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1 | INTRODUCTION

1.1 | Motivation

Dana L. Royer® |

Peter J. Franks* | Anita Roth-Nebelsick®

A variety of proxies have been developed to reconstruct paleo-CO, from fossil
leaves. These proxies rely on some combination of stomatal morphology, leaf §*°C,
and leaf gas exchange. A common conceptual framework for evaluating these proxies
is lacking, which has hampered efforts for inter-comparison. Here we develop such a
framework, based on the underlying physics and biochemistry. From this conceptual
framework, we find that the more extensively parameterised proxies, such as the
optimisation model, are likely to be the most robust. The simpler proxies, such as the
stomatal ratio model, tend to under-predict CO,, especially in warm (>15°C) and
moist (>50% humidity) environments. This identification of a structural under-
prediction may help to explain the common observation that the simpler proxies
often produce estimates of paleo-CO, that are lower than those from the more com-
plex proxies and other, non-leaf-based CO, proxies. The use of extensively
parameterised models is not always possible, depending on the preservation state of
the fossils and the state of knowledge about the fossil's nearest living relative. With
this caveat in mind, our analysis highlights the value of using the most complex leaf-

based model as possible.

KEYWORDS

CO,, leaf gas exchange, palaeoclimate, proxy, stomatal ratio, 53¢

available proxy information on CO, development (Anagnostou
et al., 2016; Foster, Royer, & Lunt, 2017).

Simultaneously, substantial research efforts were dedicated to
the effects of (mostly elevated) CO, on gas exchange of extant

For over three decades, the often observed negative correlation
between stomatal density and atmospheric CO, concentration
(Woodward, 1987) has been utilised as a plant-based proxy for
obtaining palaeo concentrations of CO,. Accordingly, different
approaches to using fossil stomatal data to calculate CO, levels of
the past have been developed during that time. Stomatal data are
now a standard proxy to be included in data synopses summarising

plants to obtain a solid data basis for predicting and modelling the
impact of anthropogenic CO, increase on terrestrial vegetation [see
reviews by Ainsworth and Rogers (2007) and Franks et al. (2013)].
Stoma-based proxy approaches for reconstructing palaeo-CO,
benefitted from these studies (e.g., Franks et al. (2014); Konrad,
Katul, Roth-Nebelsick, and Grein (2017); Konrad, Roth-Nebelsick,
and Grein (2008)).
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Principally, the relationship between stomatal density and CO, is

tackled with two different concepts.

e The first (and older) approach applies the phenomenological concept

which utilises collected data pairs, comprising stomatal density and
CO,, to construct a curve of CO, vs. density to serve as a basis for
calculating CO, from fossil stomatal density. The fact that stomatal
density is also influenced by environmental conditions other than
CO, concentration was acknowledged early, and the remedy was to
replace stomatal density with the stomatal index, which is—in extant
plants—much less affected by humidity or other ‘non-CO,’ factors.
(Stomatal index is the ratio of stomatal density to stomatal plus epi-
dermal cell density, expressed as a percentage.)
Over time, a number of ‘best practise’ recommendations accumu-
lated, such as a minimum of cuticle area used for counting stomata
(Poole, 1999) and more appropriate statistical methods (Beerling &
Royer, 2002). The phenomenological concept can be further sub-
divided into two approaches. With the ‘full calibration’ approach, a
number of data pairs (stomatal density or index plus CO,) is col-
lected and a continuous curve is erected via curve fitting (Barclay &
Wing, 2016; Kirschner, van der Burgh, Visscher, & Dilcher, 1996;
Wagner et al., 1996). The second approach is termed ‘Stomatal
Ratio’ and is based on the observation that the ratio of stomatal
densities or stomatal indices developing under different CO, con-
centrations is reciprocal to the ratio of these different CO, concen-
trations (McElwain & Chaloner, 1995, 1996; Steinthorsdottir &
Vajda, 2015). Another plant-based, phenomenological proxy is that
from Schubert and Jahren (2012, 2015) (see also Cui & Schubert,
2016). Here, the ratio between plant internal CO, concentration (C;)
and external (atmospheric) CO, (C,), as derived from §'°C of fossil
plant material, is utilised. Although not explicitly stomatal-based, this
approach is included because it is related to plant gas exchange.

e Mechanistic approaches, in contrast, derive a relation between
C, and leaf traits from established physics (such as diffusion)
and physiological processes (such as photosynthesis) sup-
plemented by principles of stomatal regulation. Optimisation

models [e.g., Cowan (1977), Katul, Palmroth, and Oren (2009),
and Konrad et al. (2008)] and similar approaches [e.g., Franks
et al. (2014) and Konrad et al. (2017)] belong to this class.

The aim of this contribution is to illustrate shared similarities and
differences between the various approaches from the viewpoint of
their emerging mathematical structure and physical/physiological
background, and to evaluate their applicability and reliability as limited
by different conditions (cf. Figure 1).

This review aims to identify the skeleton of a ‘parent’ model
which underlies—implicitly or explicitly—all approaches and further
approximations and/or auxilliary assumptions (often tacitly made)
which distinguish the various methods. On the basis of these differ-
ences, aspects will be discussed with respect to applicability and reli-
ability of the various paleo-CO, reconstruction approaches [how
much information/how many parameters have to be known from
independent sources, how feasible are certain approximations
(e.g., the question of leaf temperature)].

1.2 | A summary of physical and physiological
mechanisms of stomatal sensitivity to CO,

The CO, sensitivity of stomata is ultimately caused by photosynthesis
and its coupling with transpiration and therefore lies at the basis of all
stomata-related proxy methods. At the leaf-scale, the basic physiolog-

ical processes and physical laws are described by:

e The Farquhar photosynthesis model describing the biochemical
demand of CO, (Farquhar, von Caemmerer, & Berry, 1980, 2001)
for Cs-plants given as:

C-r

A=
9C+K

_Rdy (1)

where A is leaf net photosynthetic assimilation (i.e., photosynthesis
minus leaf autotrophic respiration), g denotes carboxylation limited

COZ D/’
2N
?% CO;y¢, _ Stomatal data,,,,.
- -
CO,, ot Stomatal datay,;
v - CO20m Stomatal data,,,, ﬁ
Assimilation Transpiration ©
TS \ / ©
he]
Gas exchange model Curve 73
fitting g
l o
o
N
CO

