrons to the new homonuclear hydrogenic sublattice. In contrast, high-
200 pressure p-block hydrides (XH_n , $X=Si, Ge, S, P$ etc)^{11,42,43,90-98}, do not always form polyhydride
201 anions. Instead, they might form molecular, polymeric or 3D covalent moieties together with the
202 p-block atoms that might become hypervalent. For example, in the record-breaking
203 superconducting compound H_3S , each S atom is bonded to six H atoms, thereby sharing all of its
204 six valence electrons, and each H atom is bonded in a linear fashion to two S atoms.
205 Interestingly, the quantum nuclear motion of hydrogen atoms has crucial effects on stabilizing
206 the high symmetry structures of H_3S ⁴⁹ and LaH_{10} ⁹⁹. For example, density functional theory
207 (DFT) calculations showed that the inclusion of nuclear quantum effects greatly lower the
208 pressure of hydrogen symmetrization (H atoms located at the center between two neighboring S
209 atoms) which is essential to explain the observed pressure dependence of T_c .⁴⁹.

210
211 The structural features found in hydrides under pressure influence their physical properties. For
212 example, when the hydrogenic species satisfy electron counting schemes (for example, H_2 , H^- ,
213 and H_3^-), and the electron transfer from the metal to the hydrogen atoms is complete, the
214 corresponding compounds are insulators or semiconductors that can undergo pressure induced
215 metallization⁹⁰. If the polyhydrides contain molecular motifs with partially filled orbitals ($H_2^{\delta-}$)
216 or extended lattices, such as hydrogenic 1D chains, 2D sheets, 3D cages, or $X-H$ networks, the
217 resulting compounds are metallic^{90,100}. They are good candidates for high T_c superconductors and
218 have been the focus of recent high pressure studies^{90,100}. The first compound that broke the 25-
219 year old world record of T_c set by the cuprates was found to be $Im\text{-}3m$ H_3S , an atypical
220 compound with a T_c of 203 K near 150 GPa⁴⁵. DFT-based CSP predicted the presence of 3D
221 hydrogenic lattices in a number of hydrides including CaH_6 (Ref.⁸⁹), YH_{10} (Refs^{56,101}) and LaH_{10}
222 (Refs^{54,56}). In these phases, hydrogen atoms form a clathrate-like lattice with the metal atoms
223 sitting in the center of the cages (Ref.¹⁰²). DFT calculations have found these clathrate-like
224 species to be superconductors with very high T_c within the Bardeen–Cooper–Schrieffer (BCS)
225 mechanism.^{100,103} In BCS theory, superconductivity is due to the pairing of the electrons

mediated by nuclear vibrations (phonons). A higher T_c can be expected if a material exhibits high phonon frequencies, strong electron–phonon coupling interactions, and a high electron density at the Fermi energy, all of which can be found in H_3S and the superhydrides. These theoretical predictions inspired the high-pressure synthesis of Fm-3m LaH_{10} (Refs ^{53,55,57,58}). Two independent groups measured astonishingly high T_c values of 250–260 K at pressures of 170–200 GPa in this compound^{55,57}.

Because of its deficiency of electrons, the metalloid element B has a tendency to form clusters thereby sharing its electrons through multicentered bonds. In binary compounds formed at ambient pressure, especially with metal atoms, a large variety of B moieties can be found (Refs ^{72,73,104}). These include isolated B anions in Mn_4B , B₂ dimers in Cr_5B_3 , zig–zag chains in FeB , double chains in Cr_3B_4 , 2D covalent networks in MgB_2 and CrB_2 , and 3D covalent networks in LaB_4 , LaB_6 , and YB_{12} (Ref.¹⁰⁴). Because B–B bonds are strong, these types of materials usually exhibit exceptional mechanical strength, especially when combined with the high electron density of transition metals. For this reason, numerous transition metal borides, such as FeB_4 (Ref.¹⁰⁵), ZrB_4 (Refs¹⁰⁶), WB_4 (Refs¹⁰⁷), ZrB_3 (Refs^{108,109}), Rh_2B (Ref.¹¹⁰) and RhB_2 (Refs^{110,111}) have been proposed and studied as superhard materials. Metal compounds such as MgB_2 , which feature B covalent networks, may exhibit superconducting properties owing to the light atomic mass of B and strong B–B bonds¹¹². Interestingly, mechanical strength and superconductivity can both be found in FeB_4 (Refs^{113,114}). This compound was first predicted by DFT calculations to be stable at 0 GPa,¹¹³ but was only synthesized under pressure (8 GPa).¹¹⁴ High pressure greatly enriches the structural varieties observed in the borides. It stabilizes many compounds with a large variety of compositions and a plethora of B motifs that are otherwise not stable at atmospheric conditions. For example, in predicted and synthesized Li–B compounds^{115–117,76,77,118,119}, B can be found as an anion in Li_6B (Ref.⁷⁶), a dimer in Li_4B (Fig. 1Ba) (Ref⁷⁶), a chain in Li_2B (Fig. 1Bb) and LiB (Refs^{76,116,119}) and a graphene-like layer in LiB (Fig. 1Be) (Refs^{116,119}) and Li_3B_2 (Ref.⁷⁶). Calculations also showed that B can form ribbons (Fig. 1Bd) in a B-rich compound MgB_6 under pressure.¹²⁰ Moreover, with increasing pressure, boron lattices evolve from graphene-like layers, to interconnected B₄ layers, to B₄ chains (Fig. 1Bc) and finally to graphene-like planar layers at very high pressure in FeB_4 compounds, as predicted by DFT¹⁰⁵.

Carbon is the most versatile element; it can exist in numerous allotropes and form different bonding motifs in organic molecules. In contrast, C adopts a much smaller variety of motifs in metal compounds at ambient pressure, although some metal carbides can crystallize in various compositions and contain a number of different moieties.⁷² Pressure greatly enhances the variety of carbon-based motifs that can be found in many atypical compounds, ranging from those featuring C_2^{2-} in CaC_2 (Fig. 1Ca) (Refs^{121–124}), C_2^{4-} in ThC_2 (Ref.¹²⁵), C_3^{4-} in Mg_2C_3 (Fig. 1Cb),¹²⁶ hexagonal rings (Fig. 1Cc)¹²³, polymeric chains^{121,122,125,127,128}, and nanoribbons (Fig. 1Cd)^{121–123,125,128,129}, to different layered forms such as graphene (Fig. 1Ce)^{125,128,130}, graphane and multi-layers¹³¹. Moreover, DFT calculations have shown that the carbon sublattices in some metal carbides, such as YC_2 (Ref.¹²⁸) and CaC_2 (Ref.¹²¹), progressively evolve from single atoms to 3D covalent networks with increasing pressure for a given stoichiometry.

Under ambient conditions, the most well-known metal nitrides are comprised of N in a –III oxidation state. Nevertheless, many other nitrogen-containing species⁷² can be found including those that contain azide (N_3^-)¹³² or pernitride (N_2^{2-})¹³³ anions, transition metal interstitial nitrides

272 and, in some metastable compounds, pentazonium (N_5^+) and pentazolate (N_5^-) ions^{134–136}. Pressure
273 can greatly enrich the chemistry of binary nitrides by promoting the formation of N–N bonds and
274 polynitrogen species either in new atypical compounds or in compounds of already known
275 compositions. This behavior has been widely exploited to predict and synthesize nitrogen-based
276 high energy density materials. For example, an ultra-incompressible and very hard rhenium
277 nitride pernitride [$\text{Re}_2(\text{N}_2)(\text{N})_2$], which contains an N_2^{4-} anion, has been synthesized under high
278 pressure and persists under ambient conditions¹³⁷. Other polynitrogen species have been found in
279 synthesized nitrogen compounds under pressure, such as $[\text{N}_2]^{2-}$ in FeN_2 (Ref.¹³⁸), N zig–zag
280 chains in FeN_4 (Ref.¹³⁸), $[\text{N}_4]^{4-}$ in Mg_2N_4 (Fig. 1Db) (Ref.¹³⁹), and N–N chains in MgN_4 (Ref.¹³⁹),
281 along with the large variety of N clusters that have been predicted that includes $[\text{N}_3]^{4-}$ (Fig. 1Da),
282 N_2^{2-} , N_4^{4-} , N_6^{4-} ring (Fig. 1Dd), and polymeric chains] in various Mn–N compounds^{140,141}.
283 Furthermore, new polynitrogen species might also emerge in the structural evolution of a
284 compound under pressure; one example is the planar triadius star-like N_4 species in FeN_2 that has
285 been predicted at pressures higher than 228 GPa (Ref.¹⁴²). Among all the polynitrogen species,
286 the pentazolate anion (N_5^-) is the most striking (Fig. 1Dc)¹⁴³. In contrast to the extreme
287 difficulty of obtaining the N_5^- ring under atmospheric conditions, many computational and
288 experimental studies have shown that N_5^- becomes thermodynamically stable and common
289 under pressure, in compounds such as LiN_5 (Fig. 1Dc) (Refs^{51,52,134}), NaN_5 (Ref.¹⁴⁴),
290 CsN_5 (Ref.¹⁴⁵), MgN_{10} (Ref.¹⁴⁰) and CuN_5 (Ref.¹⁴⁶). When the pressure is lowered, some of these
291 compounds can be recovered in experiments,¹⁴⁷ thus providing a new route to obtain N_5^- based
292 high energy density materials.¹⁴⁸
293

294 Because O is a strong oxidizing element, it tends to assume an oxidation number of –II. However,
295 O_2^- and O_2^{2-} have been found in various metal superoxides and peroxides at 1 atm, although
296 many of them are only metastable.⁷² External pressure does not promote the formation of more
297 O-based chemical species, probably because the large number of electrons prevents the
298 formation of polyatomic species. However, pressure does promote the formation of O_2^{2-} . For
299 example, an O rich Fe compound, FeO_2 (Fig. 1Ea), becomes stable at pressures similar to those
300 reached in Earth’s lower mantle, as revealed by recent calculations and experiments, which
301 suggested a new oxygen cycling mechanism in Earth’s interior^{149–153}. This compound assumes a
302 very simple structure in which the centers of O_2^{2-} species occupy an face-centered cubic (FCC)
303 lattice and forms a cubic NaCl type structure with Fe^{2+} ions.
304

305 Halogen atoms usually assume a typical oxidation number of –I and form stoichiometric
306 compounds with metals at ambient conditions. Although assorted trihalide and multihalide
307 anions have been studied at atmospheric pressures,¹⁵⁴ most of them are not thermodynamically
308 stable with rare exceptions such as I_3^- (Ref.¹⁵⁵). Recently, computations have shown that pressure
309 could be a promising method to stabilize multi-halides. For example, F_3^- can exist in a stable
310 CsF_3 compound in the pressure range from 15 to 30 GPa.⁶⁰ When the pressure is higher than 30
311 GPa, the F_3^- anion decomposes and the released F oxidizes the core electrons of Cs. In a more
312 recent work, both F_3^- (Fig. 1Fa) and F_5^- (Fig. 1Fb) have been found in CsF_3 and CsF_5 under
313 pressure.¹⁵⁶ Similarly, Cl_3^- anions can exist in Na–Cl (Fig. 1G) (Ref.⁵⁰) and K–Cl (Ref.¹⁵⁷)
314 compounds with high Cl compositions. However, the more common forms of Cl in these
315 compounds are 3D covalent networks^{50,158}.
316

317 Different to low- Z oxidant elements, many heavier elements can adopt a wide composition range,
318 and their crystal lattices can contain a plethora of complex moieties under ambient conditions.
319 For example, Si can form various compounds with alkali and alkaline earth metals, such as MSi
320 ($M=Li, Na, K, Rb, Cs, Ca, Sr, Ba$), M_2Si ($M=Mg, Ca, Sr, Ba$) and MSi_2 ($M=Ca, Sr, Ba$).⁷² Many
321 Si species are already known such as $[Si_4]^{4-}$ tetragons in $NaSi$ (Refs¹⁵⁹⁻¹⁶²) and zig-zag Si
322 chains in $BaSi$ (Ref.¹⁶³). However, as shown by many DFT predictions, pressure creates new Si
323 based species that have not been observed at ambient conditions, such as Si squares in $Ca-Si$
324 (Fig. 1H) (Ref.¹⁶⁴), as well as Si layers and cages in $Cs-Si$ (Ref.¹⁶⁵).

325

326 **[H1] Chemistry of non-valence electrons and orbitals**

327 The changes in the chemical behavior and properties of the elements that are caused by the
328 reordering of atomic orbital energies under pressure are particularly fascinating. For example, at
329 sufficiently high pressures, Ni can theoretically become an insulator¹⁶⁶, and K and Cs have been
330 observed to behave like transition metals because of the pressure-induced $s \rightarrow d$ electronic
331 charge transfer¹⁶⁷⁻¹⁶⁹. Moreover, calculations showed that xenon oxides of various compositions
332 become thermodynamically stable under pressure¹⁷⁰⁻¹⁷⁴, and Fe can become a strong oxidant and
333 oxidize Xe to form stable compounds⁵⁹. Remarkably, pressure can also promote compound
334 formation between elements that do not react under ambient conditions. For example, Li and Be
335 were predicted to form stable Li-Be compounds including $LiBe$, Li_3Be , $LiBe_2$ and $LiBe_4$, at
336 pressures higher than 15 GPa (Ref.¹⁷⁵). The atypical compounds that result from the change of
337 the chemical behavior of an element are fundamentally different to those resulting from the
338 formation of homonuclear bonds. These compounds do not contain homonuclear clusters and
339 their atypical compositions are associated with changes in oxidation states and coordination
340 numbers (Fig. 2).

341 **[H2] Reactivity of core electrons**

342 One of the most remarkable phenomena that can occur under high pressure is the activation of
343 core electrons.¹⁷⁶ The atomic shell structure and the Pauli exclusion principle suggest that the
344 properties of the elements are determined by the (valence) electrons in their outermost shells and
345 that the inner shell electrons and high-lying unoccupied orbitals are not involved in chemical
346 bond formation. Thus, the chemical behaviour of a particular element, including the oxidation
347 states it can adopt, are dictated by its location in the periodic table. For many years, it was
348 believed that an element cannot react further if it loses all of its valence electrons or gains
349 enough electrons to completely fill its valence orbitals.

350 The discovery of the reactivity of the noble gases, which was inspired by Pauling's theoretical
351 prediction¹⁷⁷ and realized by Neil Bartlett's eminent synthesis of $XePtF_6$ (Ref.¹⁷⁸), disproved the
352 belief that an element with a complete valence shell is not reactive. Since then, hundreds of
353 compounds of noble gases, including Xe, Kr and Ar, have been synthesized. Most of them
354 feature chemical bonds involving the valence electrons of the noble gases.¹⁷⁹ Another successful
355 example of activating a closed shell is the synthesis of HgF_4 in a noble gas matrix under very low
356 temperatures,¹⁸⁰ which was inspired by quantum chemical predictions that included correlation
357 and relativistic effects.^{181,182} However, only the $5d$ subshell participates in the reaction, and the
358 produced HgF_4 molecules are unstable and have very short life-times even at a low temperature

359 of 4 K. The oxidation of Cs^+ in SO_2 and CH_3CN solution using an electrochemical method is the
360 only reported attempt to date to alter the reactivity of core electrons¹⁸³. However, it was later
361 shown that this result is invalid¹⁸⁴, and the activation of inner-shell electrons in chemical
362 reactions still remains elusive.

363 One of the key questions of chemistry, “can core electrons participate in chemical bond
364 formation?”, was first answered at high pressures. Hydrostatic pressure can steadily shift the
365 orbital energies of the atoms (see Fig. 3a, Box 3 and Ref.¹⁸⁵), forcing the atoms to change the
366 oxidation states they can assume. A first principles CSP study based on the PSO algorithm
367 revealed that even moderately high pressures could coerce the formation of atypical CsF_n ($n>1$)
368 compounds⁶⁰. For example, CsF_2 was predicted to become stable at only 5 GPa; CsF_3 and CsF_5
369 were predicted to become stable at 15 GPa and 50 GPa, respectively, and remained stable up to
370 at least 200 GPa. What makes the CsF_n compounds so special is the origin of their atypical
371 composition. Different to the systems discussed in the previous section, which were stabilized by
372 the formation of homonuclear bonds, the stability of CsF_n arises from the activation of the Cs 5p
373 electrons, meaning that their energy becomes higher than that of the F 2p electrons (Fig. 3a).
374 Indeed, the calculated Bader charges revealed a continuous increase of charge on the Cs atoms
375 for increasing n (Fig. 3b), which can only be explained by the activation of the 5p core electrons.
376 The involvement of the Cs 5p electrons can be directly seen in the projected density of states
377 (PDOS) plots that show a large amount of 5p states both below and above the Fermi level (Fig.
378 3c).

