Forensic Science International: Digital Investigation 32 (2020) 300926

Forensic Science International: Digital Investigation

journal homepage: www.elsevier.com/locate/fsidi

Contents lists available at ScienceDirect

Investigati,01

DFRWS 2020 EU — Proceedings of the Seventh Annual DFRWS Europe

[oT Botnet Forensics: A Comprehensive Digital Forensic Case Study on m)

Mirai Botnet Servers

Check for
updates

Xiaolu Zhang, Oren Upton, Nicole Lang Beebe", Kim-Kwang Raymond Choo

Department of Information Systems & Cyber Security, University of Texas at San Antonio, San Antonio, TX, 78249, USA

ARTICLE INFO

ABSTRACT

Article history:

Keywords:
Mirai

IoT malware
Forensics
Botnet server

Internet of Things (IoT) bot malware is relatively new and not yet well understood forensically, despite its
potential role in a broad range of malicious cyber activities. For example, it was abused to facilitate the
distributed denial of service (DDoS) attack that took down a significant portion of the Internet on October
21, 2016, keeping millions of people from accessing over 1200 websites, including Twitter and NetFlix for
nearly an entire day. The widespread adoption of an estimated 50 billion IoT devices, as well as the
increasing interconnectivity of those devices to traditional networks, not to mention to one another with
the advent of fifth generation (5G) networks, underscore the need for IoT botnet forensics. This study is
the first published, comprehensive digital forensic case study on one of the most well known families of
IoT bot malware - Mirai. Past research has largely studied the botnet architecture and analyzed the Mirai
source code (and that of its variants) through traditional static and dynamic malware analysis means, but
has not fully and forensically analyzed infected devices or Mirai network devices. In this paper, we set up
a fully functioning Mirai botnet network architecture and conduct a comprehensive forensic analysis on
the Mirai botnet server. We discuss forensic artifacts left on the attacker's terminal, command and
control (CNC) server, database server, scan receiver and loader, as well as the network packets therefrom.
We discuss how a forensic investigator might acquire some of these artifacts remotely, without direct
physical access to the botnet server itself. This research provides findings tactically useful to forensic
investigators, not only from the perspective of what data can be obtained (e.g., IP addresses of bot
members), but also important information about which device they should target for acquisition and
investigation to obtain the most investigatively useful information.
© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

detecting/preventing Mirai from entering IoT networks.
Many investigations of Mirai to date have focused on a tradi-

Due to the weak defenses and access protections found in many
Internet of Things (IoT) devices, the Mirai botnet has had a wide-
spread, significant impact. The public release of its source code'
released in 2016 has led to a large number of Mirai variants and
increased frequency of Distributed Denial of Service (DDoS) attacks
(Antonakakis et al., 2017). Mirai, which means ‘future’ in Japanese,
foreshadowing a more than a one time event, modeled the future of
significant attacks to come. Mitigation efforts include patching the
vulnerabilities that are leveraged by the Mirai malware family and

* Corresponding author.

E-mail addresses: xiaolu.zhang@utsa.edu (X. Zhang), oren.upton@utsa.edu
(0. Upton), nicole.beebe@utsa.edu (N.L. Beebe), raymond.choo@fulbrightmail.org
(K.-K.R. Choo).

1 https://github.com/jgamblin/Mirai-Source-Code

https://doi.org/10.1016/j.fsidi.2020.300926

tional malware analysis of the executable code found on infected
IoT devices, which can be collected from an infected device or a
honeypot (Kambourakis et al., 2017; Kolias et al., 2017; Margolis
et al., 2017b; Wang et al., 2018). However, from a forensic inves-
tigator's perspective, the executable for infecting an IoT device is
not the only area worth exploring in a Mirai network. It can be
much more valuable to investigate the control server or servers, if
they can be physically collected or remotely accessed, because they
contain key information about the whole botnet, not just a single
compromised IoT device.

After Mirai's initial launch, there has been increasing abuse of
Mirai's source code. Someone lacking the expertise to write an IoT
botnet can easily build their own Mirai botnet for a DDoS attack. In
this specific scenario, a forensic investigator might be involved in a
case where the control server of a Mirai botnet is captured.
Answering the following questions can help determine culpability

2666-2817/© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/

).

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:xiaolu.zhang@utsa.edu
mailto:oren.upton@utsa.edu
mailto:nicole.beebe@utsa.edu
mailto:raymond.choo@fulbrightmail.org
https://github.com/jgamblin/Mirai-Source-Code
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2020.300926&domain=pdf
www.sciencedirect.com/science/journal/26662817
www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2020.300926
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.fsidi.2020.300926

S2 X. Zhang et al. / Forensic Science International: Digital Investigation 32 (2020) 300926

of the owners of systems hosting the botnet.

e What forensic approaches work on the botnet servers?

e What evidence is retrievable from the servers?

e Where is the evidence located?

e What investigative information can be obtained from the
evidence?

In this paper, we propose the first comprehensive digital
forensic case study on the server side of a typical Mirai botnet. In
this study, existing forensic approaches were applied for data
acquisition and analysis. We acquired the disk image, memory
(RAM) image, and network traffic (for the attacker's terminal only)
from the control servers of a pre-built Mirai botnet, and then
conducted manual analysis of the different servers in the Mirai
botnet.

The main goal of our study was to recover the list of the infected
IoT devices in the botnet, and the historical record for the DDoS
attacks launched by the attacker. We also sought to determine how
an investigator might deal with a lack of physical access to the Mirai
servers. Another objective for this study was to recover as many
login credentials as possible, so that investigators could gain
remote access to any unobtainable servers. To achieve these goals,
we reverse engineered the service executable and live processes
that were extracted from the memory and disk images. Addition-
ally, to guide a forensic investigator through such a complex sce-
nario, we summarized our findings in a road map for Mirai botnet
server forensics, which clearly shows the relationship between the
data source acquired and the evidence that can be recovered.

The rest of this article is structured as follows. In the next sec-
tion, we briefly introduce the functionality of different components
of a typical Mirai botnet. Then, in Sec. 3 we present the high-level
methodology of our case study. After setting up the experimental
environment in Sec. 4, the case study and the findings (forensic
artifacts) are presented in Sec. 5. The findings are then summarized
in a decision tree, in Sec. 6. The related literature and the conclusion
are presented in Sec. 7 and Sec. 8, respectively.

2. Mirai botnet overview

In this section, we briefly introduce the components underlying
a typical Mirai botnet, which are then used to breakdown the DDoS
attack and infection process (by which a Mirai botnet can be
expanded).