Fossil data 2ossil

(a) Mechanistic approach

FIGURE 1

f(stomatal datay,,,)) = CO,

(b) Transfer function approach

co,

(c) Stomatal ratio approach

Both mechanistic and phenomenological approaches of paleo-CO, reconstruction are based on the laws of physics and

biochemistry. (a) Mechanistic approaches formulate the interactions between the relevant quantities explicitly in terms of mathematical models.
Phenomenological approaches, in contrast, (b) either stow away the physiological machinery in a black box that remains unexplored or
(c) postulate instead that ratios of CO»-values are reciprocally equal to the ratios of the related stomatal quantities [Color figure can be viewed at

wileyonlinelibrary.com]
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by Rubisco or RuBP regeneration rate, K is a parameter containing
Michaelis-Menten constants of carboxylation and oxygenation, I is
the CO, compensation point and R, is the mitochondrial respiration
rate. Equation (1) is to be understood to describe the smaller of two
potential rates of carboxylation: limitation by RuBP or by Rubisco
regeneration. In the first case, g = J/4, where J is the rate of electron
transport (which depends on the absorbed solar photosynthetic
active radiation), while in the second case it is equal to maximum
carboxylation velocity, that is, g = V. max. For the structural consider-
ations that will be discussed in what follows it is not necessary to
know which alternative is realised in a specific case. Limitation of
RuBP regeneration occurs under lower solar irradiances, when the
stomata are not fully open. In this phase, stomatal conductance is
hence regulated by the opening of the stomata, and not by a change
in their density. Density regulation thus appears to be important in
the Rubisco-limitation phase, when the stomata tend to be fully or
almost fully open. Hence, it is g = V., max, and not q = J/4, which is
important in this study focussing on stomatal density and stomatal
index. The dependence of the biochemical parameters g, I', K and Ry
on air temperature T is described by relations derived elsewhere
(Bernacchi, Pimentel, & Long, 2003).
When borrowing g from extant plants, an uncertainty range has to be
considered which is caused by natural variation and also some environ-
mental influences. For example, leaf nutrient status affects g to some
degree. Also, C, itself may modulate g, as indicated by experimental
data (Ainsworth & Rogers, 2007). It is, however, difficult to assess this
effect for geological time scales for fossil plants which were adapted to
the palaeo-C, level. It is generally recommended to conduct a system-
atic parameter variation covering the variability range of V., max and to
clearly state and discuss sources and ranges of uncertainty when work-
ing with values borrowed from extant plants.
e Fick's law of diffusion describing the atmospheric supply of CO,
into and loss of water from the intercellular space. Assimilation rate

A and transpiration rate E read:
A=g(C-Cy), (2)

E=ag (Wsat_Wu>v (3)

where g is leaf conductivity with respect to CO,, C; is the leaf inter-
nal CO, concentration, w,; is the leaf internal air humidity (taken
as the saturation value for water vapour concentration in air), and
humidity. The

a=Dy,0/Dco, =1.6 is the ratio of the diffusional constants of

w, is the Ileaf external air parameter
water vapour and CO, in air. For stationary conditions (i.e., all
CO,-molecules diffusing into the leaf interior are finally assimi-
lated), the biochemical demand and atmospheric supply of CO,
must be in balance. This assumption is employed throughout.

e In order to end up with manageable equations, the complex
arrangement of cells and voids inside the real leaf has to be
approximated by simpler structures. Various approaches have been
developed [Aris (1975); Brown and Escombe (1900); Parlange and

Waggoner (1970); for a review see Parkhurst (1994)]. Here, we use

the porous medium approximation (Aris, 1975; Konrad et al., 2008;
Parkhurst, 1994) which replaces the real leaf by a fictitious tissue
which is characterised by just two quantities, the porosity n and
the tortuosity 7. Application of the diffusion law to this simplified
tissue provides a relation between leaf conductance g and stomatal
density v and other leaf anatomical parameters:

U= gdst , (4)

(DCO2 -g [dbl +dgs %j )ast

where d,, 74, and nys are thickness, tortuosity and porosity of the
assimilation layer, a;; and ds; are cross-sectional area and depth of
the stoma, and v is the stomatal density. d, is the thickness of the
laminar boundary layer attached to the leaf surface, whose thick-
ness depends on leaf size | and wind speed vying, approximately
according to dy~4 x 1073m/+/5/T/Vying.
If g can be expressed as a function of C, and the photosynthesis
parameters q, K, I', Ry (which we assume to be known), Equation (4)
provides a relation between v and C, that can be used to reconstruct

palaeo-CO, from fossil leaf anatomy.

2 | BASIS AND STRUCTURE OF THE
CONSIDERED APPROACHES

We will start with the mechanistic models. Equations (1) and (2) repre-
sent only two relations for the three variables g, A and C;. Hence, a
third relation is required. The various mechanistic models follow dif-
ferent strategies to obtain the missing relation:

1. The optimisation models translate the strategy of plants to gain a
maximum of carbon with a given amount of available water (while
the variations of the environmental factors are also taken into
account) into the mathematical language of optimisation principles
(Aalto & Juurola, 2002; Berninger, Mikela, & Hari, 1996; Buckley &
Schymanski, 2014; Cowan, 1977; De Boer et al., 2011; Katul et al.,
2009; Katul, Manzoni, Palmroth, & Oren, 2010; Konrad et al.,
2008; Way, Oren, Kim, & Katul, 2011). This yields an additional
algebraic relation for g in terms of the environmental and photo-
synthetic parameters.

2. Most of the other models [e.g., Franks et al. (2014) and the
‘reduced order model’ of Konrad et al. (2017)] restrict their model
dynamics to carbon balance of the fossil leaf. They obtain the miss-
ing information on leaf conductance from determining C;/C,, based
on the well-known fact that both diffusion and photosynthesis dis-
criminate between *2C and *3C carbon isotopes. Exploiting this
fact, it is possible to calculate the ratio:

CS (5)
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from §*3C data from fossilised leaves (Beerling, 1994; Diefendorf,
Freeman, Wing, Currano, & Mueller, 2015; Farquhar, O'Leary, &
Berry, 1982; Grein, Roth-Nebelsick, & Wilde, 2010).

21 | Mechanistic approaches

21.1 | Optimisation models
Adopting the nomenclature used in Konrad (2007) and Konrad et al.
(2008) the optimisation approach can be summarised as follows:

e C;is expressed in terms of the biochemical parameters g, I', K and
Ry and the conductivity g by equating the right-hand sides of
expressions (1) and (2). This results in a quadratic equation for C;

with solutions:

1
CFE {8(Ca—K)—(a—Ra)

11/[8(Ca—K)— (a—Ra)  + 43(3KC, + aT + KRy)}. 6)

(The solution with the minus sign in front of the square root symbol
leads to negative C; and should therefore be ignored.) Substitution

into Equation (2) yields an assimilation rate:

- (8(C+K)+

~Ra)—/[8(Ca=K)—(a—Ra)? +43(SKC, +ar +KkRe)}.  (7)

A is thus expressed in terms of leaf conductivity g as well as the pho-
tosynthetic parameters (g, K, T, Ry) and C,.
Notice that in Equation (3) the transpiration rate E is also expressed in

terms of leaf conductivity g.
e Plants maximise their assimilation in a manner that accounts for

diurnal or even seasonal changes in environmental factors such as
air temperature, humidity and irradiance. This maximisation is
achieved by varying leaf conductance g (by adjusting stomatal area
as to the diurnal variations of the environmental factors or by
adjusting stomatal density v as response to seasonal changes, or
both). The task is therefore to find the g that maximises assimila-
tion for finite transpiration while taking into account prescribed
changes of temperature, humidity and irradiance. The mathemati-
cal technique by which this goal is achieved is the calculus of varia-

tion with constraints. According to this technique, the statements:

J A(g(t)) dt = maximum and J E(g(t)) dt =Wy (8)
At At

have to be fulfilled simultaneously, where At is a preset time span
over which the optimization is sought (e.g., one day or one season).
The second relation represents a constraint: W, denotes the

amount of water (per leaf area) that the plant may transpire during

At. It is furthermore understood that the quantities w,, g, I, K and
g appearing in expressions (1), (2) and (3) for E and A depend either
explicitly on time t or implicitly via a time-dependence (diurnal
course) of air temperature, T(t).

e The optimisation procedure by which g is calculated starts with for-

ming the expression:

L=A-AE

= % {3(Ca +K)+ (q_Rd)_\/[g(Ca—K) —(a—Rq))? +4g(gKC, +qr+KRd)}

-1 ag(Wsat_Wa)y

@)

where the second expression is derived when substituting A and
E by expressions (7) and (3). (In mathematical terminology, L is the
Lagrangian and the arbitrary constant 1 is the Lagrange multiplier
and [a¢E(t) dt = Wy is the constraint of the problem.) The calculus
of variation transforms the constrained optimization problem
above into an unconstrained one in which L can be obtained from

solving the following ordinary differential equations:

doL aL
d5% " 35 (10)

where gz‘j,%. The last equation constitutes an ordinary differential
equation of second order for the conductance g(t). In the last step,
4 is calculated by evaluating the constraint [4.E(g(t)) dt = Wy with
the help of the now known conductance g(t).
Inspection of expressions (7) and (3) shows that both A and E depend
on g but neither of them depends on g. Hence, Equation (10)
reduces to:

oL
s (11)
This finding allows two important simplifications: (a) The differential
Equation (10) of the generic case reduces to an algebraic equation for
g(t), and, (b) to solve Equation (11) for g(t) the time dependencies of

the quantities w,, g, T, K and R, need not be known explicitly.

Application of the optimisation scheme to Equation (9) results in:

[Ca+K—22a(Wsqt —Wq)]

go 1 Nq<K+r>[ca<q—Rd>—<qr+KRd>J
[

(Ca+K)2 Ca+K_/w(wsat_Wa)]ﬂa(wsat_wa)
+(q—Ry4) Ca—(ar +KRy)—q (K+T)]
(12)
and after insertion into (7) and (3),
A= L C R T+ KR,
—m[ a(@—Ra)—(q d)
(13)

~ \/q (K+T)[Ca(q—Ra) — (T + KRy)}Aa(Wsat — o)
(Ca + K_/Ia(Wsat_Wa))

and
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- a(Wsat —Wq) q (K+T)[Ca(g—Ra)— (aT" + KRy)]
(Ca +K)2 [Ca +K_ﬁa<wsat_Wa)]/‘[a(wsat_wa)

[Ca+K=24a(Weqt —W,q)]. +(gd—Rg) Ca—(aT +KRg)—q (K+I)]  (14)

Once g is known, the Lagrangian multiplier A can—in principle—be
calculated by performing the integration in the second equation in (8)
explicitly. It can be shown (Konrad et al., 2008) that 1 is closely con-
nected to soil water availability and measures the ‘cost of water’ for
the plant: high 1 indicates shortcoming, low A indicates abundance of
soil water. Notice that in parts of the literature the Lagrangian multi-
plier is designated by the reciprocal of 1 as used here; then, the inter-
pretation of A should be reversed.

The desired atmospheric CO, concentration C, under which the
fossilised leaf has grown is found by inserting expression (12) into
expression (4), resulting in a relation v(C,). The solution of this equa-

tion for C, is straightforward, albeit a bit tedious.

2.1.2 | Reduced order model and the model of
Franks et al.

In terms of their physical basis and their mathematical structure these
two models are similar, although they appear to be quite different, at
first sight. The apparent dissimilitude is due to a different notation
and various approximations that do not affect the mathematical core

and reasoning.

Reduced order model
In this model, the combination of Equations (1), (2) and (5) produces
(Konrad et al., 2017):

_ q(xC,-T) Re
8T 1=0CaxCa+K)  (1=0)Cs’ 13)

the right-hand side of which contains—apart from the photosynthesis
parameters and k—only C,. Insertion of (15) into (2) and (3) yields:

kCq—T

G, 7K R (16)

A=q

E= q(K(Cla__KI;)C:idC(:SaK; < a(Wsat —Wa), (17)

Similarly as in Section 2.1.1, combining expressions (4) and (15)
results in an expression v(C,) that is quadratic in C, and can be solved
for the atmospheric CO, concentration C, under which the fossilised
leaf had grown.

The model of Franks et al.
The model of Franks et al. (2014) is also based on Equations (1), (2),
(4) and (5):

e Equation (1) in Franks et al. (2014) is equivalent to Equation (2) of
Section 1.2; notice that although they do not assign an extra vari-
able to the ratio C;/C, (such as x =
Equation (5)) they treat C;/C, as an independent quantity.

e Equations (2) and (3) in Franks et al. (2014) are equivalent to (4).

e Equation (6) in Franks et al. (2014) can be derived from the photo-

Ci/C, we have introduced as

synthesis model (1) when the following assumptions are made:

1. neglecting the quantity Ry,

2. assuming that photosynthesis is RuBP rather than Rubisco-lim-
ited, implying K = 2T,

3. dividing the expression A = q(C; — I')/(C; + 2I') resulting from (1)
by an assimilation rate Ag = q(Cio — I)/(Cio + 2T') related to a
different CO,-level C; and

4. replacing C; = kC, and Cio = xoCap [due to (5), see Kowalczyk
et al. (2018)]

(kCq—=T) (koCqp +2I')

A=A0 (o320 (koCan=T)"

(18)

The two Equations (1) and (6) of Franks et al. (2014) contain the
two unknowns C, and A for which they can be solved, either itera-
tively [as proposed in Franks et al. (2014)], or directly: Insertion of
their relation (1) into (6) produces a quadratic equation for C,. The
solution of this equation is tedious but otherwise straightforward.
[Notice that expression (18) makes g = V max vanish from the system
of equations; the information stored in V ,qx is now obtained from
the values Ag and C, of a (preferably closely related) plant growing

under current conditions.]

2.1.3 | The simplified reduced order model

The ‘simplified model’ (Konrad et al., 2017) emerges from the reduced
order model of Section 2.1.2 in the limit ' — 0 and Ry — 0O, or, more
precisely, if C; (or C,, in view of the relation C; = xC,) is high enough
and the following conditions apply:

r
Ca>>;, (19)
ql' + KRy
Co>—F—0—. 20
a K(q—Rd> ( )

Notice that (20) is more restrictive than (19), provided Ry < q,
which is the case for real plants.