379 The activation of the 5p electrons completely alters the chemistry of Cs, leading to very unusual
380 structural and bonding features in the CsF_n compounds⁶⁰. CsF is a prototypical compound that
381 transforms from rock-salt structure to CsCl structure at 5GPa (Fig. 2Aa). In CsF_n ($n>1$)
382 compounds the coordination number of Cs dramatically decreases, due to the formation of
383 various discrete species such as CsF_2 molecules in CsF_2 (Fig. 2Ab) CsF_2^+ ions in CsF_3 , (Fig. 2Ac)
384 and CsF_5 molecules in CsF_5 (Fig. 2Ae). A later theoretical work¹⁵⁶ on the Cs–F system revealed
385 that CsF_4 can also be stable under high pressure with Cs being present in a mixed valence state,
386 consisting both of $\text{Cs}^{\text{III}+}$ (in the form of CsF_2^+) and $\text{Cs}^{\text{V}+}$ (in the form of CsF_5). Both CsF_2 and
387 CsF_2^+ are linear (Figs. 2Ab and 2Ac). At 100 GPa, the shortest Cs–F bond length is 2.015 Å
388 (Ref.⁶⁰), close to the Xe–F bond length previously observed in XeF_2 (Ref. ¹⁸⁶); whereas CsF_5 is
389 planar pentagonal (Fig. 2Ae), corresponding to a AX_5E_2 structure in the valence-shell electron-
390 pair repulsion (VSEPR) model⁷². This structure has been found experimentally in $[\text{XeF}_5]^-$ (Ref.
391 ¹⁸⁷), a species that is isoelectronic with the CsF_5 molecule. The Cs–F bonds involving Cs 5p
392 electrons are covalent, as elucidated by the crystal orbital Hamiltonian populations (COHP)¹⁸⁸
393 and the electron localization functions (ELF)¹⁸⁹ (Fig. 3d). Both methods revealed covalent bonds
394 in the unusual CsF_n ($n=2,3,5$) compounds, with bond strengths that are comparable to those
395 found in Xe–F systems. Inspired by the prediction of high pressure CsF_n compounds, metastable
396 chemical species containing Cs in high oxidation states, such as CsF_2^+ , CsF_5 (Ref.¹⁹⁰) and
397 $[\text{CsO}_4]^+$ (Ref.¹⁹¹) were also predicted using quantum chemistry calculations. The CsF_n
398 compounds are fundamentally different to many other alkali polyhalides. Taking NaCl_3 as an
399 example,⁵⁰ its unusual composition results from the enhancement of the Cl–Cl bond strength and
400 the formation of Cl–Cl dimers under pressure (Fig. 3e). In NaCl_3 , the oxidation state of Na
401 remains +I, whereas in CsF_3 , Cs is in +III state.⁶⁰

403 Calculations have also revealed that the activation of the semicore 5d electrons of Hg by pressure
404 causes the formation of atypical HgF_n ($n=3$ and 4) compounds (Figs 2Ba and 2Bb)⁷⁰. In contrast
405 to the short-lived HgF_4 molecules in a noble gas matrix¹⁸⁰, first principles calculations predicted
406 that HgF_4 in the solid phase becomes thermodynamically stable at 38 GPa. The structure
407 obtained from CSP consists of stacks of HgF_4 rectangular molecules (Fig. 2Bb). The electronic
408 structure of solid HgF_4 clearly reveals that Hg assumes a +IV oxidation state and forms
409 moderately strong covalent bonds with four neighboring F atoms, which can only happen when
410 two 5d electrons are involved (Fig. 3f). The remaining 5d electrons form a d^8 configuration and
411 fill the four lower d states in a planar rectangular field, causing a gap of 0.71 eV (as computed
412 with the Heyd–Scuseria–Ernzerhof density functional) at 50 GPa.⁷⁰ When the pressure is higher
413 than 73 GPa, the simulations showed that Hg can also form a stable HgF_3 compound in which
414 Hg is in a +III oxidation state. When the pressure is higher than 200 GPa, HgF_4 is predicted to
415 become unstable and decompose into HgF_3 and F_2 . This result is very striking considering that
416 HgF_3 is actually metallic because Hg is in a d^9 configuration while losing one 5d electron to F.
417 The singly occupied d^9 state is not stable because of the high DOS at the Fermi level and it
418 becomes spin polarized, making HgF_3 a rare example of a 5d ferromagnetic material (Fig. 3f)⁷⁰.
419 Similar to Cs–F compounds, the coordination numbers of Hg in HgF_n are high in the strongly
420 ionic compounds HgF_2 and HgF_3 , but they plunge to 4 in HgF_4 owing to the formation of strong
421 Hg–F covalent bonds involving 5d semicore electrons.

422 **[H2] Reactivity of unoccupied non-valence orbitals**

423 Under high pressure, the unoccupied non-valence orbitals can also be activated and play an
424 essential role in an element's chemistry. When this occurs, many remarkable chemical
425 phenomena might appear: noble gas elements can become oxidants and assume a negative
426 charge¹⁹²; halogens and chalcogens can be reduced beyond their typical oxidations states of –I
427 and –II¹⁹³; and alkali metals can become anions with charges beyond –1⁷¹. CSP performed with
428 the PSO algorithm coupled with DFT revealed that Xe, Kr and Ar could form stable compounds
429 with Mg at 125, 250, and 250 GPa, respectively¹⁹². Two later computational works predicted the
430 formation of stable Li_nAr (Ref.¹⁹⁴) and Li_nXe (Ref.¹⁹⁵). In these compounds the noble gas
431 elements were found to be negatively charged, and the extra electrons to occupy the outer d shell
432 orbitals of the noble gas atoms (5d for Xe, 4d for Kr and 3d for Ar). Because the energies of the
433 d orbitals increase less significantly compared to those of the s and p orbitals under pressure, the
434 outer shell d orbitals become lower in energy than the 3s and 3p orbitals of Mg (Box3), causing a
435 large charge transfer from Mg to the noble gas atoms (Fig. 4a and b). Strikingly, some
436 compounds with higher Mg compositions such as Mg_2Xe behave like high pressure electrides
437 (Fig. 4a) at pressures much lower than expected for elementary Mg^{192,196}, a phenomenon that has
438 also been seen in other alkali or alkaline earth compounds such as $\text{Na}_3\text{Cl}^{50}$.

439 Another surprising phenomenon is that alkali and alkaline earth metals might be reduced and
440 become anions under pressure⁷¹. Although systems containing Na^- , K^- , Rb^- and Cs^- have been
441 synthetized¹⁹⁷ and predicted¹⁹⁸ at 1 atm, alkali metal anions with negative charges below –1 have
442 not yet been observed. The reasons why alkali metals become anions at high pressure are
443 different than those leading to the same phenomena at 1 atm. Consider, for example, the Li_nCs
444 ($n=1–5$) compounds that have been predicted to be stable at pressures higher than 100 GPa
445 (Ref.⁷¹). DFT calculations revealed charge transfer from Li to Cs, resulting in Cs anions with

446 charges as large as -1.58 (Li_5Cs at 150 GPa). The structural evolution of compounds that involve
447 the unoccupied non-valence orbitals in bonding, such as Li_nCs and Mg_nXe_m , is distinctly
448 different to those formed because of the activation of core electrons. In contrast to Cs in CsF_n
449 compounds, the coordination number of Cs increases from 8 in LiCs , to 10 in Li_2Cs , to 12 in
450 Li_3Cs and then decreases to 11 in Li_4Cs and Li_5Cs . The non-monotonous change of the
451 coordination number is likely a result of the enhancement of the Li–Li bond strength under
452 elevated pressure.

453 If pressure can cause the reduction of noble-gas atoms, it may also cause the further reduction of
454 a halogen anion, since X^- is isoelectronic to a noble gas. Computations have revealed this
455 phenomenon in Na_nCl (Ref.⁵⁰) and Li_nI (Ref.¹⁹³). At a pressure greater than 20 GPa, the
456 calculated Bader charge on I was found to be as large as -2.8 in Li_nI , indicating a nominal
457 oxidation state of -4 or -5 . Similar to Cs in Li_nCs compounds, the charge of I goes beyond -1
458 because the occupation of the $5d$ orbitals increases under pressure as their energies increase less
459 significantly compared with other orbitals such as Li $2s$ and $2p$. The relative downshift of the $5d$
460 and $6p$ orbitals has a significant effect on the $5d$ transition metals. Although many late $5d$
461 transition metals such as Pt and Au are known to act as anions in compounds such as CsAu
462 (Ref.¹⁹⁹) and Cs_2Pt (Ref.²⁰⁰) because of strong relativistic effects, pressure can further extend
463 their unusual oxidation states. DFT calculations predicted that, under high pressure, the
464 negatively charged states of Au could stretch beyond $-III$ in Li_nAu ($n=1-6$) compounds²⁰¹, and Ir
465 can be stabilized in a $-III$ state in the K_3Ir compound at pressures above 10 GPa (Ref.²⁰²).

466 [H1] Chemistry of non-atom-centered orbitals

467 Like in “Journey to the center of the Earth”, whenever we think we have seen the most striking
468 phenomena in chemistry, high pressures surprise us with another totally unexpected new wonder.
469 High-pressure electrides (HPEs) are one such example. An electride is a type of material in
470 which some of the electrons detach from the atoms and occupy the empty interstitial sites^{203–205}.
471 In these materials, the electrons themselves play the role of the anions, hence the name electrides.
472 One of the first known examples of elemental compounds presenting electron density
473 maximization at the interstitial sites under high pressure is Cs-IV .^{206–208} Therefore, it was
474 dubbed cesium electride.²⁰⁹ The cesium atoms in this non-close packed phase have a
475 coordination of eight and more interstitial space with respect to Cs atoms in Cs-II and Cs-III
476 phases. Similar electronic distributions have been computed for hypothetical structures of Na and
477 Li under high pressure^{210,211}. The localization of electrons in the interstitial sites under pressure
478 was also demonstrated in a model system consisting of a lattice of impenetrable spheres²¹². The
479 well-recognized explicit suggestion and observation of HPE were from a joint theoretical and
480 experimental work showing that Na, a prototypical metal, could become a transparent insulator
481 at pressures higher than 200 GPa (Refs^{67,209,210}). Moreover, experiments and theory demonstrated
482 that Li transforms into a semiconductor HPE with a gap of 0.3 eV at 80 GPa (Refs^{215–220}).

483 Electrides are known to form at atmospheric conditions and hundreds of electride compounds
484 have been discovered since the 1980s^{203–205}. However, the formation of electrides requires the
485 presence of empty sites that can accommodate electrons and implies a volume increase.
486 Therefore, it was quite a surprise that simple metals, such as Cs, Na and Li, were found to
487 become electrides under high pressure.^{67,215} Moreover, many other examples of HPEs were later

488 predicted using DFT, including Mg (Ref.¹⁹⁶), Al (Ref.²²¹) and even C (Ref.²²²). Besides
489 elementary solids, some compounds with excess metal compositions, such as Mg₃O₂ (Ref.²²³)
490 and Mg₂Xe (Fig. 4a)¹⁹², are also predicted to be stable and become HPEs at high pressure.
491 Several mechanisms have been proposed to explain the electride formation including *s*–*p*, *p*–*d*
492 and *s*–*d* electron redistributions^{67,196,210}, multicenter bond formation^{224,225}, and change in the
493 symmetry, electron count, and band crossing²²⁶. We will focus on a simple mechanism based on
494 the concept of quasi-atoms that can directly explain and roughly predict the formation of HPEs
495 without the performance of DFT calculations.

496 To understand the formation of HPEs, we must first realize that the interstitial space in a
497 crystalline lattice does not merely add room for electron redistribution among atomic orbitals, it
498 can also accommodate quantum orbitals that can be occupied by electrons.⁶⁸ These orbitals are
499 analogous to those in hydrogen-like atoms and can be approximated by the quantum mechanical
500 solutions of an infinite spherical well, that is why the vacant sites in HPEs are termed interstitial
501 quasi-atoms (ISQs)⁶⁸. At atmospheric conditions, the energies of atom-centered valence orbitals
502 are lower than the ISQ orbital. Under pressure, the energies of many valence atomic orbitals
503 increase more quickly and become destabilized relative to the 1s orbital of the ISQ because of
504 the strong repulsion from core electrons (Fig. 5a). If the energy gain from transferring electrons
505 into ISQ orbitals is sufficient, the material will adopt an open structure and become an electride.

506 The quasi-atom concept enables us to directly determine the likelihood that an element will form
507 an HPE. This propensity can be estimated semi-quantitatively by comparing the pressure
508 dependence of the ISQ 1s orbital energy to the energies of atomic orbitals using a He matrix
509 model (Fig. 5b). For example, the energies of the valence orbitals of Li and Na become higher
510 than those in an ISQ orbital at about 80 GPa (Fig. 5c), in agreement with DFT and DAC results
511 showing that Li and Na can form HPEs at relatively low pressures.^{67,215,216,227} Other elements
512 such as Mg, Al, and C require much higher pressures (Fig. 5c). Moreover, the quasi-atom model
513 showed that the energies of some *d* orbitals decrease with respect to those of the ISQ as pressure
514 increases (Fig. 5d)⁶⁸ and when these are valence orbitals, they might prevent the formation of
515 HPEs. This simple mechanism counteracting HPE formation causes many remarkable
516 phenomena. For example, K and Cs are more reactive than Na and Li, therefore they should form
517 HPEs at even lower pressures. Cs-IV, stable between 4.3–12 GPa (Ref.¹⁶⁸), is an HPE, the
518 electronic structure of which has traditionally been explained by an *s* → *d* electronic transition²²⁸.
519 Although not explicitly stated, the earlier calculations imply that the charge density of Cs-IV can
520 be reproduced by placing an *s* orbital on the interstitial sites where the ISQs are centered²⁰⁷. At
521 higher pressures, the electrons are transferred from the ISQ back to the *d* orbitals of this alkali
522 metal. Similarly, although Mg₂Xe was computed to be an HPE at 125 GPa — the lowest pressure
523 at which this compound is stable — (Fig. 4a), an ISQ → Xe 5*d* charge donation occurs at higher
524 pressures, until the ISQ totally disappears (Fig. 4c)¹⁹².

525 ISQs do not only assume the role of anions in compounds. Computations have shown that they
526 can form all types of chemical bonds, including ionic, metallic and covalent with other atoms
527 and, more interestingly, with other ISQs (Fig. 5e)²²⁹. The formation of ISQ–ISQ covalent bonds
528 turns out to be the key to the gap between the conduction and valence bands in Li HPE.²³⁰
529 Different to compressed Na, which has a gap of 1.3 eV at 200 GPa (Ref.⁶⁷), Li is a
530 semiconductor with a mere gap of less than 0.3 eV (Refs^{215,227}). The structure of Li HPE was

531 only resolved using CSP several years after the phase was discovered in a DAC
532 experiment^{215,220,227}. In contrast to Na HPE, Li HPE consists of two sets of ISQs with a formula
533 of $\text{Li}_{20}\text{E}^{\text{II}}_8\text{E}^{\text{I}}_4$ (Ref.²²⁰) in which E^{II} and E^{I} are doubly and singly occupied ISQs. The presence of
534 E^{I} should make Li HPE metallic, which is in contrast to what is observed in DAC experiments
535 and DFT calculations^{215,220,227}. However, E^{I} ISQs always appear in pairs with a distance of about
536 1.3 Å between them (Fig. 5f)²³⁰, indicating that they form covalent bonds. The crystal
537 wavefunctions at the Γ point clearly show the bonding and the antibonding states of the $\text{E}^{\text{I}}-\text{E}^{\text{I}}$
538 bonds (Fig. 5g)²³⁰. The energy splitting of the two states is the origin of the semiconducting gap
539 of Li HPE (Ref.²³⁰).

540 An ISQ behaves very much like a chemical element. We therefore may add an ISQ to the
541 periodic table under pressure and place it above He. Although an ISQ is not a physical entity, it
542 represents an undividable species that has unique chemistry. The periodic table is not a collection
543 of physical entities, but rather of elementary chemical species, which is why all the isotopes are
544 considered as a single chemical element in the table. In that sense, an ISQ is required to complete
545 the periodic table under pressure.

546 [H1] Chemistry without chemical bonds

547 Another remarkable phenomenon that has been observed under pressure is that chemical
548 reactions can occur despite the fact that no chemical bonds are formed. In this last tale of our
549 journey, quantum mechanics is not the determining factor, but it sets the stage. The quantization
550 of the electronic states in atoms sets two energies — the ionization energy and the electron
551 affinity — which are essential to the chemical properties of an element. For some elements,
552 especially light noble gasses such as He, the gap between these two energies is very large and
553 inhibits the formation of any chemical bonds. Thus, except for very rare cases such as the
554 insertion into the large empty sites in clathrates or cage molecules,²³¹ the bonding with O inside
555 strong electric fields or the ferroelectric molecular cavity formed by strongly polar molecules,²³²
556 and the formation of ionic species such as HHe^+ ,²³³ He is almost inert.

557 Pressure cannot alter the tenacious inertness of He, because the relevant orbitals ($1s$, $2s$ and $2p$)
558 are insensitive to compression. Thus, it was quite a surprise when experiments and theory
559 showed that He can react and form stable compounds with Na under high pressure⁶¹. The
560 enthalpy of formation of this Na_2He compound was computed to be ~ 0.35 eV/atom at 350 GPa,
561 indicating a large chemical driving force that goes way beyond any weak interactions. However,
562 all of the computational tools used to probe and categorize chemical interactions between atoms
563 in solids, such as Bader charges, PDOS, ELF and COHP, provided no evidence for chemical
564 bonding between He and its neighboring atoms^{61,234,235}. Thus, paradoxically, it appeared that He
565 reacts with Na under high pressure while keeping its chemical inertness.²³⁴ This raises the
566 question: what is the driving force that leads to the formation of the Na_2He compound under high
567 pressure?