According to the source code of Mirai, the foundation of a typical
Mirai botnet consists of a Command & Control (CNC) server, a
MySQL database server, a Scan Receiver, a Loading server (or
Loader), and a DNS server. The author(s) of Mirai recommended
either a ‘trivial’ setup or a ‘professional’ setup,” where some ser-
vices were recommended to be physically added to the same de-
vice. As Fig. 1 shows, an attacker can launch a DDoS attack by
sending a dedicated command from a Remote Terminal to the CNC
server (step a) through Telnet. Simultaneously, the command is
recorded historically on the MySQL database server (step b) and
then the target of the attack is forwarded to the infected IoT devices
(or bots) in step cy. In response, the bots that are currently alive
would follow the CNC's order by sending a flood of network packets
to the victim server that is targeted (step d;).

Additionally, an infected IoT device is capable of exploring the
network for other vulnerable IoT devices from a wide range of IP
addresses (step i). When a vulnerable device is found (‘vulnerable’
here refers to those IoT/Linux devices with weak SSH and Telnet

2 https://github.com/jgamblin/Mirai-Source-Code/blob/master/ForumPost.md

user credentials), the bot would report this finding (including the IP
address, user credential, type of service, etc.) to the Scan Receiver
(step ii). As a new report is received, the vulnerable device's in-
formation would be captured by the Loader proactively. As Fig. 1
shows, the Scan Receiver and the Loader were considered here to
be on the same machine because, by default, the Scan Receiver
would add the vulnerable device's information to the Standard
Output stream (or stdout) of the Operating System that is always
monitored by the Loader (step iii).

Next, the Loader would log in to the vulnerable device and upload
the malware (step iv). After the new IoT device is infected, it will then
be set up as a new bot and the new bot must register itself with the
CNC server (step vi). However, there is one step, that we highlight
here, that was neglected by almost all the existing research which is
extremely important for forensic investigators. The vulnerable de-
vice must retrieve the IP address of the CNC server from a hard-
coded DNS server (step v), and the same situation happens when
an infected device needs to communicate with the Scan Receiver.
Because of this design, as long as the DNS server is alive the attacker
can move all other servers to a different IP address.

With this overview, we can now more specifically state the
scope of this research. This research aims to identify the owner of
the devices running the servers in Fig. 1. Forensic analysis of
infected IoT devices is out of scope of this research, as is forensic
analysis of the victims of the DDoS attack. Rather, we focus on
devices under the attacker's control (region ‘A’ and ‘A/B’).

3. Methodology

As previously mentioned, this study focuses on conducting a
forensic examination of the server and control side of a typical
Mirai botnet. The goal for this study was to discover as many
forensic artifacts as possible from the servers that are captured
physically (e.g., through a law enforcement seizure) or logically
(e.g., through legitimate remote access). Therefore, we will now
provide a high-level description of the forensic analysis process:

1. We built our own local Mirai botnet with the open source code
on GitHub. This botnet was set up with the exact same network
topology shown in Fig. 1.

2. We acquired data from the file system, RAM, and network traffic
for each physical server.

3. We manually analyzed the data source acquired in the preced-
ing step. The main goal of the analysis was to find as much ev-
idence as possible regarding: a) the historical record of the
achieved attacks (e.g., who, when, and how long the attacks
were launched), b) the victim/target of the DDoS attack, and c)
the information about the infected bots.

4. Ultimately, we verified the findings with Mirai's source code,
and refined the findings. The findings were then incorporated
into a Road Map, which can be used for identifying and col-
lecting evidence that can be potentially recovered from the data
acquired.

Anyone can make a customized Mirai botnet with the public
source code. However, the majority of potential attackers consist of
individuals who lack the skill or ability to make fundamental
changes to the source code. These individuals are often referred to
as ‘script kiddies’. From a forensic investigator's perspective, it is
possible that they will encounter a case where the Mirai botnet was
set up with the original source code, with the only necessary
modifications being key IP addresses and user credentials. There-
fore, we emphasize that the scope of this research is effective for a
forensic analysis on a Mirai network that shares key code elements
of Mirai's original source code.

https://github.com/jgamblin/Mirai-Source-Code/blob/master/ForumPost.md

X. Zhang et al. / Forensic Science International: Digital Investigation 32 (2020) 300926 S3

‘N ’
1 — - - .
Attacker's terminal
B (a>i """"""""" ——— — L AB
v v v v
r A,
————>
[; el) ~ i
CNC MySQL (i) -Scan receiver ;, _Loading server DNS server
databa
C
D
A: Attacker
B: VPS hosting provider
C: loT User

Victim of DDoS attack

D: Administrator of the Victim

Fig. 1. Mirai botnet topology.

4. Environment setup

To conduct a forensic analysis on a Mirai botnet, we down-
loaded Mirai's source code from the aforementioned GitHub re-
pository and set up our testing environment with a similar
topology shown in Fig. 1. As Table 1 shows, we set up the botnet
servers and the IoT devices, as well as the DDoS attacker host and
victim host in separate subnetworks 192.168.1.0/24 and
192.168.4.0/24, respectively. Devices from the two sub-
networks can communicate with one another through a router.
Since the router is not a required component for a Mirai botnet, we
utilized the router as the Terminal as well, on which an attacker
can log into the CNC server.

Changes made in the original Mirai source code were minimal,
including changing certain key IP addresses, as well as minimal
necessary changes to the configuration file of the servers (the
corresponding login credentials can be found in Table 1).

e The MySQL database server was configured to support remote
access from the CNC server. The login credentials of the CNC
server were stored in a table of the database.

e The IP address and login credentials of the MySQL database were
hard-coded to the CNC server.

e A bot (executable) was modified to include the IP address of the
DNS server. This is hard coded in the bot infected IoT device.

e A weak password was set on the ‘root’ user of the ‘Vulnerable
IoT’ device, and this password was included in Mirai's password
dictionary to ensure the ‘Vulnerable IoT’ device can be detected
by the infected IoT device.

We utilized two Raspberry Pi 3 Model B+ computers to model
the ‘infected IoT device’ and the ‘vulnerable IoT device’, because this
Raspberry Pi Model uses an ARM processor that is typical of IoT
devices. We expected the Mirai bot executable to perform in a
manner very close to what an investigator may encounter on many
other real-world IoT devices. All other servers were standardized to
run on x86-64 computers with Debian 10 Operating System using
2 GB of RAM and a 10 GB Hard Disk Drive.

Additionally, we loaded our 64-Bit Kali Linux forensic work-
station with a number of forensic tools; some of these were pre-
installed but needed to be updated. For example, Linux Memory
Extractor (LIME) and Volatility 2.6 were utilized for memory (RAM)
acquisition and analysis respectively. We used DD 8.3 for acquiring
the disk image, and Autopsy 4.11.0 was installed for file system
analysis and data recovery. Wireshark 3.0.3 was used as a network
traffic monitor and Packet CAPture (PCAP) file analyzer. Bulk
Extractor was utilized for extracting network packets from the
memory dump. The National Security Agency (NSA) open source
tool — Ghidra 9.0.4 — was selected for reverse engineering the
executable files (in this case, the executable files were compiled by
Golang).