Neglecting I, the CO, compensation point, and R,, the mitochon-
drial respiration rate, simplifies the structure of the assimilation model
(1) to A = qC/(C; + K), hereby reducing its accuracy for small C; (with
respect to C,). However, these simplifications remain plausible at high
C; and the mathematical structures of the two assimilation models

remain similar (i.e., nocturnal and mitochondrial respiration are no
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longer part of the model, but the asymptotic behaviour for high C; is
still present). Thus, the deviations of the simple from the full assimila-
tion model (1) can be tolerated for high enough values of atmo-
spheric CO,.

In the limits I’ — 0 and Ry — O of the approximations (20), the
relation between stomatal density v and C, of the reduced order

model simplifies to:

a__ dy
(1-x)Dco, ast
y=_ L THTCO T

ap K]’
Co [~

2
where f:=dy, + dgs

S ngs *

2.2 | Phenomenological approaches

The stomatal ratio model comes in two varieties: stomatal ratio can
mean the ratio of stomatal densities or the ratio of stomatal indices
that are defined in terms of the densities of stomatal and epidermal

cells.

221 |
density)

Stomatal ratio model (based on stomatal

The starting point of the model variety based on stomatal density
(McElwain & Chaloner, 1995, 1996) is the observation that the ratio
of the stomatal densities v of two plants (e.g., a fossil one, v, and an
extant one, vy, Of the same species) is roughly reciprocally propor-
tional to the ratio of the atmospheric carbon dioxide concentrations
wherein these plants lived (Kleidon, 2007; Wynn, 2003), that is,

This statement is equivalent to
v= kcs—:, (23)
where veyx and C,, ext have been amalgamated into the constant
ksp = vext Caext (24)

Therefore, knowledge of a single known data pair (vext, Cgext) iS
sufficient to derive palaeo-CO, via relation (23). If stomatal density v
depends on atmospheric CO, but is largely unaffected by all other
environmental conditions, such as atmospheric humidity or air tem-
perature, the parameter ksp should have one constant value for all
individuals of the same species. Notice, that relation (22) implies that,
in a (v, C,)-diagram, all (v, C,)-pairs of a given species should lie on the

curve defined by expression (23).

222 |
index)

Stomatal ratio model (based on stomatal

In the stomatal index model, stomatal density in Equation (23) is rep-

laced by the stomatal index:
v
Sl=——x100. (25)
vte

Here, ¢ denotes the number of epidermal cells per leaf area and v
is the number of stomata per leaf area; therefore, v/(v + €) represents
the fraction of cells of the leaf surface that are equipped with stomata
and S| denotes the related percentage. In this context, it is advanta-
geous to use the quantity o (Sack & Buckley, 2016), defined by:

Sl v 1
75100 " sre 1t (o)’ (26)

The rightmost version of this equation indicates that ¢ depends
solely on the ratio of € and v. Following the same reasoning that led
from (22) to (23) we obtain in a first step:

Oext _ Cq

27
o Ca,ext ( )
Introducing the constant:

ksi = 6ext Ca,exty (28>

this can be rewritten:

_ksi
o= C. (29)
or, equivalently,
Co= Koty (1+5) (30)
a = Sl v

The last version results with the help of relation (26). This is the
sought-after model for determining C, from ¢ (respective v and ¢).
When applying this method, it is tacitly assumed that physiological
changes that occurred between past plants and their present repre-
sentatives can be ignored, as well as the effects of environmental

parameters other than C,,.

2.2.3 | Transfer functions (‘full calibration models’)
Another widely used approach to reconstruct palaeo-CO, on the basis
of empirical data utilises fitting of a number of observed (v, C,) data
pairs by using an appropriate fitting function (Barclay & Wing, 2016;
Beerling & Royer, 2002; Garcia-Amorena, Wagner, van Hoof, &
Manzaneque, 2006; Hincke, Broere, Kiirschner, Donders, & Wagner-
Cremer, 2016; Kirschner, Kvacek, & Dilcher, 2008; Kiirschner, Wag-
ner, Visscher, & Visscher, 1997).

The basic idea is as follows: (a) measurements of v, € and C,-

values from a number of individuals of an extant species, which is
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considered to be a suitable relative of the considered fossil taxon,
grown under different atmospheric CO, concentrations yield a cloud
of (v, C,)- or (o, C,)-pairs; (b) linear or non-linear regressions methods
allow fitting of these data points to a (v, C,)- or (s, C,)-curve which
can then be used (c) to infer palaeo-CO, from stomatal density or sto-
matal index of fossil leaves.

Also, this method rests on the tacit assumption that physiologi-
cal, environmental or climatic changes that occurred between fossil
plants and their present representatives can be ignored. Since it is
difficult to maintain very low or very high C,-values over a long time
period (e.g., in a greenhouse), transfer curves obtained from mea-
surements of v and e under medium C,-values are often extrapolated
into these regions. In view of possible saturation or depletion phe-
nomena that are connected with photosynthesis and may occur
especially at very low or very high C,-values this practise is

problematic.

224 | The model of Schubert and Jahren

Denoting the ratios of the stable carbon isotopes *2C and *3C in
i i B¢ Bc

the atmosphere and in the plant tissue by <12C)c02 and (Hc)p'

respectively, the positive discrimination of CO, molecules consisting

of the lighter isotope by diffusion along the pathway through the

plant leaf and the subsequent assimilation machinery can be

expressed as:

C B¢
(%0 co, ~ (%) p _8%Cco,—81C,

ABC, =
P @9, 1+65C,

The second version results if the relation

3 Cample = {(ii—g) /(ﬁ—g) } —1 is used; the subscript ‘sam-
sample standard
ple’ represents CO, or p (=plant).

Schubert and Jahren (2012) inferred from systematic measure-
ments of A'C in which they kept all environmental parameters
constant, apart from atmospheric CO, concentration, that the

relation:

ABCpgx m (Ca—f)

AtC= 3
A™Cpax + m(ca _f)

: (32)

acceptably fits these measurements provided the parameters m, f and
AY3C,0x are assigned suitable values. This relationship was found to
hold in further work by Cui and Schubert (2016, 2018). Hence, rela-
tion (32) represents a calibration curve that can be used to reconstruct
palaeo-CO, from the ASC value of fossil plant material by solving
(32) for:

_ ABChax(fm+ AC) —fm A¥C
m(ABCrpax—AC) ’

Ca (33)

3 | STRUCTURAL DIFFERENCES BETWEEN
THE MODELS

In the following, models derived explicitly from established physical
principles and physiological processes will be compared to phenome-
nological models based on assumptions and data-fitting procedures
(cf. Figure 1). The pragmatic way to decide whether any of the differ-
ent approaches are in a given context superior or equal (with respect
to accuracy of predictions) to their competitors would be to apply all
models to extant plants and to assume that the results are transfer-
able to their fossil counterparts, because the ultimate measure for
the quality of any model is usually its capability to provide predic-
tions which are consistent with results of independent measure-
ments. In the case of proxy approaches for paleoenvironments, this
is, however, quite difficult, because this kind of ‘test’ refers to extant
data sets which are to a greater or lesser extent source of the vari-
ous methods.