568 The clue that helped unravel the stabilization mechanism was hidden in the electronic structure
569 of Na_2He (Refs^{234–236}). This compound is actually an electride and its chemical formula can be
570 written as Na_2EHe (Ref.⁶¹), where E represents an ISQ with a nominal charge of 2^- . Therefore,
571 the actual reaction is between He and an ionic compound $(\text{Na}^+)_2\text{E}^{2-}$. A one-dimensional ionic

572 crystal model can be used to illustrate this mechanism (Fig. 6Aa and 6Ba).²³⁵ For ionic crystals
573 with the formula AB, the inserted He atoms have no place to go except for between a cation and
574 its neighboring anion, thereby increasing the electrostatic potential energy (Madelung energy in
575 crystals). Such a reaction is therefore not favored. In contrast, for an ionic compound with the
576 formula AB₂ (or equally A₂B), the inserted He atoms can be placed between the two neighboring
577 anions (or cations), which decreases the Madelung energy. This effect becomes stronger under
578 high pressure because the ions get closer, improving the driving force for the He insertion. In 3D
579 crystals such as MgO and MgF₂, the mechanism of He-insertion becomes more subtle. As shown
580 by DFT and PSO simulations, although MgO adopts the rock-salt structure that resembles
581 alternating AB ionic chains in a 3D crystal (Fig. 6Ab), the inserted He atoms do not go directly
582 in between the Mg and O ions²³⁵. Instead, they are located out of the Mg–O plane in a perturbed
583 structure (Fig. 6Ac and 6Ad). This structural distortion prevents the unfavored separation of Mg
584 and O ions at the cost of an increased volume. In contrast, He atoms in MgF₂He are located
585 between the F atoms in a crystal structure that resembles the AB₂He chains (Fig. 6Bc and
586 6Bd)²³⁵. The deviation from the 1D ionic chain structure in MgF₂ avoids the direct contact of F
587 ions, but again at the price of a larger volume, which is unfavorable under increasing pressure
588 (Fig. 6Bb).

589 A similar He insertion reaction can occur, in principle, in many ionic compounds with unequal
590 numbers of cations and anions. Before this mechanism was proposed, He insertions into various
591 ionic compounds have been theoretically predicted in systems such as Na₂O (Ref.⁶¹), Na₂S, K₂S
592 (Ref.²³⁷) and even H₂O (Ref.²³⁸). To test the Madelung energy hypothesis, calculations were
593 performed on the insertion of He into prototypical AB compounds (LiF and MgO), as well as
594 A₂B and AB₂ compounds (Li₂O and MgF₂) (Fig 6Ca and Cb)²³⁵. Because these ionic materials
595 are comprised of hard-core ions, one can single out the electrostatic energy change owing to He
596 insertion under pressure. The large driving forces favoring compound formation caused by the
597 change of Madelung energies are clearly shown for AB₂ and A₂B compounds, but not for AB
598 compounds (Figs. 6Cc and 6Cd). Equally important, the insertion of He into AB₂ or A₂B
599 compounds also leads to a considerable decrease of the PV term of the enthalpy²³⁵. This effect is
600 caused by the increased volume of the AB₂ or A₂B compounds owing to the strong repulsions
601 between neighboring ions of the same type, which is relieved by the insertion of He (Figs. 6Bb -
602 6Bd). The volume effect hinders, instead, the insertion of He into AB type compounds such as
603 MgO (Figs. 6Ab - Ad). Furthermore, counteracting effects such as the occupation of higher lying
604 orbitals play a role during the He insertion reactions in compounds consisting of polarizable ions
605 such as CaF₂ and K₂S, leaving only a narrow pressure window in which the He inserted
606 compounds are stable^{235,237}. A more recent theoretical study has shown that He insertion can
607 happen in crystals comprised of polarized molecules such as ammonia under pressure. In this
608 case, the mechanism is more subtle: the insertion lowers the Madelung energy by reorienting the
609 NH₃ molecules²³⁹, although the behavior of NH₃ is different in pristine ammonia that has been
610 predicted to become ammonium amide ionic solid at 90 GPa²⁴⁰.

611
612 He insertion reactions are not only an example of unintuitive chemistry, but they also yield
613 compounds with interesting properties and suggest that He may be present in larger amounts than
614 previously thought in rocky planets. A recent theoretical work has shown that H₂O–He
615 compounds exhibit superionic phenomena²⁴¹, that is to say that He and H⁺ may diffuse in a
616 liquid-like state in the solid lattices formed by O²⁻ ions. Many minerals in the Earth's interior are

617 comprised of an unequal number of cations and anions, suggesting that they might host a
618 considerable amount of He. This remarkable reactivity of He under pressure might be key in
619 solving the supply shortage of He that is bound to happen in the near future because He is light
620 and escapes into space. For example, calculations showed that He could potentially be inserted
621 into FeO_2 and form stable FeO_2He compounds at the pressure conditions close to the mantle–
622 core boundary (>120 GPa)(Ref.²⁴²), indicating a large storage of He in that region.

623
624 The electrostatic driving force is not limited to He insertion reactions. Such an effect should
625 drive many other reactions that involve the rearrangement of highly charged or polarized atoms.
626 However, most of the reactions involve large charge transfer among the reactants and the
627 formation or destruction of various chemical bonds. The change of the Madelung energy is either
628 included in these strong chemical interactions or is dwarfed by them; therefore, it is not the
629 determining factor for these chemical reactions regardless of the pressure.

630
631 **[H1] Future directions and challenges**

632
633 Despite the tremendous progress in high-pressure studies during the past decades, we are still at
634 the beginning of a long journey and many new discoveries will continuously surprise us. We can
635 nevertheless project the current progress to a future that embraces higher pressures, more
636 complex substances, such as ternary and quaternary compounds, and the quenching and
637 application of some of these new materials to ambient conditions.

638
639 First, high-pressure experiments and simulations will continue to discover new atypical
640 compounds in the pressure range that is commonly accessible by current experimental techniques
641 (< 200 GPa). Many binary materials have already been studied, but there are numerous ternary,
642 quaternary and more complex systems that are awaiting to be predicted or synthesized. For
643 reasons similar to those that can be used to explain the large variety of homonuclear species
644 present in atypical binary compounds under pressure, many ternary or quaternary compounds
645 with more complicated species (homonuclear or heteronuclear) may also be stable. Furthermore,
646 many new atypical compounds involving orbitals that are unoccupied at 1 atm, or those that are
647 centered on interstitial sites are expected to be stable at pressures lower than 200 GPa. Some of
648 them may contain heavy elements with strong spin–orbit interactions and could potentially
649 behave as new topological insulators, Weyl metals, strongly correlated materials and non-BCS
650 superconductors.

651
652 The access to higher pressures, especially above 200 GPa, will open a new territory of high-
653 pressure chemistry. As the pressure increases to 500 GPa or 1 TPa, the atoms come close enough
654 so their core electrons are activated, making ‘core chemistry’ increasingly important. In this
655 regime, elements will transform and behave as new chemical species. For example, most of the
656 alkali and alkaline earth elements (such as Cs, Rb, K, Ra, Ba and Sr) might behave like p-block
657 elements, because the electrons filling inner p orbitals can be activated. Some p-block elements,
658 especially those with higher Z (such as Pb, Bi, In, Sn and Te), might behave like transition
659 metals because their filled d -shells become involved in forming chemical bonds with
660 neighboring atoms. It is expected that core chemistry will be essential to the properties of
661 materials under extremely high pressures and temperatures that are present at the conditions of
662 the interiors of large extraterrestrial planets.

663
664 We should not forget that high-pressure techniques are becoming indispensable to obtain new
665 materials with unusual properties. These techniques can complement more conventional
666 synthesis approaches to discover new materials. It is important to develop methods that can be
667 used to quench the materials to low or ambient pressures. This can be achieved by increasing the
668 kinetic barriers towards decomposition and/or inducing chemical pressure. The latter can be
669 created when an atom or ion is located at a crystalline site that is smaller than the atomic or ionic
670 radius.²⁴³ For example, we may apply high pressure method to synthesize new electride materials.
671 These materials usually have atypical compositions because they consist of additional alkali and
672 alkaline earth metals that can provide an excess number of electrons. Because high pressure is an
673 effective method to stabilize atypical compounds, it can be used to greatly increase the chemical
674 space for new electride materials. Furthermore, as shown in several cases, the insertion of other
675 elements that can increase the size of interstitial spaces will promote the formation of electrides,
676 because it lowers the 1s orbital energies of ISQs. This suggests that we may greatly improve our
677 chances to find electride materials in ternary compounds under moderate pressures, and recover
678 them at ambient conditions.
679
680 High-pressure experiments, computer simulations and data science will need to work together
681 and overcome many challenges to successfully undertake future studies. It is also crucial to
682 develop an understanding of how chemical bonding and reactivity change under pressure. The
683 general propensity of increased homogeneity under pressure and its effects on the structures and
684 properties of materials dominated high-pressure studies for the last several decades. However,
685 the numerous recent discoveries of new compounds with atypical compositions show that
686 homogeneity may decrease under pressure. The quantum mechanical features of electrons
687 (directional bonds, inhomogeneous charge distribution, low symmetry) might be magnified by
688 pressure. Indeed, it is the enhanced tendency to form homonuclear bonds and the reordering of
689 the energies of various quantum orbitals (atomic and non-atomic) that leads to the formation of a
690 plethora of new chemical species, with a large variation of oxidation states. These trends and
691 many other high-pressure effects might play important roles in complex materials such as ternary
692 and quaternary compounds, leading to a boundless treasure trove of new materials and
693 phenomena. The exploration of this new world of chemistry has just begun.
694
695 **Acknowledgements** M.M. and Y.S. acknowledge the support of NSF CAREER award 1848141,
696 and computational resources provided by XSEDE (TG-DMR130005). M.M. also acknowledges
697 the support of ACS PRF 50249-UNI6. E. Z. acknowledges the support of NSF (DMR-1827815),
698 and DOE (DE-SC0020340). H.L. acknowledges financial support from NSAF U1930402
699 and computational resources from the Beijing Computational Science Research Center.
700
701 **Competing financial interests** The authors declare no competing financial interest.
702
703 **Author contributions:**
704 M.M. conceived the synopsis of the article, proposed the conceptual framework and wrote the
705 first draft. M.M. and E.Z. made major revisions to the article. E.Z. wrote Box1 and made major
706 contributions to the section on hydrides. Y.S. made Table 1, Figure 1, contributed to the
707 literature search and helped with other figures. H.L. supported and discussed the research and
708 writing.
709

709

710 [H1] ToC blurb:

711 High pressure leads to striking new chemistry. Many new compounds with atypical compositions
 712 and a plethora of novel chemical species can be stabilized by the formation of homonuclear
 713 bonds and of the activation of core electrons, non-valence and non-atomic orbitals.