Table 1

IP address & Login credentials on the devices of the experimental Mirai botnet
Purpose IP address User name Password
Router (Terminal) 192.168.1.1192.168.4.1
CNC 192.168.1.3 ‘mirai-user’ ‘mirai-pass’
MySQL 192.168.1.4 ‘db-login-usrname’ ‘db-login-passwd’
Scan Receiver 192.168.1.5
Loader
DNS 192.168.1.7
Infected IoT 192.168.4.2
Vulnerable [oT 192.168.4.3 ‘root’ ‘pass’

Victim server 192.168.4.4

S4 X. Zhang et al. / Forensic Science International: Digital Investigation 32 (2020) 300926

5. Forensic artifacts
5.1. Attacker's terminal

According to Mirai's design, an attacker must access the CNC
server through a remote/local Telnet connection. When a connec-
tion is made, user credentials (stored in the database server) must
be verified for logging in. If the login is successful, the CNC server
provides a dedicated shell where a certain type of DDoS attack can
be issued.

Because the Telnet protocol does not use encryption, a forensic
investigator can capture the network packets live or possibly
recover the previous network packets from the memory image of
the attacker's terminal. The packets would be expected to include
the user credentials and the commands typed in through the Ter-
minal. Table 2 shows a comparison table for the CNC shell's legiti-
mate commands and their description. Note that a full command
should specify an attack listed in Table 2, a target IP address and its
netmask, and a duration time. For example, Terminal command
“udp 192.168.4.4/24 100" can activate all the live bots to launch
UDP floods to the server 192.168.4.4/24 for 100 s.

5.2. CNC server

The CNC server is one of the most forensically valuable servers
in the Mirai botnet. As Fig. 1 shows, the CNC server is in charge of
issuing attacking orders to the bots, as well as waiting for the newly
infected IoT devices to register. We will describe our analysis of the
CNC server's disk image and memory image. Specifically, major
findings were extracted from: 1) the executable file of the CNC
service, 2) the memory data of the CNC process, and 3) the network
packets carved from the CNC's memory image.

5.2.1. CNC source code

It is very likely that some easily retrievable and valuable forensic
artifacts may be available in the CNC server, which may include the
ready-to-compile source code files that the attacker may have
failed to remove. In this case, the hard-coded database server's IP
address and login credentials can be found in this file/Mir-
ai-Source-Code/mirai/cnc/main.go in clear-text, which is
shown in Listing 1. Another equally important artifact included in
this file is the table name of the Mirai database where the CNC user
credentials and the command history are stored. With these find-
ings, one can access the database server and dump the entire
database (an example can be found in Sec. 5.3).

const DatabaseAddr string =
const DatabaseUser string =
const DatabasePass string =
const DatabaseTable string =

Listing 1: The constant strings of the database server's IP address
and login credentials.

5.2.2. CNC executable

Even though these artifacts may be common, it is also common
that a forensic investigator may encounter a situation where those
artifacts are not available. Therefore, we describe an approach to
recover the same information from the CNC's executable file. This is
less likely to be removed, because if it is removed, the attacker
would need to compile the CNC service whenever the sever
reboots.

In Mirai's source code, the CNC server was written with Golang.
The source code files under/Mirai-Source-Code/mirai/cnc/
were supposed to be compiled to a single native executable that we
named cnc. Thus, our goal was to reverse engineer the cnc file
with Ghidra. As the source code was compiled on a x86-64 com-
puter, the analysis below (with regard to reverse engineering and
executable code analysis) will be based on x64 assembly and 64-bit
memory addressing.

According to the executable analysis, we found that the quickest
way to recover the desired information is to locate where the
function NewDatabase (. .) is called in the executable file. This is
because the addresses of these four strings in Listing 1 were set as
the arguments of this function. As function searching can be easily
achieved in Ghidra, Fig. 2 shows the decompiled code snippet
where function NewDatabase(..) was called. As the figure
shows, address DAT 00666568 (or 0x00666568) stored the
database server's IP address “192.168.1.4”". Likewise, the user name,
password and table name can be found at address 0x006678ab,
0x00667442, and 0x0066525e from the cnc file, respectively.

5.2.3. CNC live process

Our analysis indicates that the CNC server retains a few
queues on the fly, which are used for keeping the active bots, the
deleted bots, and the bots carrying out attacks, respectively. The
program statement of the queues can be found from the

Table 2
Mirai's terminal commands and description.
ID Command Description
N/A ? Printing the Available Attack List
N/A botcount Return the number of live bots
N/A adduser add a new CNC user
0x1 vse Valve source engine specific flood
0x2 dns DNS resolver flood using the targets domain, input IP is ignored
0x3 syn SYN flood
0x4 ack ACK flood
0x5 stomp TCP stomp flood
0x6 greip GRE IP flood
0x7 greeth GRE Ethernet flood
0x9 udpplain UDP flood with less options, optimized for higher PPS
0x9 udp UDP flood with more options

Oxa http

HTTP flood

X. Zhang et al. / Forensic Science International: Digital Investigation 32 (2020) 300926 S5

LEA RAX, [DAT_00666568]

MOV qword ptr [RSP]=>local 9 =>DAT_00666568 "192.168.1.4"
MOV qword ptr [RSP + local 88],0x char(11]

LEA RAX, [DAT_006678ab] "db-login-usrname"
MOV quord ptr [RSP + local 80],RAX=>DAT_006678ab

MOV qword ptr [RSE + local 78],0x10 char[16]

LEA RAX, [DAT_00667442] "db-login-passwd”
MOV qword ptr [RSP + local 70] DAT_00667442

MOV quord ptr [RSP + local 681],0xf char[15]

LEA RAX, [DAT_0066525e] "mirai®

MOV quord ptr [RSP + local 60],RAX=>DAT_0066525¢

MOV qword ptr [RSP + local S8],0x5 char(s]

caLL main.NewDatabase NewDatabase (

DAT_00666568
DAT_0066782b
DAT_00667442
DAT_0066525€)

Fig. 2. Decomplied CNC executable.

ClientList data structure that is included in source code file/
Mirai-Source-Code/mirai/cnc/clientList.go. There-
fore, from a forensic investigator's perspective, the data in the
queues are the most valuable forensic artifacts for recovering the
information about the bots from the CNC server, and the memory
dump of the CNC server is the most important, and our analysis
proved that this may be the only data source available for
recovering the integrated list of bots. Although we argue later in
Sec. 5.2.4, that maybe this information regarding the bots can be
found from the recovered network packets, this may not always
be available.

type Bot struct {
uid int

conn net . Conn
version byte
source string

}

Listing 2: The statement of the 'Bot’ data structure in the source
code file bot:go

In order to recover the bots, we targeted the Bot data structure
(stated in the source code file/Mirai-Source-Code/mirai/
cnc/bot . go), which is known as a member of the queues and is
created for each bot known by the CNC. Listing 2 bot shows the
source code statement (in Golang) of ‘Bot’, which includes a bot's ID
(‘uid’), an available network connection (‘conn’), a version of the
network connection (‘version’) and a string of an IP address
(‘source’). As Golang is a high level language, this data structure is
not documented at the binary level officially. Therefore, we reverse
engineered the CNC executable file and explored the memory
dump in order to provide the procedure for recovering the bots.