In what follows, another path will be taken by exploiting the
fact that phenomenological models are in fact also based on basic
principles of physics and physiology, even if they are not explicitly
derived from these principles. To this end, we compare the func-
tional form of a phenomenological and a mechanistic model and
examine if one model can be brought into agreement with the
other one by the application of reasonable approximations and/or
additional assumptions. However, it must be emphasised that
unique interpretations of phenomenological parameters in terms of
mechanistic quantities may be impossible. Different mechanistic
models do necessarily produce different expressions for these
parameters.

In this section, we shall proceed as follows. First, an inquiry into
the two groups of mechanistic models is conducted so as to establish
a ranking with respect to complexity and comprehensiveness. To
extend this ranking to phenomenological models, we examine them as
outlined above. Afterwards, we will be able to discuss the structural
differences of the models.

3.1 | Complexity and comprehensiveness of the
mechanistic models

The structure of mechanistic models presented in Section 2 suggests
a certain hierarchy in terms of their complexity:

e In the reduced order model and in the model of Franks et al.,
expression (15) for leaf conductance g depends merely on atmo-
spheric CO, concentration C,, the ratio x = C;/C, between leaf
internal and atmospheric CO, concentration and the photosynthe-
sis parameters g, K, I', Ry4. The latter introduce also a dependence
on temperature T. In these models leaf conductance g is con-
strained exclusively by the relations (1), (2) and (5), representing
the assimilation machinery and the carbon dioxide exchange
between leaf and atmosphere; transpiration is a mere consequence

of this, as implied by (3) (i.e., water uptake is entirely dictated by
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the carbon demands of the plant): Water related quantities, such
as atmospheric humidity w, or soil water availability are not
accounted for.

e This restriction applies also to the ‘simplified model' of Konrad
et al. (2017) (see Section 2.1.2) whose only difference to the
reduced order model is that it employs a simpler photosynthesis
model, namely the limit I' — 0 and Ry — O of the Farquhar model
(see (1)).

e In the optimisation Equations (9) and (11), however, transpiration
appears on an equal footing with assimilation; hence, the resulting
expression (12) for leaf conductance g includes the water related
quantities cited above.

In this sense, the optimisation models are more comprehensive
than the reduced order model, the model of Franks et al. (2014) and
the ‘simplified model’ of Konrad et al. (2017). Figure 2 summarises the

structural complexity of the models considered here.

3.2 | Mechanistic interpretation of
phenomenological models

3.21 |
density)

Stomatal ratio model (based on stomatal

To shed some light on the meaning of the parameter ksp, we com-
pare the expressions relating C, to v in the mechanistic simplified
reduced order model (expression (21)) to the density-based stomatal
ratio model (expression (23)). We then ask whether there are reason-
able approximations to reduce expression (21) of the mechanistic
model to the functional form (23) of the phenomenological model. If
so, it is possible to interprete the model parameter ksp in terms of
mechanistic quantities that can be independently measured or
inferred.

Comparing the right-hand sides of (21) and (23) with regard to
their C, dependencies one finds that they can be reconciled by
demanding that the denominator of the right-hand side of (21) is dom-
inated by C,, that is:

Decreasing model complexity

q a2\ K
Co>|=———|dy+d -, 34
‘ ‘(1_K)DC02< o ”as> K (34)

Then, the parameter ksp in (23) can be identified with the numer-
ator on the right-hand side of (21), that is,

ksp=——a— e
(1 —K)Dco2 st '

(35)

The problem is, that Equation (34) compares (on its right-hand
side) morphological quantities from fossilised leaves and photosyn-
thetic parameters obtained from nearest living relatives with the
quantity C, (on its left-hand side) which is not yet known. The remedy
is to apply relation (23) to eliminate C, in favour of v resulting in an

inequality relating similar quantities:

dst

r< - . (36)
2 D 1-x)K
db! + das 1,‘:; COZK( aq a

In any case, if (36) is valid the application of the density-based
stomatal ratio model (expression (23)) to a fossil leaf exhibiting stoma-
tal density v is justified, and the parameter ksp in (23) can be identified
with the numerator of the right-hand side of (21), that is, it is given by
(35). Notice that:

e Dco,, g and K depend on temperature [for the explicit functional
form consult Nobel (2005) and Bernacchi et al. (2003)], and

o if (36) is valid for a given stomatal density v it is also valid for all
stomatal densities smaller than this v. That is, condition (36) defines
an interval O..., and—via (23)—an interval C,...co wherein the use
of (23) is legitimate.

What does that mean in practise? Note that the ‘much smaller’
sign (‘<) in (36) means a certain leeway for deciding what is ‘small
enough’. Ignoring this arbitrariness can introduce considerable error
with respect to CO, reconstruction. We can demonstrate this by
using values for Ginkgo biloba from Table 1 (for T = 20°C). Upon

)

Stomatal ratio model

Optimisation

model Reduced order model

Model of Franks et al. i §
_<I ___________________________ N Oversimplified
model

(density based)
Stomatal ratio model

Transfer
functions

(index based)

> I Model of Schubert & Jahren I

<

Increasing number of input parameters

FIGURE 2 Hierarchy of the models discussed here implied by the differences in their structural complexity. Mechanistic models are indicated
by a green frame and phenomenological models are indicated by a blue frame. Increased model complexity comes at a cost: a more detailed (and
hopefully more accurate) output requires a more detailed knowledge of input parameters [Color figure can be viewed at wileyonlinelibrary.com]
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TABLE 1

Quantity (units)
Environmental parameters
T(°0)

Wrei (=)

w, (mol/m°)

w; (=)

Weat (Mol/m®)

(=)

ksp (1/mm?)
ks [-]

Biochemical parameters
from G. biloba

q (umol/m?/s)
K (umol/m?3)

A (umol/m3)
R4 (umol/m?/s)

Leaf anatomical parameters
from G. biloba

v (1/mm?)
e (1/mm?)
o(-)
SI(=)

g (um?)
dst (um)
das (um)
Tas (=)

Nas (=)

dpy (mm)

Ic (mm)

Model parameters related to G. biloba together with their dimensions

Explanation

Temperature (air)

Relative atmospheric humidity

Leaf external humidity, w, = W,eWaat

Relative leaf internal humidity (~saturation value)

Saturation value of humidity (depends on T)

‘Cost of water’ (Lagrange multiplier of optimisation model)

k = Ci/C,, reduced order model

k = Ci/C,, simplified reduced order model

Isotopic fractionation due to diffusion through the plant leaf
Isotopic fractionation due to catalysis by Rubisco

Diffusion constant of CO, at T = 25 C (depends on T)
Diffusion constant of water vapour at T = 25 C (depends on T)
a=Dy,0/Dco,

Constant in density-based stomatal ratio model (see (24))

Constant in index-based stomatal ratio model (see (28))

Carboxylation limited by Rubisco or RuBP at T = 25°C?
Contains Michaelis-Menten constants®
CO, compensation point?