714

715

716

717

718

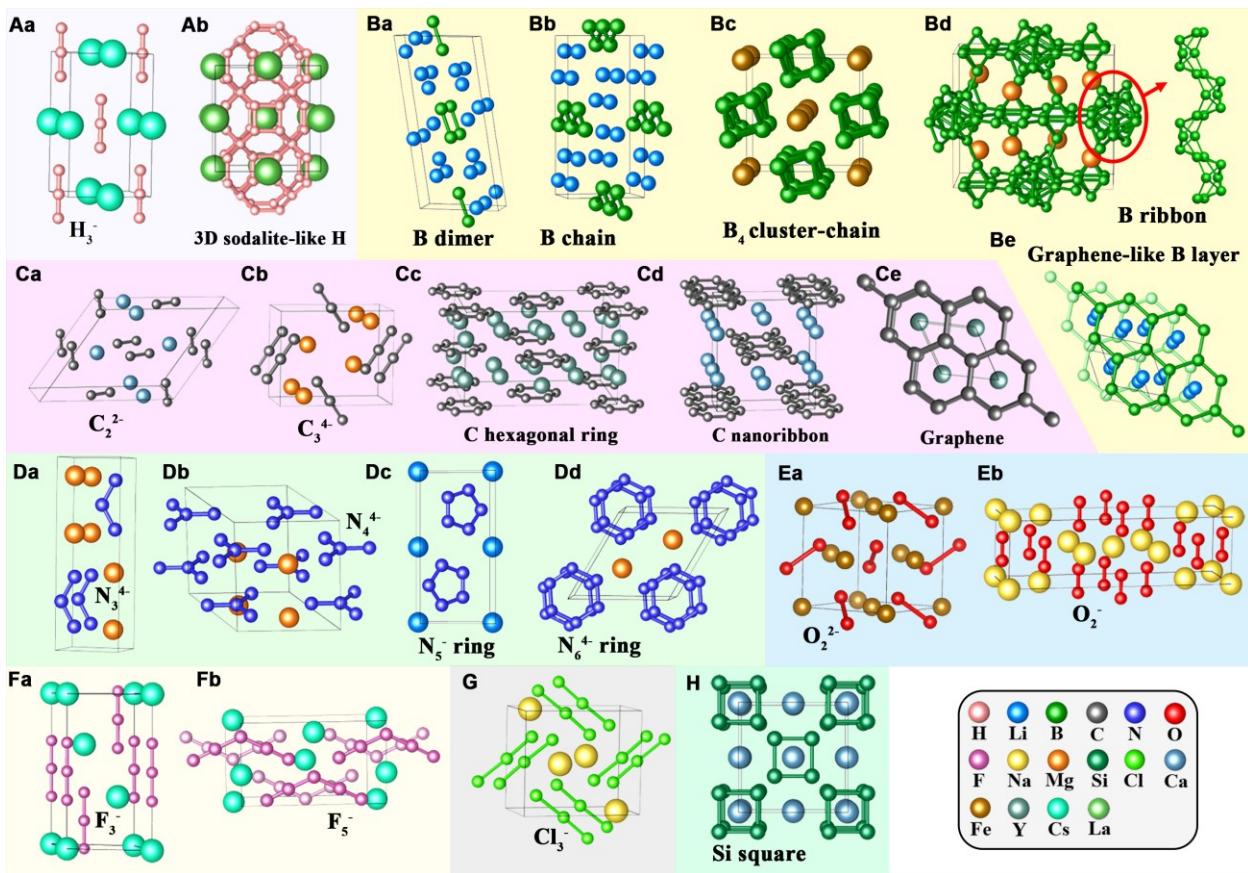
719

720

721

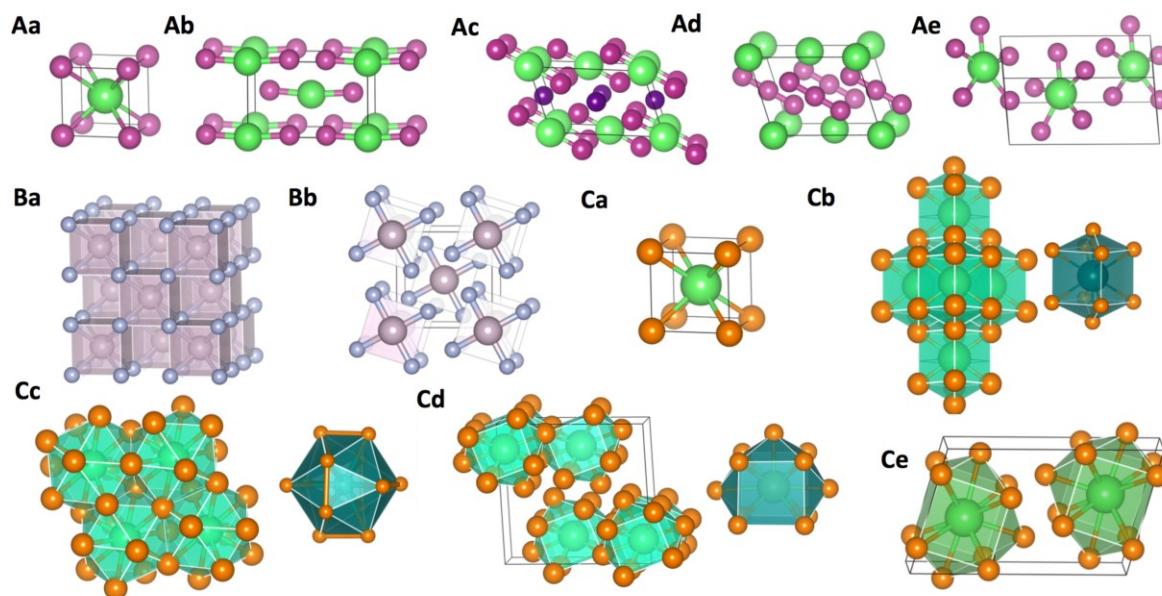
722

723 Table 1: Representative chemical-species/structural-motifs found in high-pressure atypical compounds

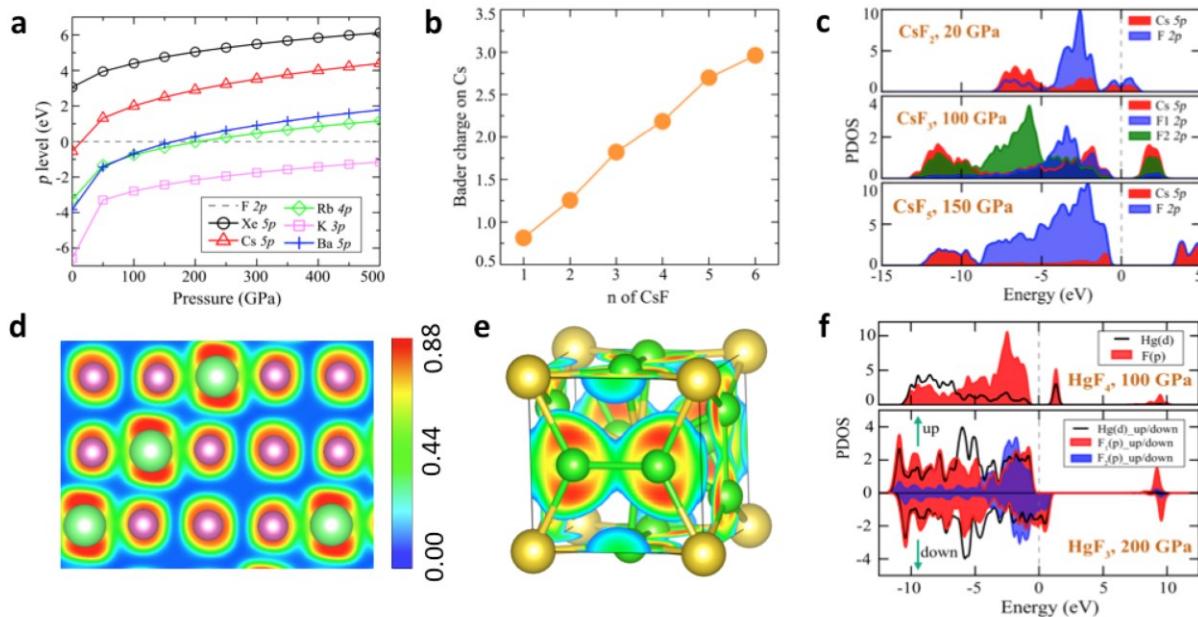

724

Element	Structural Motif	Compound	Structure	Homonuclear bond length (Å)	Pressure (GPa)	Ref.
Motifs formed by homonuclear bonds						
Hydrogen	H ₂	NaH ₃	Cmcm	0.755 (50 GPa)	50	80
	Linear and bent H ₃ ⁻ (Fig. 1Aa)	CsH ₃	Cmmm	0.961 (50 GPa)	30–200	84
	H ₃ ⁺	H ₅ Cl	Cc	0.870 (300 GPa)	100–300	86
	1D helical chain	SrH ₆	R $\bar{3}$ m	1.033 (250 GPa)	250	87
	3D cage (Fig. 1Ab)	CaH ₆	Im $\bar{3}$ m	1.238 (150 GPa)	50–200	89
		LaH ₁₀	Fm $\bar{3}$ m	1.068–1.157 (300 GPa)	200–300	54,56
Boron	B anion	Li ₆ B	R $\bar{3}$ m	--	100–200	76
	B dimers (Fig. 1Ba)	Li ₄ B	C2/m	1.631 (50 GPa)	50	76
	B icosahedron	B ₆ O	--	--	4–5.5 (exp.)	244
	B chains (Fig. 1Bb)	Li ₂ B	Cmcm	1.646 (100 GPa)	50–100	76
	B ₄ cluster–chains (Fig. 1Bc)	FeB ₄	I4/m	1.599 (500 GPa)	100–542	105
	B ribbons (Fig. 1Bd)	MgB ₆	Cmcm	1.742 (18 GPa)	0–18.3	120
	Graphene-like layers (Fig. 1Be)	LiB	P6 ₃ /mmc	1.761 (50 GPa)	1–70	76
	3D covalent B network	FeB ₄	Imma	1.499–1.596 (600 GPa)	542–1000	105
			Immm	1.684–1.917 (0 GPa)	0	113
Carbon	C ₂ ²⁻ (Fig. 1Ca)	CaC ₂	C2/m	1.258 (0 GPa)	0–0.5	122
	C ₂ ⁴⁻	ThC ₂	C2/c	1.330 (1 atm)	0–3	125
	C ₃ ⁴⁻ (Fig. 1Cb)	Mg ₂ C ₃	Pnnm	1.330 (1 GPa)	0–5.8	126
	C hexagonal rings (Fig. 1Cc)	Y ₂ C ₃	Fmmm	1.497 (50 GPa)	32–137	123
	C polymer chains	CaC ₂	Cmcm	1.400–1.460 (16 GPa)	0–16	121
			Cmcm	1.394–1.452 (4 GPa)	0.5–15.2	122
	C nanoribbons (Fig. 1Cd)	CaC ₂	Immm	1.468–1.516 (15.2 GPa)	15.2–105.8	122
			Immm	1.480–1.550 (20 GPa)	16–20	121
	Graphene (Fig. 1Ce)	YC ₂	P6/mmm	1.434 (300 GPa)	267–300	128
	C multi-layers	C ₃ N	R3m	1.509–1.572 (1 atm)	15.4–100	131
Nitrogen	N ₂ ⁴⁻ anion	ReN ₂	P2 ₁ /c	1.412 (1 atm)	1 atm	137
	[N ₂] ²⁻	FeN ₂	Pnnm	1.307 (58.5 GPa)	58.5 (exp.)	138
	N zig–zag chains	FeN ₄	P $\bar{1}$	1.291–1.303 (135 GPa)	135 (exp.)	138
	[N ₄] ⁴⁻	Mg ₂ N ₄	P2 ₁ /n	1.303–1.339 (58.5 GPa)	58.5 (exp.)	139
	N–N chain	MgN ₄	Ibam	1.311–1.325 (58.5 GPa)	58.5 (exp.)	139
	planar triadius N ₄	FeN ₂	P6 ₃ /mcm	1.250 (228 GPa)	228	142
	N ₃ ⁻ anion	LiN ₃	C2/m	1.199 (1 atm)	0–60 (exp.)	132
		CsN ₃	I4/mcm	1.199 (0 GPa)	0–6	136
	N ₃ ⁴⁻ anion (Fig. 1Da)	Mg ₂ N ₃	Imm2	1.428 (0 GPa)	37–100	141
			Pmmn	1.371 (50 GPa)	33–126	140

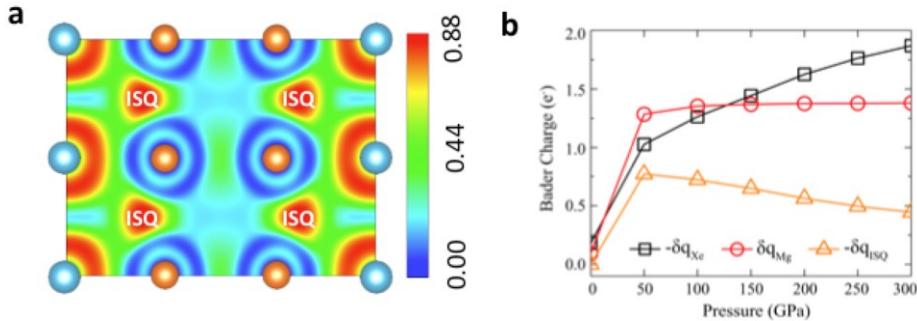
	N_2^{2-} anion	MgN ₂	Cmcm	1.260 (5 GPa)	5–40	141	
		PtN ₂	Pa $\bar{3}$	1.410 (1 atm)	50 (exp.)	133	
	N_4^{4-} anion (Fig. 1Db)	MgN ₂	P6 ₃ /mcm	1.351 (0 GPa)	40–100	141	
		LiN ₅	P2 ₁ /m	1.300 (20 GPa)	10–100	51	
	N_5^- rings (Fig. 1Dc)		P2 ₁ /c	1.286–1.305 (50 GPa)	15–50	52	
			P $\bar{1}$	1.393 (0 GPa)	80–100	141	
	Oxygen	O ₂ ²⁻ (Fig. 1Ea)	FeO ₂	Pa $\bar{3}$	1.756 (76 GPa)	76 (exp.)	
		O ₂ ⁻ (Fig. 1Eb)	NaO ₂	Immm	1.317 (5 GPa)	0–20	
Fluorine	F ₃ ⁻ (Fig. 1Fa)	CsF ₃	C2/m	1.739 (0 GPa)	15–30	60	
			R $\bar{3}$ m	1.742 (0 GPa)	0–30	156	
	F ₅ ⁻ (Fig. 1Fb)	CsF ₅	C2/c	1.299 (10 GPa)	4–21	156	
Chlorine	Cl ₃ ⁻ (Fig. 1G)	NaCl ₃	Pnma	--	18–60 (exp.)	50	
			Pnma	2.804 (40 GPa)	20–48	50	
Silicon	Si ₄ tetragon	NaSi	C2/c	2.376–2.403 (0 GPa)	1 atm	246	
	Si square (Fig. 1H)	CaSi	I4/mmm	2.107 (20 GPa)	12–50	164	
	Zig-zag Si chain	BaSi	Imma	2.309 (20 GPa)	6–65	163	
	Si layer	CsSi ₆	Im $\bar{3}$ m	2.361 (1 atm)	0–8.4	165	
	Si cage	CsSi ₆	C2/m	2.435–2.560 (0 GPa)	20.8–30	165	

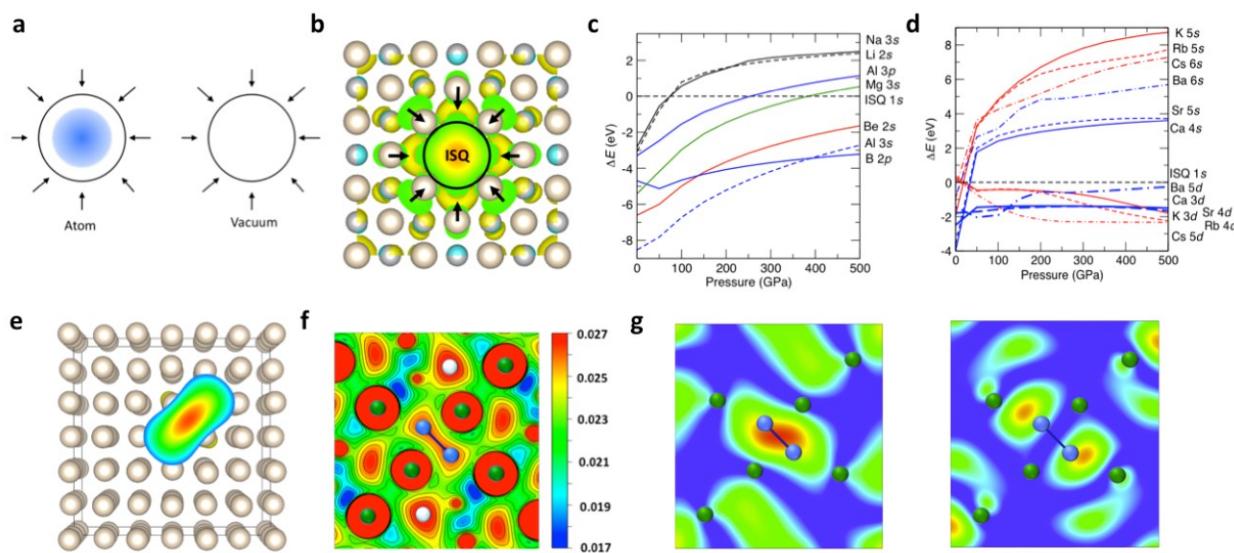

Motifs resulting from the participation of core electrons and non-valence outer orbitals

Cs (5p core electrons)	Cs–F ₈ cube (Fig. 2Aa)	CsF	Pm $\bar{3}$ m	3.206 (0 GPa)	5–200	60
	CsF ₂ (Fig. 2Ab)	CsF ₂	I4/mmm	2.358 (20 GPa)	5–17	60
	CsF ₂ ⁺ (Fig. 2Ac)	CsF ₃	C2/m	2.015 (100 GPa)	30–200	60
	CsF ₅ (Fig. 2Ae)	CsF ₅	Fdd2	1.886–1.957 (150 GPa)	50–200	60
Hg (5d semi-core electrons)	Hg–F ₈ cube (Fig. 2Ba)	HgF ₃	Fm $\bar{3}$ m	2.181–2.519 (100 GPa)	73–500	70
	HgF ₄ (Fig. 2Bb)	HgF ₄	I4/m	1.949–2.532 (50 GPa)	73–200	70
Cs (5d non-valence orbitals)	Cs–Li ₈ cube (Fig. 2Ca)	LiCs	Pm $\bar{3}$ m	2.396 (150 GPa)	150–200	71
	Cs–Li ₁₀ dodecahedrons (Fig. 2Cb)	Li ₂ Cs	I4/mmm	2.086–2.233 (150 GPa)	Metastable 100–200	71
	Cs–Li ₁₂ icosahedrons (Fig. 2Cc)	Li ₃ Cs	Pnna	2.200 (150 GPa)	150–200	71
	Cs–Li ₁₁ tri-capped cube (Fig. 2Cd)	Li ₄ Cs	C2/m	2.120–2.330 (150 GPa)	150	71
	Cs–Li ₁₁ tri-capped cube (Fig. 2Ce)	Li ₅ Cs	P2/m	2.120–2.330 (150 GPa)	100–150	71

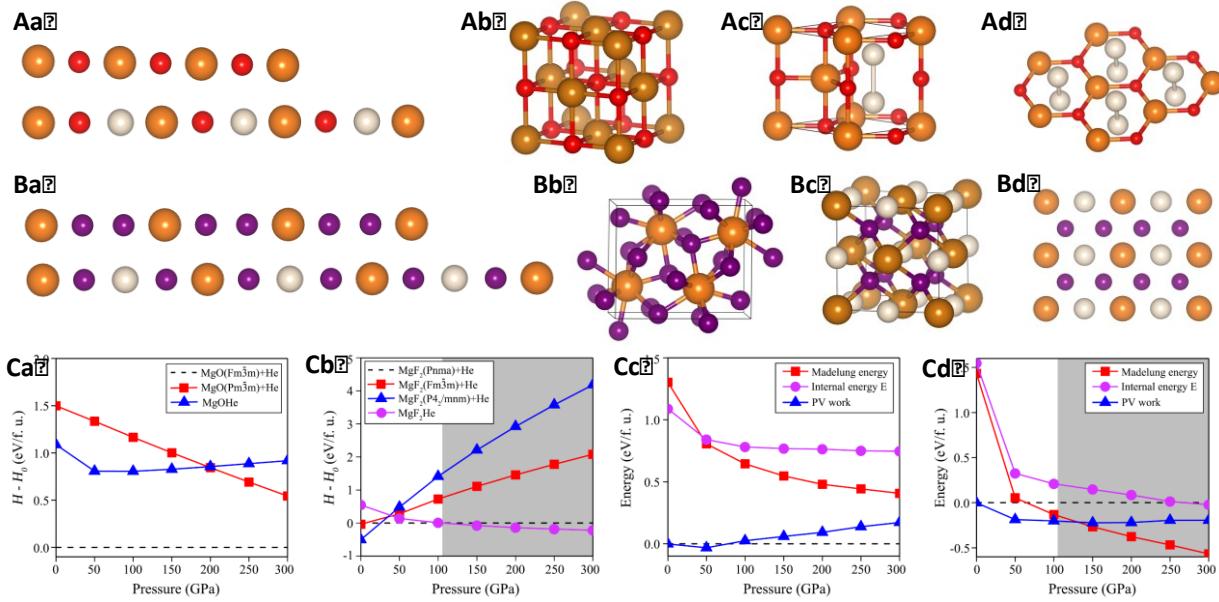


726
727


728 **Figure 1. Selected homonuclear species present in atypical high-pressure compounds.** A|
729 Hydrogen homonuclear species, including H_3^- in CsH_3 (Ref.⁸⁴) (part Aa) and 3D sodalite-like H
730 in LaH_{10} (Refs^{54,56}) (part Ab). LaH_{10} was predicted to be stable between 200 – 300 GPa
731 (Refs^{54,56}). B| Boron homonuclear species, including B dimers in Li_4B (Ref.⁷⁶) (part Ba), B
732 chains in Li_2B (Ref.⁷⁶) (part Bb), B_4 cluster-chains in FeB_4 (Ref.¹⁰⁵) (part Bc), B ribbons in
733 MgB_6 (Ref.¹²⁰) (part Bd), and graphene-like B layers in LiB (Ref.⁷⁶) (part Be). C| Carbon
734 homonuclear species, including C_2^{2-} in CaC_2 (Ref.¹²²) (part Ca), C_3^{4-} in Mg_2C_3 (Ref.¹²⁶) (part
735 Cb), C hexagonal rings in Y_2C_3 (Ref.¹²³) (part Cc), C nanoribbons in CaC_2 (Ref.¹²²) (part Cd),
736 and graphene in YC_2 (Ref.¹²⁸) (part Ce). D| Nitrogen homonuclear species, including N_3^{4-} in
737 Mg_2N_3 (Ref.¹⁴¹) (part Da), N_4^{4-} in MgN_2 (Ref.¹⁴¹) (part Db), N_5^- rings in LiN_5 (Ref.⁵¹) (part Dc),
738 and N_6^{4-} rings in MgN_3 (Ref.¹⁴¹) (part Dd). LiN_5 has been predicted to be stable between 10 –
739 100 GPa by DFT^{51,52} and has been synthesized by DAC experiments at 45 – 72 GPa.¹⁴⁷ E|
740 Oxygen homonuclear species, including O_2^{2-} in FeO_2 (Refs^{149,150}) (part Ea), and O_2^- in NaO_2
741 (Ref.²⁴⁵) (part Eb). F| Fluorine homonuclear species, including F_3^- in CsF_3 (Refs^{60,156}) (part Fa),
742 and F_5^- in CsF_5 (Ref.¹⁵⁶) (part Fb). G| Chlorine homonuclear species, such as Cl_3^- in NaCl_3
743 (Ref.⁵⁰). H| Silicon homonuclear species such as Si squares in CaSi (Ref.¹⁶⁴). Details on
744 structures, stable pressures and bond lengths for each motif and compound are reported in Table
745 1.
746


Figure 2. Predicted structural evolution of compounds formed via the involvement of non-valence electrons and orbitals under pressure. A| Structures of CsF_n ($n = 1-5$) compounds under pressure.⁶⁰ ${}^{60}\text{CsF}$ adopts the CsCl structure ($\text{Pm}\bar{3}\text{m}$), in which a Cs atom is coordinated to 8 F atoms, at pressures higher than 5 GPa (part Aa). The coordination number of Cs dramatically decreases while its $5p$ core electrons are forced to participate in bond formation. CsF_2 ($\text{C}2/\text{m}$ at 20 GPa) consists of linear CsF_2 molecules (part Ab). CsF_3 ($\text{C}2/\text{m}$) consists of F^- anions and CsF_2^+ linear molecular cations at 100 GPa (part Ac). When this structure is relaxed to lower pressures (< 30 GPa), the actual formula becomes $\text{Cs}^+[\text{F}_3]^-$ (part Ad). CsF_5 ($\text{Fdd}2$) consists of planar pentagonal (star-fish) CsF_5 molecules at 150 GPa (part Ae). B| Structures of HgF_n compounds under pressure (Ref.⁷⁰), including HgF_3 in an $\text{Fm}\bar{3}\text{m}$ structure at 100 GPa (part Ba) and HgF_4 in an $\text{I}4/\text{m}$ structure at 50 GPa (part Bb). HgF_3 adopts the Li_3Bi structure, in which Hg^{I} occupies the tetrahedral sites of the face-centered cubic Hg lattice and Hg^{II} occupies the octahedral sites. In contrast, the HgF_4 structure consists of square planar HgF_4 molecules. The coordination number of Hg decreases from that of 14 (8 with $\text{F}^{\text{I}} + 6$ with F^{II}) in HgF_3 to 4 in HgF_4 . C| Structures of Li_nCs compounds under pressure,⁷¹ including LiCs in the $\text{Pm}\bar{3}\text{m}$ structure (part Ca), Li_2Cs in the $\text{I}4/\text{mmm}$ structure (part Cb), Li_3Cs in the Pnna structure together with the deformed icosahedron containing Li-Li dimers (part Cc), Li_4Cs in a $\text{C}2/\text{m}$ structure together with the tri-capped cube Li polyhedron (part Cd), and Li_5Cs in a $\text{P}2/\text{m}$ structure (part Ce). The coordination number of Cs increases from 8 in LiCs to 10 in Li_2Cs , to 12 in Li_3Cs and then decreases to 11 in Li_4Cs and Li_5Cs . MgXe and Mg_2Xe adopt the same structures as LiCs and Li_2Cs , respectively. Parts Ab – Ae are adapted from REF⁶⁰. Springer Nature Limited, parts Ba – Bb are adapted with permission from REF⁷⁰. Wiley-VCH, parts Ca – Ce are adapted from REF⁷¹. Springer Nature Limited.