As Fig. 3 shows, a forensic investigator can follow the procedure
to find the IP address of the bots from a series of Bot data struc-
tures. To avoid confusion caused by address translation (from

3 The memmap command of Volatility can provide a map of virtual page and
physical page.

virtual memory address to physical memory address), the ad-
dresses shown in Fig. 3 are all virtual memory addresses of the CNC
process. If a reader needs to work on the CNC server's memory
dump, address translation® should be applied additionally.

To retrieve a bot's IP address from the live process, the investi-
gator should first locate a 32-byte data structure (i.e. the binary
representation of Listing 2) allocated to the bot. As step [A] in Fig. 3
shows, the first 8-byte stores the ‘uid’ of the bot, the second 8-byte
stores the starting address of the “net.Conn *” function (in this case,
the starting address was 0x006a1780), the third 8-byte includes a
pointer to step [B], and the last 8-byte holds the ‘version’ of the
network which is usually assigned with 0x1 for [Pv4. In the context
of our study, the best way to find the Bot data structure is to
confirm the starting address of the “net.Conn” function (by
searching the machine code through the memory) and then utilize
the address as a keyword search for the CNC process. Additionally,
the investigator should check the data structure located by veri-
fying both ‘uid’ (the first 8-byte) and ‘version’ (the last 8-byte).

After the 32-byte data structure is located, in step [B], we can
find another data structure at 0xc0000b6200, from which the
fixed offsets 0x68 and 0x78 were found storing two pointers. Both
pointers are two steps (step [Dq] and [D,]) further from the IP
address of the host (CNC) server and the bot respectively. The bi-
nary representation of the host's IP (v) and bot's IP (iv) can then be
found and converted to 192.168.1.3 and 192.168.4.3.

5.2.4. Network packets

To retrieve as many artifacts as possible, Bulk Extractor was
utilized for carving out network packets from the memory dump.

The first type of artifact we found from the packets was related
to the previous attacks. The payload highlighted in Fig. 4 shows a
typical attacking request sent from the CNC server
(192.168.1.3:23) to the Infected IoT device
(192.168.4.2:52984). When the packet was received, the bot
would launch an http flood (DDoS) attack which was specified by
the attack ID 0x0a (see Table 2 for more attack IDs), or the seventh
byte of the payload. Besides, bytes 9 to 13 (0xc0 0xa8 0x04 0x04
0x18) refer to the victim server's IP address 192.168.4.4/24.
Bytes 3 to 6 (0x00 0x00 0x00 0x63) specified the duration of the
attack which is 99 s in decimal.

In addition to the “binary” version of attack command, the
network packets of the original clear-text commands were found as
well, since an attacker is supposed to use a Terminal to make a
Telnet connection with the CNC server. Doing so causes the corre-
sponding network packets to be cached in the memory. However,
we noticed that a command can be only transferred one character
per packet. For example, to recover the full command “http
192.168.4.4/24 99" a series of 22 Telnet packets (including
space) must be found. Fig. 5 shows the second packet of this
command, which only carries the second character ‘t’ in ‘http’
rather than the whole command.

Second, we found the user credentials transferred in a similar
format as the “plain-text” command, thus these were found in
single character from the recovered network packets as well. Fig. 6
shows the TCP stream of the Telnet packets, which includes the CNC
user name “mirai-user”, the password “mirai-pass” and three
standard CNC commands: “?” (output CNC's help menu), “bot-
count” (counting the number of bots) and “udp 192.168.4.4/24 99"
(launching UDP flood attack).

The other type of packet we found that carried recoverable
CNC's user credentials was the packet sent between the CNC and

4 Function net.Conn is part of the public Golang library net that provides a
portable interface for network I/O.

S6 X. Zhang et al. / Forensic Science International: Digital Investigation 32 (2020) 300926

0

[Bl 0xc00000e068 |

0x000b6200 0x000000CO

—» 0xc00002028c I

I(iv) 0xEEE£0000 0x0304a8c0 |

I(v) 0x££££0000 0x0301a8c0 |

I—} 0xc0000202cc |

|

[D4] 0xc0000689c0 |

0x000202cc 0x000000CO

|

[D,] 0xc0000689£0 |

0x0002028c 0x000000CO

[A] 0xc000068A20 ((i

) 0x00000001 0x00000000

(ii) 0x006a1780 0x00000000

0x0000e068 0x000000cO

(iii) 0x00000001 0x00000000

0xc0000b6200 <«

[C1] 0xc0000b6260

0x000689c0 0x000000CO

[Cal 0xc0000b6370

0x000689£0 0x000000CO

(i) UID

(ii) The address of Golang function "go.itab.* net.TCPConn,net.Conn".

(iii) Version
(iv) Bot's IP 192.168.4.3
(v) Host IP 192.168.1.3

Fig. 3. Bot list acquisition from CNC live memory: An example.

the MySQL server. Instead of one character per packet, the MySQL
protocol as Fig. 7 shows used a single packet to transfer the user
credentials.”

Third, since bots must contact the CNC server proactively, they
were designed to send a registration packet when they join the
botnet the first time, and keep sending pulse packets to state their
activeness. The packets in Fig. 8 and Fig. 9 are the samples of a
registration packet and a pulse packet respectively. Typically, the
payload of a registration packet must be 0x00 0x00 0x00 0x01 and
the payload of a pulse packet must be 0x00 0x00. By recognizing
these packets, a forensic investigator might be able to recover a list
of the active bots (including the bot's IP address, and time for their
first/last contact, etc.).

5.3. Database server

As Fig. 1 shows, the MySQL database server is supposed to only
interact with the CNC server. In Mirai's source code package, the
Script file “/Mirai-Source-Code/scripts/db.sql” was used
for creating a ‘mirai’ database including 1) a ‘history’ table that
stores the history commands issued on the CNC server, 2) a ‘users’
table that contains CNC login credentials, and 3) a ‘whitelist’ table
that retains the IP addresses that the bots are not allowed to scan.
Because one can access the database server legitimately by

5 The reason MySQL uses one packet to carry the user credentials is that the CNC
server verified the user credentials with a single SQL query — “SELECT username,
max_bots, admin FROM users WHERE username = ? AND password = ?”. In terms
of the MySQL protocol, the SQL statement and its parameters (“mirai-user” and
“mirai-pass”) must be transferred in two independent packets.

leveraging the user credentials retrieved from the CNC server (see
Sec. 5.2), we conducted our forensic examination through both
physical and remote access.