Mitochondrial respiration rate®

Stomatal density®

Density of epidermal cells”
c=vl/lv+e)

Stomatal index, Sl = 100 &
Stomatal pore area®c

Depth of stomatal pore®
Thickness of assimilating tissue®
Tortuosity of assimilating tissue®
Porosity of assimilating tissue®
Thickness of boundary layer®

Characteristic leaf length®

Note: Specific values of parameters designated as ‘varied’ are given in the figure captions.

2For a list of the data sources for the biochemical demand parameters, see Konrad et al., 2008.
bValues determined from the literature (see also Konrad et al., 2008).

“Stomatal pore area is calculated as elliptic shape.

deaf boundary layer thickness calculated for 1.0 m/s as a typical wind velocity (Nobel, 2005).

insertion of these values into the right-hand side of (36), it follows

v < 294/mm?. If we decide that ‘small enough’ requires a 10-fold not be used.

smaller value (i.e., one order of magnitude), we arrive at the condition
that stomatal density should be not larger than v > 30/mm? when the

density-based stomatal ratio method is to be used. In Table 1,

Numeric value

Varied
Varied
Calculated
~1
Calculated
0.0026
0.71

0.65

4.4 x107°
27 x 1073
1.55x 107>
249 x 107°
1.6

0.034

28.7 x 10~¢

7.3
13,925
2,408
0.16

85
1,100
0.071
71
12.3
33.8
217.7
1.571
0.35
0.66
84

however, v amounts to 85/mm?, and the stomatal ratio method should

Equivalently, the problem can also be approached via relation (34)
which provides a lower bound for CO,: here, the values of Table 1

result in C, > 242 umol/mol. If we interpret > as requiring C, to be
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10-fold higher for applying the stomatal ratio method, then we arrive
at a minimum level of C, > 2420 umol/mol. However, the factor
10 used above (equivalent to one order of magnitude) is by no means
unique; its choice should be reasonable but depends always on circum-
stances; depending on the ultimate purpose of the reconstruction, even
two orders of magnitude may be adequate to arrive at feasible results.

322 |
index)

Stomatal ratio model (based on stomatal

In the case of the index-based stomatal ratio model, we proceed in
close analogy. We first transform expression (21) by means of (26) to:

q dst

(1-x)Dco, €ast

o= 5 P K .
—d__a_ Tas® Gt | _K
Co—{rr=sfoes; (d+dos 32— ) )

(37)

As above we can now require that the absolute value of the term
in braces in the denominator strictly vanishes. Or we require merely

that this term is much smaller than C,, yielding:

Tas2  d K
dpl + das ;_S__St>__-

-
as  €dst K

q
(1-x)Dco, < (38)

Using (29), this condition can be rewritten as a condition for o,

dst
€dst
o . 39
< dy +d L_h_DcozmﬂdK ( )
bl Yas n, T cay xq

The parameter kg in (29) adopts—on comparison with (37)—a

slightly different value than its counterpart (35), namely:

st

kgj= —r——.
sl (].—K)D(:o2 €0dst

(40)

3.23 | Transfer functions

The transfer function method relies on preformulated and arbitrarily
selected equations used for fitting measured data, and therefore bears
no direct link to mechanistic concepts. In principle, it would be possi-
ble to connect (and in a sense to ‘explain’) one or more of the indeter-
minate parameters of the used fitting curves with parameters
occurring in one of the mechanistic models of Section 2.1, similarly as
we proceeded in Sections 3.2.1 and 3.2.2 in the case of the stomatal
ratio models. However, a variety of equations are used for fitting,
among them sigmoidal shaped solutions of the logistic equation
(Ktrschner et al., 1997) and power-curve regressions (Barclay & Wing,

2016). Further examples can be found in Beerling and Royer (2002)

and Wynn (2003). Since fitting curves are selected with respect to the
quality of the curve fit only and therefore depending on the shape of
the individual scatterplot, it appears to be not possible to identify a
special ‘function skeleton’ structurally homologous with one of the
mechanistic approaches.

3.24 | The model of Schubert and Jahren

To date no derivations of expression (32) from general principles
appeared in the literature known to the authors although the mecha-
nism behind this equation is, at least for Cs-plants, well known
(Schubert & Jahren, 2012) and has been described some time ago by
Farquhar et al. (1982). Isotopic fractionation due to diffusion and

assimilation obeys the relation:

ABC=g+ (5—&)%, (41)
a

where a is the isotopic fractionation due to diffusion into the leaf and
b is the fractionation occurring during carboxylation (Farquhar et al.,
1982). Taking (41) as a starting point, such a derivation can be per-
formed by employing the optimisation model discussed in
Section 2.1 to express C; in terms of C, and the photosynthetic and
environmental parameters. This is achieved by inserting expression
(13) for the assimilation rate into the assimilation model (1) and solv-
ing for C;. Utilizing the result in (41) yields the mechanistic counter-
part of (32):

ABC oy =+ (E-a)

Ca(qr"'KRd)—K/m(Wsat—Wa)\/ q (K+T)[Ca(g—Rq4) = (qU'+KRq)]

[Ca +K—=Aa(Wsat —Wa)[Aa(Wsat —Wa)

C, [q(l"+K) _/‘[a(wsat_wa)\/[q (K+T)[Ca(a—Rq) = (ar + KRy)] ]

Ca +K—2a(Wsat —=Waq)]20(Wsat —Wa)

(42)

As in Sections 3.2.1 and 3.2.2, parameters m, f and A3C,,,, of the
phenomenological relation (32) can be expressed in terms of quanti-
ties appearing in the mechanistic relation (42). The following proper-

ties of A'SC, as defined in relation (32), are used:

Cl|m A13C= A13Cma><7 (43>

ABC|. _ =0, (44)
daldc

=m. 45

dCq ¢, (43)

Applying these relations to A'2C,.cn, as defined in relation
(42), and setting Ry = 0 and I' = O (these two variables are not
overly influential and neglecting them avoids overlong expressions)

one obtains:
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Ka(Wsgt —Wq) (a—B) + bK — 20 (Wsgt —Wq)
K—2a(wsat —wq)
N2
KAa(Weat —wq) (b —a)

f=— 46
sz—azla(wsat —W,) (46)

A13Cmax =

. (B2K—E’2/Ia(wsat—wa)>2

2K2a(Wsgt —Wa) [BK—zua(wsat —wa)] (B—a)z '

Calculating A*3Cppax, f and m in this way effectuates that the func-
tions A'C(C,) (see (32)) and A3Cpnech(C,) share the zero at C, = f, the
slope m at the common zero and the asymptotic behaviour
for C, — .