777
778 **Figure 3. Chemistry of core electrons.** Electronic structures and bonding features of
779 compounds formed because of the activation of core electrons under pressure. **a** | Energies of the
780 outermost filled p levels of select elements, including F, Xe, Cs, Rb, K and Ba, as a function of
781 external pressure⁶⁰. The density functional theory (DFT) calculations show that the Cs 5p energy
782 becomes higher than the F 2p energy at pressures higher than 10 GPa, indicating that Cs can be
783 oxidized by F above the +1 state under these conditions. **b** | Calculated charges of Cs in CsF_n at
784 100 GPa, using Bader's quantum theory of atoms in molecules (QTAIM) analysis.²⁴⁷ The Bader
785 charges increase almost linearly with increasing F composition and are seemingly larger than +1,
786 strongly indicating the involvement of Cs 5p electrons in forming bonds with F (Ref.⁶⁰). **c** |
787 Calculated projected density of states (PDOS) for CsF_n ($n=2,3,5$) at 20, 100, and 150 GPa,
788 respectively. The results show strong overlap of the Cs 5p and F 2p states below and above the
789 Fermi level, indicating the involvement of Cs 5p electrons in the formation of covalent bonds
790 with F (Ref.⁶⁰). **d** | Calculated electron localization function (ELF) for CsF₃ at 100 GPa. The
791 large ELF values in the regions between Cs and F reveal strong covalent bonds between them⁶⁰.
792 **e** | ELF for NaCl₃ at 100 GPa (Ref. ⁵⁰). The results show that the bonding feature of NaCl₃ is
793 completely different to that of CsF_n compounds. There is no evidence of new Na–Cl bonds that
794 involve Na core electrons. Instead, Cl atoms form homonuclear bonds under pressure. **f** |
795 Calculated PDOS for HgF₄ at 100 GPa and HgF₃ at 200 GPa (Ref.⁷⁰). The results show that Hg
796 5d electrons are involved in the formation of Hg–F bonds because these states overlap with the F
797 2p states below and above the Fermi level. Hg in HgF₄ is in a d^8 configuration, which gives rise
798 to a small gap owing to the split of d levels in the square planar crystal field. In contrast, Hg in
799 HgF₃ is in a d^9 configuration, leading to a metallic state. HgF₃ is predicted to be metallic and
800 ferromagnetic, and exhibits an electronic structure that resembles a transparent hole conductor.
801 Parts **a** – **d** are adapted from REF⁶⁰. Springer Nature Limited. Part **f** is adapted with permission
802 from REF⁷⁰. Wiley-VCH
803



804
805 **Figure 4 | Chemistry of non-valence orbitals.** Mg₂Xe is an example of a compound whose
806 formation involves non-valence Xe 5d orbitals¹⁹². **a** | Calculated electron localization function
807 (ELF) for Mg₂Xe at 200 GPa in the I4/mmm structure showing a cut of the (100) plane. Large
808 ELF values not only appear at the Xe and Mg sites, but also at the interstitial sites, indicating that
809 Mg₂Xe is a high-pressure electride (HPE). Compared to Mg, which becomes an HPE at about
810 800 GPa¹⁹⁶, the presence of Xe atoms increases the interstitial volume, thereby greatly lowering
811 the pressure for forming an HPE. **b** | The Bader charges of Xe, Mg and interstitial quasi-atoms
812 (ISQs) in Mg₂Xe as a function of pressure. The plot shows a large charge transfer from Mg to
813 Xe, indicating that Xe is reduced in this unusual compound. Mg₂Xe is an HPE at a pressure as
814 low as 50 GPa. At higher pressures, the ISQ transfers charge to Xe because the Xe 5d orbital
815 energies decrease relative to that of the ISQ orbital. Both parts **a** and **b** are adapted with
816 permission from REF¹⁹². American Chemical Society.
817
818
819
820

821
822 **Figure 5. Quasiatoms and their chemistry.** Quantum orbitals of an interstitial quasi-atom
823 (ISQ) and their behavior, as calculated using first principles, under pressure^{68,229,230}. **a** |
824 Schematics of compressing an atom versus compressing an ISQ. The blue region represents the
825 core that repels the valence electrons. **b** | Helium matrix model that is used to examine the orbital
826

827 energies of atomic and ISQ orbitals as a function of pressure. The isosurface (iso = 0.001
828 e \cdot bohr $^{-3}$) shows the 1s orbital of ISQ. **c** | Orbital energies (in the helium containment model) of
829 an electron in the highest occupied orbital of selected group 1, 2, and 13 elements, referenced to
830 the energy of an electron in the 1s orbital of an ISQ as a function of pressure. **d** | Energies of the
831 valence *s* orbitals and the unoccupied *d* orbitals of several alkali metals referenced to an ISQ 1s
832 orbital under pressure. The valence orbitals of atoms are lower in energy than the 1s orbital of an
833 ISQ at ambient conditions. However, because of the presence of the core region, the energies of
834 most valence orbitals (such as *s* and *p*) increase faster than that of the ISQ under pressure and
835 might surpass the latter at large enough pressures. In contrast, the energies of *d* orbitals decrease
836 relative to that of the ISQ. Therefore, the presence of unoccupied *d* orbitals might prevent the
837 formation of HPEs. **e** | Covalent bonds can occur between quasi-atoms as can be observed from
838 the charge density of the bonding state between two ISQs located on the neighboring sites of a
839 He fcc matrix model.²²⁹ **f** | Charge density of HPE Li at 60 GPa. The plot shows the total
840 valence charge density (e \cdot bohr $^{-3}$) in a plane perpendicular to the b–c plane, Miller index (011). **g**
841 | Electron densities computed for the bonding (left) and the anti-bonding states (right) of the E^I–
842 E^I pairs in Aba2 Li at the Γ point at 60 GPa. These results show that if the two quasi-atoms are
843 close enough they might form strong covalent bonds. The formation of the ISQ–ISQ bonds and
844 the corresponding split of the energies between bonding and anti-bonding states are the origin of
845 the small band gap in HPE Li under high pressure. Parts a – d are adapted with permission from
846 REF⁶⁸. American Chemical Society, parts f – g are adapted with permission from REF²³⁰.
847 Willey-VCH.
848

849

850

851 **Figure 6. Chemistry without chemical bonds and the mechanism of He insertion in ionic**
 852 **compounds. A |** Helium insertion in AB type ionic compounds.²³⁵ The orange, red and white
 853 balls represent Mg, O and He atoms. **Aa |** The insertion of He will increase the distances between
 854 Mg and O atoms, causing the increase of electrostatic Madelung energy. **Ab |** MgO in the NaCl
 855 structure. The arrangement of Mg and O ions resemble that of the AB chain in part Aa. **Ac |**
 856 MgOHe in the P6₃/mmc structure. **Ad |** He atoms in MgOHe are located out of the plane to avoid
 857 a direct insertion in between Mg and O atoms as shown in Aa. **B |** Helium insertion in AB₂ type
 858 ionic compounds.²³⁵ The orange, dark blue and white balls represent Mg, F and He atoms. **Ba |**
 859 Insertion of He in between two neighboring F ions alleviates the strong repulsion between the
 860 two, therefore lowering the Madelung energy. **Bb |** MgF₂ in the low-symmetry Pnma structure
 861 that avoids the close contact of F atoms like the AB₂ chain in part Ba. **Bc |** He inserted MgF₂
 862 structure (Fm $\bar{3}$ m). **Bd |** (110) cut plane of MgF₂He in the Fm $\bar{3}$ m structure. The arrangement of
 863 Mg, F and He resemble the AB₂He chain in part Ba. **C |** Stability of the He inserted compounds
 864 and the change of Madelung energy.²³⁵ **Ca |** The enthalpy difference between MgO+He and
 865 MgOHe. **Cb |** The enthalpy difference between MgF₂+He and MgF₂He. **Cc |** Relative changes in
 866 PV work, internal energy, E, and Madelung energy for He insertion into MgO. **Cd |** Relative
 867 changes in PV work, internal energy E and Madelung energy for He insertion into MgF₂. The
 868 areas shaded in gray in **Cb** and **Cd** denote pressures in which the He-inserted compounds is
 869 stable. Parts Ca–Cd are adapted from REF²³⁵. Springer Nature Limited.

870

871

872 **Box 1. The basics of a priori crystal structure prediction techniques**

873
874 The structure of a crystal, the unit cell of which contains N atoms, can be described by $3N+3$
875 variables (3 unit cell vectors, 3 cell angles, and $3N-3$ atomic coordinates). Because the shape of
876 the potential energy surface (PES) is unknown, locating the global minimum requires comparing
877 the free energies of all of the local minima. However, because the number of minima increases
878 exponentially with N (Ref.²⁴⁸), this brute force approach can only be used to study simple
879 systems. A number of well-known metaheuristics designed to solve optimization problems have
880 been adapted towards crystal structure prediction (CSP). None of these algorithms are
881 guaranteed to find the optimal solution, but the chances of success can be dramatically enhanced
882 by focusing the search on chemically sensible structures (for example, those with reasonable
883 interatomic distances, atomic orderings and cell volumes). Because the stoichiometries and
884 crystal structures of high-pressure phases can differ drastically from those known at 1 atm
885 (Refs^{20,249}), the algorithms used to predict them cannot benefit from information found in
886 materials databases and require first-principles approaches, such as density functional theory, to
887 optimize the structures and evaluate their stability. Currently, these algorithms can reliably
888 predict the global minimum of elemental or binary systems the unit cells of which contain < 50
889 atoms, and advances towards more complex systems are being made^{6,21,250,69,251–253}.

890
891 **Random structure search.** This is a straightforward and yet still very powerful CSP method, in
892 which all of the $3N+3$ degrees of freedom of a crystal are chosen randomly, but sensibly. The ab
893 initio random structure searching (AIRSS)^{12,13} method is the best known algorithm of this type.

894
895 **Evolutionary/genetic algorithms (EA/GA).** These algorithms employ concepts from
896 evolutionary biology to sample the PES. First, they generate a chemically sensible, random set of
897 structures (seeding with particular structures is also possible), which are locally optimized. The
898 energy or enthalpy of each structure is used to determine its fitness, or probability to be chosen
899 as a parent for a subsequent generation. Children structures are constructed by cutting and
900 splicing two parental structures, or by mutating a single parent (for example, by permuting atoms
901 of different types, changing the shape of the unit cell or by displacing atoms). EAs can sample
902 the whole PES, and they learn from their history. USPEX^{16,18} and XtalOpt^{254,255} are among the
903 most widely used EAs for high pressure systems.

904
905 **Particle swarm optimization (PSO).** This approach, implemented in the CALYPSO code^{22,24},
906 was inspired by the collective movement of large groups of animals. (Quasi)random structures
907 are generated, and the trajectory used to sample the PES is determined by a structure's position
908 and velocity, as well as the position of the global minimum. The PES can be explored globally or
909 locally and random structures are continuously injected into the search to ensure that the whole
910 PES is sampled.

911
912 **Minima hopping.** This method uses molecular dynamics (MD) to explore the PES locally^{256,257}.
913 Each structure, which is optimized to the nearest minimum, is accepted or rejected based on its
914 energy relative to that of its predecessor. The energy difference corresponding to an allowed
915 move and the kinetic energy of the MD simulations are constantly altered so that 50% of the
916 structures are accepted. If a minimum is re-visited, the kinetic energy is increased so new regions
917 of the PES can be explored.

918
919 **Metadynamics.** This technique employs a history-dependent bias potential to accelerate
920 sampling of the PES by overcoming barriers so that new minima can be discovered²⁵⁸. It may be
921 used to search the PES locally or to study reaction pathways and rare phenomena.

922
923 **Simulated annealing.** Here the PES is explored using the Metropolis Monte Carlo method^{259,260}.
924 The temperature of the simulation is gradually decreased during a run so that fewer high-energy
925 structures are accepted, thereby mimicking the physical annealing process.

926
927
928 **Box 2. Rules that describe structure and bonding changes under pressure**

929
930 Because many factors are important in determining the structure that a solid adopts, codifying
931 them in a set of rules is a difficult task. Pauling's five rules of ionic crystal structures at ambient
932 pressure come closest⁶²:

- 933 1. The sum of the ionic radii determines the cation-anion distance, and the cation/anion
934 radius ratio determines the coordination number;
- 935 2. A stable ionic structure is arranged to preserve local electroneutrality, so that the sum of
936 the strengths of the electrostatic bonds to an anion equals the charge on that anion;
- 937 3. The sharing of edges and particular faces by two anionic polyhedra decreases the stability
938 of an ionic structure;
- 939 4. In a crystal containing different cations, those of high valency and small coordination
940 number tend not to share polyhedron elements with one another;
- 941 5. The number of essentially different kinds of constituents in a crystal tends to be small.

942
943 The way in which the structures of solids, and their bonding evolve under pressure adhere to a
944 few trends, many of which have been summarized in several sets of rules, including those of
945 Prewitt and Downs;⁶³ Grochala, Hoffmann, Feng, and Ashcroft;⁶⁴ Zhang, Wang, Lv and Ma⁶. A
946 number of the emergent trends agree with our chemical intuition. For example, under high
947 pressure the structures of solid compounds tend to:

- 948 i. become more homogeneous by compressing the longer and weaker bonds the most
949 ^{6,63,64};
- 950 ii. assume close-packed structures^{6,63};
- 951 iii. increase coordination numbers^{63,64};
- 952 iv. have higher symmetry⁶⁴;
- 953 v. exhibit more delocalized electronic states, which eventually bring about insulator-to-
954 metal transitions^{6,64}

955
956 However, phenomena that cannot be intuitively understood have been observed especially in
957 recent studies of atypical compounds. For example, it has been proposed that deviation from
958 close-packing of spheres may be used to achieve higher density⁶⁴, electrons might detach from
959 atoms^{6,64}, and repopulation of the atomic orbitals might change the chemical identity of the
960 atoms^{6,64}.

963 **BOX3. Several fundamental concepts for chemistry under pressure**

964

965 The key factors that lead to the formation of atypical compounds and/or new chemical properties
966 under high pressure can be summarized as:

967 i. Pressure enhances the formation of homonuclear bonds.

968 ii. Pressure changes/reorders the energies of quantum mechanical states (whether they
969 be atom centered or not), resulting in the redistribution of electron density, which
970 thereby changes an element's chemistry.

971 iii. Increased electrostatic interactions induce large driving forces for some reactions that
972 involve ions and polar molecules.