Once a forensic investigator gains physical access to a Mirai
database server, taking a physical image of the server is always the
most effective option for the following analysis, in which the
deleted database files can be possibly recovered on disk. To retrieve
evidence from the ‘mirai’ database, one should pay attention to
recover. idb files and. frm files from the default ‘mirai’ database
folder/var/1lib/mysql/mirai/, since if the setting innodb_fi-
le_per_table® were enabled MySQL would generate these two
files (named <table name>.idb and <table name>.frm) for
each database table. Indeed, due to a different database configu-
ration, the location of these files could vary. Thus, a forensic
investigator should recover and check the configuration file to
confirm the data location of the MySQL database. Fig. 10 shows the
sample artifacts retrieved from the MySQL database.

mysqldump -h 192.168.1.4 -P 3306 -u db-login-usrname -p

db-login-passwd mirai

Listing 3: Sample command for dumping the mirai database
remotely.

If the ivestigator does not have physical access to the host of the

6 Database is stored in a single file if innodb_file_per_table were not enabled.

X. Zhang et al. / Forensic Science International: Digital Investigation 32 (2020) 300926 S7

08 00 27 28 50 6b 08 00 27 8d d1 00 ©8 00 45 00 e e E-
00 42 20 40 40 00 40 06 94 20 cO a8 01 03 cO a8 @ - -eee
04 02 00 17 ce f8 5e ef ec 54 d6 95 da cb 80 18 A. .T..

00 e3 86 8a 60 00 01 01 ©8 0a 2a ad 72 72 c4 cb *.rr

PP M00 Oc 60 00 00 63 ©Oa 61 cO a8 04 04 18 OOJNNE. - .- .C -------|

(P
B

Fig. 4. Sample packet including the “binary” version of a command that launched an
http flood attack.

08 00 27 8d d1 00 08 0@ 27 28 50 Ob 08 00 45 10 e '(P---E-
00 35 53 el 40 00 40 06 63 7d cO a8 01 01 cO a8
01 03 b8 ec 60 17 55 22 c4 95 7e 33 d6 e7 80 18 .
00 ed Ge c5 00 00 01 01 08 Oa 7a 93 60 bf 46 ea z- " +F:
25 99 @ %@

Fig. 5. Sample packet including the “text” version of a command that launched an http
flood attack.

..... #...mirai-user

.mirai-pass

AT

.botcount

.udp 192.168.4.4/24 99

Fig. 6. TCP stream of Telnet packets including CNC user credentials and legitimate CNC
commands.

MySQL database, but they have a legitimate remote access to the
MySQL database, the tables can be dumped from the database
server by using tool mysqgldump. For example, with the recovered
user name ‘db-login-usrname’ and the password ‘db-login-
passwd’, one can dump the entire ‘mirai’ database remotely from
192.168.1.4:3306 by using the ‘mysqldump’ command in Listing 3.

5.4. Scan Receiver & Loader

If the Scan Receiver and Loader server is the only host to which
an investigator has gained physical access, it is still possible to
recover substantial information regarding the bot list and the
attack history from the memory & the disk image.

5.4.1. Network packets

Through our examination, network packets were extracted from
the server's memory image, which included the information of the
infected/vulnerable IoT devices. For example, Fig. 11 shows a packet
carved from the memory image. The packet was sent to the Scan
Receiver by an infected IoT device. The packet includes the IP
address of a vulnerable IoT device and its ‘weak’ login credentials
that have been tested for an unauthorized login. To parse the
payload of the packet (highlighted from the figure), we found that
“0xC0 0xA8 0x04 0x03 0x00 0x17” refers to the vulnerable
device's IP address “192.168.4.3" and the port ‘23’ (Telnet),
“0x72 0x6f 0x6f 0x74 0x04 0x70 0x61 0x73 0x73" refer to the
ASCII code of login user name ‘root’ and password ‘pass’, and these
sections were separated with their length ‘0x04’.

5.4.2. Standard output stream

The standard output stream (or ‘stdout’) is where the Loader
acquires the information of a vulnerable IoT device reported by a
bot. By default, when the information was received by the Scan
Receiver it is posted on the ‘stdout’ in plain-text. As the data posted
on ‘stdout’ is not supposed to be stored permanently, we argue that
the memory image should be the first priority for forensic analysis.
Specifically, the easiest way to recover the information of vulner-
able IoT devices is to search for and analyze the specific format of

these records, in which, as the data highlighted in Fig. 12 shows, a
record must be structured with an IP address, a space (0x20), a
string of user name, a colon, a string of password and a new line
mark (0 x OA). Thus, we can determine that there were two
vulnerable devices reported to the Scan Receiver. Both of the re-
cords indicate to the same vulnerable device at IP address
192.168.4.3 with user name ‘root’ and password ‘pass’ (however,
the IP address of the reporting IoT devices were not included as
they lack importance for the Loader).

Although the data of the ‘stdout’ can be located in a more
normal way (such as tracking the “Terminal” process from the
memory image in which the ‘stdout's file descriptor was opened),
we found through our case study that keyword searching may work
more efficiently than any other approaches, because the format of
the record seems unlikely to be changed. This is likely because
otherwise the Loader's source code must be changed for parsing the
record. Another key point for forensic investigators to note is that
these records might be visible on the screen of the server when
they are captured. In this case, an investigator should acquire the
records as well as the format for later keyword searching.

5.4.3. Malicious/bot executable

Since a Loader must store bot executables (in different archi-
tectures) for infecting the vulnerable IoT devices, these bot exe-
cutables can be recovered from the server's disk image. As Fig. 1
shows, a malicious executable must hard-code the IP address of
the DNS server in order to find the CNC server and the Scan
Receiver's IP address. Therefore, we argue that the malicious
executable can be utilized as a probe of the botnet. Running the
executable in a Sandbox can help us monitor/collect information
related to future attacks using this botnet.

5.5. DNS server

There are many different ways to set up Mirai's DNS, as it is only
used for forwarding the CNC and the Scan Receiver's IP address to
bots. In this section, the investigation was demonstrated on BIND 9,
which is one of the most commonly used DNS servers in Linux.
Unsurprisingly, we recovered the CNC server and the Scan Receiv-
er's IP address and the client (bot) list by verifying those who had
ever requested the CNC server and the Scan Receiver's IP address.

$TTL 604800

$ORIGIN mirai . com

@ IN SOA mirai . com . root . mirai . com .(
1; Serial

604800 ; Refresh

86400 ; Retry

2419200 ; Expire

604800) ; Negative Cache TTL

www IN A 192.168.1.3
report IN A 192.168.1.5

Listing 4: The recovered comparison table of Domain name and
IP address.

BIND 9 is supposed to keep the comparison table of Domain
name and IP address (or DNS table) in a configuration file. To track
this file, one can start from the primary configuration file/etc/
bind/named.conf, in which the secondary configuration files are

S8 X. Zhang et al. / Forensic Science International: Digital Investigation 32 (2020) 300926

08 00 27 59 92 99 08 00 27 8d d1 00 08 00 45 00 S E-
00 5e 32 9a 40 00 40 06 84 a8 cO a8 01 03 cO a8 n2-@-@

01 04 8e 2c Oc ea 95 Oe bl 6a e4 2d da 10 80 18 S RIS R
00 fe 83 a8 00 00 01 01 ©8 Ga 10 Oc a7 b4 d2 78 .