Notice that the right-hand sides of (46) vary with T, w,, and A.
Since @ and b in (41) are constants this implies that the ratio C;/C,
must also vary with temperature and plant water conditions

(i.e., humidity and ‘cost of water’ 4).

4 | DISCUSSION: APPLICABILITY AND
LIMITS OF THE MODELS

41 | Comparison of the models

Figures 3 and 4 show (SI, C,)-curves resulting from the different
models obtained with the data of Table 1 (with the exception of the
model of Schubert and Jahren which uses neither stomatal density
nor index). To make the model results comparable, they are all
expressed—if necessary by applying relation (25)—in the form SI = f
(C,). For the atmospheric temperature T = 20°C and the relative atmo-
spheric humidity w,e = 0.75 all curves intersect at the point (Cgext,-
Slext) = (400 umol/mol, 7.2), marked by a black dot, and typical for
extant G. biloba trees.

As is justified by its unmatched complexity in the model hierarchy
depicted in Figure 2, we use the optimisation model of Section 2.1 as
a benchmark for the accuracy of the other models. A first glance at
Figures 3 and 4 corroborates the notion that complexity is the price
of accuracy: the distance of model curves from the benchmark curve

(solid, red) increases with decreasing model complexity.

411 | |Influence of climate

The subfigures of Figure 3 represent variations of both temperature
and humidity, T = (15'C, 20'C, 25°C) and w,e = (0.5, 0.75, 0.9). Only
the optimisation model and both reduced order models include envi-
ronmental parameters, with the optimisation model requiring temper-
ature, air humidity and soil water conditions (hidden in the parameter
A), while both the reduced order model and the simplified reduced
order model require only temperature. The stomatal ratio models
include neither temperature nor humidity. These structural differences
between models with respect to considering climate contribute largely

to the different model results.

Figures 3 and 4 convey the overall impression that when CO,
exceeds about 300 umol/mol, model curves at low temperatures and
humidities are much closer to one another than at high temperatures
and humidities.

If one accepts the optimisation model as benchmark, the stomatal
ratio models underestimate C, for all climatic conditions; the effect is
particularly grave under conditions of high humidity and/or under high
temperature (Figure 3c,f-i). At moderate and high humidities
(Figure 3d-i) the reduced order and simplified models also underesti-
mate CO, but to a lesser extent than the non-mechanistic models.
This can be attributed to the fact that the mechanistic models react
on temperature, the stomatal ratio models, however, do not. For low
humidity and beyond C, > 1000 gmol/mol the mechanistic models
are quite close together.

The diagrams in Figure 4 corroborate these structural differences.
They illustrate the deviations ASlmodel = Slmodel = Slopt Of all models
from the optimisation model. Opt denotes the optimisation model and
model denotes either of the models depicted in Figure 3; setting
model = opt produces the red base line.

For most temperature and humidity combinations, the non-
optimisation models tend to underpredict CO,; indeed, the simpler
the model, the greater the underprediction (Figures 3 and 4). It is com-
mon for stomatal ratio-based and transfer function-based CO, esti-
mates for the Paleogene to be anomalously low [e.g., Barclay and
Wing (2016); Kowalczyk et al. (2018); see also compilations by Bee-
rling and Royer (2011); Foster et al. (2017)]. The structural limitations
of these simpler approaches identified here may explain their persis-

tent underprediction.

4.1.2 | Influence of atmospheric CO,
concentration

Figures 3 and 4 suggest that all curves in all subfigures converge for
high C,, irrespective of the values of T and w,. This can be under-
stood from the structure of the mechanistic models: if one brings
them into the form ¢ = f(C,) and expands the results in power series
with respect to 1/C,, one finds that for C, — o they are dominated
by a term k/C, (with k = const.), that is, 6 ~ k/C, for C, — oo. Structur-
ally, this is equivalent to ¢ = ks;/C,, the basic Equation (29) of the sto-
matal ratio models. For high enough C, even a difference between
k and ks becomes insignificant. It is therefore not surprising that the
stomatal ratio models, indicated by the magenta and violet lines in
Figure 3, approach their mechanistic counterparts (red, green and
blue) for high enough C,. Ultimately, for very high C,, all model curves
approach asymptotically the value SI = 0.

It should be noted, however, that the merely asymptotic conver-
gence of the models for C, — co means that the less complex models
are only applicable for high C,-regimes. Moreover, the convergence
behaviour depends on climate. Especially for warm and humid cli-
mates (cf. Figure 3h,i), a minimum C, of several 1,000 zmol/mol is
required, limiting the practical applicability of simple models

severely.
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FIGURE 3 Stomatal indices of G. biloba as a function of atmospheric C,. The curves are calculated via the optimisation model (solid red lines),
the reduced order model (solid green lines), the simplified model (broken blue lines), the density-based stomatal ratio model (dotted magenta
lines) and the index-based stomatal ratio model (dotted violet lines). The black dot in subfigure (e) marks the point (Cg ext, Slext) = (400 pmol/

mol, 7.2), typical for extant G. biloba trees. Values of air humidity and air temperature used for calculating the curves are as indicated in the
subfigures. Notice that the optimisation model depends on humidity and temperature, the reduced order model and the simplified reduced order
model depend only on temperature and the stomatal ratio models depend neither on humidity nor on temperature. Other input values are given
in Table 1 [Color figure can be viewed at wileyonlinelibrary.com]

4.1.3 | The model of Schubert and Jahren the absence of leaf anatomical quantities precludes calculating stoma-

tal index from the model of Schubert and Jahren. It is therefore diffi-
Since the model of Schubert and Jahren is based on a completely dif- cult to locate its definite position within the ranking order defined by
ferent approach, a direct comparison with the other models is not the other models (cf. Figure 2). Lacking any reference to temperature,

possible; the disparity of the model approaches, or, more precisely, humidity, soil water content or leaf anatomy it is, in any case, less
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used for calculating the red, green and blue lines are indicated. Other input values are given in Table 1 [Color figure can be viewed at
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complex than the optimisation model, from which it can be derived,
according to Section 3.2.4.

The diagrams in Figure 5 compare the discrimination A*3C calcu-
lated via the model of Schubert and Jahren, if interpreted in terms of
the optimisation model (dashed, blue curves), with the optimisation
model combined with relation (41).