973

974 To further understand the way in which chemical bonds are perturbed under pressure, we can use
975 a diatomic Hückel model.⁷² For diatomic molecules, the Hückel secular equation and the
976 corresponding determinant are:

977

$$978 \begin{pmatrix} \alpha_A & \beta \\ \beta & \alpha_B \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = E \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} \begin{vmatrix} \alpha_A - E & \beta \\ \beta & \alpha_B - E \end{vmatrix} = 0$$

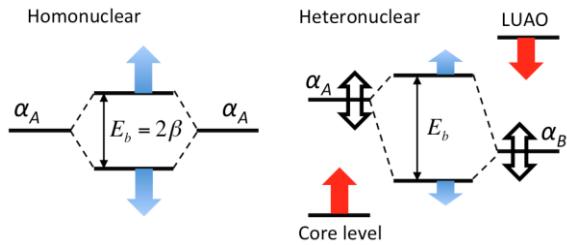
979

980 in which, $\alpha_{A,B} = \langle \varphi_{A,B} | H | \varphi_{A,B} \rangle$ are the Coulomb integrals, and $\beta = \langle \varphi_A | H | \varphi_B \rangle$ is the resonance
981 integral. The overlap integrals are neglected in the Hückel model. By solving the secular
982 equation, one can find the energies of the bonding and the antibonding states as the eigenvalues
983 E_1 and E_2 . The bond energy can be expressed as:

984 $E_b = E_2 - E_1 = \sqrt{(\alpha_A - \alpha_B)^2 + 4\beta^2}$

985 Under increasing compression, all Hamiltonian integrals change. Whereas $\alpha_A - \alpha_B$ might either
986 increase or decrease depending on the nature of the valence orbitals of atoms A and B, β always
987 increases under compression. Therefore, let us consider the change of β and assume $\alpha_A - \alpha_B$
988 remains unchanged. As β increases by an amount $\delta\beta$, the change in E_b is:

989 $\delta E_b = \frac{\partial E_b}{\partial \beta} \delta\beta = \frac{4\beta}{\sqrt{(\alpha_A - \alpha_B)^2 + 4\beta^2}} \delta\beta$


990 On one extreme, we have homonuclear bonds (panel on the left), for which $\alpha_A = \alpha_B$, therefore
991 $\delta E_b = 2\delta\beta$. In the opposite case, we have strongly polar heteronuclear bonds (panel on the right)
992 for which $\alpha_A \gg \alpha_B$ (assuming A is the electron donor), therefore $\alpha_A - \alpha_B \gg 2\beta$ and δE_b can be
993 simplified as:

994 $\delta E_b \approx \frac{4\beta}{\alpha_A - \alpha_B} \delta\beta \ll 2\delta\beta$

995 These results show that while bond energies increase, and the bonds therefore become stronger
996 under compression, this effect is more significant for less-polar bonds. **Hence, pressure can
997 increase the stability of homonuclear bonds or those that are less polar relative to highly polar
998 bonds or ionic bonds.**

999

1000

1001
1002

1003 The arrows in the schematic represent the response of the chemical bonding states and the atomic
1004 orbitals to the increasing pressure. Blue arrows correspond to the relative energetic shifts of
1005 bonding and antibonding states of diatomic bonds, which are larger for homonuclear bonds than
1006 for heteronuclear bond. Black arrows indicate the relative shifts of valence orbital energies of
1007 atoms A and B; they can be in both directions. Red arrows correspond to the relative shifts of the
1008 core levels and the lowest unoccupied atomic orbitals (LUAO). The chemical behavior of the
1009 atoms might change if the core level become close to or above α_B or the LUAO levels become
1010 close to or below α_A .
1011

1012 **References**

1013

1014 1. McMillan, P. F. Pressing on: the legacy of Percy W. Bridgman. *Nat. Mater.* **4**, 715–718
1015 (2005).

1016 2. Hemley, R. J. Percy W. Bridgman's second century. *High Pressure Research* **30**, 581–619
1017 (2010).

1018 3. Dubrovinsky, L., Dubrovinskaia, N., Prakapenka, V. B. & Abakumov, A. M.
1019 Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar.
1020 *Nat. commun.* **3**, 1163 (2012).

1021 4. Dubrovinsky, L. *et al.* The most incompressible metal osmium at static pressures above 750
1022 gigapascals. *Nature* **525**, 226–229 (2015).

1023 5. Dubrovinskaia, N. *et al.* Terapascal static pressure generation with ultrahigh yield strength
1024 nanodiamond. *Sci. Adv.* **2**, e1600341 (2016).

1025 6. Zhang, L., Wang, Y., Lv, J. & Ma, Y. Materials discovery at high pressures. *Nature
1026 Reviews Materials* **2**, 17005 (2017).

1027 7. Brazhkin, V. V. High-pressure synthesized materials: Treasures and hints. *High Pressure
1028 Research* **27**, 333–351 (2007).

1029 8. Shen, G. & Mao, H. K. High-pressure studies with x-rays using diamond anvil cells. *Rep.
1030 Prog. Phys.* **80**, 016101 (2017).

1031 9. Badding, J. V. High-pressure synthesis, characterization, and tuning of solid state materials.
1032 *Annu. Rev. Mater. Sci.* **28**, 631–658 (1998).

1033 10. Mao, H. K., Chen, X. J., Ding, Y., Li, B. & Wang, L. Solids, liquids, and gases under high
1034 pressure. *Rev. Mod. Phys.* **90**, 015007 (2018).

1035 11. Pickard, C. J. & Needs, R. J. High-pressure phases of silane. *Phys. Rev. Lett.* **97**, 045504
1036 (2006).

1037 12. Pickard, C. J. & Needs, R. J. Structures at high pressure from random searching. *Phys.
1038 Status Solidi B* **246**, 536–540 (2009).

1039 13. Pickard, C. J. & Needs, R. J. Ab initio random structure searching. *J. Phys.: Condens.
1040 Matter* **23**, 053201 (2011).

1041 14. Needs, R. J. & Pickard, C. J. Perspective: Role of structure prediction in materials
1042 discovery and design. *Appl Materials* **4**, 053210 (2016).

1043 15. Oganov, A. R. & Glass, C. W. Crystal structure prediction using ab initio evolutionary
1044 techniques: Principles and applications. *J. Chem. Phys.* **124**, 244704 (2006).

1045 16. Glass, C. W., Oganov, A. R. & Hansen, N. USPEX - Evolutionary crystal structure
1046 prediction. *Comput. Phys. Commun.* **175**, 713–720 (2006).

1047 17. Oganov, A. R., Lyakhov, A. O. & Valle, M. How evolutionary crystal structure prediction
1048 works and why. *Acc. Chem. Res.* **44**, 227–237 (2011).

1049 18. Lyakhov, A. O., Oganov, A. R., Stokes, H. T. & Zhu, Q. New developments in
1050 evolutionary structure prediction algorithm USPEX. *Comput. Phys. Commun.* **184**, 1172–
1051 1182 (2013).

1052 19. Zhu, Q., Oganov, A. R. & Zhou, X. F. Crystal structure prediction and its application in
1053 earth and materials sciences. *Top. Curr. Chem.* **345**, 223–256 (2014).

1054 20. Zurek, E. & Grochala, W. Predicting crystal structures and properties of matter under
1055 extreme conditions via quantum mechanics: The pressure is on. *Phys. Chem. Chem. Phys.*
1056 **17**, 2917–2934 (2015).

1057 21. Zurek, E. Discovering new materials via a priori crystal structure prediction. *Reviews in*
1058 *Computational Chemistry* 274–326 (2016).

1059 22. Wang, Y., Lv, J., Zhu, L. & Ma, Y. Crystal structure prediction via particle-swarm
1060 optimization. *Phys. Rev. B* **82**, 094116 (2010).

1061 23. Wang, Y., Lv, J., Zhu, L. & Ma, Y. CALYPSO: A method for crystal structure prediction.
1062 *Comput. Phys. Commun.* **183**, 2063–2070 (2012).

1063 24. Wang, H. *et al.* CALYPSO structure prediction method and its wide application. *Comput.*
1064 *Mater. Sci.* **112**, 406–415 (2016).

1065 25. Su, C. *et al.* Construction of crystal structure prototype database: Methods and applications.
1066 *J. Phys.: Condens. Matter* **29**, 165901 (2017).

1067 26. McMahon, M. I. & Nelmes, R. J. High-pressure structures and phase transformations in
1068 elemental metals. *Chem. Soc. Rev.* **35**, 943–963 (2006).

1069 27. Hemley, R. J., Jephcoat, A. P., Mao, H. K., Ming, L. C. & Manghnani, M. H. Pressure-
1070 induced amorphization of crystalline silica. *Nature* **334**, 52–54 (1988).

1071 28. Itie, J. P. *et al.* Pressure-induced coordination changes in crystalline and vitreous GeO₂.
1072 *Phys. Rev. Lett.* **63**, 398–401 (1989).

1073 29. Nunez-Regueiro, M., Marques, L., Hodeau, J. L., Bethoux, O. & Perroux, M. Polymerized
1074 fullerite structures. *Phys. Rev. Lett.* **74**, 278–281 (1995).

1075 30. Blank, V. D. *et al.* High-pressure polymerized phases of C₆₀. *Carbon* **36**, 319–343 (1998).

1076 31. Iota, V. Quartzlike carbon dioxide: An optically nonlinear extended solid at high pressures
1077 and temperatures. *Science* **283**, 1510–1513 (1999).

1078 32. Yong, X. *et al.* Crystal structures and dynamical properties of dense CO₂. *PNAS* **113**, 11110
1079 (2016).

1080 33. Yoo, C. S. *et al.* Crystal structure of carbon dioxide at high pressure: “Superhard”
1081 polymeric carbon dioxide. *Phys. Rev. Lett.* **83**, 5527–5530 (1999).

1082 34. Lin, J. F. & Tsuchiya, T. Spin transition of iron in the earth’s lower mantle. *Physics of the*
1083 *Earth and Planetary Interiors* **170**, 248–259 (2008).

1084 35. Lyubutin, I. S. *et al.* Spin transition of Fe²⁺ in ringwoodite (Mg, Fe)₂SiO₄ at high pressures.
1085 *Am. Mineral.* **98**, 1803–1810 (2013).

1086 36. Lin, J.-F. *et al.* Pressure-induced electronic spin transition of iron in magnesiowustite-(Mg,
1087 Fe)O. *Phys. Rev. B* **73**, 113107 (2006).

1088 37. Drickamer, H. G. & Frank, C. W. Electronic transitions and the high pressure chemistry and
1089 physics of solids. (Springer Science & Business Media, 2013).

1090 38. Buzea, C. & Robbie, K. Assembling the puzzle of superconducting elements: A review.
1091 *Supercond. Sci. Technol.* **18**, 1–8 (2005).

1092 39. Schilling, J. S. Superconductivity in the alkali metals. *High Pressure Research* **26**, 145–163
1093 (2006).

1094 40. Sakata, M., Nakamoto, Y., Shimizu, K., Matsuoka, T. & Ohishi, Y. Superconducting state
1095 of Ca-VII below a critical temperature of 29 K at a pressure of 216 GPa. *Phys. Rev. B* **83**,
1096 220512 (2011).

1097 41. Matsuoka, T. *et al.* Pressure-induced superconductivity in CaLi₂. *Phys. Rev. Lett.* **100**,
1098 197003 (2008).

1099 42. Chen, X. J. *et al.* Superconducting behavior in compressed solid SiH₄ with a layered
1100 structure. *Phys. Rev. Lett.* **101**, 077002 (2008).

1101 43. Li, Y., Hao, J., Liu, H., Li, Y. & Ma, Y. The metallization and superconductivity of dense
1102 hydrogen sulfide. *J. Chem. Phys.* **140**, 174712 (2014).

1103 44. Duan, D. *et al.* Pressure-induced metallization of dense $(\text{H}_2\text{S})_2\text{H}_2$ with high- T_c
1104 superconductivity. *Scientific reports* **4**, 6968 (2014).

1105 45. Drozdov, A. P., Eremets, M. I., Troyan, I. A., Ksenofontov, V. & Shylin, S. I. Conventional
1106 superconductivity at 203 kelvin at high pressures in the sulfur hydride system. *Nature* **525**,
1107 73–76 (2015).

1108 46. Errea, I. *et al.* High-pressure hydrogen sulfide from first principles: a strongly anharmonic
1109 phonon-mediated superconductor. *Phys. Rev. Lett.* **114**, 157004 (2015).

1110 47. Akashi, R., Sano, W., Arita, R. & Tsuneyuki, S. Possible ‘Magneli’ phases and self-
1111 alloying in the superconducting sulfur hydride. *Phys. Rev. Lett.* **117**, 075503 (2016).

1112 48. Li, X., Liu, H. & Peng, F. Crystal structures and superconductivity of technetium hydrides
1113 under pressure. *Phys. Chem. Chem. Phys.* **18**, 28791–28796 (2016).

1114 49. Errea, I. *et al.* Quantum hydrogen-bond symmetrization in the superconducting hydrogen
1115 sulfide system. *Nature* **532**, 81–84 (2016).

1116 50. Zhang, W. W. *et al.* Unexpected stable stoichiometries of sodium chlorides. *Science* **342**,
1117 1502–1505 (2013).

1118 51. Peng, F., Yao, Y., Liu, H. & Ma, Y. Crystalline LiN_5 predicted from first-principles as a
1119 possible high-energy material. *J. Phys. Chem. Lett.* **6**, 2363–2366 (2015).

1120 52. Shen, Y. *et al.* Novel lithium-nitrogen compounds at ambient and high pressures. *Scientific
1121 reports* **5**, 14204 (2015).

1122 53. Hemley, R. J., Ahart, M., Liu, H. & Somayazulu, M. Superconductivity and pressure: On
1123 the road to room-temperature superconductivity. in *Proceedings of the International
1124 Symposium - Superconductivity and Pressure: A Fruitful Relationship on the Road to Room
1125 Temperature Superconductivity* (ed. Alario y Franco, M. A.) 199–213 (2019).

1126 54. Liu, H., Naumov, I. I., Hoffmann, R., Ashcroft, N. W. & Hemley, R. J. Potential high- T_c
1127 superconducting lanthanum and yttrium hydrides at high pressure. *PNAS* **114**, 6990 (2017).

1128 55. Somayazulu, M. *et al.* Evidence for superconductivity above 260 K in lanthanum
1129 superhydride at megabar pressures. *Phys. Rev. Lett.* **122**, 027001 (2019).

1130 56. Peng, F. *et al.* Hydrogen clathrate structures in rare earth hydrides at high pressures:
1131 Possible route to room-temperature superconductivity. *Phys. Rev. Lett.* **119**, 107001 (2017).

1132 57. Drozdov, A. P. *et al.* Superconductivity at 250 K in lanthanum hydride under high
1133 pressures. *Nature* **569**, 528–531 (2019).

1134 58. Geballe, Z. M. *et al.* Synthesis and stability of lanthanum superhydrides. *Angew. Chem. Int.
1135 Ed. Engl.* **57**, 688–692 (2018).

1136 59. Zhu, L., Liu, H., Pickard, C. J., Zou, G. & Ma, Y. Reactions of xenon with iron and nickel
1137 are predicted in the earth’s inner core. *Nat. Chem.* **6**, 644–648 (2014).

1138 60. Miao, M. S. Cesium in high oxidation states and as a *p*-block element. *Nat. Chem.* **5**, 846–
1139 852 (2013).

1140 61. Dong, X. *et al.* A stable compound of helium and sodium at high pressure. *Nat. Chem.* **9**,
1141 440–445 (2017).

1142 62. Pauling, L. The nature of the chemical bond and the structure of molecules and crystals: An
1143 introduction to mode. (Cornell University Press, 1960).

1144 63. Prewitt, C. T. & Downs, R. T. Chapter 9 High-pressure crystal chemistry.

1145 64. Grochala, W., Hoffmann, R., Feng, J. & Ashcroft, N. W. The chemical imagination at work
1146 in very tight places. *Angew. Chem. Int. Ed. Engl.* **46**, 3620–3642 (2007).

1147 65. Ashcroft, N. W. & Mermin, N. D. *Solid State Physics*. (Holt, Rinehart and Winston, 1976).

1148 66. Hanfland, M., Syassen, K., Christensen, N. E. & Novikov, D. L. New high-pressure phases
1149 of lithium. *Nature* **408**, 174–178 (2000).

1150 67. Ma, Y. *et al.* Transparent dense sodium. *Nature* **458**, 182–185 (2009).

1151 68. Miao, M.-S. & Hoffmann, R. High pressure electrides: A predictive chemical and physical
1152 theory. *Acc. Chem. Res.* **47**, 1311–1317 (2014).

1153 69. Oganov, A. R., Pickard, C. J., Zhu, Q. & Needs, R. J. Structure prediction drives materials
1154 discovery. *Nature Reviews Materials* **4**, 331–348 (2019).

1155 70. Botana, J. *et al.* Mercury under pressure acts as a transition metal: Calculated from first
1156 principles. *Angew. Chem. Int. Ed. Engl.* **54**, 9280–9283 (2015).

1157 71. Botana, J. & Miao, M. S. Pressure-stabilized lithium caesides with caesium anions beyond
1158 the -1 state. *Nat. commun.* **5**, 4861 (2014).

1159 72. Housecroft, C. E. & Sharpe, A. G. Inorg. chem. (Pearson, 2012).

1160 73. Cotton. Advanced inorganic chemistry, 6th ED. (Wiley India Pvt. Limited, 2007).

1161 74. Janka, O. & Kauzlarich, S. M. Zintl compounds. *Encyclopedia of Inorganic and
1162 Bioinorganic Chemistry* 1–14 (2014).

1163 75. Scharfe, S., Kraus, F., Stegmaier, S., Schier, A. & Fässler, T. F. Zintl ions, cage
1164 compounds, and intermetalloid clusters of group 14 and group 15 elements. *Angew. Chem.
1165 Int. Ed.* **50**, 3630–3670 (2011).

1166 76. Peng, F., Miao, M., Wang, H., Li, Q. & Ma, Y. Predicted lithium-boron compounds under
1167 high pressure. *J. Am. Chem. Soc.* **134**, 18599–18605 (2012).

1168 77. Hermann, A. *et al.* LiB and its boron-deficient variants under pressure. *Phys. Rev. B* **86**,
1169 144110 (2012).

1170 78. Ashcroft, N. W. Hydrogen dominant metallic alloys: High temperature superconductors?
1171 *Phys. Rev. Lett.* **92**, 187002 (2004).

1172 79. Ashcroft, N. W. Metallic hydrogen - a high-temperature superconductor. *Phys. Rev. Lett.*
1173 **21**, 1748 (1968).

1174 80. Struzhkin, V. V. *et al.* Synthesis of sodium polyhydrides at high pressures. *Nat. Commun.*
1175 **7**, 1–8 (2016).

1176 81. Pépin, C., Loubeyre, P., Occelli, F. & Dumas, P. Synthesis of lithium polyhydrides above
1177 130 GPa at 300 K. *PNAS* **112**, 7673–7676 (2015).

1178 82. Mishra, A. K. *et al.* New calcium hydrides with mixed atomic and molecular hydrogen. *J.
1179 Phys. Chem. C* **122**, 19370–19378 (2018).

1180 83. Hooper, J. & Zurek, E. Rubidium polyhydrides under pressure: Emergence of the linear H_3^-
1181 species. *Chemistry* **18**, 5013–5021 (2012).