B R26 00 00 00 17 04 00 00 00 00 01 0O 0O 0O
00 01 fe 00 fe 60 Ga 6d 69 72 61 69 2d 75 73 65
72 0a 6d 69 72 61 69 2d 70 61 73 73|

-m irai-use

Fig. 7. A sample MySQL packet carrying CNC user credentials.

08 00 27 8d d1 00 68 00 27 28 50 Gb 08 00 45 00 <l (P -E-
00 38 f4 63 40 00 3f 06 c1 06 cO a8 04 02 cO a8
01 03 9b 44 00 17 a7 2f c4 c6 aa 49 73 27 80 18 ce:De--/ -..1I8'-

00 e5 cf d7 00 00 01 01 08 Ga 1a 95 87 1e 9a 2a -« ccc e =

be fc CENEEHEENE - -

F

e

g. 8. A sample registration packet from a bot.

08 00 27 28 50 6b 68 00 27 8d d1 00 08 00 45 00 A R -1
00 36 42 57 40 00 40 06 72 15 cO a8 01 03 cO a8 6BW@-@ r-------
04 02 00 17 9b 44 aa 49 73 29 a7 2f c4 cf 80 18 - ---- D-I s)-/---
00 e3 86 7e 00 60 01 61 08 Oa 9a 2b do a7 la 96 RRLARRRNERES SRR
98 c8 -
Fig. 9. A sample pulse packet from an active bot.
R LR R R SRR TR R R L demmeeeeas +
| id | user_id | time_sent | duration | command | max_bots
B e T R dommme B e dommmmmaa s +
| 1] 1 | 1563551713 | 192 | ack 192.168.4.4 192 | -1
| 2 1 | 1563569141 | 180 | syn 192.168.4.4 180 | -1
3 1 | 1563570397 | 10 | ack 192.168.4.4 10 | -1
4 1 | 1563576388 | 20 | http 192.168.4.4 20 | -1
5 1 | 1563589661 | 10 | http 192.168.4.4 10 | -1
6 1 | 1563590219 | 5 | http 192.168.4.4 5 | -1
7 1 | 1563590424 | 11 | udp 192.168.4.4 11 | -1 |
8 | 1 | 1563590864 | 100 | http 192.168.4.4 100 | -1
9 1 | 1563592046 | 64 | stomp 192.168.4.4 64 | -1
10 1 | 1563604305 | 99 | udp 192.168.4.4 99 | -1
11 1 | 1563617689 | 99 | http 192.168.4.4 99 | -1
12 1 | 1563618389 | 99 | http 192.168.4.4/24 99 | -1
13 1| 1563618501 | 99 | http 192.168.4.4/24 99 | -1
14 1 | 1563632476 | 100 | http 192.168.4.4/24 100 | -1
15 1 | 1563643742 | 99 | udp 192.168.4.4/24 99 | -1
16 1 | 1563682051 | 100 | udp 192.168.4.4/24 100 | -1]
17 1 | 1564710267 | 1000 | udp 192.168.4.4/24 1000 | -1
| 18 | 1 | 1565641307 | 100 | udp 192.168.4.4/24 100 | -1
R LSRR L EEEEEE TR R R LT P LR +
$eccecdecccccccccaa $ecccccccccas $eccccccccccccca- decccccccaa deceeaa $eccccccccaa
R e ERE LEEEEEEEE +
| id | username | password | duration_limit | cooldown | wrc | last_paid
max_bots | admin | intvl | api_key
R s T D R T T L R D
R e
| 1| mirai-user | mirai-pass | 0| 0| 0 | [¢]
-1 | 1|
B B B e B domm--- e
o e +o-mmm- - +o--mm- - Ho-mmmmm-- +

Fig. 10. CNC Command history and CNC User credentials recovered from MySQL
database server.

included. Typically, BIND 9 recommends the user add a new zone to
the file/etc/bind/named.conf.local to indicate the file that stores the
DNS table. By recovering the file named.conf.local, the DNS
table file can be found, and the DNS table can be recovered. The DNS
table recovered from the DNS server is shown in Listing 4, of which
the CNC's domain name www.mirai . comis corresponding to the IP
address 192.168.1.3 and the Scan Receiver's domain name
report.mirai.com refers to the IP address 192.168.1.5.

Since the DNS server might log the DNS queries, the sample
history queries we found from the DNS server's disk image are
shown in Fig. 13. Again, please note that the proposed forensic
analysis on the DNS is not universal. Neither the log files nor the

08 00 27 c6 69 c3 08 GO 27 28 50 Ob 08 00 45 00
00 44 6e 25 40 00 3f 06 47 37 cO a8 04 02 cO a8
01 05 a9 a8 bb e5 l1a 33 7e b5 8f 16 6b 17 80 18
00 e5 7b cb 00 00 01 01 08 0a di db 91 23 93 4b
PR 0 25 04 03 00 17 04 72 67 6f 74 04 70 b3
iﬁlﬁﬁ

Fig. 11. The network packet reported from a bot to the Scan Receiver, which includes
the IP address and the user credentials of a vulnerable IoT device.

64 65 62 75 67 23 26 2E 2F 73 63 61 6E 4C 69 73 debug# ./scanLis
74 65 6E 20 @A B1 39 32 2E 31 36 38 2F 34 2E 33 ten [192.168.4.3
3A 32 33 20 72 6F 6F 74 3A 70 61 73 73 [oA 31 39 19
32 2E 31 36 38 2E 34 2E 33 3A 32 33 20 72 6F 6F 2.168.4.3:23 roo
74 3A 70 61 73 73 @A GA @0 60 00 00 00 00 00 0O t:pass

Fig. 12. The stdout in the memory which includes the IP address, user name and
password of a vulnerable IoT device, which was received by the Scan Receiver and was
sent by an infected IoT device.

network packets are guaranteed for recovering the full list of clients
because when the logs and the packets reach the size limit the
oldest data would be lost.

6. A road map for Mirai botnet server forensics

In this section, we propose a road map as a guide for Mirai
botnet server forensics, since configurations and deployments can
vary. As Fig. 14 shows, analysis of each different server can result in
gaining different forensic artifacts, which are considered in two
categories. A list of bots can indicate the infected/vulnerable IoT
devices under the attacker's control. The command and attack
history can prove that the attacker had launched DDoS attacks
through the botnet.