The two curves nearly coincide in Figure 5e but diverge in the
subfigures related to the other variations of temperature and atmo-
spheric humidity. This is because the optimisation model, from which
ACppeen is derived, depends not alone on the value of the atmo-
spheric CO,-concentration C, but, according to (42), also on the envi-

ronmental variables air temperature T, atmospheric humidity w, and
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FIGURE 5 The discrimination A3C for G. biloba as a function of atmospheric C,, calculated via the optimisation model (solid red line) and the
model of Schubert and Jahren (broken blue line). The red line represents A3C ech, calculated according to expression (42), the blue line from
inserting the parameters given in (46) (set to T = 20 C and w,¢ = 0.75) into (32). Values of air humidity and air temperature are indicated, other
input values are given in Table 1 [Color figure can be viewed at wileyonlinelibrary.com]

soil water availability (contained in 4). The phenomenologically derived
discrimination A'3C of relation (32), in contrast, is assumed to depend
only on C,.

If humidity is low, as in Figure 5a-c, the model of Schubert
and Jahren underpredicts C, for a given A*3C (compared to the
optimisation model). This is in accordance with and explains, at

least partially, experimental results obtained by Lomax, Lake,

Leng, and Jardine (2019) for Cenozoic and Mesozoic atmospheric
conditions (21500 umol/mol). On the other hand, if humidity is
high, as in Figure 5g-i, the model of Schubert and Jahren over-
predicts C,.

For C, 2 500 umol/mol all curves in Figure 5 are very flat. There-
fore, small uncertainties in experimentally obtained A*3C values are

amplified to much larger uncertainties in the predicted C, values.
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4.2 | Fundamental problems with the stomatal
ratio method

Historically, it was their seeming simplicity which made the stomatal
ratio models so attractive: if one takes their simple functional form
(23) (resp. (29)) for granted they contain only one unassigned and
unrestricted parameter (ksp resp. ks;) which can be determined via
relation (24) or (28) from a single known data pair (Cext, Vext) OF
(Caexts Oext) Obtained from plants growing under ambient CO, (termed
‘single pair method'’ in the following).

this
completely the functions (23) and (29) that relate C, to v (resp. o),
as do the structurally much more complicated mechanistic models

Principally, single reference data pair determines

or the transfer functions whose construction is experimentally
much more laborious. This simplicity makes the stomatal ratio
models indeed a tempting prospect. In what follows we will con-
centrate on the index-based stomatal ratio model of Section 3.2.1;
the results, however, apply also to the density-based model of
Section 3.2.2.

421 | Problems with the ‘single pair method’
Figure 6 shows curves derived from the stomatal ratio model (via the
‘single pair method' of the last paragraph) together with curves
obtained via transfer functions from comprehensive data sets for
Ginkgo (data are from Royer (2001) and Barclay and Wing (2016)).
Here, the original (o, C,)-transfer functions constructed from these
data sets by Royer (2001) and Barclay and Wing (2016) (dashed, red
curves), are shown, together with several (solid, blue) curves that were
calculated using relations (28) and (29). These were obtained by
choosing the data pairs (Cyext, Gext), denoted by the solid black circles
located upon the transfer functions.

It is obvious from Figure 6 that the (blue) curves constructed from

single data pairs are not able to track the (red) experimental data sets:

each data pair provides a different (blue, solid) curve, and the devia-
tions between the transfer curve and these curves are substantial, and
even (in Figure 6b) grave. In the case of Figure 6a, the solid curve
(based on relation (27)) represents the transfer function in the close
neighbourhood of the value C, ext = 360 umol/mol reasonably well,
but this is merely a coincidence (see below), as is illustrated by
Figure 6b where none of the solid curves approximates the transfer
function.

Obviously, the curves produced by the stomatal ratio model
cannot be viewed as valid ‘local’ approximations to the ‘real’
function ¢ = f(C,) (in this case represented by the transfer func-
tions of Figure 6). It is worthwhile to trace this deficiency to its
origin.

The starting point is equation (29) that relates C, to o; it is struc-
turally extremely simple: it contains merely one undetermined param-
eter, ks.. Once ks) = oextCaext has been fixed by choosing a definite
point (Cgext: oext) lying on the ‘real’ function ¢ = f(C,) it is guaranteed
that the curve associated with (29) intersects ¢ = f(C,) at that point.

A local approximation of a function ¢ = f(C,) should represent this
function not only at a single point (Cjext, cext) but rather in a
neighbourhood of this point, otherwise it is of very limited value. That
is, the local approximation curve should not only intersect ¢ = f(C,), it
should be also tangential to ¢ = f(C,) at (Cgext, Gext); in other words,
the slope do/dC, = —ks,/Cg of (29) and the slope df/dC, of the real
function ¢ = f(C,) should coincide for C, = C,ext. TO achieve this, it is
imperative that expression (29) contains not only one but (at least)
two undetermined parameters. Since the parameter ks, is already
determined by the relation ks| = 6xtCaext» NO parameter is left to guar-
antee equality of the slopes.

Thus, the extreme structural simplicity of expression (29) explains
both the inability of the stomatal ratio models to serve as local
approximations of unknown but nevertheless real functions ¢ = f(C,)
and the inability of the ‘single pair method’ to reproduce realistic C,-
values. Since this deficiency is rooted in the very structure of the sto-
matal ratio models it is irreparable.
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4.2.2 | Does it make sense to improve the
statistics of the stomatal ratio method?

Obviously, the one-point calibration by one reference data pair on
which the ‘single pair method’ is based is not robust from the view-
point of error analysis. At first glance, fitting (23) (resp. (29)) to a
higher number of already known (v, C,)-pairs (resp. (o, C,)-pairs) in
order to generate data redundancy and robustness when determining
ksp seems to suggest itself as a tool to mitigate this problem.

But the structural problem identified in Section 4.2.1 remains.
Even if ks, has been determined to a high accuracy the major defi-
ciency of Equation (29) is still present: its lack of generality cannot be
rectified if one insists on its simple mathematical structure; simplicity

has its price.

5 | CONCLUSION
Unsurprisingly, this survey suggests that no model is perfectly appro-
priate for all situations; rather, typical situations can be specified in
which one of the models is superior, for example, in accuracy or ease
of application, to the other ones.

Furthermore, the results of this study indicate a major conceptual
gap between the mechanistic models on one side and the stomatal
ratio models on the other side:

e Despite (or, more probably, because of) their seeming mathemati-
cal simplicity the stomatal ratio models suffer from inconsistencies.

e The mechanistic models, on the other hand, require much more
input data than the stomatal ratio approach. For the most complex
model, the optimisation approach, it may be difficult to obtain all
necessary data.

e The mechanistic models and the stomatal ratio models converge
for very high C,. However, the C, value beyond which these
models show comparable predictive power may be so high that the
convergence of the models is of little practical use.

The model of Schubert and Jahren features a structural deficit
that produces inevitably large uncertainties if CO, values beyond
C, 2 500 gmol/mol are to be predicted.

Overall, the model of Franks et al. (2014) and the reduced order
model (Konrad et al., 2017) appear to be a good compromise between
applicability (which shows in the amount of the required model input)
and accuracy (for which complexity is a prerequisite), even if climatic
conditions such as atmospheric temperature and humidity can only be

estimated.
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