1182 84. Shamp, A., Hooper, J. & Zurek, E. Compressed cesium polyhydrides: Cs^+ sublattices and
1183 H_3^- three-connected nets. *Inorg. Chem.* **51**, 9333–9342 (2012).

1184 85. Wang, H., Li, X., Gao, G., Li, Y. & Ma, Y. Hydrogen-rich superconductors at high
1185 pressures. *Wiley Interdisciplinary Reviews: Computational Molecular Science* **8**, e1330
1186 (2018).

1187 86. Wang, Z., Wang, H., Tse, J. S., Iitaka, T. & Ma, Y. Stabilization of H_3^+ in the high pressure
1188 crystalline structure of H_nCl ($n = 2–7$). *Chem. Sci.* **6**, 522–526 (2014).

1189 87. Hooper, J., Terpstra, T., Shamp, A. & Zurek, E. Composition and constitution of
1190 compressed strontium polyhydrides. *J. Phys. Chem. C* **118**, 6433–6447 (2014).

1191 88. Wang, Y., Wang, H., Tse, J. S., Iitaka, T. & Ma, Y. Structural morphologies of high-
1192 pressure polymorphs of strontium hydrides. *Phys. Chem. Chem. Phys.* **17**, 19379–19385
1193 (2015).

1194 89. Wang, H., Tse, J. S., Tanaka, K., Iitaka, T. & Ma, Y. Superconductive sodalite-like
1195 clathrate calcium hydride at high pressures. *PNAS* **109**, 6463 (2012).

1196 90. Shamp, A. & Zurek, E. Superconductivity in hydrides doped with main group elements
1197 under pressure. *Novel Superconducting Materials* **3**, 14–22 (2017).

1198 91. Martinez-Canales, M. *et al.* Novel structures and superconductivity of silane under
1199 pressure. *Phys. Rev. Lett.* **102**, 087005 (2009).

1200 92. Cui, W. *et al.* Hydrogen segregation and its roles in structural stability and metallization:
1201 silane under pressure. *Scientific reports* **5**, 13039 (2015).

1202 93. Li, Y. *et al.* Superconductivity at approximately 100 K in dense SiH₄(H₂)₂ predicted by first
1203 principles. *PNAS* **107**, 15708–15711 (2010).

1204 94. Mahdi Davari Esfahani, M. *et al.* Superconductivity of novel tin hydrides (Sn_nH_m) under
1205 pressure. *Scientific reports* **6**, 22873 (2016).

1206 95. Gao, G. *et al.* Superconducting high pressure phase of germane. *Phys. Rev. Lett.* **101**,
1207 107002 (2008).

1208 96. Yuan, Y. *et al.* Stoichiometric evolutions of PH₃ under high pressure: Implication for high-
1209 T_c superconducting hydrides. *National Science Review* **6**, 524–531 (2019).

1210 97. Flores-Livas, J. A., Sanna, A. & Gross, E. K. U. High temperature superconductivity in
1211 sulfur and selenium hydrides at high pressure. *Eur. Phys. J. B* **89**, 1–6 (2016).

1212 98. Flores-Livas, J. A. *et al.* Superconductivity in metastable phases of phosphorus-hydride
1213 compounds under high pressure. *Phys. Rev. B* **93**, 020508 (2016).

1214 99. Errea, I. *et al.* Quantum crystal structure in the 250-kelvin superconducting lanthanum
1215 hydride. *Nature* **578**, 66–69 (2020).

1216 100. Zurek, E. & Bi, T. High-temperature superconductivity in alkaline and rare earth
1217 polyhydrides at high pressure: A theoretical perspective. *J. Chem. Phys.* **150**, 050901
1218 (2019).

1219 101. Li, P. *et al.* New high pressure phase of yttrium metal under ultrahigh pressure. *Comput.
1220 Mater. Sci.* **159**, 428–431 (2019).

1221 102. Zurek, E. Viewpoint: Pushing towards room-temperature superconductivity. *Physics* **12**, 1
1222 (2019).

1223 103. Flores-Livas, J. A. *et al.* A perspective on conventional high-temperature superconductors
1224 at high pressure: Methods and materials. *Physics Reports* **856**, 1–78 (2020).

1225 104. Etourneau, J. & Hagenmuller, P. Structure and physical features of the rare-earth borides.
1226 *Philosophical Magazine B* **52**, 589–610 (1985).

1227 105. Harran, I., Chen, Y., Wang, H. & Ni, Y. Pressure induced evolution of structures and
1228 properties of iron tetraboride. *CrystEngComm* **20**, 3928–3935 (2018).

1229 106. Zhang, X. *et al.* First-principles structural design of superhard material of ZrB₄. *Phys.
1230 Chem. Chem. Phys.* **15**, 20894–20899 (2013).

1231 107. Li, X., Tao, Y. & Peng, F. Pressure and temperature induced phase transition in WB₄: A
1232 first principles study. *J. Alloys Compd.* **687**, 579–585 (2016).

1233 108. Li, X. & Peng, F. Predicted superhard phases of Zr-B compounds under pressure. *Phys.
1234 Chem. Chem. Phys.* **12**, 15609–15614 (2019).

1235 109. Zhang, G., Bai, T., Zhao, Y. & Hu, Y. A new superhard phase and physical properties of
1236 ZrB₃ from first-principles calculations. *Materials (Basel)* **9**, 703 (2016).

1237 110. Chu, B. *et al.* Structural, mechanical, and electronic properties of Rh₂B and RhB₂: First-
1238 principles calculations. *Scientific reports* **5**, 10500 (2015).

1239 111. Wang, Q. *et al.* Novel high-pressure phase of RhB: First-principles calculations. *J. Phys.*
1240 *Chem. C* **115**, 19910–19915 (2011).

1241 112. Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y. & Akimitsu, J. Superconductivity
1242 at 39 K in magnesium diboride. *Nature* **410**, 63–64 (2001).

1243 113. Kolmogorov, A. N. *et al.* New superconducting and semiconducting Fe-B compounds
1244 predicted with an ab initio evolutionary search. *Phys. Rev. Lett.* **105**, 217003 (2010).

1245 114. Gou, H. *et al.* Discovery of a superhard iron tetraboride superconductor. *Phys. Rev. Lett.*
1246 **111**, 157002 (2013).

1247 115. Kolmogorov, A. N. & Curtarolo, S. Theoretical study of metal borides stability. *Phys. Rev.*
1248 *B* **74**, 224507 (2006).

1249 116. Kolmogorov, A. N. & Curtarolo, S. Prediction of different crystal structure phases in metal
1250 borides: A lithium monoboride analog to MgB₂. *Phys. Rev. B* **73**, 180501 (2006).

1251 117. Kolmogorov, A. N., Calandra, M. & Curtarolo, S. Thermodynamic stabilities of ternary
1252 metal borides: An *ab initio* guide for synthesizing layered superconductors. *Phys. Rev. B*
1253 **78**, 094520 (2008).

1254 118. Hermann, A., McSorley, A., Ashcroft, N. W. & Hoffmann, R. From wade–mingos to zintl–
1255 klemm at 100 GPa: Binary compounds of boron and lithium. *J. Am. Chem. Soc.* **134**,
1256 18606–18618 (2012).

1257 119. Kolmogorov, A. N., Hajinazar, S., Angyal, C., Kuznetsov, V. L. & Jephcoat, A. P.
1258 Synthesis of a predicted layered LiB via cold compression. *Phys. Rev. B* **92**, 144110 (2015).

1259 120. Wang, H., LeBlanc, K. A., Gao, B. & Yao, Y. Thermodynamic ground state of MgB₆
1260 predicted from first principles structure search methods. *J. Chem. Phys.* **140**, 044710
1261 (2014).

1262 121. Benson, D. *et al.* Lithium and calcium carbides with polymeric carbon structures. *Inorg.*
1263 *Chem.* **52**, 6402–6406 (2013).

1264 122. Li, Y. L. *et al.* Pressure-induced superconductivity in CaC₂. *PNAS* **110**, 9289–9294 (2013).

1265 123. Zhong, X. *et al.* Pressure stabilization of long-missing bare C₆ hexagonal rings in binary
1266 sesquicarbides. *Chem. Sci.* **5**, 3936–3940 (2014).

1267 124. Feng, C. *et al.* First-principle study of pressure-induced phase transitions and electronic
1268 properties of electride Y₂C. *Solid State Commun.* **266**, 34–38 (2017).

1269 125. Guo, Y. *et al.* Pressure-induced structural transformations and polymerization in ThC₂.
1270 *Scientific reports* **7**, 45872 (2017).

1271 126. Liu, H., Gao, G., Li, Y., Hao, J. & Tse, J. S. Crystal structures and chemical bonding of
1272 magnesium carbide at high pressure. *J. Phys. Chem. C* **119**, 23168–23174 (2015).

1273 127. Liu, H., Naumov & Hemley, R. J. Dense hydrocarbon structures at megabar pressures. *J.*
1274 *Phys. Chem. Lett.* **7**, 4218–4222 (2016).

1275 128. Feng, X. *et al.* Carbon network evolution from dimers to sheets in superconducting yttrium
1276 dicarbide under pressure. *Commun. Chem.* **1**, 85 (2018).

1277 129. Du, H. *et al.* Nonmetallization and band inversion in beryllium dicarbide at high pressure.
1278 *Scientific reports* **6**, 26398 (2016).

1279 130. Wang, D., Yan, Y., Zhou, D. & Liu, Y. Evolution of crystal and electronic structures of
1280 magnesium dicarbide at high pressure. *Scientific reports* **5**, 17815 (2015).

1281 131. Wei, Q., Zhang, Q., Yan, H. & Zhang, M. Cubic C₃N: A new superhard phase of carbon-
1282 rich nitride. *Materials (Basel)* **9**, 840 (2016).

1283 132. Medvedev, S. A. *et al.* Phase stability of lithium azide at pressures up to 60 GPa. *J. Phys.:*
1284 *Condens. Matter* **21**, 195404 (2009).

1285 133. Crowhurst, J. C. *et al.* Synthesis and characterization of the nitrides of platinum and
1286 Iridium. *Science* **311**, 1275–1278 (2006).

1287 134. Wang, X. *et al.* Polymerization of nitrogen in lithium azide. *J. Chem. Phys.* **139**, 164710
1288 (2013).

1289 135. Li, J. *et al.* Pressure-induced polymerization of nitrogen in potassium azides. *EPL
1290 (Europhysics Letters)* **104**, 16005 (2013).

1291 136. Wang, X., Li, J., Zhu, H., Chen, L. & Lin, H. Polymerization of nitrogen in cesium azide
1292 under modest pressure. *J. Chem. Phys.* **141**, 044717 (2014).

1293 137. Bykov, M. *et al.* High-pressure synthesis of ultrain compressible hard rhenium nitride
1294 pernitride $\text{Re}_2(\text{N}_2)(\text{N})_2$ stable at ambient conditions. *Nat. Commun.* **10**, 1–8 (2019).

1295 138. Bykov, M. *et al.* Fe-N system at high pressure reveals a compound featuring polymeric
1296 nitrogen chains. *Nat. Commun.* **9**, 1–8 (2018).

1297 139. Laniel, D. *et al.* Synthesis of magnesium-nitrogen salts of polynitrogen anions. *Nat.
1298 Commun.* **10**, 1–7 (2019).

1299 140. Yu, S. *et al.* Emergence of novel polynitrogen molecule-like species, covalent chains, and
1300 layers in magnesium–nitrogen Mg_xN_y phases under high pressure. *J. Phys. Chem. C* **121**,
1301 11037–11046 (2017).

1302 141. Wei, S. *et al.* Alkaline-earth metal (Mg) polynitrides at high pressure as possible high-
1303 energy materials. *Phys. Chem. Chem. Phys.* **19**, 9246–9252 (2017).

1304 142. Chen, Y., Cai, X., Wang, H., Wang, H. & Wang, H. Novel triadius-like N_4 specie of iron
1305 nitride compounds under high pressure. *Scientific reports* **8**, 10670 (2018).

1306 143. Vij, A., Pavlovich, J. G., Wilson, W. W., Vij, V. & Christe, K. O. Experimental detection of
1307 the pentaazacyclopentadienide (pentazolate) anion, cyclo-N_5^- . *Angew. Chem. Int. Ed.* **41**,
1308 3051–3054 (2002).

1309 144. Steele, B. A. & Oleynik, I. I. Sodium pentazolate: A nitrogen rich high energy density
1310 material. *Chemical Physics Letters* **643**, 21–26 (2016).

1311 145. Peng, F., Han, Y., Liu, H. & Yao, Y. Exotic stable cesium polynitrides at high pressure.
1312 *Scientific reports* **5**, 16902 (2015).

1313 146. Li, J., Sun, L., Wang, X., Zhu, H. & Miao, M. Simple route to metal cyclo-N_5^- salt: High-
1314 pressure synthesis of CuN_5 . *J. Phys. Chem. C* **122**, 22339–22344 (2018).

1315 147. Laniel, D., Weck, G., Gaiffe, G., Garbarino, G. & Loubeyre, P. High-pressure synthesized
1316 lithium pentazolate compound metastable under ambient conditions. *J. Phys. Chem. Lett.* **9**,
1317 1600–1604 (2018).

1318 148. Yi, W. *et al.* Packing high-energy together: Binding the power of pentazolate and high-
1319 valence metals with strong bonds. *Materials & Design* **193**, 108820 (2020).

1320 149. Weerasinghe, G. L., Pickard, C. J. & Needs, R. J. Computational searches for iron oxides at
1321 high pressures. *J. Phys.: Condens. Matter* **27**, 455501 (2015).

1322 150. Hu, Q. *et al.* FeO_2 and FeOOH under deep lower-mantle conditions and earth's oxygen-
1323 hydrogen cycles. *Nature* **534**, 241–244 (2016).

1324 151. Hu, Q. *et al.* Dehydrogenation of goethite in earth's deep lower mantle. *PNAS* **114**, 1498–
1325 1501 (2017).

1326 152. Tang, M., Niu, Z.-W., Zhang, X.-L. & Cai, L.-C. Structural stability of FeO_2 in the pressure
1327 range of lower mantle. *J. Alloys Compd.* **765**, 271–277 (2018).

1328 153. Huang, S. X., Wu, X. & Qin, S. Ultrahigh-pressure phase transitions in FeS_2 and FeO_2 :
1329 Implications for super-earths' deep interior. *Journal of Geophysical Research-Solid Earth*
1330 **123**, 277–284 (2018).

1331 154. Schmidt, B., Schröder, B., Sonnenberg, K., Steinhauer, S. & Riedel, S. From polyhalides to
1332 polypseudohalides: Chemistry based on cyanogen bromide. *Angew. Chem. Int. Ed. Engl.*
1333 **58**, 10340–10344 (2019).

1334 155. Wei, S., Wang, J., Deng, S., Zhang, S. & Li, Q. Hypervalent iodine with linear chain at high
1335 pressure. *Scientific reports* **5**, 14393 (2015).

1336 156. Zhu, Q., Oganov, A. R. & Zeng, Q. Formation of stoichiometric CsF_n compounds.
1337 *Scientific Reports* **5**, 7875 (2015).

1338 157. Shamp, A., Saitta, P. & Zurek, E. Theoretical predictions of novel potassium chloride
1339 phases under pressure. *Phys. Chem. Chem. Phys.* **17**, 12265–12272 (2015).

1340 158. Zhang, W. *et al.* Stability of numerous novel potassium chlorides at high pressure. *Scientific
1341 reports* **6**, 26265 (2016).

1342 159. Guerette, M. *et al.* Advanced synthesis of $\text{Na}_4\text{Si}_{24}$. *Mrs Advances* **3**, 1427–1433 (2018).

1343 160. Hohmann, E. Silicides and germanides of the alkali metals. *Z. Anorg. Allg. Chem.* **257** 113–
1344 126 (1948).

1345 161. Witte, J. The behavior of alkali metals relative to semimetals XI, the crystal structure of
1346 NaSi and NaGe . *Z. anorg. allg. Chem.* **327**, 260–273 (1964).

1347 162. Goebel, T., Prots, Y. & Haarmann, F. Refinement of the crystal structure of tetrasodium
1348 tetrasilicide, Na_4Si_4 . *Zeitschrift für Kristallographie - New Crystal Structures* **223**, 187–188
1349 (2014).

1350 163. Shi, J. *et al.* Investigation of new phases in the Ba-Si phase diagram under high pressure
1351 using ab initio structural search. *Phys. Chem. Chem. Phys.* **18**, 8108–8114 (2016).

1352 164. Gao, G., Ashcroft, N. W., Miao, M. & Hoffmann, R. Novel Si networks in the Ca/Si phase
1353 diagram under pressure. *J. Phys. Chem. C* **118**, 25167–25175 (2014).

1354 165. Li, W. *et al.* Crystal structures of CsSi_6 at high pressures. *Comput. Mater. Sci.* **150**, 144–
1355 148 (2018).

1356 166. McMahan, A. K. & Albers, R. C. Insulating nickel at a pressure of 34 TPa. *Phys. Rev. Lett.*
1357 **49**, 1198–1201 (1982).

1358 167. Parker, L. J., Atou, T. & Badding, J. V. Transition element-like chemistry for potassium
1359 under pressure. *Science* **273**, 95–97 (1996).

1360 168. Takemura, K., Shimomura, O. & Fujihisa, H. Csvi: A new high-pressure polymorph of
1361 cesium above 72 GPa. *Phys. Rev. Lett.* **66**, 2014–2017 (1991).

1362 169. Ahuja, R., Eriksson, O. & Johansson, B. Theoretical high-pressure studies of Cs metal.
1363 *Phys. Rev. B* **63**, 014102 (2001).

1364 170. Zhu, Q. *et al.* Stability of xenon oxides at high pressures. *Nat. Chem.* **5**, 61–65 (2013).