To utilize the road map, an investigator can start a forensic
analysis from any of the five servers with physical access. The
road map indicates the path from a data entity, which can be
extracted from the data resource (e.g., Network packets, execut-
able file or live process) to the key evidence. The diamond arrows
in the figure indicate that we had proposed an approach to
recover the integrated data of the evidence from the data entity.
The classic arrows indicate that the evidence may be recovered
partially but without a guarantee. For example, the CNC live
process that was extracted from the CNC server's memory image
is the only data entity from which a full list of live bots can be
extracted. Similarly, the database file on the database server is
the only data entity where the complete attack (command) his-
tory can be retrieved.

In summary, we argue that, the CNC server or the MySQL
server should be considered the first priority during Mirai server
forensics because it is almost guaranteed to find the login cre-
dentials for other servers, Therefore, this will allow recovery of
the integrated bot list and the attack history. The second priority
is the Scan Receiver & Loader, in which a bot executable file and
the cached ‘stdout’ data stream and network packets might
expose the bot list and attack history (though the comprehensive
data integrity cannot be guaranteed). The servers both consid-
ered having the least priority are the attacker's remote terminal

Aug 16 16:55:22 cnc named[515]: client @Ox7ff9140c72a0 192.168.4.2#42576
(www.mirai.com): query: www.mirai.com IN A + (192.168.1.7)

Aug 16 16:55:50 cnc named[515]: client @Ox7ff9140c72a0 192.168.4.2#55160
(report.mirai.com): query: report.mirai.com IN A + (192.168.1.7)

Fig. 13. The log file records of the BIND 9 DNS server.

X. Zhang et al. / Forensic Science International: Digital Investigation 32 (2020) 300926 S9

Terminal DNS server

Live network traffic l Memory image Hard Disk image

+---> DNS configuration fileg > CNC's IP address
: L—>Scan Receiver's IP address

‘- --»Network packets<- - - *

CNC login L -
e CN(‘ server

Hard Disk image
T

t---> DNS query log

Scan Receiver & Loader

Memory image
T

t---»CNC live process
t- - > Network packctsjl
Database login
. > i
MySQL database server

Hard Disk image

Hard Disk image

Memory image

---»CNC executable L---»Bot executable }---»Network packets—

*---»stdout

: 'Mirai' server.

*---> Database files—

|
: User credentials.
: Intermediate artifacts. Bot J Attack |4,

(Client) & cmd
history

: Recoverable (less probable). list
Fig. 14. The road map for Mirai botnet server forensics.

: Target artifacts.

L IR

: Recoverable with proposed techniques.

and the DNS server, because logging in the CNC server can barely
help an investigator to retrieve the desired evidence as there is
no valid command in the shell provided by the CNC that can
dump the Mirai database. From a forensic investigator's
perspective, the only useful data on these servers are the DNS
query log and the terminal's network packets, which can be
examined for extracting the information of the bots and the
history attack commands respectively although data integrity
cannot be guaranteed.

7. Related literature

Mirai was first released in initial attacks in August 2016 and
brought widespread attention to weak security common to many
IoT devices (Margolis et al., 2017a; Bursztein, 2017). Significant
research has since resulted, however, it has largely focused on the
executable itself and its variants (Antonakakis et al., 2017;
Sinanovi¢ and Mrdovic, 2017), as well as the associated botnet ar-
chitectures (Kolias et al., 2017). We will review that literature
briefly, but remind the reader that our focus is on the forensic ar-
tifacts associated with the Mirai server. This focus fills a valuable
gap for digital forensic practitioners, giving them a comprehensive
forensic guide to collecting the most important digital artifacts and
data from Mirai servers and its variants.

Kolias et al. (2017) described the Mirai botnet and its variants,
including Hajime and Bricker, and described how each botnet
worked relative to the other. Their work described the behavior of
the botnet at an internet scale, but the work did not describe
technical details of how the malware worked inside the CNC
servers. Bertino and Islam (2017) also described these and other
Internet worms, and described some security measures. However,
this work did not describe the technical aspects of the server or the
botnet itself. In a more general sense (i.e., not specific to Mirai),
Costin and Zaddach (2018) surveyed the existing IoT malware
literature.

Kambourakis et al. (2017) performed an in-depth executable
analysis, particularly the steps Mirai uses to identify vulnerable
systems and how it fingerprints the system. This work further
compares Mirai with other malware including Hajime. This tech-
nical detail helps researchers understand key elements of how the
code works during initial infection and does identify some limited
forensic artifacts on victim systems. Sinanovi¢ and Mrdovic (2017)

analyzed the publicly available Mirai source code using static and
dynamic analysis techniques. They describe the general CNC and
botnet architecture and how to find some important examples of
forensic artifacts, but they do not provide a comprehensive forensic
analysis of the CNC server. Similarly, Wang et al. (2017) provided
technical details of Mirai and the Darlloz worm with some details
useful for forensic analysis, but they too did not provide a
comprehensive forensic analysis.

Zulkipli et al. (2017) reiterated the need for forensic under-
standing of IoT malware. They reviewed the IoT forensic literature,
and discussed the commonalities and differences between tradi-
tional device forensics and IoT device forensics. They explained that
previous digital forensic frameworks either have significant gaps
when applied to IoT devices, or the forensic analysis papers they
reviewed do not cover key technical details needed. They explained
that this is largely due to the heterogeneity of IoT devices, both in
hardware and software, as well as other aspects of IoT devices, like
the lack of logs and storage, and the inability to easily turn off the
device for analysis.

Karabiyik and Akkaya (2019) described general methods for
conducting forensic analysis at the network and device level. They
also provided an in-depth description of the various communica-
tion channels used by IoT devices and the different processors,
operating systems, and file systems that complicate IoT forensics. A
number of researchers have also forensically examined different IoT
devices (Li et al., 2019; Zhang et al., 2019; Chung et al., 2017;
Sayakkara et al., 2019) and other IoT malware botnets (Herwig et al.,
2019; Soltan et al., 2018), as well as presenting common taxonomy
for IoT malware analysis to facilitate the understanding of IoT
malware (Soliman et al., 2017). While these works described the
behavior of the IoT malware, technical details of how the bot
malware worked inside the CNC servers is missing. There remains a
lack of comprehensive forensic analyses of botnet servers and de-
vices, including Mirai.

8. Conclusion

With the increasing ubiquity of IoT devices in our society, the
advent of IoT bot malware and botnets, combined with 5G net-
works connecting it all in the very near future, the ability to
forensically analyze IoT malware related devices is critical. The
impact of the Mirai botnet on the Internet in 2016, as well as the

S10 X. Zhang et al. / Forensic Science International: Digital Investigation 32 (2020) 300926

impact of variants thereof since, makes Mirai a great candidate to
begin this pursuit. Since 2016, related research has considered
the executable itself and the architecture of the botnet that de-
livers malware and communicates with infected victims. How-
ever, the research gap remaining that this research addresses, is
the comprehensive forensic analysis of botnet devices — specif-
ically, the Mirai servers. This paper discussed forensic techniques
to examine the Mirai botnet server, both remotely and with
physical access to it, and outlines specific forensic artifacts and
their location. These artifacts provide critical investigative in-
formation, including IP addresses and user credentials, among
others. This research was limited to the standard, original Mirai
botnet set-up. The impacts of significant customization of the
botnet was not studied, and might be a topic for future research,
although such customizations may be numerous and difficult to
predict.

Acknowledgements

This research was supported in part by National Science Foun-
dation CREST under Grant HRD-1736209. UTSA also gratefully ac-
knowledges CACI, Inc. - Federal, for their support of research
activities at The Cyber Center for Security and Analytics, UTSA.

References

Antonakakis, M., April, T, Bailey, M., Bernhard, M., Bursztein, E., Cochran,]J.,
Durumeric, Z., Halderman, J.A., Invernizzi, L., Kallitsis, M., et al., 2017. Under-
standing the Mirai botnet. In: 26th USENIX Security Symposium, vol. 17. USENIX
Security, pp. 1093—1110.

Bertino, E., Islam, N., 2017. Botnets and Internet of Things Security. Computer,
pp. 76—79.

Bursztein, E., 2017. Inside Mirai the infamous iot botnet: a retrospective analysis..
https://www.elie.net/blog/security/inside-mirai-the-infamous-iot-botnet-a-
retrospective-analysis.

Chung, H., Park, J., Lee, S., 2017. Digital forensic approaches for amazon alexa
ecosystem. Digit. Invest. 22, S15—S25.

Costin, A., Zaddach, J., 2018. IoT Malware: Comprehensive Survey, Analysis Frame-
work and Case Studies. BlackHat USA.

Herwig, S., Harvey, K., Hughey, G., Roberts, R., Levin, D., 2019. Measurement and
Analysis of Hajime, a Peer-To-Peer Iot Botnet. NDSS.

Kambourakis, G., Kolias, C., Stavrou, A., 2017. The Mirai botnet and the IoT zombie
armies. In: MILCOM 2017-2017 IEEE Military Communications Conference
(MILCOM). IEEE, pp. 267—272.

Karabiyik, U., Akkaya, K., 2019. Digital forensics for IoT and wsns. In: Mission-ori-
ented Sensor Networks and Systems: Art and Science. Springer, pp. 171—207.

Kolias, C., Kambourakis, G., Stavrou, A., Voas,]., 2017. Ddos in the IoT: Mirai and
other botnets. Computer 50, 80—84.

Li, S., Choo, K.-K.R., Sun, Q., Buchanan, W.J., Cao, J., 2019. IoT forensics: amazon echo
as a use case. [EEE Internet of Things J. 6, 6487—6497.

Margolis, J., Oh, T.T,, Jadhay, S., Jeong, J.P., Kim, Y.H., Kim, J.N., 2017a. Analysis and
impact of IoT malware. In: Proceedings of the 18th Annual Conference on In-
formation Technology Education. ACM, 187—187.

Margolis,]., Oh, T.T,, Jadhay, S., Kim, Y.H., Kim, J.N., 2017b. An in-depth analysis of
the Mirai botnet. In: 2017 International Conference on Software Security and
Assurance (ICSSA). IEEE, pp. 6—12.

Sayakkara, A., Le-Khac, N.-A., Scanlon, M., 2019. Leveraging Electromagnetic Side-
Channel Analysis for the Investigation of Iot Devices arXiv preprint. arXiv:
1904.02089.

Sinanovi¢, H., Mrdovic, S., 2017. Analysis of Mirai malicious software. In: 2017 25th
International Conference on Software, Telecommunications and Computer
Networks (SoftCOM). IEEE, pp. 1-5.

Soliman, S.W., Sobh, M.A., Bahaa-Eldin, A.M., 2017. Taxonomy of malware analysis in
the IoT. In: 2017 12th International Conference on Computer Engineering and
Systems (ICCES). IEEE, pp. 519—529.

Soltan, S., Mittal, P., Poor, H.V., 2018. Blackiot: iot botnet of high wattage devices can
disrupt the power grid. In: 27th USENIX Security Symposium, vol. 18. USENIX
Security, pp. 15-32.

Wang, A., Chang, W., Chen, S., Mohaisen, A., 2018. Delving into internet ddos attacks
by botnets: characterization and analysis. IEEE/ACM Trans. Netw. 26,
2843—-2855.

Wang, A, Liang, R, Liu, X,, Zhang, Y., Chen, K, Li, J., 2017. An inside look at IoT
malware. In: International Conference on Industrial IoT Technologies and Ap-
plications. Springer, pp. 176—186.

Zhang, X., Choo, K.-K.R., Beebe, N.L., 2019. How do i share my iot forensic experience
with the broader community? an automated knowledge sharing iot forensic
platform. IEEE Internet of Things J. 6, 6850—6861.

Zulkipli, N.H.N., Alenezi, A., Wills, G.B., 2017. IoT forensic: bridging the challenges in
digital forensic and the internet of things. In: International Conference on
Internet of Things, Big Data and Security, vol. 2. SCITEPRESS, pp. 315—324.

http://refhub.elsevier.com/S2666-2817(20)30021-4/sref1
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref1
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref1
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref1
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref1
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref2
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref2
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref2
https://www.elie.net/blog/security/inside-mirai-the-infamous-iot-botnet-a-retrospective-analysis
https://www.elie.net/blog/security/inside-mirai-the-infamous-iot-botnet-a-retrospective-analysis
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref4
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref4
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref4
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref5
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref5
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref6
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref6
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref7
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref7
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref7
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref7
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref8
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref8
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref8
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref9
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref9
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref9
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref10
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref10
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref10
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref11
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref11
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref11
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref11
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref12
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref12
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref12
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref12
arxiv:1904.02089
arxiv:1904.02089
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref14
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref14
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref14
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref14
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref14
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref15
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref15
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref15
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref15
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref16
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref16
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref16
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref16
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref17
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref17
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref17
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref17
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref18
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref18
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref18
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref18
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref19
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref19
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref19
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref19
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref20
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref20
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref20
http://refhub.elsevier.com/S2666-2817(20)30021-4/sref20

	IoT Botnet Forensics: A Comprehensive Digital Forensic Case Study on Mirai Botnet Servers
	1. Introduction
	2. Mirai botnet overview
	3. Methodology
	4. Environment setup
	5. Forensic artifacts
	5.1. Attacker's terminal
	5.2. CNC server
	5.2.1. CNC source code
	5.2.2. CNC executable
	5.2.3. CNC live process
	5.2.4. Network packets

	5.3. Database server
	5.4. Scan Receiver & Loader
	5.4.1. Network packets
	5.4.2. Standard output stream
	5.4.3. Malicious/bot executable

	5.5. DNS server

	6. A road map for Mirai botnet server forensics
	7. Related literature
	8. Conclusion
	Acknowledgements
	References