1365 171. Dewaele, A. *et al.* Synthesis and stability of xenon oxides Xe_2O_5 and Xe_3O_2 under pressure.
1366 *Nat. Chem.* **8**, 784–790 (2016).

1367 172. Brock, D. S. & Schrobilgen, G. J. Synthesis of the missing oxide of xenon, XeO_2 , and its
1368 implications for earth's missing xenon. *J. Am. Chem. Soc.* **133**, 6265–6269 (2011).

1369 173. Dmochowski, I. Xenon out of its shell. *Nat. Chem.* **1**, 250 (2009).

1370 174. Hermann, A. & Schwerdtfeger, P. Xenon suboxides stable under pressure. *J. Phys. Chem.
1371 Lett.* **5**, 4336–4342 (2014).

1372 175. Feng, J., Hennig, R. G., Ashcroft, N. W. & Hoffmann, R. Emergent reduction of electronic
1373 state dimensionality in dense ordered Li-Be alloys. *Nature* **451**, 445–448 (2008).

1374 176. Miao, M., Botana, J., Pravica, M., Snead, D. & Park, C. Inner-shell chemistry under high
1375 pressure. *Jpn. J. Appl. Phys.* **56**, 05FA10 (2017).

1376 177. Pauling, L. The formulas of antimonic acid and the antimonates. *J. Am. Chem. Soc.* **55**,
1377 1895–1900 (1933).

1378 178. Bartlett, N. Xenon hexafluoroplatinate (V) Xe^+PtF_6 . *Proceedings of the Chemical Society of*
1379 *London* (1962).

1380 179. Grochala, W. Atypical compounds of gases, which have been called ‘noble’. *Chem. Soc.*
1381 *Rev.* **36**, 1632–1655 (2007).

1382 180. Wang, X., Andrews, L., Riedel, S. & Kaupp, M. Mercury is a transition metal: The first
1383 experimental evidence for HgF_4 . *Angew. Chem. Int. Ed. Engl.* **46**, 8371–8375 (2007).

1384 181. Riedel, S., Straka, M. & Kaupp, M. Validation of density functional methods for computing
1385 structures and energies of mercury (IV) complexes. *Phys. Chem. Chem. Phys.* **6**, 1122–1127
1386 (2004).

1387 182. Riedel, S., Straka, M. & Kaupp, M. Can weakly coordinating anions stabilize mercury in its
1388 oxidation state +IV? *Chemistry* **11**, 2743–2755 (2005).

1389 183. Moock, K. & Seppelt, K. Indications of cesium in a higher oxidation state. *Angew. Chem.*
1390 *Int. Ed. Engl.* **28**, 1676–1678 (1989).

1391 184. Jehoulet, C. & Bard, A. J. On the electrochemical oxidation of Cs^+ and other alkali-metal
1392 ions in liquid sulfur dioxide and acetonitrile. *Angew. Chem. Int. Ed. Engl.* **30**, 836–838
1393 (1991).

1394 185. Rahm, M., Cammi, R., Ashcroft, N. W. & Hoffmann, R. Squeezing all elements in the
1395 periodic table: Electron configuration and electronegativity of the atoms under
1396 compression. *J. Am. Chem. Soc.* **144**, 10253–10271 (2019).

1397 186. Tramsek, M. & Zemva, B. Synthesis, properties and chemistry of xenon(II) fluoride. *Acta*
1398 *Chim. Slov.* **53**, 105–116 (2006).

1399 187. Christe, K. O. *et al.* The pentafluoroxenate(IV) anion, XeF_5^- : The first example of a
1400 pentagonal planar AX_5 species. *J. Am. Chem. Soc.* **113**, 3351–3361 (1991).

1401 188. Dronskowski, R. & Bloechl, P. E. Crystal orbital hamilton populations (COHP): Energy-
1402 resolved visualization of chemical bonding in solids based on density-functional
1403 calculations. *The Journal of Physical Chemistry* **97**, 8617–8624 (1993).

1404 189. Silvi, B. & Savin, A. Classification of chemical bonds based on topological analysis of
1405 electron localization functions. *Nature* **371**, 683–686 (1994).

1406 190. Rogachev, A. Y., Miao, M., Merino, G. & Hoffmann, R. Molecular CsF_5 and CsF_2^+ .
1407 *Angew. Chem.* **127**, 8393–8396 (2015).

1408 191. Goesten, M. G., Rahm, M., Bickelhaupt, F. M. & Hensen, E. J. M. Cesium’s off-the-map
1409 valence orbital. *Angew. Chem. Int. Ed. Engl.* **56**, 9772–9776 (2017).

1410 192. Miao, M. S. *et al.* Anionic chemistry of noble gases: Formation of Mg-NG (NG = Xe, Kr,
1411 Ar) compounds under pressure. *J. Am. Chem. Soc.* **137**, 14122–14128 (2015).

1412 193. Botana, J., Brgoch, J., Hou, C. & Miao, M. Iodine anions beyond -1: Formation of Li_nI ($n =$
1413 2–5) and its interaction with quasiatoms. *Inorg. Chem.* **55**, 9377–9382 (2016).

1414 194. Li, X. *et al.* Stable lithium argon compounds under high pressure. *Scientific reports* **5**,
1415 16675 (2015).

1416 195. Liu, Z., Botana, J., Miao, M. S. & Yan, D. D. Unexpected Xe anions in XeLi_n intermetallic
1417 compounds. *Epl* **117**, 26002 (2017).

1418 196. Li, P., Gao, G., Wang, Y. & Ma, Y. Crystal structures and exotic behavior of magnesium
1419 under pressure. *J. Phys. Chem. C* **114**, 21745–21749 (2010).

1420 197. Dye, J. L. Compounds of alkali metal anions. *Angew. Chem. Int. Ed. Engl.* **18**, 587–598
1421 (1979).

1422 198. Zurek, E. Alkali metals in ethylenediamine: A computational study of the optical absorption
1423 spectra and NMR parameters of $[M(en)_3^{\delta+}M^{\delta-}]$ ion pairs. *J. Am. Chem. Soc.* **133**, 4829–
1424 4839 (2011).

1425 199. Jansen, M. Effects of relativistic motion of electrons on the chemistry of gold and platinum.
1426 *Solid State Sciences* **7**, 1464–1474 (2005).

1427 200. Karpov, A., Nuss, J., Wedig, U. & Jansen, M. Cs_2Pt : A platinide(-II) exhibiting complete
1428 charge separation. *Angew. Chem. Int. Ed.* **42**, 4818–4821 (2003).

1429 201. Yang, G., Wang, Y., Peng, F., Bergara, A. & Ma, Y. Gold as a $6p$ -element in dense lithium
1430 aurides. *J. Am. Chem. Soc.* **138**, 4046–4052 (2016).

1431 202. Brzoch, J. & Hermus, M. Pressure-stabilized Ir^{3-} in a superconducting potassium iridide. *J.*
1432 *Phys. Chem. C* **120**, 20033–20039 (2016).

1433 203. Dawes, S. B., Ward, D. L., Huang, R. H. & Dye, J. L. First electride crystal structure. *J.*
1434 *Am. Chem. Soc.* **108**, 3534–3535 (1986).

1435 204. Dye, J. L. *et al.* Cavities and channels in electrides. *J. Am. Chem. Soc.* **118**, 7329–7336
1436 (1996).

1437 205. Dye, J. L. Electrides: Early examples of quantum confinement. *Acc. Chem. Res.* **42**, 1564–
1438 1572 (2009).

1439 206. Takemura, K. *et al.* Phase stability of highly compressed cesium. *Phys. Rev. B* **61**, 14399–
1440 14404 (2000).

1441 207. Zurek, E., Jepsen, O. & Andersen, O. K. Muffin-tin orbital wannier-like functions for
1442 insulators and metals. *ChemPhysChem* **6**, 1934–1942 (2005).

1443 208. Maksimov, E. G., Magnitskaya, M. V. & Fortov, V. E. Non-simple behavior of simple
1444 metals at high pressure. *Phys.-Usp.* **48**, 761 (2005).

1445 209. Schnerring, H. G. von & Nesper, R. How nature adapts chemical structures to curved
1446 surfaces. *Angew. Chem. Int. Ed. Engl.* **26**, 1059–1080 (1987).

1447 210. Neaton, J. B. & Ashcroft, N. W. On the constitution of sodium at higher densities. *Phys.*
1448 *Rev. Lett.* **86**, 2830–2833 (2001).

1449 211. Neaton, J. B. & Ashcroft, N. W. Pairing in dense lithium. *Nature* **400**, 141–144 (1999).

1450 212. Rousseau, B. & Ashcroft, N. W. Interstitial electronic localization. *Phys. Rev. Lett.* **101**,
1451 046407 (2008).

1452 213. Marqués, M. *et al.* Optical and electronic properties of dense sodium. *Phys. Rev. B* **83**,
1453 184106 (2011).

1454 214. Gatti, M., Tokatly, I. V. & Rubio, A. Sodium: A charge-transfer insulator at high pressures.
1455 *Phys. Rev. Lett.* **104**, 216404 (2010).

1456 215. Matsuoka, T. & Shimizu, K. Direct observation of a pressure-induced metal-to-
1457 semiconductor transition in lithium. *Nature* **458**, 186–189 (2009).

1458 216. Pickard, C. J. & Needs, R. J. Dense low-coordination phases of lithium. *Phys. Rev. Lett.*
1459 **102**, 146401 (2009).

1460 217. Adebayo, G. A. Ab initio calculations of optical properties of Li and K at high pressures. *J.*
1461 *Phys. Chem. Solids* **74**, 1221–1226 (2013).

1462 218. Guillaume, C. L. *et al.* Cold melting and solid structures of dense lithium. *Nat. Phys.* **7**,
1463 211–214 (2011).

1464 219. Jin, X. *et al.* Crossover from metal to insulator in dense lithium-rich compound CLi_4 . *PNAS*
1465 **113**, 2366 (2016).

1466 220. Marques, M. *et al.* Crystal structures of dense lithium: A metal-semiconductor-metal
1467 transition. *Phys. Rev. Lett.* **106**, 095502 (2011).

1468 221. Pickard, C. J. & Needs, R. J. Aluminium at terapascal pressures. *Nat. Mater.* **9**, 624–627
1469 (2010).

1470 222. Martinez-Canales, M., Pickard, C. J. & Needs, R. J. Thermodynamically stable phases of
1471 carbon at multiterapascal pressures. *Phys. Rev. Lett.* **108**, 045704 (2012).

1472 223. Zhu, Q., Oganov, A. R. & Lyakhov, A. O. Novel stable compounds in the Mg–O system
1473 under high pressure. *Phys. Chem. Chem. Phys.* **15**, 7696–7700 (2013).

1474 224. Dong, X. & Oganov, A. R. Electrides and their high-pressure chemistry. *Correlations in
1475 Condensed Matter under Extreme Conditions: A tribute to Renato Pucci on the occasion of
1476 his 70th birthday* (eds. Angilella, G. G. N. & La Magna, A.) 69–84 (2017).

1477 225. Modak, P. & Verma, A. K. Pressure induced multi-centre bonding and metal–insulator
1478 transition in PtAl₂. *Phys. Chem. Chem. Phys.* **21**, 13337–13346 (2019).

1479 226. Naumov, I. I. & Hemley, R. J. Origin of transitions between metallic and insulating states in
1480 simple metals. *Phys. Rev. Lett.* **114**, 156403 (2015).

1481 227. Lv, J., Wang, Y., Zhu, L. & Ma, Y. Predicted novel high-pressure phases of lithium. *Phys.
1482 Rev. Lett.* **106**, 015503 (2011).

1483 228. Sternheimer, R. On the compressibility of metallic cesium. *Phys. Rev.* **78**, 235–243 (1950).

1484 229. Miao, M. S. & Hoffmann, R. High-pressure electrides: The chemical nature of interstitial
1485 quasiamtoms. *J. Am. Chem. Soc.* **137**, 3631–3637 (2015).

1486 230. Miao, M. S., Hoffmann, R., Botana, J., Naumov & Hemley, R. J. Quasimolecules in
1487 compressed lithium. *Angew. Chem. Int. Ed. Engl.* **56**, 972–975 (2017).

1488 231. Saunders, M. *et al.* Incorporation of helium, neon, argon, krypton, and xenon into fullerenes
1489 using high pressure. *J. Am. Chem. Soc.* **116**, 2193–2194 (1994).

1490 232. Grochala, W. A metastable He–O bond inside a ferroelectric molecular cavity: (HeO)(LiF)₂.
1491 *Phys. Chem. Chem. Phys.* **14**, 14860–14868 (2012).

1492 233. Hogness, T. R. & Lunn, E. G. The ionization of hydrogen by electron impact as interpreted
1493 by positive ray analysis. *Phys. Rev.* **26**, 44–55 (1925).

1494 234. Miao, M. Helium chemistry: React with nobility. *Nat. Chem.* **9**, 409–410 (2017).

1495 235. Liu, Z. *et al.* Reactivity of He with ionic compounds under high pressure. *Nat. commun.* **9**,
1496 951 (2018).

1497 236. Botana, J. & Miao, M. Helium shows new chemistry not seen anywhere else. *Chemistry* **2**,
1498 466–467 (2017).

1499 237. Gao, H., Sun, J., Pickard, C. J. & Needs, R. J. Prediction of pressure-induced stabilization
1500 of noble-gas-atom compounds with alkali oxides and alkali sulfides. *Physical Review
1501 Materials* **3**, 015002 (2019).

1502 238. Liu, H. Y., Yao, Y. S. & Klug, D. D. Stable structures of He and H₂O at high pressure.
1503 *Phys. Rev. B* **91**, 014102 (2015).

1504 239. Bai, Y. *et al.* Electrostatic force driven helium insertion into ammonia and water crystals
1505 under pressure. *Commun. Chem.* **2**, 1–7 (2019).

1506 240. Pickard, C. J. & Needs, R. J. Highly compressed ammonia forms an ionic crystal. *Nat.
1507 Mater.* **7**, 775–779 (2008).

1508 241. Liu, C. *et al.* Multiple superionic states in helium–water compounds. *Nat. Phys.* **15**, 1065–
1509 1070 (2019).

1510 242. Zhang, J. *et al.* Rare helium-bearing compound FeO₂He stabilized at deep-earth conditions.
1511 *Phys. Rev. Lett.* **121**, 255703 (2018).

1512 243. Fredrickson, D. C. DFT-chemical pressure analysis: Visualizing the role of atomic size in
1513 shaping the structures of inorganic materials. *J. Am. Chem. Soc.* **134**, 5991–5999 (2012).

1514 244. Hubert, H. *et al.* Icosahedral packing of B₁₂ icosahedra in boron suboxide (B₆O). *Nature*
1515 **391**, 376 (1998).

1516 245. Deng, N., Yang, G., Wang, W. & Qiu, Y. Structural transitions and electronic properties of
1517 sodium superoxide at high pressures. *RSC Advances* **6**, 67910–67915 (2016).

1518 246. Morito, H., Momma, K. & Yamane, H. Crystal structure analysis of Na₄Si_{4-x}Ge_x by single
1519 crystal X-ray diffraction. *Journal of Alloys and Compounds* **623**, 473–479 (2015).

1520 247. Bader, R. Atoms in molecules: A quantum theory. (Oxford University Press, 1990).

1521 248. Stillinger, F. H. Exponential multiplicity of inherent structures. *Phys. Rev. E* **59**, 48–51
1522 (1999).

1523 249. Zurek, E. The Pressing role of theory in studies of compressed matter. in *Handbook of Solid*
1524 *State Chemistry* 571–605 (2017).

1525 250. Jansen, M. Conceptual inorganic materials discovery – a road map. *Adv. Mater.* **27**, 3229–
1526 3242 (2015).

1527 251. Schön, J. C., Doll, K. & Jansen, M. Predicting solid compounds via global exploration of
1528 the energy landscape of solids on the ab initio level without recourse to experimental
1529 information. *Physica Status Solidi B* **247**, 23–39 (2010).

1530 252. Revard, B. C., Tipton, W. W. & Hennig, R. G. Structure and stability prediction of
1531 compounds with evolutionary algorithms. *Prediction and Calculation of Crystal Structures:*
1532 *Methods and Applications* (eds. Atahan-Evrenk, S. & Aspuru-Guzik, A.) 181–222 (2014).

1533 253. Oganov, A. R. Modern methods of crystal structure prediction. (John Wiley & Sons, 2011).

1534 254. Lonie, D. C. & Zurek, E. XtalOpt: An open-source evolutionary algorithm for crystal
1535 structure prediction. *Comput. Phys. Commun.* **182**, 372–387 (2011).

1536 255. Avery, P., Toher, C., Curtarolo, S. & Zurek, E. XtalOpt version r12: An open-source
1537 evolutionary algorithm for crystal structure prediction. *Comput. Phys. Commun.* **237**, 274–
1538 275 (2019).

1539 256. Goedecker, S. Minima hopping: An efficient search method for the global minimum of the
1540 potential energy surface of complex molecular systems. *J. Chem. Phys.* **120**, 9911–9917
1541 (2004).

1542 257. Amsler, M. & Goedecker, S. Crystal structure prediction using the minima hopping method.
1543 *J. Chem. Phys.* **133**, 224104 (2010).

1544 258. Laio, A. & Parrinello, M. Escaping free-energy minima. *PNAS* **99**, 12562–12566 (2002).

1545 259. Schön, J. C. & Jansen, M. First step towards planning of syntheses in solid-state chemistry:
1546 Determination of promising structure candidates by global optimization. *Angew. Chem. Int.*
1547 *Ed. Engl.* **35**, 1286–1304 (1996).

1548 260. Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. Optimization by simulated annealing. *Science*
1549 **220**, 671–680 (1983).

1550

1551

1552

1553

1554

1555